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Abstract— This paper investigates high-order leader-follower
tracking by a multi-agent system (MAS) when only very
limited measurement information is available to an agent. We
specifically consider the setting where an agent, either leader or
follower, only has its first state measured. To address this chal-
lenge, we propose to use observers to reconstruct unmeasured
quantities and perform observer-based control. We develop a
series of novel observers that can allow a follower to estimate the
leader’s states, even when they cannot communicate with each
other, and all of its own unmeasured states. We rigorously prove
the convergence of these observers and the resultant distributed
tracking control. A simulation result further illustrates the
effectiveness of the proposed design.

I. INTRODUCTION

MAS-based cooperative autonomy is finding ever-
increasing application across a variety of sectors. This has
driven a surge of research interest on distributed cooperative
control for different MAS tasks, including consensus, leader-
follower tracking, synchronization, rendezvous, flocking, and
coverage control [1–8]. Most of the current literature in this
vibrant area considers agents governed by first- or second-
order models. Despite their utility, such low-order models
are inadequate for characterizing more complex agents that
demonstrate high-order dynamics. Moreover, it is known as a
non-trivial problem to extend a first- or second-order coope-
rative control design to high-order systems. Recent years
hence have witnessed a growing amount of work devoted
to control synthesis for high-order MAS cooperation [9].

In the literature, high-order leader-follower tracking is
emerging as the problem of great interest and importance.
It is in [10] that a basic form of this problem is introduced,
which assumes that the leader agent continually broadcasts
its state information to all the followers. A consensus-
based control algorithm is then developed to make the
followers achieve consensus with, i.e., track, the leader. The
study [11] considers a general setting where only a subset
of the followers can receive information from the leader,
proposing a leader-follower tracking control method. The
analysis shows that followers with small degrees must be
informed by the leader to ensure tracking convergence. High-
order nonlinear agents constitute a stronger challenge for
leader-follower tracking. A study of this problem is offered
in [12], which adaptively estimates the nonlinearity involved
in an agent’s dynamics using neural networks and offsets
it when applying control. In [13], a finite-time tracking
control approach is developed for a high-order nonlinear
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MAS subject to actuator saturation. The problem of finite-
time leader-follower higher-order tracking with mismatched
disturbances is studied in [14].

It is noted that the above studies about high-order MAS
tracking generally assume that a large amount of information
is available to a follower to make control decisions. For
example, a follower agent must know all of its own states,
all of the states of its neighbors, and if connected with the
leader, all of the leader’s states [10–13]. This assumption
is highly demanding from a real-world perspective, due to
the possible unavailability of relevant sensors and limited
communication capacity [11].

In an attempt to address this limitation, we propose this
work to investigate the tracking problem when only the first
state of the high-order leader and followers is measured.
Our contribution is the development of an observer-based
tracking control design. In this regard, we propose a set of
distributed observers, which, namely, allows a follower to
estimate the leader’s input, the leader’s states, and its own
states. The observers make up for the limited information
and combine with a tracking controller. We then prove the
convergence of tracking under the proposed controller. It
is worth pointing out that this work is related to several
studies about distributed tracking control based on state-
space models, e.g., [15–18]. In particular, state observers are
used in [15–17] to achieve output-feedback-based tracking.
These studies, however, require either that the leader is input-
free or that the followers have knowledge of the leader’s
input. By comparison, our work removes this restrictive
requirement through the novel distributed observer design.

The notation used throughout this paper is standard. The
n-dimensional Euclidean space is denoted as Rn. For a
vector, ‖ ·‖1 denotes the 1-norm. We denote 2-norm by ‖ ·‖.
We let 1 denote a column vector with all elements equal
to 1. The notation diag(. . .) and det(·) represent a block-
diagonal matrix and the determinant of a matrix, respectively.
The eigenvalues of a N × N matrix are λi(·) for i =
1, 2, . . . , N . The minimum and maximum eigenvalues of a
real, symmetric matrix are denoted as λ(·) and λ̄(·). Matrices
are assumed to be compatible for algebraic operations if their
dimensions are not explicitly stated.

