Session: Long - Understanding and Interpretability |

CIKM ’19, November 3-7, 2019, Beijing, China

Accounting for Temporal Dynamics in Document Streams

Zhendong Chu
School of Computer Science
Fudan University
Shanghai, China
zdchul5@fudan.edu.cn

ABSTRACT

Textual information, such as news articles, social media, and online
forum discussions, often comes in a form of sequential text streams.
Events happening in the real world trigger a set of articles talking
about them or related events over a period of time. In the meanwhile,
even one event is fading out, another related event could raise
public attention. Hence, it is important to leverage the information
about how topics influence each other over time to obtain a better
understanding and modeling of document streams.

In this paper, we explicitly model mutual influence among top-
ics over time, with the purpose to better understand how events
emerge, fade and inherit. We propose a temporal point process
model, referred to as Correlated Temporal Topic Model (CoTT), to
capture the temporal dynamics in a latent topic space. Our model
allows for efficient online inference, scaling to continuous time doc-
ument streams. Extensive experiments on real-world data reveal
the effectiveness of our model in recovering meaningful temporal
dependency structure among topics and documents.
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1 INTRODUCTION

Millions of text documents flood on the internet everyday, which
makes it impossible for an ordinary user to digest the information
buried in these documents effectively. Service providers, such as
search engines, social media platforms, and online forums, invest a
huge amount of resources in organizing these documents to help
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their users retrieve and utilize relevant information [2, 3, 8, 17, 20].
How to effectively model and analyze these unstructured docu-
ment streams become increasingly crucial for service providers to
improve users’ experience and maximize their service utility.

Document streams are composed of text content generated over
time, which, though could be large in volume, are never indepen-
dent of each other. Both temporal and textual information strongly
manifest the underlying dependency structure in document streams.
First, it has been verified in various studies [2, 10] that documents
appearing in close temporal proximity tend to share the same topic.
For example, the occurrence of one event may result in a series
of documents discussing about it in a short period. As shown in
Figure 1, by manually analyzing a subset of 48,986 news articles
from 5 mainstream press (e.g., CNN) published between 01/01/2017
and 07/06/2017, we find that when a shooting incident happened
in Chicago on 01/10/2017, a series of news articles about this event
were published subsequently in the next 3 hours. Many similar ob-
servations are also obtained on other breaking news events in the
dataset. Second, the appearance of a topic leads to the emergence
of relevant topics in close temporal proximity. As Figure 1 shows,
right after the report of Chicago Shooting, the discussion about Gun
Control and Public Safety & Security rose simultaneously. Moreover,
it is not a surprise to find such a correlation among related topics re-
peats itself in this dataset. Third, the temporal dynamic patterns are
different across topics. The occurrence of certain topics can be tran-
sient, while some are periodically popular. For instance, in Figure 1
President Mourn for Chicago Shooting raised public’s attention to
Chicago Shooting again, re-triggering a series of news articles about
Gun Control and Public Safety & Security. These two topics which
fade out in a period ago regained popularity. These three aspects
of the complex temporal dependency in document streams suggest
that it is not trivial to capture the embedded temporal dynamics,
but necessary when modeling document streams.

Modeling document streams while capturing the aforementioned
temporal dependency structures is our focus in this work. Various
solutions have been proposed to model document streams. Topics
Over Time (TOT) model [20] and Dynamic Topic Model (DTM)
[4] are typical solutions. Specifically, TOT samples timestamp for
each document based on the document’s topic distribution; and
DTM assumes at different time periods there are different topic
distributions over documents. However, such models treat topics as
independent, such that they cannot realize the correlation among
topics. In addition, these models assume the popularity of topics is
stationary, but words representing topics change over time, which
fails to capture the temporal variance of topic popularity.

Some recent developments introduce temporal point process
models to capture the dynamics of topics over time. A typical ex-
ample is the Dirichlet Hawkes Process (DHP) model [10], which
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Figure 1: An illustration of temporal dynamics in CNN
newswire. Every circle represents a document published ata
particular time on a global timeline. Colored boxes are doc-
uments about the same event. Each selected topic is repre-
sented by its own timeline. Dotted arrows indicate the influ-
ence between different topics within the same event.

Gun Control Timeline

assumes documents in a close temporal proximity share the same
topic and topics temporally faraway fade out gradually. However,
this simplified assumption ignores the heterogeneity of temporal
patterns across topics. In DHP, all topics which remain silent for
a period of time are to be abandoned,; if a previously fading away
topic becomes popular again after a while, it will be treated as a new
topic. As a consequence, documents on the same topic but far apart
in time will be assigned to different topics, which makes it hard to
capture the dependence among documents accurately. In addition,
mutual influence among correlated topics is also missing in DHP,
as topics are treated independently from each other. Hierarchical
Dirichlet Hawkes Process (HDHP) [16] considers the heterogeneity
of topics’ temporal dynamics by assuming the generative process of
documents follow the Hierarchical Dirichlet Process (HDP), instead
of the Dirichlet Process (DP). This enables a topic to regain popu-
larity after fading out for a while. But the topics are still assumed
to be independent from each other in HDHP.

In this work, we integrate the temporal point process, specifi-
cally the Hawkes Process [13], with Hierarichal Dirichlet Process to
account for different aspects of temporal dependence in document
streams. We name the proposed model as Correlated Temporal
Topic Model, or CoTT in short. We assume each document is associ-
ated with a topical cluster, such that a document stream is organized
into clusters over time; and each document cluster is then associ-
ated with a single topic. Different document clusters can share the
same topic. This forms a two-level structure of document stream,
where we categorize the topical dependence in a document stream
into two types: that among documents and that among topics. CoTT
regards the dependence among documents as the tendency that
documents appearing temporally close to each other tend to be on
the same topic. This is achieved by assigning documents tempo-
rally close to the same cluster via a uni-dimension Hawkes Process.
New clusters are always needed to model the constantly generated
documents; and in CoTT, we employ a DP prior distribution over
the clusters to adaptively create document clusters on the fly.

