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Abstract. Quantitative verification tools compute probabilities, expec-
ted rewards, or steady-state values for formal models of stochastic and
timed systems. Exact results often cannot be obtained efficiently, so most
tools use floating-point arithmetic in iterative algorithms that approxi-
mate the quantity of interest. Correctness is thus defined by the desired
precision and determines performance. In this paper, we report on the
experimental evaluation of these trade-offs performed in QComp 2020:
the second friendly competition of tools for the analysis of quantitative
formal models. We survey the precision guarantees—ranging from exact
rational results to statistical confidence statements—offered by the nine
participating tools. They gave rise to a performance evaluation using five
tracks with varying correctness criteria, of which we present the results.

1 Introduction

Quantitative formal models feature probabilistic choices, real-time aspects, or
continuous dynamics. They are used to study safety, dependability, or perfor-
mance aspects of e.g. randomised algorithms, network protocols, biological pro-
cesses, or cyber-physical systems [1, 58]. Probabilistic models need dedicated
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numeric algorithms to compute or approximate rational or real-valued probabil-
ities, expected values, or long-run averages. In this paper, we focus on tools for
the analysis of probabilistic formal models w.r.t. such quantitative properties.

Over the past two decades, a variety of algorithms have been devised for this
purpose. Most of them can roughly be categorised as variants of probabilistic
model checking (PMC) [9] and statistical model checking (SMC) [2], with proba-
bilistic planning closely related to the former. In PMC, the model’s state space
is explored—partially or exhaustively—to obtain an in-memory representation
of the model’s underlying semantics, which is typically a Markov chain or some
extension thereof. The value of interest can then be computed using numeric
algorithms such as value iteration. PMC is thus subject to the state space explo-
sion problem, limiting its ability to be applied to very large case studies. SMC,
on the other hand, relies on Monte Carlo simulation—generating random runs
through the model’s semantics—to statistically estimate the value of interest. It
does not need to store states other than the current and next one during run
generation, and thus avoids state space explosion entirely. However, when faced
with a rare event—e.g. when trying to estimate a reachability probability on the
order of 10−9 with a suitable error of, say, 10−10—the number of runs needed ex-
plodes. Furthermore, nondeterminism—controllable or adversarial unquantified
choices, such as in Markov decision processes (MDP) [78]—turn the estimation
problem into an optimisation problem, which SMC cannot directly handle. Prob-
abilistic planning is similar to PMC, but crucially employs heuristics to try to
avoid exploring the entire state space. Its focus is on finding strategies in MDP,
i.e. the choices that lead to the maximum reward, whereas PMC traditionally
computes values (e.g. expected rewards) and checks complex logical formulas.

With new algorithms come new tools: first academic prototypes, which may
over time develop into extensive collections of algorithms or tools targeting vari-
ous problems and use cases. In 2019, the first competition of tools for the analy-
sis of quantitative formal methods, QComp 2019 [46], took place. Using selected
benchmarks from the quantitative verification benchmark set (QVBS) [58], all of
which are available in the tool-independent Jani model interchange format [19],
it compared nine tools—ranging from general-purpose probabilistic model check-
ers to specialised SMC tools for rare events in dynamic fault trees—in terms of
performance, versatility, and usability. A major concern that surfaced during
the setup of QComp 2019 was that quantitative verification tools return num-
bers—and most of them use inexact methods to obtain these numbers, relying
on floating-point arithmetic and iterative algorithms that only approximate the
true values. Additionally, the long-time standard algorithm used by PMC tools,
value iteration, is now known to be unsound [43]; and SMC tools can only de-
liver statistical guarantees that allow them to produce incorrect results with a
certain probability (typically ≤ 5% of the time). Thus, while we on the one hand
should demand verification tools to always deliver correct verdicts, correctness in
quantitative verification cannot effectively be achieved without admitting some
error. The best we can do, then, is to accompany results with precise statements
about how correct they are guaranteed to be.
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In this paper, we report on QComp 2020, the second edition of this competi-
tion. We focus on the issue of correctness of results, in particular on the trade-off
between strength of correctness guarantees and analysis performance. After an
overview of the types of formalisms and properties considered by QComp 2020 in
Sect. 2, we thus expand on this in Sect. 3. Subsequently, in Sect. 4, we describe
the tools that participated in the competition, noting in particular which kinds
of correctness guarantees each tool can provide. Finally, we describe in Sect. 5
the setup of the QComp 2020 performance evaluation, and present its outcomes.

