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Abstract—In this paper, we consider the optimal coordina-
tion problem for distributed energy resources (DERs) including
distributed generators and energy storages. We first propose
an algorithm based on the push-sum and gradient method to
solve the optimal DER coordination problem in a distributed
manner. In the proposed algorithm, each DER only maintains a
set of variables and updates them through information exchange
with a few neighboring DERs over a time-varying directed
communication network. We show that the proposed distributed
algorithm with appropriately chosen diminishing step-sizes solves
the optimal DER coordination problem if the time-varying
directed communication network is uniformly jointly strongly
connected. Moreover, in order to improve the convergence
speed and to reduce the communication burden, we propose
an accelerated distributed algorithm with a fixed step-size. We
show that the new proposed algorithm exponentially solves the
optimal DER coordination problem if the cost functions satisfy
an additional assumption and the selected step-size is less than a
certain critical value. Both proposed distributed algorithms are
validated and evaluated using the IEEE 39-bus system.

Index Terms—Distributed coordination, energy storage, multi-
agent systems, multi-step optimization, push-sum and gradient
method, smart grid.

I. INTRODUCTION

The infrastructure that defines the U.S. power grid is based
largely on pre-digital technologies developed in the first part
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of the 20th century. In subsequent decades, grid development
has evolved through emphasis on safety, accessibility, and
reliability to security and resiliency. The past few years have
witnessed acceleration in the deployment and integration of
digital smart grid sensing, communication, and control tech-
nologies that improve electric grid reliability, security, and
efficiency of existing power systems at both transmission and
distribution levels. Focusing on distribution system, a great
effort has been made in developing distributed generation and
energy storage technology. Distributed generation (DG) and
energy storage (ES) are important elements of the emerging
smart grid paradigm. For ease of reference, these resources are
often referred to as distributed energy resources (DERs) [2].
DERs are smaller, highly flexible, and can be aggregated to
provide power necessary to meet regular demand. As the
electricity grid continues to be modernized, DER such as
distributed generators and energy storages can help facilitate
the transition of the present power grid to a smarter one.

At the high deployment level, DERs can collectively be-
come a valuable system asset if coordinated with system needs
and control processes, as they can respond very fast and are
close to the loads. In order to achieve an effective deployment
among DERs, one needs to properly design the coordination
and control mechanism among them. One approach is through
a completely centralized control strategy, where a single
control center accesses the entire network’s information and
provides control signals to the entire system. This centralized
control framework may not be effective for large-scale power
networks due to performance limitations, such as a single point
of failure, high communication and computational burden,
limited flexibility, and lack of privacy.

Recently, an alternative distributed approach has been pro-
posed to overcome these limitations. In particular, each DER
makes a local decision based on the information received from
a few neighboring DERs over the underlying communication
network. Most existing distributed DER coordination studies
focused on a single type of DERs. On the one hand, for
DG coordination, various distributed algorithms have been
proposed, among which discrete-time algorithms were given
in [3]–[11] and continuous-time algorithms were presented in
[12]–[14]. On the other hand, cooperative management for a
network of ESs has been considered in [15], [16].

However, only a few studies considered the optimal dis-
tributed coordination of distributed generators with energy
storages [17]–[21]. To coordinate DGs and ESs over multi-
ple time periods, the authors of [17] proposed a distributed
discrete-time algorithm based on the consensus and inno-
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vation method, and the authors of [21] developed a dis-
tributed continuous-time algorithms based on the Laplacian
gradient dynamics and dynamic average consensus. In the
above studies, the charging/discharging efficiencies of energy
storages were not modeled. As shown in [22] and other
existing studies, the optimal charging/discharging operation
and the corresponding benefits from a storage device could
vary significantly with its efficiencies. The authors of [18],
[19] developed distributed DER coordination strategies, where
charging/discharging losses have been taken into considera-
tion.

Note that existing studies [17]–[21] focused on the case
where the communication network is time-invariant (fixed).
However, in practice, the communication network topology
may vary due to unexpected loss of communication links.
Thus, in this paper, we consider the optimal DER coordination
problem over time-varying and directed networks.

The main contributions of this paper are summarized as
follows.

• Inspired by the push-sum and gradient method [23], we
first propose a distributed algorithm with diminishing
step-sizes and show that the proposed distributed algo-
rithm with the properly chosen step-sizes is capable of
achieving the optimal DER coordination if the time-
varying directed communication network is uniformly
jointly strongly connected. Compared with existing dis-
tributed DER coordination studies for undirected con-
nected topologies [17]–[20] and strongly connected and
weight-balanced directed topologies [21], this require-
ment is much more general since the network can be
disconnected at any time instant as long as the joint
graph over a period of time is strongly connected but
not necessarily weight-balanced.

• The distributed algorithm proposed above, however, can
be rather slow due to the diminishing step-sizes. In order
to improve the convergence speed, we further develop an
accelerated distributed algorithm with a fixed step-size
and show that the new algorithm exponentially solves the
optimal DER coordination problem if the fixed step-size
is less than a certain critical value and the cost functions
satisfy some additional properties. Compared with other
existing algorithms with diminishing step-sizes [17]–[19],
the new proposed algorithm solves the optimal DER
coordination problem faster. Our proposed algorithms are
discrete-time by design and readily to be implemented,
while the algorithm proposed in [21] is continuous-time
and requires discretization for the implementation.