On top of the document clusters, CoTT explicitly models the
dependence among topics as mutual influence across topics. A
multi-dimension Hawkes Process is introduced to model the mutual-
excitement among topics over the document clusters. Specifically,
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when deciding the topic assignment for a document cluster, CoTT
considers not only the popularity of a topic in existing clusters
(i.e., its base intensity), but also the other existing topics’ temporal
influence (i.e., pairwise mutual influence). The popularity-based
base intensity allows a historically popular topic to regain atten-
tion, and the temporal mutual influence emphasizes the proximity
between the appearances of topics over time. Again, to enable the
creation of new topics on the fly, we impose a DP prior on top of
this multi-dimension Hawkes Process for modeling the topics.

To investigate the effectiveness of CoTT in modeling temporal
dynamics in document streams, we performed extensive experi-
ments on both synthetic data and a large real-world news corpus
consisting of news articles from multiple mainstream publishers.
Our solution obtained promising performance improvement in
modeling unseen documents, predicting future content and appear-
ance time of a target document. In particular, meaningful mutual
influence structure and temporal pattern among topics can be auto-
matically recovered, which provide helpful insight in text analytics
over document streams.

2 PRELIMINARIES

In this section, we introduce the major building blocks of CoTT, i.e.,
the Hierarchical Dirichlet process [18] and the Hawkes process [1].

2.1 Hierarchical Dirichlet Process

To allow instances to share an unbounded number of clusters, Teh
et al. [18] proposed Hierarchical Dirichlet Process (HDP) to struc-
ture data points in an unsupervised fashion, which imposes a hier-
archy of Dirichlet processes (DPs). It utilizes a DP to model clusters
Go ~ DP(fo, H) and another layer of DP to model groups of in-
stances which share clusters G ~ DP(ag, Gy). A corresponding
perspective of understanding HDP is the Chinese restaurant fran-
chise process:

(a) Draw table ¢; for a new customer i,

1) Sample a new table with probability
Plei =K +1)= —
ap + Zk Nk

2) Sample an existing table with probability
nk

P(ci=k)= ————
l 050+Zlk("k

where nj. = Z;;i I(cj = k) is the number of customers
seating at the kth table.
(b) If ¢; = K + 1, i.e,, the new customer sits at a new table,
1) Sample a new dish for the table with probability
Bo

o+ Xk m

2) Sample an existing dish for the table with probability

P(ze=L+1)=

my

Plee =)= — L
e =0 Po+ Xt my

where m; = Zle I(zg = 1) is the total number of tables
serving dish [ in the franchise.
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Compared with DP, the data clusters are further grouped in HDP.
This enables fine grained modeling of data clustering structure.
However, HDP still builds upon the exchangeability assumption,
and therefore it is not able to model the temporal dynamics among
data points, where time is important to be modeled.

2.2 Hawkes Process

Hawkes process, a type of temporal point process, models the de-
pendence of future events on historical events with respect to their
temporal distance [14]. Intensity function characterizes a Hawkes
process, depicting the occurring rate of an event at time ¢ given
historical events. For a uni-dimension Hawkes process that mod-
els the dependence within the same type of events, the intensity
function A*(t) is defined as,

Ny=p+ D ax(t,t)

t;eH(t)

1

where p is the base intensity, representing the spontaneous oc-
curring rate of an event. The kernel function x(t, ¢;) captures the
influence of previous event i at time ¢; on the generation of cur-
rent event at time ¢, e.g., a time decay function. Exponential func-
tion [7] k(t,t;) = exp(—w(t — t;)) or RBF function [11] (¢, t;) =
exp(—(t — t; — 7)%/20%)/V2ro? are typically used as the kernel
function. The parameter o measures the strength of temporal influ-
ence. Because of the time decay effect, previous events occurring
temporally closer to the current event have stronger influence on
it than those temporally farther away.

To capture dependence among events of different types, multi-
dimension Hawkes process [15] is introduced. Its intensity function
is defined as,

/1;;(0 = Hu t Z Ay x(t, t)
t; €H(t)
where 1, is the base intensity of event type u. A K-by-K matrix A
denotes the pairwise mutual influence among K different types of
events, and Ay, represents the mutual influence between event
type u and event type u;.

In this work, we consider the generation of a document as an
event; and a type of events is summarized as a topic, which is a
word distribution over a fixed vocabulary. We model the dependence
among documents via a uni-dimension Hawkes process so as to
segment a document stream into clusters; and impose a multi-
dimension Hawkes process over the document clusters to capture
the dependence among topics. Hierarchical Dirichlet process is
introduced on top to enable dynamic creation of clusters and topics
on the fly.

@

3 CORRELATED TEMPORAL TOPIC MODEL

In this section, we describe our developed Correlated Temporal
Topic Model (CoTT) in detail, which is designed to capture tem-
poral dependence both among documents and among topics in a
document stream. We assume each document belongs to a latent
document cluster, which is linked with a latent topic. As a result,
in CoTT, we use a two-level structure to organize documents: doc-
uments are organized into clusters and clusters are organized into
topics. A high-level illustration of CoTT is shown in Figure 2, and
we will describe each component of our design in detail.
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Figure 2: Illustration of Correlated Temporal Topic Model.
Every circle on the timeline represents a newly generated
document. Colored boxes are documents belonging to the
same cluster. Documents are organized into clusters. Col-
ored circles represent topics, which are shared by different
clusters. Documents under the same topic share the same
word distribution.