We use a graph to describe the topological structure for
information exchange among the leader and followers. First,
consider a network composed of N independent followers.
The interaction topology is modeled as an undirected graph.
The follower graph is expressed as G = (V , E), where
V = {1, 2, · · · , N} is the node set and E ⊆ V × V is the
edge set that contains unordered pairs of nodes. A path is



a sequence of connected edges in a graph. The follower
graph is connected if there is a path between every pair
of vertices. The neighbor set of agent i is denoted as Ni,
which includes all the agents in communication with it. The
adjacency matrix A = [aij ] ∈ RN×N is defined as aii = 0
and aij > 0 if (i, j) ∈ E where i 6= j. For the Laplacian
matrix L = [lij ] ∈ RN×N , lij = −aij if i 6= j and
lii =

∑
k∈Ni

aik. The leader is numbered as node 0 and
can send information to its neighboring followers. Then, we
have a graph Ḡ , which consists of graph G, node 0 and edges
from it to its neighbors. The leader is globally reachable
in Ḡ if there is a path in graph Ḡ from every vertex i to
vertex 0. In order to express the graph Ḡ more precisely,
we denote the leader adjacency matrix associated with Ḡ
by B = diag(b1, . . . , bN ), where bi > 0 if the leader is a
neighbor of agent i and bi = 0 otherwise.

II. LEADER-FOLLOWER TRACKING

In this section, we first formulate the tracking problem
for an MAS with high-order dynamics and then propose an
observer-based tracking control strategy. Finally, we charac-
terize the convergence properties of the proposed strategy.

A. Problem Formulation

Consider an MAS composed of N + 1 agents, among
which agent 0 is the leader and and agents numbered from
1 to N are followers. The dynamics of an agent is lth-order
(l ≥ 3) and governed by{

ẋi,m = xi,m+1, m = 1, 2, . . . , l − 1,
ẋi,m = ui, m = l, i = 0, 1, . . . , N,

(1)

where xi,m ∈ R is the mth state of agent i, and ui the input.
The objective here is to design a distributed control law ui
such that follower i for i = 1, 2, . . . , N can convergently
track the leader with limt→∞ |xi,m(t) − x0,m(t)| = 0 for
m = 1, 2, . . . , l.

Here, we assume that only xi,1 can be measured for agent i
for i = 0, 1, . . . , N . That is, only the first state of an agent is
measured, regardless of whether it is the leader or a follower.
This setting limits the information available to the MAS,
which presents a significant challenge for the design of a
distributed tracking controller.

B. Proposed Algorithm

This section develops an observer-based control strategy
to enable effective tracking in the above setting. To begin
with, we consider the following controller structure for i:

ui =− k1

∑
j∈Ni

aij(xi,1 − xj,1) + bi(xi,1 − x0,1)


−

l∑
m=2

km(x̂i,m − x̂0,i,m) + û0,i, (2)

where km for m = 1, 2, . . . , l are gain parameters, x̂0,i,m and
û0,i are follower i’s estimates of the leader’s state x0,m and
input u0, respectively, and x̂i,m is follower’s estimate of its
own state xi,m. The motivation behind (2) is to drive follower

i toward its neighbors and the leader simultaneously, and
when all the followers do this, they can hopefully track the
leader in a collective manner. Next, we design the observers
to obtain the estimates needed in (2).

An input observer is first introduced to enable follower i
to estimate u0, which is given by

˙̂u0,i =−
∑
j∈Ni

aij(û0,i − û0,j)− bi(û0,i − u0)

− di · sgn

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

 ,
(3a)

ḋi =τi

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣ , (3b)

where di is an adaptive gain, and τi is a positive scalar.
Here, (3a) is meant to enable distributed and collective
estimation of u0 among the followers, and (3b) provides
a mechanism for adaptively tuning the gain di.

The next observer is designed to allow follower i to
estimate x0,m for m = 2, 3, . . . , l:

ż0,i,2 =− bic0,2z0,i,2 − b2i c20,2x0,1
− c0,2

∑
j∈Ni

aij(x̂0,i,2 − x̂0,j,2) + x̂0,i,3, (4a)

x̂0,i,2 =z0,i,2 + bic0,2x0,1, (4b)

ż0,i,m =− c0,mz0,i,m − c20,mx̂0,i,m−1 + x̂0,i,m+1, (4c)

x̂0,i,m =z0,i,m + c0,mx̂0,i,m−1, m = 3, 4, . . . , l − 1, (4d)

ż0,i,l =− c0,lz0,i,l − c20,lx̂0,i,l−1 + û0,i, (4e)

x̂0,i,l =z0,i,l + c0,lx̂0,i,l−1, (4f)

where z0,i,m and c0,m for m = 2, 3, . . . , l are this observer’s
internal states and gain parameters, respectively. The deve-
lopment of (4) is inspired by [19], in which a centralized
disturbance observer is designed for a single plant. Here,
we transform the original design and introduce the above
observer with a distributed, coupled structure suitable for
the considered MAS setting.