2 Languages, Formalisms, and Properties

Formal models are specified in modelling languages: graphical or textual nota-
tions designed for human users to compactly describe complex systems. They are
equipped with a semantics in terms of a mathematical formalism that provides
the basis for various analysis algorithms. Models are accompanied by properties
that specify a quantity of interest related to a set of behaviours of the model.

Modelling languages. QComp 2020 draws its benchmarks from the QVBS, which
currently consists of 78 different models, many of them parametrised to scale
from small to large state spaces, with a set of properties associated to each model.
Every model is available in Jani, a JSON-based format designed as an interme-
diate representation that bridges tools and that other modelling languages can
be transformed into, as well as in its “original” modelling language. The models
used for QComp 2020 were originally specified in the Galileo format [86] for
fault trees, the GreatSPN format [4] for generalised stochastic Petri nets, the
process algebra-based high-level modelling language Modest [47], the PGCL
specification for probabilistic programs [40], PPDDL for probabilistic planning
domains [89], and the guarded-command Prism language [68].

Formalisms. Most modelling languages or higher-level formalisms map to some
extension of automata, i.e. graphs of states (that may contain relevant structure)
connected by transitions (possibly with several annotations). The benchmarks of
QComp 2020 have a semantics in terms of discrete- and continuous-time Markov
chains (DTMC and CTMC, respectively), which provide finite-support prob-
abilistic choices and, in CTMC, stochastic delays that follow exponential dis-
tributions; Markov decision processes (MDP), which extend DTMC with non-
deterministic choices; Markov automata (MA) [35], which combine CTMC and
MDP in a compositional way; and probabilistic timed automata (PTA) [71],
which marry MDP and timed automata [3], thus providing probabilistic choices
together with nondeterministic continuous real-time behaviour.

Properties. For QComp 2020’s performance evaluation, we consider basic types
of quantitative properties only. This is to ensure that, for every property, we
have more than one tool able to compute its value. In particular, we include
unbounded probabilistic reachability (“what is the—maximum or minimum, in
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case of models with nondeterminism—probability to eventually reach a given set
of goal states”), or P-type properties for short; bounded probabilistic reachability
(P-type properties with the additional requirement of reaching the states before
some quantity exceeds a specified bound, in particular time for Pt-type and
an accumulated reward for Pr-type properties, both summarised as type Pb);
expected accumulated rewards until a given set of states is reached, or E-type
properties, including bounded variants (type Eb); and long-run average rewards
for CTMC and MA (type S, with the special case of steady-state probabilities).

Beyond QComp. Many other quantitative modelling languages not yet repre-
sented in the QVBS exist such as Uppaal’s XML format [13] or those supported
by Möbius [26]. The formalisms of QComp are part of a larger family tree of
quantitative automata-based formalisms as shown in the previous competition
report [46, Fig. 1]. They are all 1- or 1.5-player games; a future QComp may
expand to games with more players that capture competitive behaviour towards
conflicting goals as tool support for stochastic games expands. From our basic
properties, logics can be constructed that allow the expression of nested quanti-
tative requirements, e.g. that with probability 1, we must reach a state within n
transitions from which the probability of eventually reaching an unsafe state is
< 10−9. Examples are CSL [10] for CTMC, PTCTL [71] for PTA, and rPATL [25]
for stochastic games. Of further interest are multi-objective trade-offs [36], which
query for Pareto-optimal strategies balancing multiple goals.