To facilitate our discussion, we define the following notations.
A document stream D is composed of N documents, D = {d,-}f\il,
which are ordered chronologically by their timestamps. Each docu-
ment d is associated with a bag of words and a timestamp when it
is published. We use W; to represent words in document d; and t;
to represent its timestamp. Accordingly, cl{ denotes that d; belongs
to document cluster / and zlgi denotes that d; belongs to topic k.

k
1
assume a topic z is represented by a unigram language model

that specifies the generation of a document. The vocabulary size
in the document stream is set to V, and we leave it as our future
work to model dynamic vocabulary over time. The time span of the
document stream is assumed to be [0, T], where T could be infinite.

We use z7 to denote that the topic of cluster [ is k. In addition, we

3.1 Dependence among Documents

To realize that documents temporally nearby tend to be on the same
topic, CoTT encourages documents that appear temporally close
to share the same cluster. CoTT achieves this via a uni-dimension
Hawkes process for modeling the generation of documents within
a given document cluster. As depicted in Eq. (1), a new document is
more likely to be generated if there is a nearby document from the
same cluster. However, as the cluster assignments on documents are
not observable, CoTT imposes a DP prior over the uni-dimension
Hawkes process to generate the cluster assignments. Intuitively, an
existing cluster with a higher intensity at the current time point
is more likely to generate the corresponding document. And this
prior distribution also introduces the flexibility of creating new clus-
ters (i.e., a new uni-dimension Hawkes process), when necessary.
Hence, CoTT defines the probability of drawing cluster ¢; for the
ith document d; at time ¢; given historical documents {d1, ..., d;j—1}
and their corresponding cluster assignments {cy, ..., cj—1} as,

. - Al
P(Cz = l) = AO+Z§?:1 /Il’(ti)’ (3)
P(ci=L+1) = Ao
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In Eq. (3), we denote the number of unique clusters among
{¢1,...,ci—1} as L. On the one hand, for an existing cluster / € [1, L],
its calculated intensity A;(t;) = Z;;} ajx(ti, tj)l(c; = I) becomes
larger if more of its documents are temporally close to the current
document; and thus this new document is more likely to belong to it.
We employ an exponential kernel function k(z, t;) = exp(—pf;(t—t;))
in CoTT to reflect the decay of temporal influence, which is con-
trolled by the decay parameter ;. We also assign different strength
parameter o; to each cluster to reflect their possibly different tem-
poral influence on subsequent documents. In particular, we assume
a; follows a gamma distribution Gamma(ry, 72). As each cluster is
associated with a topic, once a cluster is assigned to document d;,
its correspondingly attached topic zF is used to generate the text
content of d;, i.e., W; ~ Mulz‘i(@zé< ). This process is illustrated in

the bottom layer of Figure 2.

On the other hand, the default intensity A¢ allows the document
to draw a new cluster L + 1, i.e,, the nature of Dirichlet process.
Once a new cluster is created, CoTT needs to assign a topic to it.
This calls for the modeling of temporal dependence among topics,
and we describe this process in the next section.

3.2 Dependence among Topics

The dependence among topics includes their mutual influence (e.g.,
topic a triggers topic b) and temporal dynamics (variance of topic
popularity over time). To capture mutual influence among topics,
which is suggested by the observation that documents on correlated
topics tend to appear in a close temporal proximity, we employ a
multi-dimension Hawkes process to model the generation of topic
assignments on clusters. As shown in Eq. (2), the mutual influence is
modeled via the pairwise influence matrix A between topics. Similar
to the design of cluster assignment generation, we impose another
DP prior over the multi-dimension Hawkes process to encourage
the model to select topics that appear closer to the current times-
tamp. But the key difference is that although one topic might be
temporally far away from the current event, it could still have a
high probability to be chosen, if many of'its correlated topics appear
nearby, i.e., the mutual excitement. As the mutual influence differs
among topics, so does the realized temporal dynamics across them.
To fulfill the need for possibly different time decay at the cluster
level and topic level, we choose the exponential kernel function but
with different kernel parameters for this multi-dimension Hawkes
process.

Moreover, to balance the tension between the decay effect of
topic popularity over time imposed by the Hawkes process and
the need of aligning faraway documents of the same topic, we
introduce base intensity to the multi-dimension Hawkes process. It
is expected capture to the popularity of a topic, which encourages
a remote topic to regain attention. And the trade-off is achieved by
learning the kernel parameters. This process is illustrated in the
top layer of Figure 2. We should note the intensity for a document
cluster (defined in Section 3.1) does not contain a base intensity
term. The reason for this difference is that the document cluster
is designed to capture the burstiness of documents of a certain
topic ephemerally and therefore its influence on future documents
is measured by temporal proximity; but a topic is supposed to be
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long-lasting, and thus its base intensity encourages its reappearance
even though it fades away for a while.