Finally, we propose a follower observer such that follower
i can estimate its own states xi,m for m = 2, 3, . . . , l:

żi,2 = −r2zi,2 − r22xi,1 + x̂i,3, (5a)
x̂i,2 = zi,2 + r2xi,1, (5b)

żi,m = −rmzi,m − r2mx̂i,m−1 + x̂i,m+1, (5c)
x̂i,m = zi,m + rmx̂i,m−1, m = 3, 4, . . . , l − 1, (5d)

żi,l = −rlzi,l − r2l x̂i,l−1 + ui, (5e)
x̂i,l = zi,l + rlx̂i,l−1, (5f)

where zi,m and ri,m for m = 2, 3, . . . , l are this observer’s
internal states and gain parameters.

Putting together (2)-(5), we can obtain a distributed
observer-based control algorithm for the considered problem
of high-order leader-follower tracking. Its convergence is
analyzed next.



C. Stability Analysis

This section characterizes the convergence property for
the algorithm proposed above. Before proceeding further, we
make the following assumption:

Assumption 1: The leader’s input u0 ∈ C1 with |u̇0| ≤
w <∞, where w is unknown.

This assumption can be well justified by the fact that
control actuations are usually smooth and subject to ramp-
down and ramp-up limits. For follower i’s estimation of the
leader’s input, we define the error as eu,i = û0,i − u0.
According to (3), its dynamics is

ėu,i = −bieu,i −
∑
j∈Ni

aij(eu,i − eu,j)

− di · sgn

∑
j∈Ni

aij(eu,i − eu,j) + bieu,i

− u̇0.
(6)

Considering all the followers, we further define eu =[
eu,1 eu,2 · · · eu,N

]>
. It follows from (6) that

ėu = −Heu −D · sgn(Heu)− u̇01, (7)

where H = B+L and D = diag{d1, . . . , dN}. It is seen that
the signum function term in (7) is discontinuous, Lebesgue
measurable and locally bounded. Therefore, (7) admits a
Filippov solution, which is governed by the differential
inclusion [20] as follows:

ėu ∈a.e. K [−Heu −D · sgn(Heu)− u̇01] . (8)

The following lemma unveils its convergence property.
Lemma 1: If Assumption 1 holds, the observer in (3) then

yields convergent estimation of u0, with limt→∞ eu = 0.
Proof: Let us consider a Lyapunov functional candi-

date, V1 = V̄1(eu) + Ṽ1, where

V̄1(eu) =
1

2
e>uHeu, Ṽ1 =

N∑
i=1

(di − β)2

2τi
,

with β ≥ w. The set-valued Lie derivative of V̄1(eu) along
with (8) is given by

L ˙̄V1 = K
[
−e>uH2eu − e>uHD · sgn(Heu)− e>uHu̇01

]
= K

[
−

N∑
i=1

di

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

>

· sgn

∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)


− e>uH2eu − e>uHu̇01

]
≤ −

N∑
i=1

di

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣
− e>uH2eu + w‖Heu‖1

where the fact that K[f ] = {f} if f is continuous is used.
Invoking [20], it is noted that ˙̄V1 exists and ˙̄V1 ∈ L ˙̄V1. Then,
the derivative of V1 is given by

V̇1 = ˙̄V1 + ˙̃V1 = ˙̄V1 +
N∑
i=1

(di − β)ḋi
τi

≤ −
N∑
i=1

di

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣
+

N∑
i=1

(di − β)

∣∣∣∣∣∣
∑
j∈Ni

aij(û0,i − û0,j) + bi(û0,i − u0)

∣∣∣∣∣∣
− e>uH2eu + w‖Heu‖1

= −e>uH2eu − (β − w)‖Heu‖1.

Note that H is positive definite [21]. This, together with β ≥
w, indicates V̇1 ≤ 0. Hence, V1(eu) is non-increasing, which
indicates that eu and di are bounded. It follows from (3b) that
di is monotonically increasing. This indicates that di should
converge to some finite value. In the meantime, V1(eu)
reaches a finite limit as it is decreasing and lower-bounded
by zero. If denoting s(t) =

∫ t

0
e>u (τ)H2eu(τ)dτ , we see that

s(t) ≤ V1(0) − V1(t) by integrating V̇1(eu) ≤ −e>uH2eu.
Hence, limt→∞ s(t) exists and is finite. Due to the bounded-
ness of eu and ėu, s̈ is also bounded. This implies that ṡ is
uniformly continuous. Then, limt→∞ ṡ(t) = 0 by Barbalat’s
Lemma [22]. It is then obtained that limt→∞ eu = 0.