3 Correctness and Precision

We now describe the challenges and trade-offs in evaluating and ensuring the cor-
rectness of quantitative analysis results, and how QComp 2020 addresses them.

3.1 Correctness Challenges

Unsound algorithms. For a long time, the standard algorithm for PMC was
value iteration (VI). It associates a value to each state that approximates the
local value of the quantity of interest (e.g. the probability to reach the goal from
that state), then iteratively improves those values. VI converges towards the
true correct values, but may never reach them. However, it also lacks an effective
criterion to determine whether the current value is within some ε-interval around
the true value. Tools thus used the standard relative-error criterion: if vi(s) is
the value for state s in iteration i, then they stopped as soon as maxs |vi(s) −
vi−1(s)| ≤ α · vi(s). However, this does not guarantee |vi(s) − vtrue(s)| ≤ α ·
vtrue(s), where vtrue(s) is the (unknown) correct value [43]. QComp 2019 allowed
the use of VI in this way. Since the benchmark problems and associated results
were known, every tool could have chosen to use, for every benchmark instance,
the highest α that produces a result satisfying the QComp 2019 correctness
criterion of a relative error with ε = 10−3, achieving correctness at optimal VI
performance. This would unrealistically over-tweak tools for the competition in



5

a way that no user would be able to do themselves, not knowing the true value
on their own model a priori. As a workaround, all participants agreed to use
α = 10−6, which is the default setting of the Prism model checker, for VI.
Although this levelled the playing field for tools using VI, it puts other tools
that only implement slower algorithms guaranteeing the required error bound at
a disadvantage: they were essentially penalised for producing correct results.

Statistical errors. Those participants that use SMC are unaffected by the VI
problem. However, they cannot satisfy the correctness criterion of always ensur-
ing at most an error of relative ε = 10−3 at all: SMC tools estimate the value of
interest using random sampling. As such, there is always a chance that the sam-
ples happen to be so bad that the result is more than ε off. A typical guarantee
is that P(|v−vtrue | > ε) < δ for δ = 0.05, i.e. one in twenty results may be incor-
rect. Similar guarantees can be established for the relative error, though fewer
statistically correct methods exist for that case. To check whether a tool statisti-
cally satisfies the QComp 2019 correctness criterion in such a way would require
a statistical test involving many repeated tool executions for each benchmark
instance, which is not feasible in a small-scale competition like QComp.

3.2 Correct Algorithms

Since the unsoundness of VI came to the attention of the PMC community,
several extensions appeared that compute intervals of values vl and vu guar-
anteed to be lower and upper bounds on the true values, respectively. Then a
sound relative-error criterion is to stop when vu(s0)−vl(s0) ≤ ε·vl(s0). The algo-
rithms mainly differ in how the upper values are computed. The first was interval
iteration [11, 44], originally proposed in 2014 [43] concurrently with a learning-
based approach [15] that uses the same idea. Sound value iteration [80] and most
recently optimistic value iteration [56] are newer variants with improved perfor-
mance. Implementations use (double-precision) floating-point arithmetic since
the smaller and smaller increments from iteration to iteration do not play well
with using unlimited-precision rational numbers. Thus we may still get incorrect
approximations due to floating-point imprecisions and error accumulation.

It is possible to obtain exact rational results for some formalism and property
type combinations. The algorithms that do so, for example rational search [12]
or the topological approaches implemented in Storm (see Sect. 4), are usually
much slower and less scalable to large models than the approximative approaches,
though. Most of these may also be implemented using floating-point arithmetic,
sacrificing unconditional correctness to gain some performance; the only errors
caused by such implementations are then due to floating-point imprecisions.

