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Voltage data acquired after probe signal transmitted through the
organic film and reflected off the film surface as a function of 0.36
mW millimeter wave signal frequency in the range 110e160 GHz.
Five different organic photovoltaic (OPV) materials and one 95:5
blend produced at 2 spin rates are used. These materials are a)
fluorinated 2-alkyl-benzol[d] [1e3]triazole (FTAZ), a high hole-
mobility polymer used for transistors and photovoltaics, b) dike-
topyrrolopyrrole (DPP3T), an acceptor polymer used in field-effect
transistors (FET), c) Y5(PffBT4T-2OD) film that possesses remark-
able temperature controllable morphology, d) a neat conjugated
polymer P3HT, Poly(3-(hexylthiophene-2,5diyl) film that is used in
optoelectronic devices and as a conductive binder for Li-ion bat-
teries, e) phenyl-C61-butyric acid methyl ester (PCBM) films and
its soluble derivatives used as n-type organic semiconductors, and
f) excitonic photovoltaic material 95%:5% donor-acceptor blend
P3HT:PCBM produced by 2 different spin rates. Measurement of
direct-current (dc) transmitted and reflected power (RF voltage
signal) are measured using a newly developed continuous wave
(CW) D-waveguide band probe (110e160 GHz) apparatus named
time-resolved millimeter wave conductivity (TR-mmWC) [1].
Transmission and first surface reflection voltages are captured by a
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zero-bias Schottky barrier diode (ZBD) and converted to relevant
dc voltages. Original voltage signal datasets attached with this can
be utilized for photovoltaic, dielectric property estimation, and
other semiconductor physics applications. A manually collected
dataset of transmission and reflection coefficient at incident probe
power level ~0.9 mW for 95:5 P3HT:PCBM films produced at 2
different spin rates, and one separately only for the neat P3HT film
are also presented here in tabular form.
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Value of the Data
� Reflection and transmission voltage data as a function of millimeter wave frequency can be used to evaluate the basic

dielectric property of the materials and could be used for developing its relationship with respective morphologies. Probe
frequencies in the datasets pertain to the higher end of millimeter wave domain and close to the 5th generation radio
communication spectrum, 5G.

� The data could be used for calculation of local energy dissipated in the organic cell.
� Data on these low surface-energy semiconducting thin films can be used for calculation of radio exposure parameters

when such organic electronic materials are used for biomedical/bioelectronic devices, biochemical sensors, drug
delivery, and neural interfacing.

� For the future, acquisition of signal phase measurements with same resolution/frequency step size is planned to estimate
complex dielectric properties [2].
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1. Data

Photosensitive organic sample films of size 100 x 1” (a few mm thick) spun on glass slides with various
thicknesses are used for collecting transmitted and reflected voltages. The BWO probe source for
transmission and reflection spectrum acquisition operated at 30% power level (10 mW) and a suitable
beam splitter helps illuminate sample with a 2.8 mm diameter spot size and a power level ~0.3 mW.
Incident light on sample is part reflected and part transmitted. For the case of transmission, radiation of
the probe signal is normally incident on the sample and for reflection, the probe beam is incident at
65.4� from the normal of the sample surface. If we consider E0 as the incident amplitude on approx-
imately few mm thick organic sample mounted on glass substrate approximately 990 mm thick, we
measure the reflected power off the sample (as ZBD voltage response) and also the transmitted power
through the sample that includes the effect of multiple reflections through the glass substrate. A
schematic of the experimental arrangement is shown below in Fig. 1.

For the data given here we have collected voltages only signifying real part of reflection and
transmission coefficients and the spectra are shown at a frequency resolution 100 MHz. Following 4
steps are used for acquisition of transmission/reflection voltage response data:

1. Collect free-space voltage (E0) spectral response of ZBD by sweeping BWObetween 110 and 160 GHz
with resolution of 100 MHz and store data along with 10-sample standard deviation profile ob-
tained from digital multimeter.