Now, we investigate the convergence property for the
observer in (4), which is designed to enable followers to
estimate the leader’s unmeasured states, x0,m for m =
2, 3, . . . , l. Let us define the estimation error as e0x,i,m =
x̂0,i,m − x0,m. According to (1) and (4), we have

ė0x,i,2 = ˙̂x0,i,2 − ẋ0,2 = ż0,i,2 + bic0,2ẋ0,1 − ẋ0,2
= −c0,2bie0x,i,2 − c0,2

∑
j∈Ni

aij(x̂0,i,2 − x̂0,j,2)

+ x̂0,i,3 − x0,3, (9a)

ė0x,i,m = ˙̂x0,i,m − ẋ0,m = ż0,i,m + c0,mẋ0,i,m−1 − ẋ0,m
= −c0,mx̂0,i,m − c0,mc0,2bie0x,i,2 + c0,mx̂0,i,m

− c0,mc0,2
∑
j∈Ni

aij(x̂0,i,2 − x̂0,j,2) + x̂0,i,m+1

− x0,m+1, m = 3, 4, . . . , l − 1, (9b)

ė0x,i,l = ˙̂x0,i,l − ẋ0,l = ż0,i,l + c0,lẋ0,i,m−1 − ẋ0,l
= −c0,lx̂0,i,l − c0,lc0,2bie0x,i,2
− c0,lc0,2

∑
j∈Ni

aij(x̂0,i,2 − x̂0,j,2)

+ c0,lx̂0,i,l + û0,i − u0. (9c)

Define e0x,m =
[
e0x,1,m e0x,2,m · · · e0x,N,m

]>
and

e0x =
[
e>0x,2 e>0x,3 · · · e>0x,l

]>
. Then, (9) can be written

into a compact form as below:

ė0x = F1e0x + `1, (10)



where

F1 =


−c0,2H I 0 · · · 0

... 0
. . . . . .

...
...

...
. . . . . . 0

−c0,l−1c0,2H 0 · · · 0 I
−c0,lc0,2H 0 · · · · · · 0

 , `1 =


0
...
0
eu

 .

Lemma 2: If there exists c0,2, c0,3, . . . , c0,l > 0 such that
the polynomial

hi(s) = sl−1 + c0,2s
l−2λi(H) + c0,2λi(H)

l−3∑
z=0

c0,l−zs
z

for i = 1, 2, . . . , N are Hurwitz stable, then the system
in (10) is asymptotically stable with limt→∞ e0x = 0.

Proof: Based on Schur complement, we can derive
the characteristic polynomial of F1 as det(sI − F1) =∏N

i=1 hi(s). In addition, limt→∞ `1 = 0 by Lemma 1.
The theory of Input-to-State Stability (ISS) then implies
limt→∞ e0x = 0.

Consider the observer in (5), which is run by a follower
to estimate its own states, xi,m for i = 1, 2, . . . , N and m =
2, 3, . . . , l. Let us define the estimation error as ex,i,m =
x̂i,m − xi,m. Using (1) and (5), we can derive

ėx,i,2 =− r2ex,i,2 + x̂i,3 − xi,3, (11a)
ėx,i,m =− rmx̂i,m − rmr2ex,i,2 + rmx̂i,m

+ x̂i,m+1 − xi,m+1, m = 3, 4, . . . , l − 1, (11b)
ėx,i,l =− rlx̂i,l − rlr2ex,i,2 + rlx̂i,l. (11c)

Further, define ex,m =
[
ex,1,m ex,2,m · · · ex,N,m

]>
for m = 2, 3, . . . , l and ex =

[
e>x,2 e>x,3 · · · e>x,l

]>
.

Recalling (11), it then follows that

ėx = F2ex, (12)

where

F2 =


−r2I I 0 · · · 0

... 0
. . . . . .

...
...

...
. . . . . . 0

−rl−1r2I 0 · · · 0 I
−rlr2I 0 · · · · · · 0

 .

We can obtain the next lemma along the lines in Lemma 2
and skip the proof.

Lemma 3: If there exist observer gains r2, r3, . . . , rl > 0
such that the polynomial

sl−1 + r2s
l−2 + r2

l−3∑
z=0

rl−zs
z

is Hurwitz stable, the the system in (12) is asymptotically
stable with limt→∞ ex = 0.