3.3 Correctness in QComp 2020

As a verification competition, QComp should in principle not allow tools to
deliver incorrect results. However, as we saw above, correctness comes in various
forms, and comparing all tools under the least commonly achievable form is
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Table 1. Tool capabilities overview (with changes compared to QComp 2019 in red)
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Tool P Pr E P Pt E S P Pr E P Pt E S P Pt E

DFTRES X X X X X X X X X

ePMC X X X X X X X X X
mcsta X X X X X X X X X X X X X X X X X X X
modes X X X X X X X X X X X X X X X X X X X

MFPL X X X X
Prism X X X X X X X X X X X X X X
PET X X X X
Stamina X X
Storm X X X X X X X X X X X X X X X X X X X X X

unfair. For QComp 2020, we thus adopted five tracks whose requirements match
the different kinds of guarantees provided by the various available approaches:
correct results must match the rational true value, if known, i.e. ε = 0.
floating-point correct results must come from an algorithm that would pro-

duce an exact result, except that it may use floating-point arithmetic; cor-
rectness is checked w.r.t. ε = 10−14 as an approximation of double’s precision.

ε-correct results must always be correct up to ε = 10−6; this track matches
with the guarantees provided by sound variants of VI.

probably ε-correct results must be correct up to ε = 5 · 10−2 with probability
0.95; this requirement can be satisfied by SMC tools, thus also the higher ε.

often ε-correct results must be correct up to ε = 10−3, but we allow algo-
rithms that do not always deliver such precision; thus VI can be used here.

often ε-correct results (10’): instead of being asked to deliver a fixed-precision
result, every tool has 10 minutes to obtain as precise a value as possible.

All checks for ε-correctness are for the relative error. The often ε-correct track
mirrors the requirements of QComp 2019.

4 Participating Tools

Nine tools participated in QComp 2020. Compared to the previous edition, Prob-
abilistic Fast Downward dropped out, and STAMINA is a new entrant. Table 1
shows the modelling languages, formalisms, and property types supported by all
tools. Smaller checkmarks indicate limited support as explained below; red check-
marks highlight new capabilities compared to the version used in QComp 2019.

In the following, we give a brief description of each tool, with more detailed
information on the algorithms it uses to achieve the requirements of the differ-
ent tracks. Table 2 shows the tracks that each tool participates in. For every
benchmark instance, tools could provide a default and a specific command line;
see Sect. 5 for a detailed explanation of this distinction.
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Table 2. Participation of tools in QComp 2020 tracks

track DFTRES ePMC mcsta modes MFPL Prism PET Stamina Storm

correct — — — — — — — — X
floating-p. — — X — — — — — X
ε-correct — — X — — X X — X
probably ε X — X X — X X X X
often ε X X X X X X X X X
often ε (10’) X — X X X — X X X

DFTRES [83], the dynamic fault tree rare event simulator, is a statistical model
checker for dynamic fault trees (DFT) that uses the Path-ZVA algorithm [81] for
rare event simulation. Implemented in Java, it works on Linux, macOS, and Win-
dows. It is free and open source, available at github.com/utwente-fmt/DFTRES.

By default, DFTRES uses DFTCALC [5] to parse the Galileo format, with
extensions such as repairs and inspections [82]. DFTRES supports Galileo DFT
and a subset of Jani with DTMC, CTMC, and MA semantics. In MA, nondeter-
minism must be spurious, i.e. different choices must result in the same measures.
DFTRES implements statistical estimation of system reliability, availability, and
mean time to failure (covering Pt-, S-, and P-type properties). Simulations run
in parallel on all available processor cores, resulting in near-linear speedup on
multi-core systems. Each thread can run importance sampling, e.g. forcing [73]
and Path-ZVA, allowing for efficient analysis of rare event behaviour in a modest
amount of memory. Path-ZVA is optimised for S properties, but also supports
probabilistic reachability. Since it performs a statistical analysis, the guarantees
that DFTRES provides—confidence-interval estimates with nominal real-value
coverage—match with the probably ε-correct track. Accordingly, it also partici-
pates in the often ε-correct track, including the 10-minute variant, without any
specific parameters or optimisations for its more relaxed requirements.