2. Mount sample in transmission mode making the BWO beam perpendicular to sample surface (T)
shown in Fig. 1 and repeat the same sweeping procedure as in step 1 and store E0s data obtained
from multimeter.
Fig. 1. Shows the schematic for the experimental data acquisition for dc transmission (E0s) and reflection (E0r) using the quasi-
optical measuring channel that include TPX collimator lenses (C), wire grid polarizer (P), 2.5mm focusing lens (f), Mylar beam-
splitter (S), beam dump(D), and zero-bias Schottky barrier diodes (ZBD). Backward wave oscillator (BWO) is swept using Labview
2017 and ZBD d.c. voltage data are processed and acquired using Keithley digital multimeter at sweep delay of 500 ms.



Fig. 2. (a) Shows the transmitted voltage magnitude jVj spectra of the free space (in black) and assigned sample DPP3T (in red) for
0.32 mW millimeter wave power incident normally. Circle over data indicate anomalous data in through-sample transmission signal
possibly due to standing wave/multiple reflections from 990 mm glass substrate. The DPP3T transmission data flagged pertain to
110.1, 111.2, 113.8, 113.9, 114.1, 116.9, 117.9, and 120.8 GHz. These data should be used with caution (b) Same as in (a) but for polymer
FTAZ film [6,7], (c) Same as in (a) but for P3HT:PCBM (95%:5%) spun at 90 RPM with anomalous data flagged at frequencies: 111.2,
120.9 and 127.9 GHz, (d) Same as in (c) but P3HT:PCBM (95%:5%) spun at 250 RPM with anomalous transmission voltage data
occurring at 110.1, 111.2, 113.9, 120.8, 127.7, 127.8 and 127.9 GHz respectively, these data should be used with caution, (e) Same as in
(a) but for high crystalline sample Y5 from cold solution [8].

Table 1
Millimeter wave transmission coefficient computed using manually collected d.c. transmission voltages using higher oscillator
power level (70%) and using reference E0 for each frequency.

P3HT:PCBM Sample 110 GHz 120 GHz 130 GHz 140 GHz 150 GHz 160 GHz 165 GHz

99:1 spun at 250 rpm 0.858561 0.884393 0.833656 0.66899 0.783113 0.817276 0.868376
95:5 spun at 250 rpm 0.828784 0.88632 0.83559 0.674216 0.781457 0.817276 0.870085
80:20 spun at 250 rpm 0.813896 0.8921 0.839458 0.75784 0.624172 0.855482 0.873504
50:50 spun at 250 rpm 0.82134 0.895954 0.829787 0.681185 0.778146 0.850498 0.859829
P3HT only Neat spun at 250 rpm 0.846154 0.888247 0.827853 0.655052 0.788079 0.883721 0.859829
99:1 spun at 90 rpm 0.277916 0.545279 0.638298 0.620209 0.703642 0.777409 0.82735
95:5 spun at 90 rpm 0.868486 0.888247 0.823985 0.656794 0.796358 0.880399 0.870085
80:20 spun at 90 rpm 0.873449 0.897881 0.839458 0.679443 0.783113 0.80897 0.863248
50:50 spun at 90 rpm 0.848635 0.915222 0.864603 0.703833 0.786424 0.805648 0.864957
P3HT only Neat spun at 90 rpm 0.880893 0.890173 0.82205 0.648084 0.798013 0.887043 0.854701
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3. Rotate sample holder by 24.6� and insert high quality gold mirror as shown in position R (dotted
line) and run step 1 to collect the voltage spectrum of mirror reflection after sweeping the oscillator
between 110 and 160 GHz, also record sample standard deviation.

