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ABSTRACT

Modern buildings are instrumented with thousands of sensing and
control points. The ability to automatically extract the physical
context of each point, e.g., the type, location, and relationship with
other points, is the key to enabling building analytics at scale. How-
ever, this process is costly as it usually requires domain expertise
with a deep understanding of the building system and its point
naming scheme. In this study, we aim to reduce the human effort re-
quired for mapping sensors to their context, i.e., metadata mapping.
We formulate the problem as a sequential labeling process and use
the conditional random field to exploit the regular and dependent
structures observed in the metadata. We develop a suite of active
learning strategies to adaptively select the most informative sub-
sequences in point names for human labeling, which significantly
reduces the inputs from domain experts. We evaluated our approach
on three different buildings and observed encouraging performance
in metadata mapping from the proposed solution.
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1 INTRODUCTION

The rapid development of the Internet of Things ushers in a new
wave of sensors and controllers with an unprecedented level of
capability and usability, which catalyzes the grand vision for intel-
ligent buildings. However, the thousands of sensors and actuators
are usually provided by different vendors who follow disparate
conventions to name their pointsl, and it is thus hard for third-
party application and service providers to interpret the context
information about these points and further utilize them.

The contextual information about a sensor point includes its type,
location, etc. Such information is typically encoded as the metadata,
which is a short text string comprised of several abbreviations, and

A point is a physical sensor or controller, or a software value such as setpoint.
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Table 1: Examples of metadata and corresponding labels.

Metadata Label

ebu3b.fschw.chwp4-alm building, CHW, pump alarm sensor

ebu3b.chw-sys.chwp2-alm | building, CHW, pump alarm sensor

SDH.CHW1.CWP3_ALM

building, CHW, pump alarm sensor

also called point name. Table 1 shows three examples of metadata,
and the mapped context is represented as labels. The first two
point names use distinct formats even within the same building
for the same sensor type, due to the lack of a standardized naming
convention. Consequently, significant manual effort from domain
experts is required on a per-building basis for metadata mapping.

We aim to automatically parse the point names and map them
to standardized labels, while reducing the manual inspections from
domain experts. Various prior works have been proposed to extract
all the encoded information from the raw textual metadata [3, 6].
However, these solutions usually assume a consistent format for
all the point names, which often does not hold in practice. Some
learning-based solutions have been proposed for metadata mapping,
but they can only classify the points into predefined types [1, 4].

In order to reduce human labeling, we seek to leverage the regu-
larity and dependency in the name conventions for mapping meta-
data. In particular, vendors often follow certain structures when
creating the point names. Table 1 illustrates metadata with the fol-
lowing structure: the chilled water system (CHW) identifier follows
the building name, and is followed by the sensor type; dependency
exists. As such structures usually repeat in multiple points, we seek
to learn these latent structures from a small set of point names
which ideally cover all structures. As a result, we formulate this
metadata parsing problem as a sequence labeling task and those
unknown structures as syntax for generating the sequences.

We propose a generic framework to address this sequential label-
ing problem, requiring minimal manual effort from domain experts.
We use a Conditional Random Field (CRF) model [7] to extract the
latent structures from a set of metadata. To reduce the human labor
for labeling, we optimize the CRF model via active learning (AL),
which only asks experts to label the most informative metadata
instance in each iteration. Particularly, we propose to only solicit
labels for the most informative subsequences of a selected point
name. For example, in Figure 1, the red sub-sequence appears occa-
sionally, and thus contains more information to infer new syntax,
while the black counterpart is frequent and can be well predicted
by the CRF model; we only solicit labels for the red phrase, rather
than for the entire string. We call the labeling mechanism as such
partial labeling, and this is in sharp contrast to prior works that re-
quire each entire point name to be labeled [3, 6]. We demonstrated
the effectiveness of our active learning based sequential labeling
approach on three metadata corpus.
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Figure 1: Framework of active sequential learning, where
the CRF parser adaptively selects point names from the un-
labeled dataset and asks the expert to label. The labeled
point names are added to the training set for CRF update.

