
Abstract— This paper studies robust tracking control for a
leader-follower multi-agent system (MAS) subject to distur-
bances. A challenging problem is considered here, which differs
from those in the literature in two aspects. First, we consider
the case when all the leader and follower agents are affected by
disturbances, while the existing studies assume only the follow-
ers to suffer disturbances. Second, we assume the disturbances
to be bounded only in rates of change rather than magnitude as
in the literature. To address the new challenges, we propose a
novel observer-based distributed tracking control design. As a
distinguishing feature, the followers can cooperatively estimate
the disturbance affecting the leader through to adjust their
maneuvers accordingly, which is enabled by the design of
first-of-its-kind distributed disturbance observer. We build a
specific approach for MASs. Further, we prove that they lead to
bounded-error tracking for the considered context and further,
asymptotically convergent tracking under a mild relaxation of
disturbance setting. We validate the proposed approach using
a simulation example.

I. INTRODUCTION

Distributed leader-follower tracking control is key for
enabling a multi-agent system (MAS) in which a group
of follower agents perform distributed control while inter-
changing information with their neighbors to collectively
track the state of a leader agent. A large body of work
has been developed recently to deal with the control design
under diverse challenging situations, e.g., complex dynamics,
communication delays, noisy measurements and switching
topologies, see [1–8] and the references therein. However, a
problem that has received inadequate attention to date is the
case when the agents are subjected to disturbances. In a real
world, disturbances can result from unmodeled dynamics,
change in ambient conditions, inherent variability of the
dynamic process, and sensor noises. They can cause degra-
dation and even failure of tracking if not well addressed.

A lead is taken in [3] with the study of disturbance-robust
leader-follower tracking. It presents a distributed control de-
sign that achieves bounded-error tracking when magnitude-
bounded disturbances affect the followers. This notion is
extended in [9] to make the followers affected by distur-
bances enter a bounded region centered around the leader in
finite time. Another finite-time tracking control approach is
offered in [10], where the sliding mode control technique is
used to suppress the effects of disturbances. It is noted that,
while the control designs in these works yield robustness,
they intrinsically consider the disturbances to be unknown.
By contrast, a different way is to capture the disturbances
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by designing some observers and then adjust the control run
based on the disturbance estimation. Obtaining an explicit
knowledge of disturbances, this approach can advantageously
reduce conservatism in control and thus enhance the tracking
performance further. In [11; 12], disturbance observers are
developed and integrated into tracking controllers such that
a follower can estimate and offset the local disturbance
interfering with its dynamics during tracking. The results
in both studies point to the effectiveness of disturbance ob-
servers for improving tracking accuracy—for instance, zero-
error tracking can be attained despite non-zero disturbances
under certain conditions. However, other than these two,
there are no more studies on this subject to the best of
our knowledge. This leaves many problems still open and
the potential of the disturbance-observer-based approach far
from being fully explored. It is noteworthy that observer-
based tracking control has been investigated in a few works,
e.g., [3; 9; 13–15], but observers in these studies are meant
to infer various state variables rather than disturbances.

In this study, we uniquely focus on an open problem:
can we enable distributed tracking control when not only
the followers but also the leader are affected by unknown
disturbances and when only the rates of change of the
disturbances are bounded? The state of the art generally
considers that disturbances plague just the followers and that
they are bounded in magnitude or approach fixed values as
time goes by [3; 9–12]. The leader’s dynamics, however, can
also involve disturbances from a practical viewpoint, and
when this happens, they are more difficult to be rejected,
because the leader cannot measure the disturbances and share
the information with any of the followers. Furthermore, it can
significantly relax the assumptions about disturbances if we
simply require their rates of change to be bounded, which
will be beneficial for dealing with large disturbances. Yet,
this realistic relaxation comes a more complicated, harder-to-
suppress influence on the system-wide tracking performance
by the disturbances.

We propose this work to address the above problem,
which presents a contribution as follows. We develop a
novel observer-based distributed tracking control framework.
Different from the previous studies, it takes into account a
follower’s estimation of the disturbance affecting the leader
and thus allows the follower to apply the local control
accordingly. To enable the estimation, we develop a new
distributed disturbance observer, which allows the followers
to collectively infer the leader’s disturbance. Within this
framework, we develop a tracking control approach for
MASs, respectively. Then, we conduct theoretical analysis
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of the proposed approach. We show that, even though dis-
turbances affect all the agents, bounded-error tracking can
be guaranteed as long as their rates of change are bounded.
Further, zero-error tracking can be produced if the followers’
and leader’s disturbances converge to fixed points. We finally
present a simulation to validate the proposed approach.