The remainder of the paper is organized as follows. Sec-
tion II introduces some preliminaries on graph theory and
convex analysis and notations. In Section III, we formu-
late the optimal DER coordination problem. In Section IV,
a distributed algorithm with diminishing step-sizes and an
accelerated distributed algorithm with a fixed step-size are
developed. Section V presents case studies and simulation
results. Concluding remarks are offered in Section VI.

II. PRELIMINARIES

In this section, we first present some background on graph
theory [24], which is needed to describe the communication
network among DERs. Let G = (V, E) denote a directed graph
(digraph) with the set of nodes (agents) V = {1, . . . , N} and
the set of edges E ⊆ V × V . A directed edge from node i
to node j is denoted by (i, j) ∈ E . For notational simplicity,
we assume that the digraph does not have any self loop, i.e.,
(i, i) /∈ E for all i ∈ V although each node i has access to its
own information. A directed path from node i1 to node ik is
a sequence of nodes {i1, . . . , ik} such that (ij , ij+1) ∈ E for
j = 1, . . . , k − 1. If there exists a directed path from node i
to node j, then node j is said to be reachable from node i.
A digraph G is said to be strongly connected if every node is
reachable from every other node.

In this paper, an agent is assigned to each distributed
generator and energy storage in the power system. These
agents exchange information according to the topology of
the communication network, which may be different from the
physical network, and is modeled as a time-varying directed
graph G(k) = (V, E(k)), where the edge set changes over
time due to unexpected loss of communication links. All
nodes that can transmit information to node i directly at
time k are said to be its in-neighbors and belong to the set
N in
i (k) = {j ∈ V | (j, i) ∈ E(k)}. The nodes which receive

information from agent i at time k belong to the set of its
out-neighbors, denoted by N out

i (k) = {j ∈ V | (i, j) ∈ E(k)}.
The cardinality of N out

i (k) is called its out-degree at time k
and is denoted by di(k) = |N out

i (k)|. The joint graph of G(k)
in the time interval [k1, k2) with k1 < k2 ≤ ∞ is denoted as
G([k1, k2)) = ∪k∈[k1,k2)G(k) = (V,∪k∈[k1,k2)E(k)). A time-
varying directed network G(k) is said to be uniformly jointly
strongly connected if there exists an integer B > 0 such that
G([k0, k0 +B)) is strongly connected for any k0 ∈ Z+, where
Z+ is the set of non-negative integers.

We now provide some background on basic convex analysis
[25]. A function f : Rn → R is convex if f(θx+ (1− θ)y) ≤
θf(x)+(1−θ)f(y) for all x, y ∈ Rn and for all θ ∈ (0, 1). If
the inequality holds for all x 6= y, then the function is strictly
convex. A continuously differentiable function f : Rn → R
is strongly convex if there exists a constant ∃µ > 0 such that
f(y) ≥ f(x) +∇f(x)′(y−x) + µ

2 ‖y−x‖
2 for all x, y ∈ Rn.

A continuously differentiable function f : Rn → R is smooth
if it has a Lipschitz continuous gradient, i.e., there exists a
constant L > 0 such that ‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ for
all x, y ∈ Rn.
Notations: Given a matrix A, A′ denotes its transpose, and
Aij denotes its (i, j)-th entry. A column vector x ∈ Rn will
be denoted by x =

(
x1, x2, . . . , xn

)′
.

III. PROBLEM FORMULATION AND MOTIVATION

Consider a power network of N + M distributed energy
resources, where the first N agents are distributed generators
and the last M agents are energy storages. The objective
of optimal coordination is to minimize the total cost on the
premise that all DERs collectively meet a given demand profile
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during a finite-time horizon T = {1, . . . , T}, where T is the
number of time periods.

The total cost is the sum of DERs’ costs over a number of
time periods:

T∑
t=1

N+M∑
i=1

Ci(pi,t), (1)

where Ci(pi,t) is the cost function of DER i during the period t
and pi,t is the power from generator or storage i during period
t. The power from storage is measured at the grid coupling
point, and is positive when injecting power into grid, i.e., using
generator convention.

Compared to most existing studies [1], [17]–[19], where
cost functions are assumed to be quadratic, this paper con-
siders general convex cost functions that satisfy the following
assumption.
Assumption 1. For each i = 1, . . . , N +M and each t ∈ T ,
the cost function Ci(pi,t) : R → R+ is strictly convex and
continuously differentiable.

The power from the DGs and ESs together need to meet a
given demand over a period of T , i.e.,

N+M∑
i=1

pi,t −Dt = 0, ∀t ∈ T , (2)

where Dt is the given total demand of period t.
For each DG i ∈ N := {1, . . . , N}, there are two

constraints due to physical limits. The first one is the capacity
limit on how much power DG i can generate at each time
period.

pmin
i ≤ pi,t ≤ pmax

i , ∀t ∈ T , ∀i ∈ N , (3)

where pmin
i , pmax

i for i ∈ N are the lower and upper power
limits of generator i, respectively. The second constraint is
ramping up/down constraints

∆p
i
≤ pi,t − pi,t−1 ≤ ∆pi, ∀t ∈ T , ∀i ∈ N , (4)

where ∆p
i
, ∆pi are the lower and upper bounds of ramping

rates of generator i, respectively.
For each ES i ∈ M := {N + 1, . . . , N + M}, since ES

cannot be charged and discharged at the same time, we define

pi,t = p+
i,t − p

−
i,t, ∀t ∈ T , ∀i ∈M, (5)

where

0 ≤ p+
i,t ≤ p

max
i , 0 ≤ p−i,t ≤ p

max
i , ∀t ∈ T , ∀i ∈M, (6)

and pmax
i > 0 is the upper bound of the power limit of ES i.

