
Real-Time Optimal Charging for Lithium-Ion
Batteries via Explicit Model Predictive Control

Ning Tian
University of Kansas

Lawrence, KS 66045, USA
Email: ning.tian@ku.edu

Huazhen Fang
University of Kansas

Lawrence, KS 66045, USA
Email: fang@ku.edu

Yebin Wang
Mitsubishi Electric Research Laboratories

Cambridge, MA 02139, USA
Email: yebinwang@ieee.org

Abstract—The rapidly growing use of lithium-ion batteries
across various industries highlights the pressing issue of opti-
mal charging control. The literature increasingly adopts model
predictive control (MPC) to perform charging control, taking
advantage of its capability of performing optimization under
constraints. However, the computationally complex online con-
strained optimization involved in MPC often hinders real-time
implementation. This paper is thus motivated to develop a new
charging control algorithm based on explicit MPC (eMPC).
Leveraging the merits of eMPC, the new algorithm can shift
the constrained optimization to offline by precomputing explicit
solutions to an optimal charging control problem and expressing
the control law as piecewise functions. This drastically reduces
not only the online computational costs in the control run but also
the difficulty to code the algorithm. Numerical simulation results
verify the utility of the proposed charging control algorithm,
which can potentially meet the needs for real-time battery
management running on embedded hardware.

I. INTRODUCTION

Finding the best way to charge lithium-ion batteries (LiBs)
has attracted sustained attention in the past two decades.
Currently, the most popular industrial practice is the so-called
constant-current-constant-voltage (CC/CV) charging [1]. It ap-
plies a constant current to charge a LiB cell until it reaches
a threshold voltage and then enforces a constant voltage to
charge the cell at a gradually diminishing current. Another
often endorsed practice is pulse charging that feeds energy
into a battery using current pulses [2]. These methods, howe-
ver, usually involve some heuristic determination of charging
parameters, which hence has motivated researchers to develop
optimal charging protocols by combining physics-based LiB
models and optimization to meet certain objectives concerning
LiB health and/or charging time. Model predictive control
(MPC), a constrained optimal control strategy, holds consi-
derable promise here for two reasons. First, it can handle hard
state and input constraints. This gives a leverage to guarantee
satisfaction of health- or safety-related constraints necessary
for LiB operation. Second, it can optimize different kinds
of objective functions to meet different charging needs or
considerations. As another benefit, its formulation well admits
nonlinear systems, thus bearing applicability to different types
of nonlinear LiB models.

A lead is taken in [3] with the development of minimum-
time charging control by applying nonlinear MPC to a 1-D
electrochemical model of LiBs. However, a barrier in the way

of MPC-based charging is the high computational complexity
that results from the numerical constrained optimization pro-
cedure. This can be more serious in the context of nonlinear
electrochemical models. Significant research hence has been
devoted to computationally efficient MPC charging control
design. The study in [4], [5] considers nonlinear MPC for
single particle model and exploits the differential flatness of
Fick’s law of diffusion to reduce computational load. Besides,
model reduction is often used to simplify an electrochemical
model and make it amenable for the design of efficient
MPC. For example, the approach in [6] linearizes a nonlinear
electrochemical model successively along a reference SoC
trajectory. Other examples, e.g., [7] develops input-output
approximations of a pseudo 2-D (P2D) model such as step
response models and autoregressive exogenous models, so that
application of MPC to them causes less computation.

Equivalent circuit models (ECMs) represent another appe-
aling choice for MPC-based charging control due to much
less computation required. An early study is in [8], which
yet adopts a genetic algorithm as the optimizer despite its
costly computation. There is a consensus today that it is
still a critical need to design fast MPC for ECMs for the
sake of practical implementation. To this end, the literature
derives either simpler models or computationally frugal control
frameworks. The method in [9] proposes to identify a time-
series model recursively as an input-output approximation of
the Thevenin model and takes advantage of its simplicity
to achieve efficient generalized predictive control. Optimal
charging based on the Thevenin model is formulated as a
standard linear MPC problem in [10] that eases computation.
Similarly, a linear-time-varying MPC method is proposed
in [11]. A hierarchical MPC design in [12] features the
generation of reference current profiles at a slow time scale
and the reference tracking at a faster time scale, which lowers
the cost of computation.