2 RELATED WORK

Researchers have attempted to systematically address the problem
of metadata parsing. A programming language based solution is ex-
ploited to derive a set of regular expressions from labeled instances
to extract sensor context [3]. Scrabble uses a CRF model to map
the labels from metadata and develops a deep neural network to
transfer the learned model to new buildings [6] . Active learning
has been extensively explored to infer a certain aspect of the meta-
data. For example, Hong et al. developed a clustering-based active
learning algorithm to recognize different sensor types by point
names [4]. Similarly, Balaji et al. uses active learning, combined
with hierarchical clustering, to learn the sensor types [1]. However,
these works require fully labeled instances for training, whereas
in contrast our method can learn the patterns in metadata from
only partially labeled instances. This leads to further reduction in
manual labels from experts. Furthermore, we consider the problem
of metadata mapping as a sequence labeling problem, and develop
a suite of active learning strategies to reduce the amount of manual
labeling effort. For example, we utilize the testing sequences to
guide our instance selection (e.g., transductive learning) and enable
partial labeling in the queried instances. This better balances the
amount of manual labels and the effectiveness of model training.

3 METHODOLOGY

In this section, we use conditional random fields (CRF) to solve
the sequence labeling task for metadata, and develop a suite of
active learning strategies with partial and transductive labeling to
minimize the amount of required manual labels for model training.

3.1 Sequence Labeling with CRFs

We aim to parse the metadata of building sensors and map them to
normalized labels that describe the physical context. We formulate
this metadata mapping problem as a sequence labeling task: given
an input string comprised of T characters as x = (x1,...,xT), we
want to map it to a corresponding label sequence y = (y1,...,yr).
To make it a one-to-one mapping, each character in a point name
is labeled with the Beginning-Inside-Outside (BIO) scheme [9] that
represents the relative position of a character in the label sequence.
For the third examples in Table 1, the substring (C, H, W, 1) are
assigned the labels (B-chw, I-chw, I-chw, I-chw) in BIO scheme,
respectively: as “C” is at the Beginning of “CHW1”, while the fol-
lowing characters are Inside “CHW1”. The punctuation “” is tagged
as the “O” which stands for Out of any meaningful labels.

The sequence labeling task thus learns to map the point name
string to BIO labels. We realize this mapping by a linear-chain
Conditional Random Fields (CRF) model [7], which is a family of
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Table 2: The features defined for the sequence labeling task.

Feature Syntax

f(cur) = 1y, =i,y,=j current token is i, current label is j
f(pre) Tx, =i y,=j previous token is i, current label is j
f(nxn = 1x,=i,y,=j next token is i, current label is j

f (BOS) = 1y,=j beginning of sequence with label j
f(EOS) = 1y;=j end of sequence with label j
f](xzuns) =1y, ,=ji,y,=j, | previous label is ji, current label is j,

probabilistic models that estimate the conditional probability of
a label sequence y given the character sequence x by: p(y|x) =

Z(x) H —1 €Xp (Zk L M Sk e, ye-1, xt)) where Z(x) is a normal-

ization term over all possible combinations of ¢, and © = {4 }K P
are the model parameters that weigh the corresponding features
{fk}szr These features describe the co-occurrence of x¢, label y;,
and adjacent label y;_1, which is the key to capture the syntax un-
derlying the point naming scheme. We define a rich set of features
in Table 2, where 14 is an indicator function that returns 1 if the
condition A is true, and 0 otherwise. For example in Figure 1, when

=1 et

and the label of the current character is I-chw”, and f (

= 1, it translates to “the preceding character is ‘C’,

trans) _
B-chw, I-chw —
reflects that “if the current character is labeled as B-chw, the label

of next character should be I-chw”.

The CRF’s parameters © are learned in a supervised manner [7].
Given the training set of metadata X = {x',...,xN} with labels
Y = {y',...,y"}, the weights © are estimated by maximizing the
conditional likelihood: ® = argmaxg Z]r:lzl log pe(y™|x™). After
training, we use the learned model to predict labels of new point
name instances via the Viterbi algorithm.

3.2 Active Learning for CRFs

We train the CRF with an active learning way, which aims to achieve
high prediction accuracy while minimizing the labeling effort. In
particular, the CRF model is initialized with only a few labeled
instances, and is then updated on the fly by querying human anno-
tators for the most informative instances from an unlabeled dataset.
In order to select a sequence for labeling, it is critical to measure
the informativeness of each instance. We denote the most informa-
tive instance as x*, which is selected from the unlabeled dataset
Xqq by an evaluation function ¢(x) under a CRF model ©. Various
formulations of ¢(x) have been proposed [10], among which we
exploit Token Entropy (TE) as the base measurement, given by:

85500 =2 >0 3 petyr = lo)logpe(yr =), (1)

where 7 is the label set, and pg(y; = j|x) is the marginal probability
of the label j € J for x;, given by the current model. Intuitively,
more confident predictions would have lower TE values.