Note that due to the charging/discharging efficiencies, the
rate of change of energy stored in ES is given by

pbatt
i,t =

1

η+
i

p+
i,t − η

−
i p
−
i,t, ∀t ∈ T , ∀i ∈M, (7)

where pbatt
i,t is the rate of change of energy stored in ES i at

the end of period t, and η+
i , η−i ∈ (0, 1) are discharging and

charging efficiency of ES i, respectively.
The energy stored in ES i evolves according to the following

dynamics:

Ei,t = Ei,t−1 − pbatt
i,t ∆T ∀t ∈ T , ∀i ∈M, (8)

where Ei,t is the energy stored in ES i at the end of time
period t and ∆T is the size of period.

The energy stored in ES i needs to be within the storage
capacity, i.e.,

0 ≤ Ei,t ≤ Emax
i ∀t ∈ T , ∀i ∈M, (9)

where Emax
i is the energy capacity of ES i.

The energy stored in ES i at the end of the scheduling period
is set to be equal to the initial energy state as shown in (10)

Ei,T = Ei,0 ∀i ∈M, (10)

but can also be set to other feasible values.
With the above model, the optimal DER coordination prob-

lem can be formulated as the following convex optimization
problem:

PP : min
pi,t

T∑
t=1

N+M∑
i=1

Ci(pi,t), (11)

subject to (2)–(10). For the feasibility of PP and for reliable
power system operation, we make the following assumption.
Assumption 2. Assume that the demand can be served solely
by generators, i.e.,

N∑
i=1

pmin
i ≤ Dt ≤

N∑
i=1

pmax
i . (12)

Remark 1. Note that since the a physical storage device
cannot be charged and discharged at the same time, we need
to ensure that either p+

i,t or p−i,t needs to be zero, i.e.,

p+
i,tp
−
i,t = 0, ∀t ∈ T , ∀i ∈M.

However, when η+
i η
−
i < 1, there is no need to add this

nonconvex constraint into the optimization problem (11), as
shown in [19, Theorem 1].

Remark 2. Compared with existing studies for optimal DG
coordination [3]–[14], the optimal coordination problem of
both DGs and ESs are more challenging. Since there is
only limited energy that can be stored in a storage, the
operations of storages in different periods are interdependent.
It is thus indispensable to formulate the optimization problem
over multiple periods concurrently as given in (11). A similar
problem formulation has been studied in [17], [21]. In these
problem formulations, the physical constraints such as trans-
mission line loss and power flow and transmission line flow
constraints have not been considered. As discussed in [21], the
design of distributed algorithms for such a problem is already
challenging, therefore we leave the extension to handle other
physical constraints as a future research direction.

Remark 3. Compared to [17], [21], the charging and dis-
charging losses are considered in our problem formulation.
These losses introduce nonlinearity to the dynamics of energy
storages, which makes the optimization problem nonconvex.
By introducing two lifted variables p+

i,t and p−i,t for ESs in (5),
we convert the nonconvex optimization problem to its convex
equivalency (11).

The existing studies on DER coordination focused on fixed
communication networks [17]–[21]. However, in practice, the
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communication network topology may vary due to unexpected
loss of communication links [23]. This motivates the study
in this paper. In particular, the communication topology for
DERs is modeled as a time-varying directed graph G(k) =
(V, E(k)), where the agent set is V = {1, 2, . . . , N +M}, in
which the first N agents correspond to DGs, while the last
M agents correspond to ESs, and the edge set E(k) models
communication links among DERs, which may change over
time due to unexpected loss of communication links.

We make the following mild assumption regarding the
communication network.
Assumption 3. The time-varying directed communication
network G(k) is uniformly jointly strongly connected, i.e.,
the joint communication network G([k0, k0 + B)) is strongly
connected for any k0 ∈ Z+ with some integer B > 0.

Note that the above assumption is a mild condition on the
connectivity of communication topologies, since the network
can be disconnected at any time instant as long as the joint
graph over a period of time is strongly connected.

IV. MAIN RESULTS

In this section, we first present the Lagrangian-based ap-
proach for the optimal DER coordination in Section IV-A.
In Section IV-B, we propose a distributed algorithm with
diminishing step-sizes and show that the proposed distributed
algorithm asymptotically achieves the optimal DER coordina-
tion if the time-varying directed communication network is
uniformly jointly strongly connected and the cost functions
are strictly convex. To improve the slow convergence due
to the diminishing step-sizes, in Section IV-C, we develop
a distributed algorithm with a fixed step-size and show that
the new proposed algorithm exponentially realizes the optimal
DER coordination under an additional assumption on the cost
functions.

A. Lagrangian-Based Approach

For problem PP (11), we denote ΩN ,i as the set of all pi ∈
RT for which (3) and (4) are satisfied, where i ∈ N and pi =(
pi,1, pi,2, . . . , pi,T

)′
. We also denote ΩM,i as the set of all

p+
i , p

−
i ∈ RT for which (6)–(10) are satisfied, where i ∈ M,

p+
i =

(
p+
i,1, p

+
i,2, . . . , p

+
i,T

)′
, and p−i =

(
p−i,1, p

−
i,2, . . . , p

−
i,T

)′
.