The above survey highlights the main advances in the
development of computationally efficient MPC charging con-
trol. However, the existing methods still demand a relatively
large amount of online computation as required by solving a
constrained optimization problem, which is rarely available
for the hardware on which a battery management system
runs. A central challenge then lies in how to offload the
primary part of the computational effort offline and run a
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Figure 1: The nonlinear double-capacitor model.

lean controller online. The explicit MPC (eMPC) strategy,
pioneered in [13]–[15], is set to address this challenge. It
pre-computes the control law offline by deriving explicit
solutions to an MPC problem. The control law is composed of
piecewise affine functions of the system’s current state, which
can be run online through only straightforward arithmetic
operations. The advantages of eMPC are remarkable. First, it
can achieve MPC functionality with microsecond-millisecond
online computational efficiency. Second, it is easy to code and
executable on cheap embedded control hardware. Therefore,
eMPC can hopefully provide a solution to bridge the gaps in
computation and execution facing the current breed of MPC
charging methods.

The contribution of this paper is twofold. 1) This work
presents the first study of eMPC-based real-time optimal
charging control. It considers the nonlinear double-capacitor
(NDC) model [16] and formulates a general nonlinear MPC
charging problem, which is then simplified as a combination of
approximate linear MPC problems by piecewise linear approx-
imation. On such a basis, synthesis of eMPC-based control
is performed to build an optimal charging control algorithm,
which constructs on a set of piecewise affine functions over a
parameter space. 2) The proposed charging control algorithm
is validated through simulation.

The paper is organized as follows. Section II introduces
the NDC model along with the charging-related constraints.
Section III contains the statement of an MPC-based health-
aware charging control problem, the piecewise linearization
of the model, and the formulation of eMPC-based charging
control. Section IV evaluates the proposed charging control
law using simulation. Finally, Section V gathers concluding
remarks and discussions of future research.

II. THE NDC MODEL FOR LIBS

This section describes the NDC model for LiBs and the
constraints to be enforced during charging.

A. Model Description

Developed in [16], the NDC model is shown in Figure 1,
which includes two main parts. The first part (left) includes
two capacitors in parallel, Cb and Cs, each serially connected
with a resistor, Rb and Rs, respectively. The two capacitors
play the role of an electrode, providing storage for electric
charge. The parallel connection between them allows the
distribution and migration of charge within the electrode to
be simulated. To be specific, the Rs-Cs circuit conceptually

corresponds to the electrode’s surface region; the Rb-Cb cir-
cuit represents the electrode’s bulk inner part analogously. It
generally holds that Cb � Cs and that Rb � Rs. The second
part (right) has a voltage source U = h(Vs), where Vs is
the voltage across Cs. Hence, U is similar to an open-circuit
voltage but depends on Vs rather than SoC in a conventional
sense. It also contains R0, which is the internal resistance. The
NDC model can well capture a LiB’s electrical behavior, as is
shown in [16], with its construction and justification detailed
therein.

The NDC model’s dynamics is governed by the following
state-space equations:

[
V̇b(t)

V̇s(t)

]
= A

[
Vb(t)
Vs(t)

]
+BI(t),

V (t) = h(Vs(t)) +R0I(t),

(1a)

(1b)

where Vb is the voltage across Cb, I is the applied current
with I > 0 for charging and I < 0 for discharging, and

A =

[
− 1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

1
Cs(Rb+Rs)

− 1
Cs(Rb+Rs)

]
, B =

[
Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

]
.

Here, h(Vs) can be parameterized as a fifth-order polynomial:

h(Vs) =
5∑
i=0

αiV
i
s ,

where αi for i = 0, 1, . . . , 5 are coefficients. Note that Vb and
Vs should be limited to a range. For both, the lower bound
of the range is set to be Vs,min = 0 V, and the upper bound
Vs,max = 1 V for simplicity. In other words, Vb = Vs = 0 V
when the LiB is fully depleted (SoC = 0%), and Vb = Vs = 1
V when it is fully charged (SoC = 100%). Furthermore, the
following shows the relation between SoC and Vb and Vs:

SoC =
CbVb + CsVs
Cb + Cs

× 100%,

where Cb + Cs is equal to to a battery’s total capacity, and
CbVb + CsVs the available capacity.