Full Labeling v.s. Partial Labeling. Standard active learning so-
lutions solicit the labels for each entire selected sequence, which we
refer to as full labeling. The labeling effort can be further reduced
by conducting more selective annotation: We acquire expert’s an-
notation only for the most informative subsequences, which we
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Algorithm 1 Active sequence labeling with test set

Input: labeled set X, unlabeled set Xq,, test set Xq
1: while cost for human labeling is within budget do
2 O « train(X)
3 // Choose top M informative test sequences from Xq
4 X,’T — argrnaxi’[e XT@S@(x)
5 // Choose the most informative sequence in Xqy
6 x* « argmax, ¢ x,, P (x) X (sim(x,X,’r))ﬂ
7 X «— X U (x*,label(x*)), Xq; «— Xq; — x*

8: return x

refer to as partial labeling. This is motivated by the observation
that the model is usually confident about frequently occurring
subsequences, and its uncertainty mostly lies in those infrequent
subsequences. To perform partial labeling, we extend the informa-
tiveness measurement TE to subsequence level:

85 et === 30 S oy = jix) log pe(ye = jix).
where the subsequence starts at index ¢ over a window size w, and
there will be T — w + 1 subsequences for a sequence of length T.
Among all the subsequences obtained from unlabeled instances, we
select the most informative one for human labeling, and use the
model to label the rest of this sequence. This reduces human anno-
tations from T to w in each step, compared with fully labeling. A
smaller w requires less human effort but may introduce more erro-
neous labels to the remaining tokens, as fewer human labels would
yield a less accurate model. On the contrary, a larger w provides
more accurate training labels but increases the manual labeling
cost. We will later discuss about this trade-off in our evaluation.
Inductive Labeling v.s. Transductive Labeling. Prior works us-
ing TE do not utilize any observations from the test instances [10].
Such mechanism that completely isolates test set from learning
process is called inductive labeling. However, in our problem, we do
have access to the test set, e.g., the points to be labeled in the target
building. We revise the sample selection strategy with respect to
transductive learning, where we select the most similar unlabeled
instances to the most informative test cases. The intuition is that
similar point names may encode similar syntax, and we can foresee
the naming patterns of the target test set by choosing the unlabeled
instances in a transductive manner, so as to make the learning
process highly targeted, hence greedy and efficient. The similarity
between one instance in the unlabeled set x € Xq; and a set of
instances from the test set X/ € Xg- is measured by:
sim(x, X7) = ﬁ Zx’EX’ cosine(mr(x), m(x")). (2)
Un T
The cosine similarity between two sequences is calculated based
on their k-mers feature s [8], which is the set of all the contiguous
subsequences of length-k in the input sequence.

Algorithm 1 summarizes our active sequence labeling process:
We first choose M most informative instances from the test set
using ¢g(x), then select a new sequence from the unlabeled set
based on the product of ¢g(x) and sim(x, X,’r). The coefficient f
controls the relative importance of the similarity to test set, which
allows us to better balance the information from test set.
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Table 3: Details of evaluation buildings.

Building Location Year | #Points | Metadata Length
EBU3B | San Diego, CA | 2004 1074 7 ~ 35

SDH Berkeley, CA | 2009 2551 7 ~ 31

IBM Dublin, Ireland | 2011 1366 10 ~ 33

4 EVALUATION

In this section, we evaluate the proposed transductive active partial
sequence labeling method on the metadata of three buildings.

4.1 Experimental Setup

4.1.1 Dataset. As all the methods for evaluation can produce labels
for each entire metadata string, we obtain a subset of three buildings
that has the character-level full labels from the studies of Brick [2]
and Plaster [5], as detailed in Table 3.

4.1.2 Metric. To evaluate the predictive performance of the model,
we measure the phrase-level accuracy, where a phrase is a group of
characters that represent the same entity, e.g., “chw1” as a whole
is labeled as “CHW”. A phrase is considered as correctly labeled if
and only if each token’s BIO label is correct.

4.1.3 Baselines. We compare transductive and partial labeling strate-
gies with two active learning based baselines: TE given by Eq.(1),
and information density based TE (denTE) [10] which weights TE
of x by its similarity to all the unlabeled instances in Xq¢;:

08 TEE) = o)X ([ B,y cosinela() 7)Y, ()

where the computation of cosine similarity follows Eq.(2). Instead
of comparing the unlabeled instance with test cases, this method
only compares it within the unlabeled set and finds the centroid as
the most representative instance to query for human label.