Note that both sets ΩN ,i and ΩM,i are convex polyhedra since
all constraints are affine. Moreover, the objective function in
(11) is also strictly convex given Assumption 1. Therefore, the
primal problem PP (11) has a unique minimizer, for which we
denote as p∗i . Moreover, there is zero duality gap and the dual
optimal set is nonempty [26].

In order to solve the optimal DER coordination problem
PP in (11), we can instead solve its dual problem with respect
to constraint (2), which couples the operations of all DERs.
Following the similar analysis as those in [1], [10], [27], [28],
it is not hard to obtain the dual problem of PP as follows:

DP : max
λ∈RT

N+M∑
i=1

Φi(λ), (13)

where λ = (λ1, . . . , λT )′ and λi for i ∈ T are dual variables
associated with the power balance constraints (2),

Φi(λ) = min
pi∈Ωi

T∑
t=1

Ci(pi,t)− λ′(pi −Di), i ∈ V , (14)

where Ωi = ΩN ,i for i ∈ N , and Ωi =
{
pi = p+

i −
p−i
∣∣{p+

i , p
−
i } ∈ ΩM,i

}
for i ∈M.

Note that Di ∈ RT are virtual local demands at DER
i for all the periods such that

∑N+M
i=1 Di = D, where

D =
(
D1, . . . , DT

)′
. One choice is that Di = 1

N+MD for
all i ∈ V . Note that Di’s has no physical meaning. The
purpose of introducing these parameters is to convert the
dual problem into the maximization problem of N +M local
functions as shown in (13) such that distributed algorithms can
be developed to solve the dual problem.

Under Assumption 1, for any given λ, the right-hand side
of (14) has a unique minimizer given by

pi(λ) = arg min
pi∈Ωi

T∑
t=1

Ci(pi,t)− λ′pi, i ∈ V . (15)

Furthermore, there exists at least one optimal solution to the
dual problem (13), and the unique optimal solution of the
primal problem (11) can be obtained by solving the local
optimization problem (14), which is given by

p∗i = pi(λ
∗) = arg min

pi∈Ωi

T∑
t=1

Ci(pi,t)− λ∗′pi, i ∈ V , (16)

where λ∗ = (λ∗1, . . . , λ
∗
T )′ is any dual optimal solution.

Note that Ci(·) is strictly convex and the constrained set
is a bounded polyhedron, it then follows from [29, pp. 669]
that the function Φi(λ) is continuously differentiable and the
gradient is given by

∇Φi(λ) = −
(
pi(λ)−Di

)
. (17)

In this paper, we aim to solve the DER coordination problem
(11) by solving its dual problem (13) in a distributed manner.
Compared with the existing literature [17]–[21], which focused
on fixed communication networks, we aim to develop dis-
tributed algorithms for solving the DER coordination problem
over time-varying directed networks.

B. Distributed Push-Sum and Gradient Based Algorithm

To address the challenges of time-varying directed networks,
we propose a distributed algorithm based on the push-sum and
(sub)gradient method developed recently in [23].

More specifically, at each iteration k ∈ Z+, each DER
(agent) i ∈ V maintains five vectors, namely, wi(k), yi(k),
λi(k), pi(k), vi(k) ∈ RT , where wi(k), yi(k), and vi(k) are
auxiliary vectors, and pi(k) and λi(k) are agent i’s estimations
of the primal solution (optimal generations of DGs and ESs)
and the dual optimal solution (optimal incremental cost),
respectively. For example, λi =

(
λi,1, . . . , λi,T

)′
, where λi,t

for i ∈ V and t ∈ T is agent i’s estimate of the optimal
incremental cost (marginal price) for period t. At each iteration
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k ∈ Z+, each agent i ∈ V updates its vectors according to
(18):

wi(k + 1) =
∑

j∈N in
i (k)∪{i}

vj(k)

dj(k) + 1
, (18a)

yi(k + 1) =
∑

j∈N in
i (k)∪{i}

yj(k)

dj(k) + 1
, (18b)

λi(k + 1) =
wi(k + 1)

yi(k + 1)
, (18c)

pi(k + 1) = arg min
pi∈Ωi

T∑
t=1

Ci(pi,t)− λi(k + 1)′pi, (18d)

vi(k + 1) = wi(k + 1)− α(k + 1)(pi(k + 1)−Di),(18e)

where the division in (18c) operates entry-wise. The algorithm
is initialized with an arbitrarily assigned vector vi(0) ∈ RT
and yi(0) = 1 for all i ∈ V .

The step-size α(k + 1) satisfies the following decaying
(diminishing) conditions:

∞∑
k=1

α(k) =∞,
∞∑
k=1

α2(k) <∞,

α(k) ≤ α(s) for all k > s ≥ 1. (19)

A typical choice for a sequence α(k) satisfying (19) is α(k) =
a
k+b , where a > 0 and b ≥ 0.

The proposed algorithm (18) is inspired by the push-sum
and (sub)gradient method developed in [23]. Note that it
follows from (17) that, the term −(pi(k + 1) − Di) in the
update (18e), where pi(k+1) is given by (18d), is the gradient
of the function Φi(λi(k + 1)). The update (18) without the
gradient term is called the push-sum algorithm [30]–[32], or
the ratio consensus algorithm [33]–[35] in the literature. In
these algorithms, all λi(k) converge to the average of initial
values as k → ∞. The inclusion of the gradient term in the
update is to ensure that all λi(k) converge to a dual optimal
solution λ∗.