II. NOTATION AND PRELIMINARIES

This section introduces notation and basic concepts about
graph theory and nonsmooth analysis.

A. Notation

The notation used throughout this paper is standard. The
n-dimensional Euclidean space is denoted as Rn. For a vec-
tor, ‖·‖1 denotes the 1-norm, and ‖·‖ stands for the 2-norm.
The notation 1 represents a column vector of ones. We let
diag(. . .) and det(·) represent a block-diagonal matrix and
the determinant of a matrix, respectively. The eigenvalues
of an N × N matrix are λi(·) for i = 1, 2, . . . , N . The
minimum and maximum eigenvalues of a real, symmetric
matrix are denoted as λ(·) and λ̄(·). Matrices are assumed
to be compatible for algebraic operations if their dimensions
are not explicitly stated. A Ck function is a function with k
continuous derivatives.

B. Graph Theory

We use a graph to describe the information exchange
topology for a leader-follower MAS. First, consider a net-
work composed of N independent followers, and model the
interaction topology as an undirected graph. The follower
graph then is expressed as G = (V , E), where V =
{1, 2, · · · , N} is the vertex set and E ⊆ V × V is the
edge set containing unordered pairs of vertices. A path is
a sequence of connected edges in a graph. The follower
graph is connected if there is a path between every pair
of vertices. The neighbor set of agent i is denoted as Ni,
which includes all the agents in communication with it.
The adjacency matrix A = [aij ] ∈ RN×N is defined as
aii = 0 and aij > 0 if (i, j) ∈ E where i 6= j. For the
Laplacian matrix L = [lij ] ∈ RN×N , lij = −aij if i 6= j
and lii =

∑
k∈Ni

aik. The leader is numbered as vertex 0
and can send information to its neighboring followers. Then,
we have a graph Ḡ , which consists of graph G, vertex 0
and edges from the leader to its neighbors. The leader is
globally reachable in Ḡ if there is a path in graph Ḡ from
every vertex i to vertex 0. To express the graph Ḡ more
precisely, we denote the leader adjacency matrix associated
with Ḡ by B = diag(b1, . . . , bN ), where bi > 0 if the leader
is a neighbor of agent i and bi = 0 otherwise. The following
lemma will be useful.

Lemma 1: [16] The matrix H = L+B is positive stable
if and only if vertex 0 is globally reachable in Ḡ.

C. Nonsmooth Analysis

Consider the following discontinuous dynamical system

ẋ = f(x), x ∈ Rn, x(0) = x0 ∈ Rn, (1)

where f(x) : Rn → Rn is defined almost everywhere (a.e.).
In other words, it is defined everywhere for x ∈ Rn \W ,
where W is a subset of Rn of Lebesgue measure zero.
Moreover, f(x) is Lebesgue measurable in an open region
and locally bounded. A vector variable x(·) ∈ Rn is a
Filippov solution of (1) on [t0, t1] if x(·) is absolutely
continuous on [t0, t1] while for almost all t ∈ [t0, t1],
satisfying the following differential inclusion:

ẋ ∈ K[f ](x) ,
⋂
δ>0

⋂
µ(M)=0

co{f(B(x, δ) \M)}, (2)

where
⋂
µ(M)=0 represents the intersection over all sets M

of Lebesgue measure zero, co(·) is called by the closure of
a convex hull and B(x, δ) denotes an open ball of radius δ
centered at x. Let V (x) : Rn → R be a locally Lipschitz
continuous function. Its Clarke’s generalized gradient is
given by

∂V (x) , co
{

lim
i→∞

∇V (xi)|xi → x, xi /∈ ΩV ∪M
}
,

where ∇V (x) is the conventional gradient, and ΩV denotes a
set of Lebesgue measure zero which includes all points where
∇V (x) does not exist. Moreover, the set-value of derivative
of V associated with (1) is defined by

LV̇ (x) = {a ∈ R|∃ v ∈ K[f ](x) such that
ζ · v = a, ∀ζ ∈ ∂V (x)}.