As aresult, denote the unique number of topics among {z1, ..., zj—1 }
as K, the probability of drawing a topic for a new cluster L + 1 in
CoTT is,

Yi(ti)

Yo+ S, Ve (8)
Yo
Yo+Zh_ v ()’

For an existing topic k € [1,K], its intensity yg(t;) = pp +
ZIL:1 Az, kx(t;, tr+1) considers the mutual influence of previous
clusters’ topics on topic k through A, ¢ and the base intensity of
topic k (i.e., p1). To calculate time decay, we consider the timestamp
of the last document assigned to cluster [ as the cluster’s timestamp,
ie, t; = max{tjlc; = l}J’:;%. We assume the time decay in this

P(zp+1 = k)

P(zpy1 =K +1) @

layer is different from the uni-dimension Hawkes process used
above, so that we set another decay parameter f; in the kernel
function k(t;, tr+1) = exp(—Pr(t; — tr+1)). We assume the existing
topics’ mutual influence on a new topic is zero. When a new topic is
created, we will sample a new language model 8k 1 from a Dirichlet
distribution over the fixed vocabulary.

3.3 Modeling Document Streams with CoTT

Putting the aforementioned components together, we obtain a com-
plete generative model of document streams. When generating
document d; in a document stream D = {d; }f\i 1» CoTT first draws
its timestamp ¢; from the uni-dimension Hawkes process, and then
samples its cluster assignment c¢; from the associated Dirichlet
process. If a new cluster is generated, CoTT samples its topic as-
signment z, from another layer of Dirichlet process based on a
multi-dimension Hawkes process, which factors in the mutual influ-
ence and temporal dynamics among topics. The document content
W; is subsequently sampled from the topic-specific word distribu-
tion 6z, .

To complete our description of CoTT, we illustrate the generation
of document stream D as follows:

1. Initialize the number of clusters L = 0 and the number of topics
K =0.

2. For document dy, draw t; ~ Hawkes(Ao), 61 ~ H(6p), and
a1 ~ Gammal(ty, 12). For the word content W; of document
di: WP ~ Multi(0;). Thenset L=L+1and K = K + 1.

3. For document d;, i > 1:

(a) Draw t; from Hawkes(3}; A;(ti—1)+2k vi(ti-1))-

(b) Draw cluster ¢; for document d; by Eq. (3). If a new cluster
is chosen, draw aj .1 ~ Gamma(ty, 72), and increase the
number of clusters L = L + 1.

(c) If a new cluster is created, sample topic by Eq. (4). If a
new topic is created, draw 0k 1 ~ Go(6), and increase the
number of topics K = K + 1.

(d) Draw words in document from W ~ Multi(@zcl_)

4 INFERENCE & PARAMETER ESTIMATION

To apply CoTT for modeling a document stream, we need to infer
the latent cluster assignments on documents (i.e., {ci}fi 1) and topic
assignments on clusters (i.e., {zl}{;l). To perform this posterior
inference, we need to first estimate the model parameters of CoTT.
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The scaling parameters Ag and yy in these two layers of DPs are
set as hyper-parameters. In this section, we present an efficient
algorithm to infer latent variables and estimate parameters of CoTT
on the fly.

4.1 Inference of Cluster and Topic Assignments

We develop a particle sampling algorithm based on Sequential
Monte Carlo (SMC) [9] to infer the posterior of cluster assign—
ment {cl} | for each document and topic assignment {z}L =1 for
each cluster on the fly. For simplicity, we define ¢, = (cn,zn)
for each document dj,. In SMC, we keep a set of particles 7; for
each particle f € #, we keep an approximation of the posterior
p(Wn:n—1ld1:n—1, t1:n-1), i-e., the latent variable assignments before
a new document d, arrives. At time t,, we update the posterior to
p(W1:n|di:n, t1:n) by sampling 1, in each particle. Each particle is
associated with a weight indicating how well the sampled assign-
ments fit the data. If a particle’s weight is lower than a threshold
(usually set to Lﬂ), it will be replaced with a duplicate of a remain-
ing particle, sampled with respect to their weights. This step is
referred to as resampling in SMC.

Given a true posterior and a proposal distribution, the parti-

; ; P(llllnltln dln)
cle weight is defined as w£ CaTmdi) In SMC, we use

pWnlt1:n, d1:n, Y1:n—1) as the proposal distribution to sample ¢, se-
quentially, based on the previously sampled results of ¢/1.,—1. This
[2]. At each step of SMC for
CoTT, the proposal posterior is computed by p(¥/n |t1:n, d1:n> Y1:n—1) <
P(¢na dnltna din—1, tin—1, l//lzn—l) = P(dnhpns reSt) Xp(wn“n, rf—’St),
based on the conditional independence assumption in CoTT. To
simplify the notations, we just use rest to denote the other ran-
dom variables governing the generation of corresponding latent
variables. We can further decompose the above probabilities into
pdnlzn, rest) X p(cpltn, zn, rest) X p(zp|tn, rest).

Now we describe how to compute each component in this pos-
terior probability. First, p(d, |z, rest) can be directly computed by
the Dirichlet-Multinomial distribution [12]:

can also minimize the variance of w];

T(CE™" +|V160) Ty T(CL  + 60)

T(C} + [VI60) T (L7 + 60)

pdnlzn,rest) = (5)

where C} n=1 and C" are the total number of words assigned to topic
k in the document set di.n—1 and dy.,, respectively, C” I and C”
are the count of word v appearing in document set d1 ,, 1 and d1 —
and V is the vocabulary size.

Second, p(cp|tn, zn, rest) is directly defined by CoTT’s uni-dimension
Hawkes process over document clusters under topic z,

Ao
Ap () (zp=2,)
1 tn)
Ap(t:)(zp=2zn)

Jorie ©

P(Cnlzna tn, re“) =

A°+Z§7:1

Finally, p(zy, |tn, rest) is defined in CoTT’s multi-dimension Hawkes
process as in Eq. (4).
After we sample the cluster and topic assignments for document

dp in every particle, the particle weight w]; can be updated by,
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wg = w’il X p(dn|zn, rest) X p(zp|tn, rest)

n
X p(cnltn, zn, rest) X p(tnlti:n-1, rest)

(7)

The calculation of p(ty, |t1:n—1, rest) is directly related to our pa-
rameter estimation procedure for CoTT; and therefore we will leave
the discussion of it to the next section.