Remark 4. In algorithm (18), at each iteration k ∈ Z+,
each agent (DER) i sends the quantities vi(k)

di(k)+1 and yi(k)
di(k)+1

to all the agents j in its out-neighbors set and receives the
corresponding messages from its in-neighbors. In order to
implement the algorithm, each agent i needs to know its out-
degree di(k), which is necessary if agents are not aware
of their unique identifier (ID) as shown in [36]. However,
this may be impractical when agents use a broadcast-based
communication [36]–[38]. To overcome the case that some
agents are not aware of their out-degrees, the authors of
[37] developed a strategy where each agent also transmits
to its out-neighbors one extra running sum along with its
unique identifier. By assuming that each agent knows its
unique identifier, the authors of [38] proposed a distributed
optimization algorithm with row stochastic matrices, which is
easier to construct since each agent could assign edge weights
to its in-neighbors. Note that the analyses in [37], [38] are
applicable to fixed graphs. It is an interesting future research
direction to extend their results to time-varying graphs.

The following theorem establishes the convergence result of
algorithm (18).

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. The
distributed algorithm (18) with the step-size α(k) satisfying
conditions in (19) asymptotically solves the optimal DER
coordination problem (11), i.e., pi(k) → p∗i and λi(k) → λ∗

as k →∞ for all i ∈ V .

Proof : Note that the dual problem DP (13) has the same form
as the distributed optimization problem considered in [23]. The
difference is that the dual problem (13) is a maximization
problem for the sum of concave functions while the problem
in [23] is a minimization problem for the sum of convex
functions. Therefore, in what follows we verify the sufficient
conditions given in [23, Theorem 1] are indeed satisfied.

The first condition that the graph is uniformly jointly
strongly connected holds due to Assumption 3. The second
condition also holds since each function Φi(λ) in the max-
imization problem (13) is concave and the optimal set is
nonempty, due to Assumption 1. Finally, the gradient of each
function Φi(λ) given by (17) is uniformly bounded since the
constrained set is bounded and the virtual local demand is
also bounded. Hence, it follows from [23, Theorem 1], whose
proof is somewhat involved, that λi(k) → λ∗ as k → ∞ for
all i ∈ V .

To be self-contained, here we briefly provide the essential
idea of the proof, which contains two steps. In the first step,
it can be shown that λi(k) for i ∈ V converges to the average
process v̄(k) defined as:

v̄(k) =
1

N +M

N+M∑
i=1

vi(k), (20)

increasingly well as iteration goes on, i.e., λi(k) → v̄(k) as
k →∞. In the second step, it can be shown that the average
process converges to a dual optimal solution λ∗, i.e., v̄(k)→
λ∗ as k →∞.

Finally, it follows from the update equation (18d) and the
zero duality between the primal problem (11) and the dual
problem (13) that pi(k)→ p∗i as k →∞ for all i ∈ V .

C. Accelerated Distributed Algorithm

In the previous section, we have developed a distributed
algorithm with the diminishing step-sizes for solving the
optimal DER coordination problem. However, the convergence
of algorithm (18) is rather slow due to the diminishing step-
sizes. In order to speed up the convergence, motivated by the
recent advances in distributed optimization [39]–[43], in this
section, we develop an accelerated distributed algorithm with
a fixed step-size.

More specifically, at each iteration k ∈ Z+, each DER
(agent) i ∈ V maintains five vectors ui(k), vi(k), λi(k),
pi(k), yi(k) ∈ RT , where ui(k), vi(k), and yi(k) are auxiliary
vectors, and pi(k) and λi(k) are agent i’s estimations of the
primal solution (optimal generations of DGs and ESs) and the
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dual optimal solution (optimal incremental cost), respectively.
These vectors are updated as follows:

ui(k + 1) =
∑

j∈N in
i (k)∪{i}

uj(k) + αyj(k)

dj(k) + 1
, (21a)

vi(k + 1) =
∑

j∈N in
i (k)∪{i}

vj(k)

dj(k) + 1
, (21b)

λi(k + 1) =
ui(k + 1)

vi(k + 1)
, (21c)

pi(k + 1) = arg min
pi∈Ωi

T∑
t=1

Ci(pi,t)− λi(k + 1)′pi, (21d)

yi(k + 1) =
∑

j∈N in
i (k)∪{i}

yj(k)

dj(k) + 1

−(pi(k + 1)− pi(k)). (21e)

The algorithm is initialized with any λi(0) = ui(0) ∈ RT ,
vi(0) = 1, pi(0) = arg minpi∈Ωi

∑T
t=1 Ci(pi,t) − λi(0)′pi,

and yi(0) = −(pi(0)−Di).
The proposed algorithm (21) is inspired by the algorithm

recently proposed in [41], which uses a distributed inexact
gradient method and employs the push-sum protocol for
gradient tracking (termed as Push-DIGing). Intuitively, the
update (21a) is a distributed inexact gradient method where
the variable yj(k) is used instead of the average gradient,
and in the update (21e), yj(k) tracks the average gradient by
employing dynamic average consensus [44]. The updates (21b)
and (21c) are based on the push-sum method to handle the
time-varying directed graphs. Note that the implementation of
the algorithm also requires each agent to know its out-degree.