The following lemma will be used later.
Lemma 2: [17] Let x(t) : [t0, t1] → Rn be a Filippov

solution of (2). Let V (x) be a locally Lipschitz and regular
function. Then d/dt(V (x(t))) exists a.e. and dV (x(t))/dt ∈
LV̇ (x) a.e.

III. LEADER-FOLLOWER TRACKING

This section studies leader-follower tracking with distur-
bances. We develop an observer-based control approach,
pivoting the design on a set of observers to make a follower
aware of the leader’s and its own disturbances. We further
analyze the closed-loop stability of the proposed approach.

A. Problem Formulation

Consider an MAS with N + 1 agents, which are sequen-
tially numbered. The agent numbered as 0 is the leader, and
the others are followers. An agent’s dynamics is given by

ẋi = ui + fi, xi, ui, fi ∈ R, i = 0, 1, . . . , N, (3)

where xi is the position, ui the control input equivalent
to the velocity maneuver, and fi the unknown disturbance.
Here, each follower is expected to control its dynamics to
track the leader’s trajectory via exchanging information with
its neighbors. For this MAS, we consider the following
assumptions.

Assumption 1: The input u0 ∈ C1 has a bounded first-
order derivative, satisfying |u̇0| ≤ w, where w is unknown.

Assumption 2: The external disturbance fi for i =
0, 1, . . . , N has a bounded first-order derivative with



‖ḟ01N×1‖ ≤ q0 and
∥∥∥[ḟ1 ḟ2 · · · ḟN

]>∥∥∥ ≤ q1, where
0 ≤ q0, q1 <∞.

Remark 1: The problem setting here is generic and ap-
plicable to a wide range of practical scenarios. Below, we
briefly outline a comparison with [3; 9–12], which are the
main references about tracking control with disturbances and
henceforth referred to as the existing literature. First, this
work considers an input-driven leader, while the leader is
usually assumed to be input-free in the literature. Assump-
tion 1 only requires the leader’s input to be bounded in
rate of change (with the bound unknown), which can be
easily satisfied since practical actuators only allow limited
ramp-ups. Second, Assumption 2 imposes disturbances on all
the leader and follower agents, compared with the literature
assuming only followers to be affected by disturbances. Note
that the case when a disturbance is inflicted on the leader is
nontrivial. This is because the leader’s disturbance is very
difficult to be determined by the followers, especially in a
distributed network where many followers cannot directly
interact with the leader. Further, the disturbances are assumed
to have only bounded rates of change rather than bounded
magnitude as required in the literature, beneficial for dealing
with very large disturbances. From the comparison, we
conclude that the considered problem is less restrictive than
the predecessors and still remains an open challenge. •

B. Proposed Algorithm

Given the above problem setting, we propose an observer-
based tracking control approach. The development begins
with the design of a distributed linear continuous controller
for a follower (say, follower i). It crucially incorporates
the estimation of three unknown variables, u0, f0 and fi,
enabling follower i to maneuver through simultaneously
emulating the input and disturbance driving the leader and
offsetting the local disturbance. We subsequently construct
three observers to achieve the estimation and integrate them
with the controller.

Considering follower i, we design the following controller:

ui =− k

∑
j∈Ni

aij(xi − xj) + bi(xi − x0)


+ û0,i + f̂0,i − f̂i, (4)

where k > 0 is the controller gain, f̂0,i and û0,i are
follower i’s respective estimates of the leader’s disturbance
f0 and input u0, and f̂i is follower i’s estimate of its own
disturbance fi. In (4), the term −

∑
j∈Ni

aij(xi − xj) −
bi(xi − x0) is employed to drive follower i approaching the
leader; the term û0,i + f̂0,i ensures that follower i applies
maneuvers consistent with the leader’s input and disturbance;
the term −f̂i is used to cancel the local disturbance. For this
controller, we build a series of observers as shown below to
estimate u0, f0 and fi, respectively.

The observer to obtain û0,i is proposed as follows:

˙̂u0,i = −
∑
j∈Ni

aij(û0,i − û0,j)− bi(û0,i − u0)

− di · sgn

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

 , (5a)

ḋi = τi

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣ , (5b)

for i = 1, 2, . . . , N , where di is the observer gain and τi > 0
a scalar coefficient. For (5a), the leading term on the right-
hand side, −

∑
j∈Ni

aij(û0,i−û0,j)−bi(û0,i−u0), is used to
make û0,i approach u0; the signum function sgn(·) is aimed
to overcome the effect of u0’s first-order dynamics, i.e., u̇0,
and ensure the convergence of û0,i to u0. It is noted that the
observer gain, di, is adaptively adjusted through (5b), which
permits a reasonable and effective gain to be determined even
if the upper bound of u0’s rate of change, w, is unknown
(see Assumption 1).

