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Abstract— Battery parameter identification is emerging as
an important topic due to the increasing use of battery
energy storage. This paper studies parameter identification for
the nonlinear double-capacitor (NDC) model for lithium-ion
batteries, which is a new equivalent circuit model developed
in the authors’ previous work [1]. It is noticed that the NDC
model has a structure similar to the Wiener system. From this
Wiener perspective, this work builds a parameter identification
approach for this model upon the well-known maximum a
posteriori (MAP) estimation. The purpose of using MAP is to
overcome the nonconvexity and local minima that can cause
unphysical parameter estimates. A quasi-Newton-based method
is utilized to accomplish the involved optimization procedure
numerically. The proposed approach is the first one that we
aware of exploits MAP for Wiener system identification. It also
demonstrates significant effectiveness for accurate identification
of the NDC model as validated through experiments.

I. INTRODUCTION

Battery modeling and parameter identification are of foun-
dational importance for model-based battery management
to ensure the performance, safety and life of various bat-
tery systems. Despite a growing amount of research, many
new challenges continue to arise due to an ever-increasing
demand for better accuracy, efficiency and availability of
battery models. In this context, this paper contributes a study
of parameter identification for the nonlinear double-capacitor
(NDC) model, an equivalent circuit model for lithium-ion
batteries (LiBs) proposed in our previous work [1]. Our study
connects the Wiener system identification with the NDC
model as the latter demonstrates a Wiener-type structure.
We propose a parameter estimation approach that enhances
existing Wiener identification methods and proves to be
effective for the NDC model.

Literature Review. Battery parameter identification has at-
tracted considerable attention in recent years. The current li-
terature can be divided into two main categories, experiment-
based and data-based. The first category conducts experi-
ments of charging, discharging or electrochemical impedance
spectroscopy (EIS) and utilizes the experimental data to
directly determine a model’s parameters. It is pointed out
in [2–4] that the transient voltage responses under constant-
or pulse-current charging/discharging can expose the resis-
tance, capacitance and time constant parameters of the well-
known Thevenin’s model. The relationship between the state
of charge (SoC) and open-circuit voltage (OCV) greatly
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characterizes a battery’s dynamics. It can be experimentally
identified by charging or discharging a battery using a very
small current [5], or alternatively, using a current of normal
magnitude but intermittently (a sufficiently long rest period
is applied between two discharging operations) [6; 7]. The
EIS experiments have also been widely used to identify
a battery’s impedance properties [8–10]. While involving
basic data analysis, these methods generally put emphasis on
the design of experiments. By contrast, the second category
seeks to deeply understand the model-data relationship and
build sophisticated data-driven approaches to construct mo-
dels from data. It can beneficially enable provably correct
identification, even for complex models, in addition pro-
mising better use of data and convenient application. It is
proposed in [11] to identify the Thevenin’s model by solving
a set of linear and polynomial equations. Another popular
means is to formulate model-data fitting problems and solve
them using least squares, instrumental variables or other
optimization methods to estimate the parameters [12–18].
In [19; 20], a linear state-space model is formulated for batte-
ries, and subspace identification is then performed to infer the
system matrices. When more complex electrochemical mo-
dels are considered, the identification usually involves large-
size nonlinear nonconvex optimization problems. In this case,
particle swarm optimization and genetic algorithms are often
leveraged to search for the best parameter estimates [21–24].
Another topic of interest is optimal input design to maximize
the parameter identifiability [25; 26].

Compared with the above studies, the NDC model presents
a different yet intriguing challenge—it has a Wiener-type
structure featuring a linear dynamic subsystem in cascade
with a static nonlinear subsystem. Although our work in [1]
provides a parameter estimation scheme, it is limited to
only constant charging or discharging protocols. None of
the existing methods is applicable here since they are desig-
ned for non-Wiener-type models. We are thus motivated to
custom-develop an approach with an awareness of the NDC
model’s Wiener-like structure. Wiener system identification
is an important subject in the area of system identification,
which has seen a few methods proposed in the literature [27].
Among them, one of the most promising is based on the
maximum likelihood (ML) estimation [28; 29]. However, the
optimization procedure resulting from the ML formulation
often suffers the issue of local minima, fundamentally bla-
med on the nonlinearity involved in the NDC model. If not
addressed, this problem can easily lead to parameter estima-
tes physically meaningless and useless when one applies the
ML method to identifying the NDC model.