4.2 Online Parameter Estimation

In CoTT, the timestamps of documents associated with a particu-
lar topic k can be considered as being sampled from a stochastic
process consisting of a uni- and a multi-dimension Hawkes pro-
cess described in Section 3, whose overall intensity function can be
written as,

n-1

X (tn) = i+ Z e,k (tn. Dz, = k) + ZAkz, kpy (tns17) (8)

There are three components in the above intensity function. First,
the base intensity vector y € RI>( o» Which captures the instantaneous
generation of different topics. Second, the cluster strength a € Rgo
controls the degree of dependence among documents within a
close temporal proximity. Third, the mutual influence matrix A €
RIQ;K captures the correlation among topics. These are the model
parameters in CoTT. As the parameters are organized in a two
layer structure, i.e., document clusters and topics, we develop a
Hierarchical Alternating Direction Method of Multipliers [1, 6, 7]
(H-ADMM) to estimate them accordingly.

Given a sequence of documents {dj, ..., dN }, assuming the time
horizon of this sequence is T. The log-likelihood on the timestamps
can be computed as,

N K
L(p,a,A) = Z log ZP(l‘ilzi =k, t1:i-1, rest)

i=1 k=1

Since p(tp|t1:n—1,rest) = Z lp(tn|zn =k, t1.n-1, rest), Eq. (9)
can be directly used in Eq. (7) to compute particle weight. To en-
sure meaningful correlation among topics can be identified, we
impose L1 regularization on the learnt mutual influence matrix A
[21]. Consequently the optimization objective function becomes
—L(p, @, A) + nal|Al|1, where 74 is a trade-off coefficient.

To optimize this non-differentiable objective function, we rewrite
it into the following, by introducing auxiliary variable Z and dual
variable U, where p > 0 is a hyper-parameter controlling the regu-
larization,

©)

F(u,a,A) = ogl>%A> — L, o, A) + n4llZ111 (10)
+pTr(UT(A—Z))+ §||A—Z||2 (1)

Then we take the following steps to iteratively optimize the
model parameters.
Step 1: Update y, @ and A. To solve the optimization problem
defined in Eq. (10), we resort to the majorization-minimization
algorithm, which optimizes the upper bound of F(u, a, A) by intro-
ducing a set of branching parameters p;;, pj; and py;.

The branching parameter p;; = % can be seen as the proba-

bility that the i-th document is generated from the base intensity.
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ac;kp;(ti 1))
Az (1)

leads to the generation of i-th documents. And p;; =

pji = represents the probability that the j-th document
Azyzikp, (tint)
Az (8:)
indicates the probability that the I-th cluster of topic z; leads to the
selection of topic z;.
Setting the gradients of these parameters to zero, we obtain the

updating rule for y, a, A as follows:

3V piil(zi = k)
pe = =
Y Xity<t; Pjillei =1)
ap = T
e Wi =1 [, kg, (8 ti)dt
Agpr = %(—X + 4/ X% - 8pY)

L N;j-1

X = p(Urkr = Zeer) + Z Z
I

iy
/ KBy (t, t;)dt
i L

N
Y = —Z Z puil(z; = k', zi = k)

it <t

Step 2: Update Z. The updating rule of auxiliary variable Z is,

(Apr + Upge) = B A + U > 22
Zigr = { Akpr + Ui + 24 Aggo + U < =22
0, lAkkr + (Ukrr| < 5

P

Step 3: Update U. Given the updated A and Z, we update the dual
variable U by Upew = Upjg + (Anew — Znew)-

We adopt a batch update strategy to update the parameters of
CoTT for the trade-off between accuracy and efficiency. In every
batch of documents, we first sample the cluster and topic assign-
ment for each document in all particles, and then update the particle
weight accordingly. If a particle’s weight is below the threshold,
we will replace it by resampling. We initialize A as a diagonal ma-
trix. Once we get all documents’ cluster and topic assignments in
a batch, we run H-ADMM until convergence in each particle. The
updated model will be applied to documents in the next batch; and
this procedure is repeated through the entire document stream.

5 EXPERIMENTS

In this section, we verify the effectiveness of CoTT on modeling
temporal dynamics in document streams through experiments on
both synthetic and real-world datasets. First, on synthetic dataset,
we compare CoTT with baselines on recovering the model parame-
ters that govern the generation of data and underlying clustering
structure. Second, on real-world dataset, we compare CoTT with
baselines on both content and time predictions. We also visualize
the temporal dynamics and mutual influence among topics learned
by CoTT to illustrate its identified dependency structure.

In our evaluation, we include two state-of-the-art solutions for
modeling temporal dynamics of document streams as our baselines.

o Dirichlet Hawkes Process (DHP) [10]: It encourages doc-
uments in a close time proximity to share the same cluster by
integrating Hawkes Process with Dirichlet Process. Although this
method considers temporal information to cluster documents, it
does not account for the temporal dynamics or the mutual influence
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among topics. For documents with even identical word distribution,
if the time span between them is large, they will be assigned to
different topics, i.e., no reusing of historical topics.

e Hierarchical Dirichlet Hawkes Process (HDHP) [16]: It in-
troduces a global topic layer to DHP in order to model the temporal
dynamics of topics, which allows a certain topic to be re-used over
time based on its global popularity. However, the mutual influence
among topics is still missing; and therefore, topics are modeled
independently and the observations of one topic do not affect the
inference of others.