B. Constraints

To ensure health-conscious and safe charging, some con-
straints must be imposed during a charging process. First, SoC
must lie between 0% and 100% to avoid overcharging, i.e.,

0 ≤ SoC ≤ 1. (2)

The charging current and terminal voltage must also be subject
to limitations to circumvent safety issues, implying

Imin ≤ I ≤ Imax,

Vmin ≤ V ≤ Vmax.

(3)
(4)

In addition, Vb and Vs should be bounded as aforementioned.
Given that Vs ≥ Vb always holds during charging if the LiB
is at equilibrium initially, one only needs to limit Vs by

0 ≤ Vs ≤ 1. (5)



The final constraint to add concerns Vs − Vb. It is seen that
Vs − Vb drives the migration of charge from Cs to Cb during
charging. The study in [16] points out that this variable is com-
parable to the lithium-ion concentration gradients within an
electrode. The gradients are a cause for internal stress buildup,
heating, formation of solid-electrolyte interphase film, and
polarization, which eventually will degrade the capacity, cycle
life and thermal stability of LiBs [17]–[19]. As such, too steep
gradients should be circumvented during charging, implying a
necessity for restricting Vs−Vb. Besides, the restriction should
be increasingly stricter as SoC grows. Therefore, the constraint
on Vs−Vb is designed as an affine decreasing function of SoC:

Vs − Vb ≤ β1SoC + β2,

where β1 and β2 are two coefficients. It can be rewritten as

η ≤ β2, (6)

where

η = −Cb + β1Cb + Cs
Cb + Cs

Vb +
Cb + Cs − β1Cs

Cb + Cs
Vs.

III. HEALTH-AWARE BATTERY CHARGING VIA EXPLICIT
MODEL PREDICTIVE CONTROL

This section states an MPC-based charging control problem
and then develops an eMPC-based charging control law.

A. Health-Aware Charging Problem Formulation

To proceed, let us define

x =
[
Vb Vs I

]>
,

y =
[
SoC Vs I V η

]>
.

Considering x as a state vector and y as an output vector, one
can derive from (1) an extended model as follows{

xk+1 = Axk + Buk,
yk = g(xk),

(7a)
(7b)

where uk = Ik+1 − Ik,

A =

[
Ã B̃
0 1

]
, B =

[
0
1

]
,

and g(·) represents the nonlinear mapping from x to y. In
above, Ã and B̃ are discrete counterparts of A and B. Besides,
the constraints in (2)-(6) can be put in a compact form:

ymin ≤ y ≤ ymax.

Thus, the health-aware charging problem can be formulated
as the following nonlinear MPC problem at time step k:

min
z

N−1∑
k=0

1

2
(SoCk − r̆)>Q(SoCk − r̆) +

1

2
∆u>k R∆uk,

s.t. (7), x0 = x̆, u−1 = ŭ,

uk = uk−1 + ∆uk, k = 0, . . . , N − 1,

∆uk = 0, k = Nu, . . . , N − 1,

ymin ≤ yk ≤ ymax, k = 0, . . . , Nc − 1,

(8)

where z =
[
∆u0 . . . ∆uNu−1

]>
is the future input se-

quence to be optimized, x̆ the model state vector at current
time instant, ŭ the control input applied in the previous
time interval, and r̆ the target SoC as reference, respectively.
Besides, N represents the prediction horizon, Nu the input
horizon, Nc the constraint horizon, Q = Q> ≥ 0 and
R = R> > 0. The problem (8) can be solved using nonlinear
programming at each time step. When the optimal solution z∗

is found, i.e.,

z∗ =
[
∆u∗0 . . . ∆u∗Nu−1

]>
, (9)

the charging current then is given by its first element ∆u∗0 as

I1 = ∆u∗0 + ŭ+
[
0 0 1

]
x̆. (10)

After this, the entire optimization problem is resolved at the
next time step with a new starting point.

The problem statement in (8) gives a complete description
of MPC-based charging control based on the NDC model.
However, a relatively large deal of online computation is
needed to address the nonlinear programming at each time
step, let alone a need for a powerful computing workhorse
for the execution of complex code. This would limit its
applicability to embedded charging control. Hence, it is our
aim to address (8) via eMPC for easy online computation.

As eMPC is designed for linear systems, one must first
linearize the model in (8). Here, the linearization is concerned
only with the nonlinear mapping h(Vs). Note that a single
linear function is not accurate enough to approximate it, which
motivates us to adopt multi-segment linear approximation to
enhance the accuracy of approximation.