The following disturbance observer is proposed for fol-
lower i to estimate f0:

żf0,i = −bizi − b2ix0 −
∑
j∈Ni

aij(f̂0,i − f̂0,j)− biu0, (6a)

f̂0,i = zf0,i + bix0, (6b)

where zf0,i is the internal state. The development of (6) is
inspired by [18], in which a centralized disturbance observer
is designed for a single plant. Here, we transform the original
design and introduce the distributed observer as above, which
allows follower i to estimate f0 remotely and collectively
along with its neighbors.

The last observer, designed as follows, can enable follower
i to infer the disturbance fi inherent in its own dynamics:

żf,i = −lzf,i − l2xi + ui, (7a)

f̂i = zf,i + lxi. (7b)

Here, l > 0 is the observer gain, and zf,i is this observer’s
internal state.

Combining (4)-(7) will lead to a complete observer-based
distributed tracking controller. Next, we will analyze the
closed-loop stability of the MAS running on this controller.

C. Stability Analysis

Define eu,i = û0,i − u0, which is the input estimation
error. According to (5), the closed-loop error dynamics of
eu,i can be written as

ėu,i =− bieu,i −
∑
j∈Ni

aij(eu,i − eu,j)

− di · sgn

∑
j∈Ni

aij(eu,i − eu,j) + bieu,i

− u̇0.



Further, let us concatenate eu,i for i = 1, 2, . . . , N and define
eu =

[
eu,1 eu,2 · · · eu,N

]>
. The dynamics of eu can

be expressed as

ėu = −Heu −D · sgn(Heu)− u̇01, (8)

where H = B + L and D = diag(d1, d2, . . . , dN ). It
is noted that the signum-function-based term at the right-
hand side of (8) is discontinuous, measurable and locally
bounded. Hence, there exists a Filippov solution to (8), which
is represented by a differential inclusion as follows:

ėu ∈a.e. K [−Heu −D · sgn(Heu)− u̇01] .

The following lemma illustrates the convergence of eu to
zero as t→∞.

Lemma 3: Suppose the leader is globally reachable in Ḡ
and Assumption 1 holds. The input estimate û0,i approaches
the input u0 asymptotically, i.e.,

lim
t→∞

|û0,i − u0| = 0, (9)

for i = 1, 2, . . . , N .
Proof: By Lemma 1, H is positive definite. For (8), consider
the following functions:

V̄1(eu) =
1

2
e>uHeu, Ṽ1 =

N∑
i=1

(di − β)2

2τi
,

where β ≥ w. Consider V1 = V̄1(eu) + Ṽ1 as a Lyapunov
functional candidate. For the set-valued Lie derivative of
V̄1(eu), we have

L ˙̄V1 = K
[
−e>uH2eu − e>uHD · sgn(Heu)− e>uHu̇01

]
= K

[
−

N∑
i=1

di

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

>

· sgn

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)


− e>uH2eu − e>uHu̇01

]
≤ −

N∑
i=1

di

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣
− e>uH2eu + w‖Heu‖1

by the fact that K[f ] = {f} if f is continuous. Invoking
Lemma 2, we obtain that ˙̄V1 ∈ L ˙̄V1. Then, the derivative of
V1 is given by

V̇1 = ˙̄V1 + ˙̃V1 = ˙̄V1 +
N∑
i=1

(di − β)ḋi
τi

≤ −
N∑
i=1

di

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣

+
N∑
i=1

(di − β)

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣
− e>uH2eu + w‖Heu‖1

= −e>uH2eu − (β − w)‖Heu‖1.