Statement of Contributions. Focused on the NDC model
identification, this work offers three contributions. First, we
propose to enable Wiener system identification based on
maximum a posteriori (MAP) estimation. Compared to ML,
MAP incorporates into the estimation design a prior distribu-
tion of the unknown parameters, which represents additional
information or prior knowledge and can help drive the
parameter search toward a physically reasonable parameter
space. Second, based on the above notion, we systematically
develop an MAP-based parameter identification approach for
the NDC model. The proposed approach can estimate all the
model parameters in just one shot and allows for almost
arbitrary current profiles. Finally, we evaluate the approach
using experiments, well validating its efficacy.

Organization. The rest of the paper is organized as fol-
lows. Section II reveals the Wiener-type structure underlying
the NDC model. Inspired by Wiener system identification,
Section III develops a new MAP-based parameter estimation
approach to identify the NDC model. Section IV offers
experimental validation to assess the proposed approach.
Finally, some concluding remarks are gathered in Section V.

II. THE NDC MODEL

This section introduces the NDC model and further unveils
its inherent Wiener-type architecture.

The NDC model is schematically shown in Figure 1.
It is an extension of a linear double-capacitor model to
account for a battery’s nonlinear phenomena [1]. Its first
main part is two R-C circuits, i.e., Cb-Rb and Cs-Rs, which
are configured in parallel. They are designed to imitate a
battery’s electrode. Specifically, Cb-Rb is analogous to the
electrode’s bulk inner part, and Cs-Rs corresponds to the
surface region. The charge is stored in and migrates between
Cb and Cs. This hence implies Cb � Cs and Rb � Rs. The
second part consists of a voltage source U and an internal
resistance R0. Here, U is an analog to the OCV and based on
a nonlinear mapping of Vs, i.e., U = h(Vs). In addition, R0

is included to mimic the electrolyte resistance. It is shown
in [1] that this model provides excellent predictive capability
for a battery’s voltage behavior.

The dynamics of the NDC model can be characterized by
the following state-space model:

[
V̇b(t)

V̇s(t)

]
= A

[
Vb(t)
Vs(t)

]
+BI(t),

V (t) = h(Vs(t)) +R0I(t),

(1a)

(1b)

where Vb and Vs are the voltages across Cb and Cs, re-
spectively, I the current applied for charging (I > 0) or
discharging (I < 0), V the terminal voltage, and

A =

[
− 1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
1

Cs(Rb+Rs) − 1
Cs(Rb+Rs)

]
, B =

[
Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

]
.

Besides, we parameterize h(Vs) as a fifth-order polynomial:

h(Vs) = β0 + β1Vs + β2V
2
s + β3V

3
s + β4V

4
s + β5V

5
s ,

where βi for i = 0, 1, . . . , 5 are coefficients. Note that Vb
and Vs should be set to belong to an interval [V s, V s], and
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Fig. 1: Diagram of a nonlinear double-capacitor model.

for simplicity we let V s = 0 V and V s = 1 V. Then, Cb +
Cs corresponds to a battery’s full capacity, Vb = Vs = 1
V for full charge (SoC = 100%), and Vb = Vs = 0 V
for full depletion (SoC = 0%). In this work, we consider
full discharging experiments to identify the model. That is,
the initial V is V that corresponds to the voltage at full
charge, and the discharging ends when V hits the cut-off
threshold V . Then, we can obtain β0 = V and

∑5
i=0 βi =

V . Furthermore, it can also be easily derived that OCV =
h(SoC) holds [1]. Looking further at the NDC model, we
can see that it has a structure akin to a Wiener system—the
parallel R-C circuits constitute a linear dynamic subsystem,
and cascaded with it is a static nonlinear mapping. Next, we
convert (1) to a discrete-time Wiener-type formulation.

Applying zero-order-hold discretization to (1a) and deri-
ving the transfer-function form, we have

Vs(t) = G1(q)I(t) +G2(q)Vs(0), (2)

where
G1(q) =

α1q
−1 + α2q

−2

1− (1 + α3)q−1 + α3q−2
,

G2(q) =
1

1− q−1
,

with
α1 =

A21B11 +A12B21

A12 +A21
∆t

− A21B11 −A21B21

(A12 +A21)2
(1− α3) ,

α2 = −A21B11 +A12B21

A12 +A21
α3∆t

+
A21B11 −A21B21

(A12 +A21)2
(1− α3) ,

α3 = e−(A12+A21)∆t.