The current version of DFTRES is 1.0.1. Since its participation in QComp
2019, it gained support for DTMC and some optimisations: First, the automata
in parallel composition are reduced : if the composition of two automata will have
fewer than 256 states (overapproximated as the product of the individual state
space sizes), the automata are replaced by their composition, which is minimised
modulo weak bisimulation. Second, the don’t-care optimisation removes transi-
tions once they can no longer affect observable behaviour. For instance, if one
child of a DFT OR gate fails, transitions from the other children are pruned. Fi-
nally, for Pt properties—where high-performance cycles cannot be collapsed—a
new basic importance sampling scheme boosts runs leaving the cycle.

ePMC (formerly iscasMC [51]) is mainly written in Java, with some perfor-
mance-critical parts in C. It runs on 64-bit Linux, Mac OS, and Windows. It is
available open-source at github.com/ISCAS-PMC/ePMC. It supports the Prism
language and Jani as input; DTMC, CTMC, MDP, and stochastic games as for-
malisms; and PCTL* and reward-based properties. ePMC targets extensibility:

https://github.com/utwente-fmt/DFTRES
https://github.com/ISCAS-PMC/ePMC
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it consists of a small core while plugins provide the ability to parse models,
model-check properties of certain types, perform graph-based analyses, or inte-
grate BDD packages [34]. In this way, ePMC can easily be extended for special
purposes or experiments without affecting the stability of other parts. ePMC
focuses on complex linear-time properties [50] and stochastic parity games [52].
It has been extended to support multi-objective model checking [48] and bisim-
ulation minimisation [49] for interval MDP. It also has experimental support
for parametric Markov models [39, 74]. Specialised branches model check quan-
tum Markov chains [37] and epistemic properties of multi-agent systems [38].
However, ePMC so far only implements VI for QComp’s formalisms and prop-
erty types, and thus only participates in the often ε-correct track (but not its
10-minute variant, since it cannot return partial results on early termination).

mcsta is the Modest Toolset’s [53] explicit-state probabilistic model checker.
The toolset is centred around the Modest modelling language, but also supports
Jani. It is implemented in C# and works on 64-bit Linux, macOS, and Windows.
Currently at version 3.1, it is freely available at modestchecker.net.

mcsta provides state-of-the-art PMC algorithms for MDP and MA [21]. It
also supports PTA (as MDP via digital clocks [70]) as well as DTMC and CTMC
(as special cases of MDP and MA, respectively), but does not provide specialised
higher-performance algorithms for these submodels. The distinguishing features
of mcsta are its disk-based exploration and analysis [54], which allows checking
large unstructured models by making use of secondary storage like hard disks and
solid-state drives, and its comprehensive support for MA. mcsta participates in
the floating-point correct track by attempting to run VI until a (floating-point)
fixpoint is reached (not approximated) for P- and E-type properties, and by using
state elimination [45] for Pb properties on DTMC, MDP, and PTA. In the ε-
correct and probably ε-correct tracks, it uses optimistic value iteration, switching
to VI for the often ε-correct track.

Since its participation in QComp 2019, interval iteration for E-type prop-
erties, sound value iteration, and optimistic value iteration were implemented
in mcsta, considerably improving support for ε-correct results. State-of-the-art
algorithms for the analysis of MA were added [21], providing the switch-step
algorithm [20] for Pt properties as an alternative to Unif+, and adding support
for long-run average rewards (S-type properties). Finally, the essential states
reduction [29] brings significant speedups for some models at minimal overhead.