Proceeding to show this idea, consider linearizing h(Vs)
around a general fixed operating point, V op

s , as a first step:

h(Vs) ≈ γ1Vs + γ2, (11)

where

γ1 =
∂h(Vs)

∂Vs

∣∣∣∣
Vs=V

op
s

, γ2 = h(V op
s )− γ1V op

s .

By (11), one can modify (7b) into a linear form as follows:

yk = Cxk +D, (12)

where

C =


Cb

Cb+Cs

Cs

Cb+Cs
0

0 1 0
0 0 1
0 γ1 R0

−Cb+β1Cb+Cs

Cb+Cs

Cb+Cs−β1Cs

Cb+Cs
0

 , D =


0
0
0
γ2
0

 .

Accordingly, the original nonlinear MPC problem (8) would



Table I: Battery model parameters.

Name Cb/F Cs/F Rb/Ω Rs/Ω R0/Ω α0 α1 α2 α3 α4 α5 β1 β2

Value 9,878 921.5 0.04 0 0.0823 3.2 3.4656 -13.4144 26.4186 -22.4962 7.0264 -0.05 0.125

Table II: Linearization setting.

No. Vs V op
s γ1 γ2 NCR

I [0.00, 0.50] 0.3 0.4050 3.4591 13
II [0.50, 0.70] 0.6 1.0168 3.1774 15
III [0.70, 0.90] 0.8 1.0441 3.1663 16
IV [0.90, 0.93] 0.92 0.9634 3.2347 15
V [0.93, 0.97] 0.96 0.9785 3.2204 15
VI [0.97, 1.00] 0.99 1.0192 3.1807 15

reduce to a linear one, which can be expressed as

min
z

N−1∑
k=0

1

2
(SoCk − r̆)>Q(SoCk − r̆) +

1

2
∆u>k R∆uk,

s.t. (7a), (12), x0 = x̆, u−1 = ŭ,

uk = uk−1 + ∆uk, k = 0, . . . , N − 1,

∆uk = 0, k = Nu, . . . , N − 1,

ymin ≤ yk ≤ ymax, k = 0, . . . , Nc − 1.

(13)

Next is to extend this procedure to multi-segment approxima-
tion. Specifically, one can select multiple linearization points,
denoting them as V op

s,i for i = 1, 2, · · · , Nop. The range of Vs
then is subdivided into Nop partitions. The same procedure as
in (11)-(13) can be repeated for each V op

s,i . Finally, a set of
linear MPC subproblems akin to (13) will be obtained.

B. Charging Control Based on eMPC

Consider the linear MPC charging control problem (13), and
define the following vector of parameters:

θ =
[
x̆> r̆> ŭ>

]> ∈ Rm.

In light of the linearity in (7a) and (12), (13) can be recast as
a convex quadratic program (QP) taking a standard form:

min
z

1

2
z>Σz + (Fθ)

>
z,

s.t. Gz ≤ Sθ +W,

(14a)

(14b)

where z ∈ Rn, Σ > 0 ∈ Rn×n and F ∈ Rn×m. The
QP problem (14) is also a multi-parametric QP (mpQP), as
the characterization of its solution fundamentally involves the
parameter vector θ. The solution can be described as a set-
valued function Z∗(θ) : Θ → 2R

n

, where Z∗(θ) is a set of
optimizer functions z∗(θ), Θ the set of feasible parameters,
and 2R

n

the set of subsets of Rn. It has been proven in [13]
that Θ can be partitioned into convex polyhedral regions,
also referred to as critical regions and denoted as CRi for
i = 1, 2, · · · , NCR. For critical region CRi, we have

z∗(θ) = Kiθ + gi, ∀θ ∈ CRi.

In other words, Z∗(θ) is piecewise affine and continuous over
Θ. As can be observed from (10), the charging control laws

Figure 2: Vb-Vs plane with I = 2 A, r̆ = 1, ŭ = 0 A.

are also piecewise affine functions of θ, i.e., the present model
state, the target SoC and the input in last time instant.