It is noted that e>uH
2eu ≥ 0. This, in addition to the fact that

there always exists a β such that β ≥ w, ensures V̇1 ≤ 0. As
a result, V1(eu) is nonincreasing, which implies that eu and
di are bounded. From (5b), it follows that di is monotonically
increasing, indicating that di should converge to some finite
value. In the meantime, since V1(eu) is nonincreasing and
lower-bounded by zero, it approaches a finite limit. Defining
s(t) =

∫ t
0
e>u (τ)H2eu(τ)dτ , we have s(t) ≤ V1(0) − V1(t)

by integrating V̇1(eu) ≤ −e>uH2eu. Hence, limt→∞ s(t)
exists and is finite. Due to the boundedness of eu and ėu, s̈
is also bounded. This implies that ṡ is uniformly continuous.
By Barbalat’s Lemma [19], limt→∞ ṡ(t) = 0, indicating that
limt→∞ eu = 0. Therefore, we conclude that (9) holds. •

Now, consider the observer for the estimation of f0. Define
e0f,i = f̂0,i − f0, which is follower i’s estimation error for
f0. Using (6), the closed-loop dynamics of e0f,i is given by

ė0f,i = −bie0f,i −
∑
j∈Ni

aij(f̂0,i − f̂0,j)− ḟ0.

Then, defining e0f =
[
e0f,1 e0f,2 · · · e0f,N

]>
, we have

ė0f = −He0f − ḟ01. (10)

The following lemma suggests the upper boundedness of e0f
when given Assumption 2.

Lemma 4: If Assumption 2 holds, e0f satisfies

‖e0f (t)‖ ≤ ‖e0f (0)‖+
q0

λ(H)
, t > 0, (11)

lim
t→∞

‖e0f (t)‖ ≤ q0
λ(H)

. (12)

Proof: Consider the Lyapunov function candidate V2(e0f ) =
1
2e
>
0fe0f . Using (10), one can derive that

V̇2(e0f ) =− e>0fHe0f − e>0f ḟ01
≤ −λ(H)‖e0f‖2 + ‖e0f‖‖ḟ01‖
≤ −λ(H)‖e0f‖2 + q0‖e0f‖.

The above inequality can be rewritten as

V̇2 ≤ −2λ(H)V2 +
√

2q0
√
V2.

It then follows that√
V2(t) ≤

√
V2(0)e−λ(H)t +

√
2q0

2λ(H)

(
1− e−λ(H)t

)
≤
√
V2(0) +

√
2q0

2λ(H)
. (13)

Then, (11) can result from (13) because
√
V2 =

√
2
2 ‖e0f‖.

Meanwhile, for the first inequality in (13), taking the limits
of both sides as t→∞ would yield (12). •
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For the estimation of fi, define the error as ef,i = f̂i −
fi and further the vector ef =

[
ef,1 ef,2 . . . ef,N

]>
.

By (7), the dynamics of ef is given by

ėf = −lef − ḟ ,

where ḟ =
[
ḟ1 ḟ2 · · · ḟN

]>
. The next lemma shows

that the error ef is bounded under Assumption 2. Its proof
is similar to that of Lemma 4 and thus omitted here.

Lemma 5: If Assumption 2 holds, ef satisfies

‖ef (t)‖ ≤ ‖ef (0)‖+
q1
l
, t > 0

lim
t→∞

‖ef (t)‖ ≤ q1
l
.

The above results unveil the stability properties of the
observers. Now, we are in a good position to analyze the
stability of the entire system loop closed by the observer-
based tracking controller in (4). Define follower i’s position
tracking error as ei = xi − x0, and put together ei for i =

1, 2, . . . , N to form the vector e =
[
e1 e2 · · · eN

]>
.

Using (3) and (4), it can be derived that the dynamics of e
is governed by

ė = −kHe+ e0f + eu − ef . (14)

The following theorem concerns about the stability of e.
Theorem 1: Suppose that Assumptions 1 and 2 hold. The

system in (14) is stable and the tracking error e is bounded
as follows:

‖e(t)‖ ≤ ‖e(0)‖

+
‖e0f (0)‖+ ‖eu(0)‖+ ‖ef (0)‖+ q0

λ(H) + q1
l

kλ(H)
, (15)

lim
t→∞

‖e‖ ≤
q0
λ(H) + q1

l

kλ(H)
. (16)

Proof: Select the Lyapunov function candidate V3(e) =
1
2e
>e. Its time derivative can be expressed as

V̇3 = −ke>He+ e>e0f + e>eu − e>ef
≤ −kλ(H)‖e‖2 + ‖e‖ · ‖e0f‖+ ‖e‖ · ‖eu‖+ ‖e‖ · ‖ef‖,

where λ(H) > 0. Equivalently, one has

V̇3 ≤ −2kλ(H)V3 +
√

2(‖e0f‖+ ‖eu‖+ ‖ef‖)
√
V3.