4.2 Results and Analysis

For each dataset, we fix 15 labeled instances to initialize the CRF
model, and perform 8-fold cross-validation: each fold serves as test
set in turn, and the rest as the unlabeled set from which active
learning strategies select instances to update the model. We report
the phrase-level accuracy in Figure 2, where x-axis is the number
of BIO labels solicited from human, which reflects the level of
human burden for labeling, and y-axis is the phrase-level accuracy
averaged over 8-folds. Specifically, we set M = 100 for transductive
learning, and f = 1.0 for both denTE and transductive learning,
w = {11, 8, 19} for partial labeling in Building EBU3B, SDH, and
IBM, respectively. The source code and data used in our experiments
are readily available online 2.

Generally, the best CRF learned by partial and transductive ac-
tive learning (transTE-part) converges fast and achieves a 94%
accuracy on Building EBU3B with only 650 human labels (~ 29 full
point names with average length of 22), while it uses 600 labels
to achieve a 95% accuracy on Building SDH and a 90% accuracy
on Building IBM. This demonstrates the fast convergence of active
learning for CRF training. Comparing our proposed partial labeling
(TE-part) with TE, we can observe obvious improvement on both
convergence rate and accuracy. It validates our intuition: partial

2https://github.com/Louise-LuLin/active-partial-labeling
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Figure 2: The performance of CRF for labeling point name strings on three test buildings: Partial labeling and tranductive
labeling help improve the learning efficiency and accuracy of the active learning process.
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Figure 3: The effect of window size w on partial labeling: A small w may harm the accuracy while a large w will degrade the

strategy to full labeling.

Table 4: Trace of Partial Labeling Active learning,.

ebu#b.chw-sys.chwp#-alm
ebu#b.chwp#-vfd.voltage

Accuracy: 0.86 0.88

Selected: ebu#b.fschw.chwp#-dly

Worst predicted:  ebu#b.chw-sys.cwdp-sp
ebu#b.chw-sys.chwp#-alm  ebu#b.fschw.chwp-db

0.91
ebu#b.chwp#-vfd.voltage

0.93
ebu#b.chwp-sys.chw-lead

ebu#b.fschw.chwp#-vfd
ebu#b.chw-sys.cwdp-sp

ebu#b.chwp-sys.chw-lead
ebu#b.chwp#-vfd.hoa-sts

labeling eliminates redundant sub-sequences that the model is al-
ready confident about. Comparing transductive labeling (transTE)
with TE and denTE, we find a fast increasing accuracy which sug-
gests that using test set can indeed guide the model to target for
the test cases. transTE gains more improvement in the later stage
when the model starts to converge on Building SDH, which shows
the potential of transductive learning when the informativeness
across instances is less differentiable and targeted training becomes
more important.

As in our partial labeling solution, w controls the balance of
human cost and data accuracy. We evaluate how the model performs
when we use different window size w for partial labeling. The results
are summarized in Figure 3, where “Full” indicates full labeling, and
we shall note that it is equivalent to the first stage that uses CRF to
obtain BIO tags in [6]. The value of w varies for different buildings
since their point names have different lengths. Comparing with
the w that achieves the highest accuracy (i.e. 11, 8, 19 for Building
EBU2B, SDH, IBM), we find that oftentimes a smaller w may degrade
the learning by introducing erroneous labels from inaccurate model,
but a larger w may degrade the strategy to full labeling. We also
inspect the quality of the selected subsequences. Table 4 presents
the selected subsequence for labeling in a few iterations. We see
that examples that best resemble poorly-predicted test cases are
selected for labeling by our strategy, and that the subsequences are
mostly the phrases for indicating the sensor type, which bears the
most diversity; this demonstrates the effectiveness of the proposed
partial labeling active learning.

5 CONCLUSION

In this study, we tackle the problem of automated metadata map-
ping in sensor point names. We formulate it as a sequential labeling
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problem and develop a suite of active learning strategies to adap-
tively select the most informative subsequences for model training,
in order to minimize the human labeling effort. We evaluated our
approach in three commercial buildings, and the results demon-
strate the effectiveness of partial labeling and transductive labeling
for active learning. As future work, we plan to address partial la-
beling in the way of structured learning, e.g., learning to search for
the optimal subsequence for labeling, and find a proper solution to
handle errors in model training introduced by its own prediction.
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