5.1 Experiments on Synthetic Data

To evaluate CoTT on modeling the generation of a document stream,
we first compare CoTT with the baselines on synthetic data. First,
we generate synthetic data with fixed parameters based on the
generative process defined in CoTT. Then, we estimate such param-
eters via different models on the generated data. We evaluate these
models on the quality of their estimated parameters and the learnt
clusters.

¢ Experimental setup. We generate document streams according
to the generative process described in Section 3.3. In particular, we
set the number of topics K = 10 and the vocabulary size |V| = 200.
The hyperparameter of the Dirichlet distribution for generating
the word distribution under a topic is set to 0.1. For every topic,
we randomly select 150 unique words and set other words’ gen-
eration probability to zero to control the content overlap across
topics (as in total we only have 200 unique words). The length of
the documents is sampled from U(100, 200), and accordingly the
content is sampled from the word distribution under the chosen
topic. The timestamps of documents are generated by the hierar-
chical Hawkes process, whose parameters are set as follows: each
topic’s base intensity p is uniformly sampled from U(.01, 1). In our
evaluation, we vary the cluster strength parameter o to generate
different document streams. As for mutual influence matrix A, we
uniformly sample from U(0, 1) on the 4 x 4 blocks on the diago-
nal of A, while sampling other elements in matrix A from U(0, .3).
This gives us a more structured dependency relation among the
topics. The decay parameters are set to f; = 1 and ;. = 0.1. In this
way, we obtain a synthetic data set with 20,000 randomly sampled
documents. In the evaluation, we maintain 8 particles in CoTT’s
posterior sampling procedure. Once scan through the dataset, we
report the results from the particle with the largest likelihood.

e Quality of parameter estimation To investigate the quality
of CoTT on modeling the generation of data, we compare the pa-
rameters estimated by CoT T against the ground-truth parameters.
Specifically, we look into the base intensity g, cluster strength o
and mutual influence matrix A. For an inferred topic, we match
its corresponding ground-truth topic by selecting the most sim-
ilar one, by Kullback-Leibler divergence over word distributions
under topics. Results are reported in Figure 3. From Figure 3 (a),
we can observe that the inferred p is close to the ground-truth,
which supports that CoTT can capture the popularity of topics in a
document stream. To verify the effectiveness of estimating «, we
generate three document streams with & = {0.2,0.3,0.4}. Results
in Figure 3 (b) show that CoTT is able to learn the parameters with
a reasonable variance. As Figure 3 (c) shows, the RMSE between



Session: Long - Understanding and Interpretability |

RMSE

(c) RMSE of mutual influence

CIKM ’19, November 3-7, 2019, Beijing, China

0.084
0.074
0.054

0.044

0 20 40 60

Batch

80 100
012345678§9
(d) Absolute error between

matrix over time. inferred A and true A.

Figure 3: Parameter estimation performance of CoTT on synthetic data set.
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Model Overlap NMI ARI
0.6 0.867 0.708
DHP 0.8 0.776 0.372
0.9 0.551 0.141
0.6 0.998 0.997
HDHP 0.8 0.919 0.862
0.9 0.652 0.274
0.6 0.992 0.989
CoTT 0.8 0.986 0.979
0.9 0.972 0.963

Table 1: Clustering performance on synthetic data with dif-
ferent overlap ratio.

the learnt and ground-truth mutual influence matrices becomes
smaller when more documents are available for model update, i.e.,
improved dependency structure modeling. After convergence, the
absolute error in estimating the mutual influence is considerably
small, as reported in Figure 3 (d). These observations support the
capability of CoTT in modeling complex document streams.

o Clustering performance. The key outcome of modeling a doc-
ument stream is to identify the underlying dependence among
documents and topics, which is reflected in the inferred cluster-
ing structure of documents. In addition to comparing the models
on recovering the underlying parameters for data generation, we
further compare CoTT with DHP and HDHP via clustering-based
metrics, NMI and ARI [19], on their identified document clusters.
We evaluate CoTT and HDHP with the clustering structure at the
topic level. As DHP does not have a global topic layer, we treat the
clusters learnt by DHP as topics. We create several synthetic data
sets with different topic overlap ratio: when the ratio is larger, it
is harder to utilize textual information to learn accurate clustering
structure, because the topics would look similar to each other. CoTT
outperformed the two baselines even with a large topic overlap,
which indicates modeling temporal dynamics help CoTT uncover
the dependence among documents and topics accurately.

5.2 Experiments on Real-World Data

In this section, we quantitatively compare CoTT with the base-
lines on content and time predictions, and qualitatively analyze the
temporal dynamics identified by CoTT.
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5.2.1 Quantitative Analysis. We used 40,000 news articles from
January 1, 2017 to July 15, 2017 of “All the news” data set for our
evaluation. “All the news" data set is a public data set from kaggle !
and consists of news articles from 5 major U.S. news publishers,
including CNN, Breitbarg and etc. We performed stopword removal
and stemming in our pre-processing. We chose 10,000 words with
the highest document frequency as our vocabulary. The timestamps
are scaled in hours. In CoTT, we set its scaling parameter g = 0.05
and yp = 0.1; the hyper-parameter of the base distribution used
to sample topics was set to 0.1; the decaying parameter f; and
were set to 3 and 1. We used 8 particles to posterior inference and
model estimation. In H-ADMM, the hyper-parameters p was set to
1 and n4 was set to 0.1. The batch size of training was fixed to 100.