Remark 5. Note that it follows from (17) that the term
−(pi(k+1)−pi(k)) in (21e) is equal to −

(
∇Φi(λi(k+1))−

∇Φi(λi(k))
)
, which is the new information contained in the

most recent gradient evaluation. This idea has also been used
in other recent studies to accelerate the convergence speed,
among which [39]–[42] focused on undirected graphs and
[41] studied directed graphs. Here, we propose algorithm (21)
based on Push-DIGing developed [41] since it is applicable
to time-varying directed graphs.

To establish convergence of algorithm (21), we make the
following assumption on the cost functions.
Assumption 4. For each t ∈ T , the cost function Ci(pi,t)
or Ci(p+

i,t, p
−
i,t) is increasing and twice continuously differ-

entiable over pi ∈ ΩN ,i for i ∈ N and {p+
i , p

−
i } ∈ ΩM,i

for i ∈ M, respectively. Moreover, there exist two positive
constants αi and βi, such that 1

αi
≤ ∇2Ci(pi,t) ≤ 1

βi
for

pi ∈ Ωi.

It is easy to see that when Assumption 4 is satisfied, each
cost function Ci(·) is strongly convex for pi ∈ Ωi since
∇2Ci(pi,t) ≥ 1

αi
for pi ∈ Ωi. Therefore, Ci(·) is strictly con-

vex over pi ∈ Ωi, that is, Assumption 1 is satisfied for pi ∈ Ωi.
However, when the cost functions satisfy additional properties
as given in Assumption 4, compared with algorithm (18) which
asymptotically solves the optimal DER coordination problem,

the new algorithm (21) exponentially achieves the optimal
DER coordination as shown in the following theorem.
Theorem 2. Suppose that Assumptions 2, 3, and 4 hold.
Then there exists a constant ᾱ > 0, such that the distributed
algorithm (21) with any fixed step-size 0 < α < ᾱ, exponen-
tially solves the optimal DER coordination problem (11), i.e.,
λi(k) → λ∗ and pi(k) → p∗i as k → ∞ for all i ∈ V with a
linear convergence rate.

Proof : We first show that the each estimate λi(k) for i ∈ V
converges to the dual optimal solution λ∗ exponentially (R-
linearly in the language of optimization theory). We show
this by verifying that all the sufficient conditions of [41,
Theorem 5.9] are satisfied.
• Firstly, we show that each local dual function Φi(λ) given

in (14) is strongly concave and smooth.
Note that it follows from (15) that

pi(λ) = projΩi

(
∇C̃−1

i (λ)
)
, (22)

where C̃i(pi) =
∑T
t=1 Ci(pi,t), and ∇C̃−1

i (λ) is the in-
verse function of ∇C̃i(pi), which exists over its argument
domain since each function ∇Ci(pi,t) is continuous and
Ci(pi,t) is strictly increasing in its argument domain due
to Assumption 4, and projΩi

(·) denotes the projection to
the set Ωi. It then follows from the standard property of
the derivative of the inverse function that

∂pi
∂λ

(λ) =

{
1

C̃′′
i (pi(λ))

, if pi ∈ Ωi,

0 otherwise.
(23)

Next from (17), we have

∇2Φi(λ) = −∂pi
∂λ

(λ).

This together with (23) implies that

∇2Φi(λ) =

{
− 1
C̃′′

i (pi(λ))
, if pi ∈ Ωi,

0, otherwise.

Finally, it follows from the fact that 1
αi
≤ ∇2Ci(pi,t) ≤

1
βi

from Assumption 4 that when exists,

− αi
T
≤ ∇2Φi(λ) ≤ −βi

T
. (24)

The second inequality of (24) implies that the local dual
function Φi(λ) given in (14) for any i ∈ V is strongly
concave. This also ensures that the dual problem (13) has
a unique optimal solution λ∗.
Also note that it follows from the first inequality of (24)
and [27, Lemma 3] that the local dual function Φi(λ)
has a Lipschitz continuous gradient. Thus the local dual
function Φi(λ) is smooth.

• Next, the time-varying directed graph is uniformly jointly
strongly connected by Assumption 3.

• Finally, it is easy to see that the weight mixing matrix of
algorithm (21) given by

Aij(k) =

{
1

dj(k)+1 , if j ∈ N in
i (k) ∪ {i},

0, otherwise.

is column stochastic for all k ∈ Z+.
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Hence, it follows from [41, Theorem 5.9] that if α < ᾱ,
where ᾱ is a constant depending on the parameters of the
communication network and cost functions, then each estimate
λi(k) for i ∈ V converges to the unique optimal solution
λ∗ exponentially (R-linearly in the language of optimization
theory). That is, there exist some constants C > 0 and
0 < ρ < 1 such that

‖λi(k)− λ∗‖ ≤ Cρk, ∀k ∈ Z+. (25)

Next, we show that the estimate pi(k) for each i ∈ V
converges to the optimal generation p∗i exponentially.

Note that from (16) and (22), for all k ∈ Z+, we have

‖pi(k)− p∗i ‖

=
∥∥∥projΩi

(
∇C̃−1

i (λi(k))
)
− projΩi

(
∇C̃−1

i (λ∗)
)∥∥∥

≤
∥∥∥∇C̃−1

i (λi(k + 1))−∇C̃−1
i (λ∗)

∥∥∥
≤
∥∥∥∇2C̃−1

i

(
(1− c)λi(k + 1) + cλ∗

)∥∥∥
×
∥∥λi(k + 1)− λ∗

∥∥
≤ αiC

T
ρk, (26)

for some constant 0 < c < 1, where the first inequality
follows from the standard non-expansiveness property of the
projection operator [25], the second inequality follows from
the mean value theorem, and the last inequality follows
from ∇2Ci(pi,t) ≥ 1

αi
and (25). Therefore, (26) implies

that pi(k) converges to the optimal generation p∗i with the
same R-linear rate O(ρk) as the convergence of λi(k) to λ∗.
Hence, algorithm (21) achieves the optimal DER coordination
exponentially (R-linearly).