modes [18] is the Modest Toolset’s statistical model checker. As a sibling
of mcsta, it supports the same platforms and modelling languages. By default,
modes rejects models with nondeterminism—since that cannot be simulated—
and thus supports DTMC and CTMC. To efficiently estimate rare event prob-
abilities, modes provides rare event simulation methods based on importance
splitting [16], with a high degree of automation [17]. It implements lightweight
scheduler sampling (LSS) [72] to bring SMC to nondeterministic models like
MDP, MA [28], and PTA [27, 59]. LSS chooses m random schedulers resolving
the nondeterminism and performs an SMC analysis on the DTMC or CTMC

http://www.modestchecker.net/
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induced by each. Its key insight is how to represent a scheduler in just 32 bits.
It needs an adaptated statistical evaluation that takes the repeated tests into
account. However, since LSS can only provide upper/lower bounds on mini-
mum/maximum probabilities or rewards with no guaranteed error, and the best
choice of m is highly model-dependent, modes only uses LSS to check MDP,
MA, and PTA in the 10-minute variant of the often ε-correct track, sampling
as many schedulers as possible within the time limit. In the regular probably
ε-correct and often ε-correct tracks, modes only considers DTMC and CTMC.
It does not use rare event simulation in the competition. The main addition to
modes since QComp 2019 is support for S-type properties.

Modest FRET-π LRTDP (MFPL) implements probabilistic planning for quan-
titative formal models, motivated by earlier performance comparisons of us-
ing planning algorithms for model checking [64, 65]. Built upon the Modest
Toolset in C#, it supports the same input languages as mcsta and modes
and runs on the same platforms. It is freely available at dgit.cs.uni-saarland.de.

Probabilistic planning uses MDP heuristic search to try to avoid state space
explosion by computing values only for a small fraction of the states, just enough
for the given property and precision. The algorithms are usually designed for
maximum reachability and maximum expected rewards, and assume a specific
class of MDP. To apply them to QComp’s general MDP problems, they need to
be wrapped in FRET iterations [66,85]. MFPL uses the FRET-π [85] variant of
FRET together with the LRTDP [14] heuristic search optimisation of value itera-
tion. Compared to the version used in QComp 2019, which calculated maximum
reachability probabilities only, it has been extended with support for minimum
and maximum P- and E-type properties. Because MFPL’s core is based on VI,
it takes part in the often ε-correct track and its 10-minute variant only.

PET is the partial exploration tool : an explicit-state model checker for un-
bounded reachability in discrete-time models. Implemented in Java, it works
cross-platform. It uses Prism as a library for model parsing and exploration,
and hence handles Prism language models, with migration to Jani planned.

PET only partially explores a model’s state space, focusing computation on
“important” areas [15]: states that are rarely reached can be omitted from the
computation if one is only interested in an approximate solution. For each state
in the system, the algorithm stores sound upper and lower bounds. It repeatedly
samples paths (like in simulation) and back-propagates the bounds on the paths’
states as in interval iteration, until convergence, with proper treatment of end
components. PET can thus participate in the ε-correct track and all tracks with
weaker requirements. Its performance depends on the structure of the model: on
some, the PET approach is orders of magnitude faster than standard interval
iteration; on the other hand, it is inherently ill-suited for e.g. strongly connected
models like restarting mutual exclusion protocols. PET supports (unbounded)
P-type properties on MDP, DTMC, and CTMC, plus step-bounded reachability
on MDP and DTMC. Truly continuous-time dynamics (such as Pt properties for
MA) are not handled yet due to the technical subtleties of such an extension [6].

https://dgit.cs.uni-saarland.de/Michaela/modest-fret-pi-lrtdp
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Since QComp 2019, PET was extended by an SMC module [8] that uses
the same basic idea to solve problems where the transition dynamics are not
known, and thus have to be learnt. It however is not a competitor to the other
tools in QComp since it intentionally ignores information present in the models.
Other branches of PET support stochastic games [63] and mean-payoff/S-type
properties on DTMC and MDP [7], which, however, are not part of QComp.