Here, q−1 is the backshift operator, i.e., q−1s(t) = s(t− 1)
for a signal s(t), and ∆t the sampling period. It should be
noted that only three parameters, αi for i = 1, 2, 3 appear
in (2), though (1a) involves four physical parameters, Cb, Cs,
Rb and Rs. Hence, there is a redundancy for the physical
parameters, which implies unidentifiability. To fix this issue,
we let Rs = 0 following [12], because of the relatively less
important role of Rs. Then, one can find out that

α1 = ᾰ1 + ᾰ2,

α2 = −ᾰ1ᾰ3 − ᾰ2,

α3 = ᾰ3,
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Fig. 2: The Wiener-type structure of the NDC model.

with

ᾰ1 =
∆t

Cb + Cs
, ᾰ2 =

RbC
2
b (1− ᾰ3)

(Cb + Cs)2
, ᾰ3 = e

− Cb+Cs
CbCsRb

∆t
.

If ᾰi for i = 1, 2, 3 are determined, we can easily reconstruct
αi for i = 1, 2, 3 as well as Cb, Cs and Rb as follows:

Cb =
∆t

ᾰ1
− Cs,

Cs =
ᾰ1(1− ᾰ3)∆t

ᾰ1(ᾰ1 − ᾰ1ᾰ3 − ᾰ2logᾰ3)
,

Rb = − (∆t)
2

CbCsᾰ1logᾰ3
.

Finally, it is obvious that V is governed by

V (t) = h [G1(q)I(t) +G2(q)Vs(0)] +R0I(t). (3)

With the above formulation, we have the block-oriented
Wiener-type structure of the NDC model as depicted in
Figure 2, in which the linear dynamic model G1(q) and
the nonlinear function h(Vs) are interconnected sequentially.
Given this Wiener-type model, we wish to estimate all of its
parameters simultaneously, including ᾰi for i = 1, 2, 3, βi
for i = 1, 2, . . . , 4 and R0, from the I-V data.

III. PARAMETER IDENTIFICATION

We address the NDC parameter identification from the
Wiener perspective in this section. We build the solution on
Bayesian MAP estimation.

Before proceeding further, we pose the following model
based on (3):

y(t) = V (θ;u(t)) + v(t), (4)

where u is the input current I , y the measured voltage, v
the measurement noise added to V and assumed to follow a
Gaussian distribution N (0, σ), and

θ =
[
ᾰ1 ᾰ2 ᾰ3 β1 β2 β3 β4 R0

]>
,

V (θ;u(t)) = h [G1(q, θ)u(t) +G2(q)Vs(0), θ] + θ8u(t).

The input (current) and output (voltage) datasets are denoted
as

u =
[
u(t1) u(t2) · · · u(tN )

]> ∈ RN×1,

y =
[
y(t1) y(t2) · · · y(tN )

]> ∈ RN×1,

where N is the total number of sample instants. A combi-
nation of them is expressed as

Z =
[
u y

]
.

An ML-based approach is developed in [28] to deal with
Wiener system identification. If applied to (4), it leads to
consideration of the following problem:

θ̂ = arg max
θ

p(Z|θ).

Following this line, one can derive a likelihood cost function
and find out the parameter estimates to minimize it. However,
this method can be vulnerable to the risk of getting stuck at
local minima because of the nonconvexity issue resulting
from the static nonlinear function h(·). This can cause
unphysical estimates. While carefully selecting an initial
guess is suggested as a means to alleviate this problem [30],
it may still not be adequate.

To overcome this problem, we propose to perform MAP
estimation as it incorporates some prior knowledge to help
drive the parameter search toward a reasonable minimum
point. Specifically, we consider maximizing the a posteriori
probability distribution of θ conditioned on Z:

θ̂ = arg max
θ

p(θ|Z). (5)

Using the Bayes’ theorem, we have

p(θ|Z) =
p(Z|θ) · p(θ)

p(Z)
∝ p(Z|θ) · p(θ).

In above, p(θ) quantifies the prior information available
about θ. A general way is to characterize it as a Gaussian
random vector following the distribution p(θ) ∼ N (m,P ).
Based on (4), p(y|θ) ∼ N (V (θ;u),Q), where Q = σI
and

V (θ;u) =
[
V (θ;u(t1)) · · · V (θ;u(tN ))

]>
.