Remark 6. Note that the complicated closed form expressions
for ᾱ and the convergence rate ρ can be derived by following
the worst-case analysis given in [41, Theorem 5.9]. However,
such an upper bound on fixed step-sizes is often conservative
and larger values can be chosen in the numerical experiments.
Nevertheless, it ensures the distributed algorithm to have
provable convergence guarantees.

Remark 7. Compared to algorithm (18) with diminishing
step-sizes, algorithm (21) uses a fixed step-size and solves
to the optimal DER coordination problem faster. In order to
establish faster convergence of (21), the local cost functions
Ci(pi,t) for i ∈ V and t ∈ T need to satisfy more properties as
given in Assumption 4. Therefore, depending on the properties
of cost functions, we may choose different algorithms to solve
the optimal DER coordination problem. If only Assumption 1
is satisfied, we use algorithm (18) to solve the optimal DER
coordination problem. If Assumption 4 is satisfied, we can use
algorithm (21) to solve the optimal DER coordination problem
with a faster convergence rate.

V. CASE STUDIES

In this section, we validate and evaluate the performance of
algorithm (18) with diminishing step-sizes and algorithm (21)
with a fixed step-size for optimal DER coordination using the
IEEE 39-bus system modified from [45]–[47] shown in Fig. 1,

Fig. 1. IEEE 39-bus system.
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Fig. 2. Native load vs. Net load.

TABLE I
GENERATOR PARAMETERS

Unit ai ($/kW2h) bi ($/kWh) ci ($/h) Range (kW)
1 0.00024 0.0267 0.38 [30,60]
2 0.00052 0.0152 0.65 [20,60]
3 0.00042 0.0185 0.4 [50,200]
4 0.00031 0.0297 0.3 [20,140]
5 0.000248 0.0156 0.3312 [50,300]
6 0.000199 0.0116 0.4969 [110,500]
7 0.00028 0.0195 0.32 [40,250]
8 0.00028 0.0195 0.32 [40,250]
9 0.00042 0.0185 0.4 [50,200]

10 0.00031 0.0297 0.3 [20,140]

where Buses 30–39 are connected with DGs, and Buses 27
and 28 are connected to ESs. The demand during a 24-hour
is plotted in red in Fig. 2.

The cost functions of DGs are given by Ci(pi,t) = a2
i pi,t+

bipi,t+ci for all i ∈ {30, 31 . . . , 39} and for t ∈ {1, 2 . . . , 24}.
The cost functions of ESs are given by Ci(pi,t) = a2

i pi,t for
i ∈ {27, 28} and for t ∈ {1, 2, . . . , 24}. The parameters of
DGs and ESs are given in Table I and Table II, respectively.
Note that the cost functions satisfy both Assumptions 1 and 4.

The IEEE 39-bus system has been partitioned into three
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TABLE II
STORAGE PARAMETERS

Unit ai ($/kW2h) Es (kWh) pmax (kW) η+ η−
1 0.0001 500 50 0.8 0.8
2 0.0001 400 40 0.88 0.88

areas as shown in Fig. 1. Within each area, the communication
links among DERs are bidirectional. The communication links
between different areas maybe unidirectional. More specifi-
cally, the communication links between Area 1 and Area 3
are (2, 1) and (2, 3), and the communication link between
Area 1 and Area 2 is (27, 26). The communication network is
modeled as a time-varying directed network switching among
two fixed topologies. More specifically,

G(k) =

{
G1, if k ∈ [0, 1) ∪ [2, 3) · · · ∪ [2s, 2s+ 1) · · · ,
G2, if k ∈ [1, 2) ∪ [3, 4) · · · ∪ [2s+ 1, 2s+ 2) · · · ,

where s ∈ Z+, G1 is the directed graph obtained by discon-
necting Area 1 and Area 3, that is, by removing the links
(2, 1) and (2, 3), and G2 is the directed graph obtained by
disconnecting Area 1 and Area 2, that is, by removing the link
(27, 26). It is easy to check that each of the fixed topologies
G1 and G2 is not connected. For example, in the directed
graph G1, there is no directed path from agents in Area 1
to agents in Area 2 and Area 3. However, the time-varying
directed graph G(k) is uniformly jointly strongly connected
since the joint graph G([k0, k0 + B)) is strongly connected
for any k0 ≥ 0 with B = 2. Thus, Assumption 3 is satisfied
with B = 2. According to Theorems 1 and 2, algorithm (18)
with properly chosen diminishing step-sizes and algorithm
(21) with a fixed step-size less than a certain critical value,
solve the optimal DER coordination problem, which will be
verified in the following subsections, respectively.