4. Replace gold mirror with sample as shown in position R in Fig. 1 and repeat step 2 for collection of
E0r (reflected voltage) data as function of frequency and corresponding standard deviation data
from digital multimeter.
1.1. Through sample data

The transmission voltages shown here as obtained from the ZBD. An averaging of 10e30 samples
are performed, and the data are stored in columnar fashion. The following Fig. 2(aee) show the free-
space and through-sample transmission data. Some of the sample transmission data show anomaly,
where, through-sample voltages found to exceed free-space voltages for the same sample at same
frequency and power level, especially in samples DPP3T [3,4] and P3HT:PCBM [5]. These anomalous
voltages have been identified precisely and marked with a circle around the data points. Exact fre-
quencies of these questionable transmission data were collected and are also given in Fig. 2 caption
below.

1.2. Manually collected P3HT:PCBM and P3HT (neat) transmission coefficient

At 70% power level of the backward wave oscillator the probe beam is split and resulting ~0.9 mW
beam is transmitted through P3HT:PCBM and P3HT (neat) [9] samples spun at 250 rpm and at 90 rpm
respectively. Detector voltages were collected for each measurement cycle in frequency range 110e165
GHz. Table 1 below has the E0s/E0 data that were finalized after multimeter registered voltages sta-
bilized in the first 15 seconds.

1.3. Sample reflection data

The sample reflection data are shown here. For the purpose of reference, we use a highly polished
mirror and label the field as E0g. An averaging of 10e30 samples are performed and the data are stored
in columnar fashion. The following Fig. 3(aee) show the ZBD acquired andmultimeter averaged mirror
reflection and sample reflection d. c. voltage datasets.

1.4. Manually collected P3HT:PCBM and P3HT (neat) reflection coefficient

Each of the P3HT:PCBM and P3HT neat samples that were produced at different spin rates were
manually placed on sample holder one at a time, probe beam maximized for power and the voltages
Table 2
Millimeter wave reflection coefficient computed using manually collected d.c. reflected voltages at fixed (150 GHz) frequency
and at 30% power level (0.32 mW) using reference E0g (mirror reflection) for each sample.

P3HT:PCBM
Sample

99:1
spun at
250 rpm

95:5 spun
at 250 rpm

80:20 spun
at 250 rpm

50:50
spun at
250 rpm

P3HT
Neat
spun at
250 rpm

99:1 spun
at 90 rpm

95:5 spun
at 90 rpm

80:20 spun
at 90 rpm

50:50
spun
at 90
rpm

P3HT
Neat
at 90
rpm

Reflection
Coefficient at
150 GHz
(0.32 mW)

0.504 0.413 0.428 0.406 0.496 0.428 0.428 0.353 0.436 0.157



Figure 3. (a) Shows the reflected voltage magnitude jVj spectra of the highly polished mirror (black) and assigned sample DPP3T (in
red) for 0.32 mWmillimeter wave power incident at 65.4� on mirror/sample surface. (b) Same as in (a) but for polymer FTAZ film, (c)
Same as in (a) but for P3HT:PCBM 95:5 spun at 90 RPM, (d) Same as in (c) but P3HT:PCBM spun at 250 RPM, (e) Same as in (a) but for
high crystalline sample Y5 from cold solution.
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Fig. 4. (a)e(e) shows the histogram of voltage standard deviations obtained while running the experiment in transmission (white
face) and reflection (gray face) modes.
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were recorded once with sample, and another time without the sample. Absolute care was taken so as
not to alter the quasi-optical settings of the apparatus while these observations were noted.

2. Experimental design, materials, and methods

All the polymers and polymer:fullerene (1:1) solutions were prepared by dissolving in a chlo-
robenzene solvent and stirred in a nitrogen-filled glove box. The films were spin cast or drop cast and
dried in the glove box before they were taken out for characterizations. For spin-cast films, thick-
nesses were varied by changing spin speeds. Voltage standard deviations maxima were found to be
in range 0.1e0.12 mV for transmission cases and around 0.06e0.12 mV for the reflection datasets as
recorded. Fig. 4 provide the standard deviation for the transmission and reflection cases for each
sample.
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