It then follows that
p(Z|θ) · p(θ)

∝ exp

(
− 1

2
[y − V (θ;u)]

>
Q−1 [y − V (θ;u)]

)
· exp

(
−1

2
(θ −m)

>
P−1 (θ −m)

)
.

Considering the log-likelihood, the problem formulated in (5)
can be expressed as

θ̂ = arg min
θ
J(θ), (6)

where

J(θ) =
1

2
[y − V (θ;u)]

>
Q−1 [y − V (θ;u)]

+
1

2
(θ −m)

>
P−1 (θ −m) .

One must resort to numerical optimization to solve (6). Here,
we exploit a quasi-Newton method [31] and introduce it
briefly in the following for the sake of completeness. This
method is premised on iteratively updating the parameter
estimate, i.e.,

θk+1 = θk + λksk.

Here, λ denotes the step size, and sk the gradient-based
search direction given by

sk = −Bkgk,

where Bk ∈ R8×8 is a positive definite matrix that approx-
imates the Hessian matrix ∇2J (θk), and gk = ∇J (θk) ∈
R8×1. The update of Bk takes such a strategy

Bk =

(
I − δkγ

>
k

δ>k γk

)
Bk−1

(
I − γkδ

>
k

δ>k γk

)
+
δkδ
>
k

δ>k γk
, (7)

with δk = θk−θk−1 and γk = gk−gk−1, which is known as
BFGS update strategy [32]. In addition, gk can be obtained
as

gk = −∂V (θk;u)
>

∂θk
Q−1 [y − V (θk;u)]

+ P−1 (θk −m) ,

where each column of ∂V (θ;u)
∂θ ∈ RN×8 is given by

∂V (θ;u)

∂θ1
= Σ ◦ q−1 − θ3q

−2

1− (1 + θ3)q−1 + θ3q−2
u,

∂V (θ;u)

∂θ2
= Σ ◦ q−1 − q−2

1− (1 + θ3)q−1 + θ3q−2
u,

∂V (θ;u)

∂θ3
= Σ ◦ θ2q

−2 − 2θ2q
−3 + θ2q

−4

(1− (1 + θ3)q−1 + θ3q−2)
2u,

∂V (θ;u)

∂θi
= x◦(i−3) − x◦5 for i = 4, . . . , 7,

∂V (θ;u)

∂θ8
= u,

with
x = G1(q, θ)u+G2(q)Vs(0)1,

Σ =
7∑

i=4

(i− 3)θix
◦(i−4) + 5

(
V − V −

7∑
i=4

θi

)
x◦4.

TABLE I: A quasi-Newton method for MAP estimation.

Given initial iterate θ0 and convergence tolerance ε
repeat

Compute the gradient vector gk
if k = 0 then

Compute B0 = 0.001 1
‖g0‖I

else
Compute Bk based on (7)

end if
Set search direction sk = −Bkgk
Find step length λk satisfying the Wolfe conditi-
ons (8), where c1 = 10−6 and c2 = 0.9
Set new iterate θk+1 = θk + λksk

until J(θk) converges
return θ̂ = θk

Here, x ◦u denotes the Hadamard product of x and u, x◦2

denotes the Hadamard power with x◦2 = x ◦ x, and 1 ∈
RN×1 denotes a column vector with each element equal to
one. Finally, note that λk needs to be chosen carefully to
make J(θ) decrease monotonically. We can use the Wolfe
conditions and let λk be selected such that

J (θk + λksk) ≤ J (θk) + c1λkg
>
k sk,

∇J (θk + λksk)
>
sk ≥ c2∇J (θk)

>
sk,

(8a)

(8b)

with 0 < c1 < c2 < 1. In practice, c1 is set to be quite
small, e.g., c1 = 10−6, and c2 is typically set to be 0.9 for
the quasi-Newton method. As for selecting λk satisfying (8),
a simple implementation is to start it with a small value, say
λk = 1. If the Wolfe conditions are not met, reduce it and
check again. For more information about λk selection, the
interested reader can refer to [32]. Summarizing the above,
we outline the computational algorithm in Table I.