With the above results, we are now in a good position to
investigate the global tracking error. When all the followers

with high-order dynamics in (1) run the control law (2), the
tracking errors are given by

ẋi,m − ẋ0,m = xi,m+1 − x0,m+1, (13a)

ẋi,l − ẋ0,l = −k1

∑
j∈Ni

aij(xi,1 − xj,1) + bi(xi,1 − x0,1)


−

l∑
m=2

km(xi,m − x0,m) + û0,i − u0

−
l∑

m=2

km(x̂i,m − xi,m + x0,m − x̂0,i,m), (13b)

for m = 1, 2, . . . , l − 1 and i = 1, 2, . . . , N . Define
ei,m = xi,m − x0,m, em =

[
e1,m e2,m · · · eN,m

]>
,

and e =
[
e>1 e>2 · · · e>l

]>
for m = 1, 2, . . . , l and

i = 1, 2, . . . , N . Then, according to (13), the dynamics of
the global tracking error e can be expressed as

ė = F3e+ `3,

where

F3 =


0 I 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 0 · · · 0 I

−k1H −k2I · · · · · · −klI

 ,

`3 =


0
...
0

−
∑l

m=2 km(ex,m − e0x,m) + eu

 .
The following theorem shows that limt→∞ e(t) = 0. The
proof is similar to that of Lemma 2 and thus omitted here.

Theorem 1: For the considered leader-follower tracking,
the dynamics of the global tracking error is asymptotically
stable with limt→∞ |xi,m(t) − x0,m(t)| = 0 for m =
1, 2, . . . , l, if there exist controller gains km for m =
1, 2, . . . , l such that the polynomial

sl + k1λi(H) +
l∑

z=2

sz−1kz

is Hurwitz stable.
Remark 1: For all these observers, it should be noted

that one can usually find out gain parameters to satisfy the
conditions in Lemmas 2-3 and Theorem 1 according to the
properties of the roots of polynomials and ensure the conver-
gence of estimation. This implies that the proposed tracking
controller can be effective under only mild conditions.

III. NUMERICAL STUDY

In this section, we offer an illustrative example to
show the effectiveness of the proposed approach. Consi-
der a third-order MAS including one leader and five fol-
lowers. The agents interchange information according to
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Fig. 1: Third-order MAS tracking: (a) communication topology; (b) xi,1 for i = 0, 1, . . . , N ; (c) leader’s and followers’ state
trajectory profiles of xi,2 for i = 0, 1, . . . , N ; (d) leader’s and followers’ state trajectory profiles of xi,3 for i = 0, 1, . . . , N ;
(e) leader’s input profile and the estimation by each follower; (f) leader’s state trajectory profile of x0,1 and the estimation
by each follower; (g) leader’s state trajectory profile of x0,2 and the estimation by each follower; (h) leader’s state trajectory
profile of x0,3 and the estimation by each follower; (i) followers’ estimation of their own state trajectories of xi,2 for
i = 1, 2, . . . , N ; (j) followers’ estimation of their own state trajectories of xi,3 for i = 1, 2, . . . , N .



the communication topology shown in Figure 1(a). Here,
node 0 is the leader, and nodes 1 to 5 are followers.
The leader transmits data to only follower 1, and the
followers maintain bidirectional communication with their
neighbors. We initialize the first states of the leader and
followers as

[
0 3 0 −2 1 −1

]>
, the second sta-

tes as
[
0 1 −2 3 0 −1

]>
, and the third states as[

0 1 1 0 −1 2
]>

, respectively. The input driving the
leader is set to be u0(t) = sin(0.2πt). We further choose
c0,2 = c0,3 = 5, r2 = r3 = 5, k1 = k2 = k3 = 6,
l = 1 and τi = 1 for i = 1, 2, . . . , 5 to apply the observer-
based controller proposed in in Section II. The simulation
result is summarized in Figure 1. Figures 1(b)-1(d) show
the state tracking performance. It is seen that all the states
of a follower can catch up with the leader’s despite the
state differences and then keep accurate tracking afterwards.
Figures 1(e)-1(j) illustrate the estimation performance of the
observers. We see from Figures 1(e)-1(h) that the distributed
observers for the leader’s input and states can produce
estimation that gradually converges to the truth. The local
observers for followers to estimate their own unmeasured
states are also convergent, as shown in Figures 1(i)-1(j). We
hence can conclude that these observers well overcome the
issue of limited measurements by estimating the quantities
unmeasured but needed for tracking, which paves a founda-
tion for successful tracking.

IV. CONCLUSION

We studied the problem of leader-follower tracking control
for high-order MASs in this paper. Here, we considered the
challenging yet realistic setting where only the first state of
every agent is measured. We proposed to build a distributed
observer-based control approach. Along this line, we desig-
ned multiple observers to reconstruct a few quantities, by
which a follower can become aware of not only the leader’s
input and states but also their own unmeasured states, and
combined them with a distributed tracking controller. We
conducted the design for high-order MASs and characterized
the convergence properties. A simulation result was provided
to show the effectiveness of the proposed design.
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