Prism [68] is a general-purpose probabilistic model checker with support for a
wide range of formalisms and property types. It has been actively developed for
20 years; the first formal release was in 2001. It is implemented in C++ and Java,
runs cross-platform, and is open-source, available at prismmodelchecker.org.

Prism supports DTMC, CTMC, MDP, and PTA models specified in the
guarded command-based Prism language. It focuses on the ε-correct and of-
ten ε-correct tracks. For the former, Markov chains and MDP are solved us-
ing interval iteration; for the latter, iterative numerical methods are used for
Markov chains and VI for MDP. Bounded properties are always (except on PTA)
solved using iterative numerical methods (for DTMC and MDP) or uniformisa-
tion (for CTMC), which provide guaranteed error bounds. PTA are solved using
stochastic-game abstraction refinement [67]. Prism participates in the probably
ε-correct track using the same algorithms as for ε-correct results (thus guarantee-
ing the requested error with probability 1). While Prism includes an SMC en-
gine, which would more closely match the requirements of the probably ε-correct
track, that engine only provides absolute error bounds, not relative ones as re-
quired in QComp. Prism does not provide a mechanism for delivering partial
results when terminated early, thus it does not participate in the 10-minute often
ε-correct variant. Prism incorporates simple heuristics to choose appropriate so-
lution methods based on the type and size of the model and the property being
checked; these are mostly used for the specific invocations. In particular, Prism
automatically switches to its MTBDD engine for very large models, with a lower
threshold for QComp since the larger models here (as in the Prism benchmark
suite [69], from which many of them derive) are more likely to perform well with
symbolic approaches than might be expected in typical verification scenarios.

Prism participates in QComp 2020 with its current public release, ver-
sion 4.6. Since the previous edition of the competition, most development on
Prism focused on support for models (e.g. stochastic games) or properties (e.g.
automata-based specifications) which are not yet part of QComp.

Stamina [76], the stochastic approximate model checker for infinite-state anal-
ysis, was created in early 2019 with a focus on complex synthetic biological
network models. It supports CTMC written in the Prism language and upper-
bounded transient CSL properties. Implemented in Java, it runs on Linux and
macOS. Stamina iteratively performs state space expansion and calls Prism to
perform CTMC analysis. Based on the truncation method [77], Stamina uses
property-guided pruning [76] to reduce large and possibly infinite-state CTMC
models to finite state representations. Truncation assumes that the probability

http://www.prismmodelchecker.org/
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Table 3. Overview of algorithms used by Storm

formalism prop. (floating-point) correct (probably) ε-correct often ε-correct

DTMC, CTMC P, E LU-factorisation optimistic value iter. gmres
MDP, MA P, E policy iter. optimistic value iter. value iteration
DTMC, CTMC S LU-factorisation value iteration gmres
MDP, MA S linear programming value iteration value iteration
DTMC, MDP Pb, Eb matrix-vector mult. (steps), sequential approach (rewards)
CTMC Pb, Eb – uniformisation uniformisation
MA Pb – Unif+ Unif+

mass concentrates on a small number of states, and does not distribute uni-
formly as time progresses. Therefore, Stamina only participates for CTMC with
Pt-type properties. Its approach delivers upper and lower bounds on the proba-
bilities being approximated, the difference representing the states that are cut off.
Stamina thus participated in the probably ε-correct and often ε-correct tracks.

Motivated by addressing large and infinite-state probabilistic models, Sta-
mina does not require a user to manually bound variables in a Prism model. Its
runtime advantage starts to manifest as the state space size grows, as evidenced
in [76]. However, QComp only includes three Prism-language CTMC benchmark
instances with Pt properties, and in particular no infinite-state models, meaning
that Stamina cannot show its strengths in the competition.