Putting together the above developments, the eMPC-based
charging control algorithm is summarized as follows:

• Offline mpQP computation
– Consider the first linear model
∗ Select a parameter θ0 and determine CR0

∗ Solve (14) to obtain z∗(θ) = K0θ + g0

∗ Partition the parameter space Θ outside CR0 and
determine z∗(θ) for a new critical region

∗ Repeat until all space in Θ has been explored
∗ Store in a table all (Ki, gi) for i = 1, 2, · · · , NCR

– Repeat the procedure for all the other linear models
• Online eMPC-controlled charging

– Determine the governing linear model at time k
– Search for CRj in (K, g) table such that θk ∈ CRj
– Determine z∗(θ) = Kjθk + gj and Ik+1 as in (10)
– Repeat the charging control procedure until the con-

dition for charging completion is satisfied

The above assumes state-feedback design. As in practice
internal states cannot be measured, output-feedback control is
more desired. To attain this end, one can just use a nonlinear
Kalman filter [20] or some other observer to perform real-time
state estimation. Then, the charging control setup is a closed
loop between a LiB, the Kalman filter and eMPC controller.
The design can also be applied to a more sophisticated NDC
model like an SoC-dependent R0 in [21] by linearization.

IV. VALIDATION RESULTS AND DISCUSSIONS

This section presents simulation results to validate the
proposed eMPC-based charging control algorithm. Given a
LiB cell governed by the NDC model with the parameters
shown in Table I, consider its optimal charging following the
problem formulation in (8). Suppose that the objective is to
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Figure 3: Simulation of charging control based on the proposed algorithm.

raise the SoC from 20% to 100%. The following constraints
are imposed to ensure health and safety:

Vs ≤ 1 V, 0 A ≤ I ≤ 3 A, V ≤ 4.2 V, η ≤ 0.125 V.

The weighting matrices are set to be Q = 1 and R = 0.1. The
sampling period is 1 s. The prediction horizon is N = 10, the
control horizon is Nu = 1, and the constraint horizon for η is
Nc = 2 and for other constraints Nc = 1.

The nonlinear MPC problem (8) is then broken down into
six linear MPC problems through multi-segment approxi-
mation. Table II summarizes the linearization points of Vs,
segment ranges, and coefficients of the linear approximation
of h(Vs). Each linear MPC problem is characterized in the
form of (13). One can then compute the explicit solution to
every problem by conveniently resorting to the MATLAB R©

MPC Toolbox [22], which leads to six eMPCs that combine
to make up the charging control algorithm. Note that the
eMPCs have different numbers of critical region partitions,
as they are based on different models and operating ranges.
The number of critical regions, NCR, for each component
eMPC is shown in Table II. To give the reader a flavor of
the control law, let us consider the second eMPC. It involves
15 critical regions. Figure 2 shows the critical region partitions
on the two-dimensional Vb-Vs plane when I = 2 A, r̆ = 1,
and ŭ = 0 A. For the right-bottom critical region (marked
in orange), the charging control law is piecewise affine as
follows:

Ik+1 =


−26.42
26.42
0.03

0
0


> 

Vb,k
Vs,k
Ik
r̆

uk−1

 ,

which is easy to code and implement. The control laws for
other critical regions are also piecewise affine and omitted
here due to limited space.

Running the simulation, the eMPC charging control algo-
rithm yields a current profile as shown in Figure 3(a). If
compared with the CC/CV charging, this design introduces
an intermediate stage, which is partially attributed to the
constraint regarding η. Figure 3(d) displays Vs − Vb during
charging, which never exceeds the pre-set limit (dashed line).
Further, Figure 3(e) shows the profiles of Vs and Vb, which
demonstrate a gradually slowing pace of growth to protect the
LiB. The above results indicate the amenability of the propo-
sed eMPC charging control algorithm to practical execution
and its promise for health-aware charging.

V. CONCLUSION

Charging control is essential for the health and safety of
LiBs. This paper exploited eMPC to enhance charging control
design, which inherits all the merits of MPC but enables highly
efficient computation. Our design started with formulating an
MPC charging control problem based on the NDC model.
As the model is nonlinear, multi-segment linearization was
developed to approximate the original MPC problem by a
combination of multiple linear MPC problems. The solutions
to the linear MPCs were computed offline and explicitly
expressed as piecewise affine functions, which made up an
eMPC charging control algorithm. Contrasting the previous
counterparts, the obtained charging control algorithm is tre-
mendously easy to code and fast to run online, potentially
applicable to embedded computing hardware. The simulation
results verified the efficacy of the proposed algorithm. Our
future work will include extensive experimental validation of



the charging algorithm.
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