100
E >5% —— CoTT vs. DHP
= >10% 607 COTT vs. HDHP
804 > 15%
> 20% 501
60 40
8 8,
204
204
20+ 104
- U_
COTT vs. HDHP  COTT vs. DHP 0 10000 20000 30000 40000
Model Pairs #docs

(a) Percentage of documents
better than baselines.

(b) Cumulative percentage of
documents better than baselines.

Figure 4: Performance of content prediction on real-world
data set.

e Content Prediction. The task of content prediction is that given
documents dq.—1 and their corresponding timestamps t1.,—1, one
needs to predict how likely a particular document d, will ap-
pear at time ;. Presumably a model which can better capture
the dependence among documents will better predict the con-
tent of a future document. In particular, this likelihood is calcu-
lated as p(dn|tn,d1:n-1) = Zlep(dn|Zk7d1:n—l)P(Zk|tn)’ where
p(dnlzk, d1:n-1) is the likelihood of document content dj, given his-
torical documents and a specific topic z;.. As CoTT, DHP and HDHP
make the same assumption of document generation given topic

Lhttps://www.kaggle.com/snapcrack/all-the-news/home
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assingments, we can compute p(dy |zg, d1:n-1) via Eq. (5) for CoTT,
DHP and HDHP. p(zy|t,) corresponds to the intensity functions
of topic z; defined in each model. For example, for CoTT we use
Eq. (8) to compute it. After predicting the content of document
dpn, we treat d, as observed and move onto the prediction of next
document d;;+1, until the end of this document stream.

Due to various length of documents, the evaluated likelihood
varies in a set of documents, which makes the comparison across
models difficult. To accurately investigate the performance of dif-
ferent models in predicting document content, we compare models’
performance with respect to their predictions on each document
one by one. We use the percentage of documents where CoTT pro-
duces a higher likelihood than baselines as our evaluation metric (as
dp is what we actually observed at time ¢,). As Figure 4 (a) shows,
in 74.7% documents, CoTT’s predicted likelihood are 5% larger than
that predicted by HDHP, and in 84.6% documents against DHP.
The cumulative percentage of documents where CoTT has a higher
likelihood than baselines is reported in Figure 4 (b). The results are
expected. Without a global topic layer, DHP cannot refine the old
clusters when they reappear, leading to worse content modeling
quality. HDHP’s modeling of temporal dynamics is limited by not
considering the mutual influence among topics, which cannot fully
exploit the relatedness among different topics.

3.5 ) . DWp
‘ —— HDHP
3.0 \ CoTT
W L}
0> %
= \‘
X 204 \
.\-\‘\’. TN . '_"\'-"%'V'J
15+ S T N A PN
“V“‘"—-\r"-h__.’
5000 10000 15000 20000 25000 30000 35000 40000
#docs

Figure 5: RMSE of time prediction on real-world data.

e Time Prediction. As a Hawkes process based model, CoTT is
able to predict the timestamps of documents. The task of time
prediction is given documents dq.,—1 and their timestamps t1.—1,
predict the timestamp t,, that the given document d,, appears. We
believe a model that better captures the temporal dynamics among
existing documents can predict the future arrival time of docu-
ments more accurately. We calculate the likelihood of different
future timestamps in a fix-size predictive time window, and select
the one with the highest likelihood as the predicted timestamp for
the given document. The likelihood of timestamp ¢, is given by
P(tn|dns di:n-1, tl:n—l) = P(tn|t1:n—1) Zle P(dnlzk, dl:n—l)p(zklt),
where p(tp|t1:n—1) is the probability of timestamp t, given histori-
cal timestamps. We obtain p(dy, |2k, d1:n-1), p(z |t) in the same way
as those for content prediction mentioned above. Again, after pre-
dicting t,, we include document d,, into observed historical events
and move onto the prediction of t,,4+1 of next document, until the
end of the document stream.

We report the root mean squared error between the predicted
and ground-truth timestamps of the next document. Results in Fig-
ure 5 show that all three models could predict the time of next
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documents better when more training documents are available, but
CoTT achieves a more competitive RMSE than DHP and HDHP.
DHP only models the dependence among documents in a close time
proximity, so that it cannot predict when topics reoccur, leading
to a higher time prediction error, even when more documents are
available for model estimation. HDHP only models the popular-
ity of topics, which encourages the recurrence of popular topics.
This limits its flexibility of temporal dynamics modeling. Mutual
influence among topics enables CoTT to better realize the temporal
dynamics of topics, which helps it make accurate time prediction
in a longer time horizon.

3500+ ‘ CoTT ' !
—- DHP ) iﬂ
32501 | —— HDHP 1300 ] “h oA -
2 00l \ el Ay
"% 3000 i M == HDHP
) \ T 12004 E./‘_ P
—_— A += vy CoTT
Q2750 % 7] '
g % \ —- DHP
Q. 25001 \’:.\,_,4_\ o 11001 \y
—~— \
22501 S~ vy,
Ny 1000 RS
2000, . , . : . , . , .
0 100 200 300 400 0 100 200 300 400
Batch Batch
(a) Mean (b) Standard deviation

Figure 6: Changes in the mean and standard deviation of per-
plexity when training on real-world data set.

o Perplexity. In addition to the evaluation of content prediction
above, where we always use the latest model to predict the next
document on the fly, we also perform evaluation in a more classical
setting, where we preserve documents only for the testing purpose.
We evaluate a model’s perplexity on those reserved testing docu-
ments. A model that extracts the underlying structure of document
stream more accurately in the training set can better fit the content
of documents in test set and thus achieve a smaller perplexity. We
divide the dataset into batches of 100 documents, and randomly
select 5 documents in every batch as test set. Because the time span
of every batch is small, and selected test documents are evenly
distributed in training set. In each batch’s test set, we assume there
is no new topic created (as the time intervals are all generally very
small). The perplexity in a test set is calculated as,
Zi:e,— €Dyest log p(di|Dtrain) }
2ite;eDyess |l