Then,√
V3(t) ≤

√
V3(0)e−kλ(H)t

+

√
2(‖e0f (t)‖+ ‖eu(t)‖+ ‖ef (t)‖)

2kλ(H)
(1− e−kλ(H)t)

≤
√
V3(0) +

√
2(‖e0f (t)‖+ ‖eu(t)‖+ ‖ef (t)‖)

2kλ(H)
,

which would indicate (15)-(16). •
The following remarks summarize our discussion of the

proposed tracking control approach.
Remark 2: Theorem 1 shows that, with the proposed dis-

tributed observer-based controller, each follower would keep
tracking the leader as time goes by with bounded position
errors despite the disturbances. As such, we can say that the

Fig. 1: Communication topology of the MAS.

influence of the disturbances is effectively suppressed and
that tracking is achieved in a practically meaningful manner.
In addition, the size of the upper bounds in (15)-(16) can be
reduced if the observer gain l and control gain k are chosen
to be large. Furthermore, perfect or zero-error tracking can
be attained if the disturbances see their rates of change
gradually settles down to zero, i.e., limt→∞ ḟi(t) = 0, for
i = 0, 1, . . . , N . The proof can be developed following
similar lines as above and is omitted here. •

IV. NUMERICAL STUDY

This section presents an illustrative simulation example
to validate the proposed distributed control approach. The
example considers an MAS consisting of one leader and five
followers, which share a communication topology shown in
Figure 1. Vertex 0 is the leader, and vertices numbered from 1
to 5 are followers. The leader will only send information up-
dates to follower 1, which is its only neighbor. The followers
maintain bidirectional communication with their neighbors.
For the topology graph, the edge-based weights are set to be
unit for simplicity. Based on the communication topology,
the leader adjacency matrix is B = diag(1, 0, 0, 0, 0). By
the stability analysis in Lemmas 3, 5 and Theorem 1, we
choose positive parameters as τi = 1, l = 1 and k = 0.5,
respectively. Furthermore, the upper bounds of ef and e can
decrease if larger gains of l and k are selected.

The initial positions of the leader and followers are set
to be x(0) =

[
0 3 0 −2 1 −1

]>
. We assume that

the leader’s input and disturbance and the followers’ distur-
bances are given as

u0(t) = −2 cos(0.1πt), f0(t) = − cos(0.1πt),

f(t) =
[
0.1 0.2 0.3 0.4 0.5

]>
t.

Note that the disturbances enforced on the followers are
bounded in rates of change but linearly diverge through time.
This extreme setting is used to illustrate the effectiveness of
disturbance rejection here. Apply the observer-based control
approach in Section III to the MAS. The simulation results
are shown in Figure 2. Figure 2(a) presents the trajectories of
the leader and followers. It is observed that all the followers
keep tracking the leader with bounded position differences,
even though they suffer growing local disturbances and the
leader is also driven by an unknown disturbance. Let us
now look at the performance of the observers. First, one
can see from Figure 2(b) that the estimation of u0 by each
follower fast converges to the truth, agreeing with Lemma 3.
Then, it is observed from Figures 2(c) and 2(d) that the
observers for f0 and fi can track the changing disturbance
overall though there are some differences. However, the
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Fig. 2: MAS tracking control: (a) leader’s and followers’ state trajectory profiles; (b) leader’s input profile and the estimation
by each follower; (c) leader’s disturbance profile and the estimation by each follower; (d) followers’ disturbance profiles
and the estimation on their own.

differences or estimation errors are still bounded, matching
the expectation as suggested by Lemmas 4 and 5.

V. CONCLUSION

MASs have attracted significant research interest in the
past decade due to their increasing applications. In this
paper, we have studied leader-follower tracking for MASs
with unknown disturbances. Departing from the literature, we
considered a much less restrictive setting about disturbances.
Specifically, disturbances are applied to all the leader and
followers and assumed to be bounded just in rates of change.
This considerably relaxes the usual setting that only follow-
ers are affected by magnitude-bounded disturbances. To solve
this problem, we have developed observer-based tracking
control approach, which particularly included the design of
distributed disturbance observer for followers to estimate
the leader’s unknown disturbance. We have proved that the
proposed approach can enable bounded-error tracking in the
considered disturbance setting. A simulation result further
demonstrated the effectiveness of the proposed approach.
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