A. The Algorithm with Diminishing Step-Sizes

We start by evaluating algorithm (18). We have verified that
algorithm (18) with the diminishing step-size α(k) = 0.005

k
which satisfies the conditions in (19) converges to the optimal
generation roughly in 10000 steps and the computation time
is 61.7079 seconds. The blue curve in Fig. 2 is the resulting
net load (load minus storage). Fig. 2 shows how two ESs are
coordinated to cut the peak and fill the valley. In particular,
they are discharged during peak hours when the energy price
is high and charged during off-peak hours when the energy
price is low.

The obtained optimal generations for 10 DGs and 2 ESs
over 24 hours are plotted in Fig. 3, The power output and
state of charge (SOC) for both storages are provided in Fig. 4.
For each storage, SOC is the same at the beginning and
end of the scheduling period, but the total charging energy
(area between the negative blue curve and x-axis) is more
than the discharging energy (area between the positive blue
curve and x-axis) due to charging and discharging losses. ESs
are idle when the energy price is not high (or low) enough
to make the discharging (or charging) profitable considering
the round-trip efficiency. In particular, ES 1 is idle during
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Fig. 3. Optimal power generations for DGs and ESs over 24 hours.
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Fig. 4. Charging (negative) and discharging (positive) power and state of
charge.

Hour 6-12 and 17-24 because of its low charging/discharging
efficiency, while ES 2 is engaged more often due to its higher
charging/discharging efficiency.

In order to show the convergence more clearly, the simula-
tion results for Hour 1 are given in Fig. 5. Fig. 5(a) plots the
evolutions of the estimates λi,1(k) all for i ∈ V , which shows
that all λi,1(k) converges to 0.0716 $/kWh, which is roughly
equal to the optimal incremental cost λ∗1 = 0.0699 $/kWh.
In order to clearly show the convergence process for power
generations, in Fig. 5(b), we have only included the evolutions
for the power generation for DGs 1, 5, 6, 8, and 10, and
ESs 1 and 2. They all converge to the corresponding optimal
generations. Fig. 5(c) plots the evolution of the total generation
in comparison with the total demand, which clearly shows that
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(a) Incremental cost ($/kWh)
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Fig. 5. Results of algorithm (18) with the diminishing step-size α(k) =
0.005

k
.

the total generation meets the total demand for Hour 1, i.e.,
D1 = 750.9792 kW.

B. The Algorithm with a Fixed Step-Size

To accelerate the convergence, we next apply algo-
rithm (21). We have checked that algorithm (21) with the fixed
step-size α = 5× 10−5 solves the optimal DER coordination
problem roughly in 1000 steps and the computation time is
6.1681 seconds. The simulation results for Hour 1 are given
in Fig. 6. Fig. 6(a) shows that all estimates λi,1(k) converge
to the optimal incremental cost λ∗1 = 0.0699 $/kWh. The
evolutions of power generations for DGs 1, 5, 6, 8, and 10,
and ESs 1 and 2 are plotted in Fig. 6(b), which shows that they
converges to the corresponding optimal generations. Fig. 6(c)
plots the evolution of the total generation in comparison with
the total demand, which clearly shows that the total generation
meets the total demand for Hour 1, i.e., D1 = 750.9792 kW.

Compared with the simulation results of algorithm (18) with
the diminishing step-sizes shown in Fig. 5, the convergence
of algorithm (21) with the fixed step-size is much faster. For
example, at time step k = 1000, the estimates λi,1(k) are all
roughly equal to optimal incremental cost λ∗1 = 0.0699 $/kWh,
while using algorithm (18) with the diminishing step-sizes
α(k) = 0.005

k , at the same time step, all estimates λi,1(k) are
in the range of [0.0746, 0.0830], which are in the neighborhood
of the optimal incremental cost with 18.7% error.

To make the comparison more explicit, we have also plotted
the total generations of these two algorithms together with the
demand for Hour 1 in Fig. 7. As can be seen, the total genera-
tion by running algorithm (21) with α = 5×10−5 converges to
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Fig. 6. Results of algorithm (21) with the fixed step-size α = 5× 10−5.
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Fig. 7. Comparison of algorithm (18) and algorithm (21).

the total demand roughly at the time step k = 400, while the
convergence of algorithm (18) with the diminishing step-sizes
α(k) = 0.005

k is not achieved even at the time step k = 1000.
Hence, the convergence of algorithm (21) with a fixed step-
size is faster.

VI. CONCLUSIONS

In this paper, we have considered the optimal coordination
problem of DERs, including DGs and ESs. In the problem
formulation, storage charging/discharging efficiencies were
explicitly modeled. We first proposed a distributed algorithm
with diminishing step-sizes and showed that the proposed
algorithm with an appropriately chosen step-size asymptoti-
cally solves the optimal DER coordination problem over time-
varying directed communication networks that are uniformly
jointly strongly connected. To accelerate the convergence, we
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next developed a distributed algorithm with a fixed step-size
and showed that the new proposed algorithm exponentially
solves the optimal DER coordination problem if the cost
function satisfy additional properties. The performances of
the proposed algorithms have been tested on the IEEE 39-bus
system. One future research direction is to extend the proposed
distributed algorithms to accommodate other communication
effects, such as time delays and packet drops. Another inter-
esting research direction is to extend the proposed distributed
algorithms to accommodate additional physical constraints,
such as those relevant to transmission line loss, power flow
and transmission line flow.
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[23] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–
615, Mar. 2015.

[24] C. Godsi and G. F. Royle, Algebraic Graph Theory, ser. Graduate Texts
in Mathematics. New York: Springer-Verlag, 2001, vol. 207.

[25] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.
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