From Figure 6 (a), we could see that all models’ perplexity de-
creases with more batches of documents used for model update.
However, since DHP cannot re-use the cluster from temporally
far-away documents, it has to create new clusters constantly to
fit new data, which is proved by the fluctuation of the standard
deviation of perplexity (reported in Figure 6 (b)). Thus DHP even-
tually had the worst perplexity in this evaluation. Although HDHP
allows a certain topic to be re-used, it encourages globally popular
topic to re-appear, which ignores the local context of most recently
selected topics. Consequently, HDHP captures the underlying struc-
ture of document streams less accurately than CoT T does, which is
suggested by HDHP’s worse perplexity performance.
o Temporal Refinement of Topics. As a temporal topic model,
with more observed training documents, the topics inferred by

perplexity = exp{ -
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CoTT are expected to be refined on the fly. To verify this, we conduct
an in-depth experiment of perplexity using the same setup above.
Every time when a training batch is processed, we calculate the
perplexity of all the testing batches and report them respectively.
We keep track of perplexity change after each training batch.

4250+ | —+ DHP 30004 ‘ =+ DHP
‘\ — = HDHP \ == HDHP
4000 ,\ CoTT 28004 \ CoTT
)
37501 > ‘
270§ E o001 W mva fI
x '.\L X ol * 541 -,
@ 3500 b h o WV ey A\
o L o | |1
5 3250 A\ &5 2400 A
e 30001 ANG “ ‘\
- - 2200 -\"*
2750 SN - - i
2000
2500
0 20 40 60 80 100 0 20 40 60 80 100
Batch Batch

(a) Change of perplexity in the (b) Change of perplexity in the
50th testing batch. 80th testing batch.

Figure 7: Change of perplexity on particular testing batches
during online model update.

In Figure 7, we report the change of perplexity in the 50th and
80th testing batches over all 100 training batches. The perplexity
decreases while topics are refined over time. In Figure 7 (a), there is
a sharp decrease at the 50th batch in CoTT, because CoTT chose to
create new topics which fit those new documents better. Although
HDHP allows topics to be re-used, it fail to detect new ones without
the help of temporal dynamics of topics. Additionally, CoTT begins
to decrease sharply before DHP and HDHP in Figure 7 (b). With
the help of mutual influence among topics, CoTT creates topics
suitable for future data, which is supported by the early decrease
in its perplexity.

Politics= .
. 040
Russian
Interference
Security = . TE
Economy=
Military =

Sports=

Congress=

Obamacare=
o L] [ ) [
Politics ~ Security ~ Military =~ Congress
Russian Economy  Sports Obamacare
Interference

Figure 8: Mutual influence among topics.

5.2.2  Qualitative Analysis. The learnt topics in CoTT summarize a
document stream. In this section, we visualize both the topics and
the mutual influence matrix among topics learnt by CoTT.

e Temporal Dynamics of Topics. In Figure 9 (a) to (h), we select
8 topics for illustration with word cloud which scales words con-
cerning their probabilities under the topic. We can observe that
words which have large probabilities are generally in close meaning
and coherent, which indicate suggest meaningful real-world news
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events in this period of time. In addition, we select two pairs of
topics to visualize their intensities over time, which are Security
and Military, Congress and Obamacare. To fit a pair of topics in a
figure, we scale the intensity of each topic. We could see that topic
Security and topic Military appear almost always simultaneously,
and topic Congress and Obamacare follow one another over time.
This observation suggests that topics appearing together frequently
may be closely related semantically. In addition, we can also find
that the same topic may peak and fade over a long period of time,
which can still be captured by CoTT.

e Temporal Dependence among topics. To have a better un-
derstanding of mutual influence among topics, we investigate the
mutual influence among 8 representative topics without loss of
generality. In Figure 8, we show the mutual influence matrix among
these topics, along with their word distributions in Figure 9. We
have the following observations: (1) The dependence among top-
ics captured by CoTT is asymmetric. For example, Economy has
a strong influence on Politics, but the reverse does not hold. (2)
Mutual influence is sparse. We can observe a lot of zeros in the
matrix. This is because some topics do not have transition to other
topics in close time proximity. The dependence among these topics
is very weak. For example, Sports does not have mutual influence
on other seven topics.

6 CONCLUSION & FUTURE WORKS

In this paper, we proposed Correlated Temporal Topic Model (CoTT),
which integrates the Hierarchical Dirichlet process and the Hawkes
process, to model the temporal dependency among documents and
topics in a document stream. It learns time-sensitive topic distri-
bution and captures mutual influence among topics. Experiments
on both synthetic and a large real-world news dataset confirm its
effectiveness in discovering meaningful temporal information and
topical dependency in a document stream.

In our current solution, we use a single topic to fit a document,
which might limit the model’s capability in document modeling.
As shown in existing works [5], modeling documents as a mixture
over a set of topics can better capture the embedded semantics. But
this also introduces another dimension of complexity in modeling
document streams, as we have to face a dynamic mixture of topics
in each document. In addition, our current correlation modeling
among topics does not consider the word distribution of specific
topics. For example, topics of similar word distribution might have
a stronger mutual influence on each other. We plan to model topical
correlation as a function of topic content and directly optimize such
function for better correlation estimation.
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