Remark 1: The proposed approach requires some prior
knowledge of the parameters to be available. One can de-
velop such a prior knowledge in several ways in practice.
First, R0 can be roughly estimated using the voltage drop
at the beginning of the discharge, to which it is a main
contributor. Second, one can derive a rough range for Cb+Cs

if a battery’s capacity is approximately known. Finally, as
the parameters of batteries of the same kind and brand are
usually close, one can use the parameter estimates obtained
from one battery as prior knowledge for another.

IV. EXPERIMENTAL VALIDATION

This section evaluates the effectiveness of the identifica-
tion approach in the real-world application.

Our experiments were conducted on a PEC R© SBT4050
battery tester. Using this facility, charging/discharging tests
were performed on a Panasonic NCR18650B Li-ion battery
cell, which has a rated capacity of 3 Ah. In one test, the
battery was discharged from full capacity by a variable
current profile, which is based on the Urban Dynamometer
Driving Schedule (UDDS) [33] and adjusted to fall between
0 A and 3 A, see Figure 3(a). The obtained voltage profile
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Fig. 3: Parameter identification using experimental current/voltage data.

TABLE II: Parameter identification results from experimental current/voltage data.

Name ᾰ1 ᾰ2 ᾰ3 β1 β2 β3 β4 R0

θguess 9.0777× 10−5 8.9135× 10−4 0.9640 1 1 1 1 0.08
m 9.0777× 10−5 8.9135× 10−4 0.9640 - - - - 0.08

diag(P ) (0.01×m1)2 (0.15×m2)2 (0.15×m3)2 - - - - (0.15×m8)2

θ̂ 9.3973× 10−5 9.5673× 10−4 0.9811 2.793 -10.993 25.92 -27.43 0.0712

is shown in Figure 3(b) (see the red curve). The sampling
time interval ∆t was 1 s, the cut-off voltage V and V was
3.2 V and 4.16 V, respectively. We applied the proposed
approach to the collected current/voltage data to identify
the parameters. The measurement noise is assumed to be
white Gaussian with covariance σ = 10−2. The initial guess,
selected m and P , is summarized in Table II. Note that since
ᾰ1 is inversely proportional to Cb +Cs that can be accessed
from the battery’s full capacity, the initial guess of ᾰ1 can be
very accurate and thus assigned with high confidence, i.e.,
the corresponding element in P is set to be (0.01×m1)

2.
With the above setting, parameter estimates are obtained and
summarized in Table II. Further, estimates of Cb, Cs and Rb

are also calculated, which turns out to be Cb = 9, 697 F,
Cs = 943.5 F, and Rb = 0.06 Ω. The voltage prediction
is made using the parameter estimates and compared against
the measured voltage in Figure 3(b). One can observe an
excellent agreement between them. In addition, it will be
interesting to compare the estimated SoC-OCV curve with
the true one of the battery. As aforementioned, OCV =
h(SoC) for the NDC model. It is identified here as

OCV = 3.2 + 2.793 · SoC− 10.993 · SoC2 + 25.92 · SoC3

− 27.43 · SoC4 + 10.67 · SoC5.

Figure 4 compares it with the SoC-OCV curve obtained
experimentally by discharging the battery from full capacity
to a cut-off voltage 3.2 V using a small current of 0.1 A.
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Fig. 4: Comparison between measured and predicted OCV.

It is seen that the identified SoC-OCV curve is very close
to the actual one. All the results above show the parameter
estimates are reasonable and that the identification method
introduced in Section III is effective.

V. CONCLUSION

This paper deals with parameter identification for the NDC
model proposed in our previous work. The NDC model is
structurally similar to a Wiener system as it consists of a
linear dynamic subsystem and a nonlinear static subsystem
in cascade. Known as a challenging problem, Wiener system



identification can often easily fall victim to nonconvexity and
local minima due to the model’s nonlinearity. To address
this issue, we proposed to use MAP estimation so as to
incorporate some prior knowledge about the unknown para-
meters into the design of parameter estimation. Based on this
idea, we developed a parameter estimation approach for the
NDC model. We validated the approach through experiments,
consistently observing its effectiveness in producing accu-
rate estimation. The proposed approach can advantageously
estimate all the model parameters in one shot, imposes no
restrictions on the current profiles, and is more capable of
ensuring physically reasonable estimates to be obtained. The
notion of MAP-based Wiener system identification can also
find prospective use in many other applications.
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