Storm [32] is a probabilistic model checker that supports many modelling lan-
guages including Jani, the Prism language, DFT, and generalised stochastic
Petri nets. Markov models can be built and checked using explicit and decision
diagram-based representations. Storm’s modular design, efficient C++ core,
and extensive Python API yield a powerful toolbox for PMC, parameter syn-
thesis, counterexample generation, fault tree analysis, and many other purposes.
Storm has been in active development since 2012. It runs on Linux and macOS,
and is open source, available at stormchecker.org.

Storm supports DTMC, CTMC, MDP, and MA. Some PTA models can be
checked after converting them to MDP using the Modest Toolset to apply
digital clocks [70]. Storm participates in all tracks of QComp 2020. An overview
of the algorithms used for each combination of track, formalism, and property
type is given in Table 3. For P- and E-type properties, Storm divides the model
into strongly connected sub-models that can then be solved individually with the
method indicated in the first two rows of Table 3. For the correct track, num-
bers are represented as infinite-precision rationals. LU-factorisation solves linear
equation systems exactly; it is performed within Eigen. Gmres is a fast numerical
solution method for systems of linear equations implemented in Gmm++. VI for
S-type properties on CTMC and MA [23] provides sound precision guarantees.
Storm can also check such properties in MDP and MA exactly by solving a
linear program [42] using z3 [75]. Reward-bounded properties are solved using
a sequential approach [45, 55] that avoids an expensive unfolding of the model.

http://www.stormchecker.org/
http://eigen.tuxfamily.org/
http://getfem.org/gmm.html
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Time-bounded properties on CTMC are solved via uniformisation following Fox
and Glynn [61]. Unif+ [22, 41] extends uniformisation to MA. Time-bounded
properties for CTMC and MA cannot be solved exactly. DFT without repairs
are solved with methods that exploit the fault tree structure [87].

Compared to the version used in QComp 2019, Storm now applies optimistic
value iteration for ε-correct P- and E-type properties. The implementation of
Unif+ [22, 41] has been revamped and now supports relative precision require-
ments. Model construction has been improved, including support for symbolic
MA. Upon timeouts, Storm now reports the best result known so far. The Python
interface has been extended and the command line interface streamlined. While
experts can still select specific analysis engines, first-time users now benefit from
an automatic engine choice: using features of the input Jani model, such as the
number of parallel automata or the average variable range, a decision tree pre-
dicts the most appropriate model checking approach. To avoid over-fitting, the
automatic choice currently only selects among four alternatives: sparse (explicit-
state), hybrid (BDD-based exploration, but explicit data structures for numeric
computations), exact (like sparse, but using rational arithmetic), and symbbisim
(like hybrid, but additionally applying symbolic bisimulation minimisation).

Storm implements many alternatives to the aforementioned algorithms. For
example, optimistic value iteration can be replaced by interval iteration or sound
value iteration. Storm can synthesise high-level counterexamples [30] useful for
synthesis loops [24]. In multi-objective model checking, Storm computes Pareto
fronts for multi-objective MDP [55] and MA [79] under general and more re-
stricted strategies [33]. Parametric model checking is supported by techniques
to (i) compute closed-form solution functions, (ii) divide the parameter space
into satisfying and rejecting regions, and (iii) analyse and exploit monotonici-
ties [84]. Storm serves as the backend for the parameter synthesis tool PROPh-
ESY [31, 62]. Stormpy provides a simple Python interface to Storm’s under-
lying data structures, algorithms, and engines which enables rapid prototyping.
More details on these and other features of Storm are given in [60].

5 Performance Evaluation

To evaluate the performance of the participating tools, they were executed on
benchmark instances—a model, fixed values for the model’s parameters, and
a property—taken from the QVBS. QComp 2020 used the same set of 100 in-
stances as QComp 2019. We also ran the performance evaluation on the same
system: a standard desktop with an Intel Core i7-920 CPU and 12GB of RAM
running 64-bit Ubuntu Linux 18.04. Tools were given 30 minutes wall-clock time
per instance. We can thus compare the current and previous results in the of-
ten ε-correct track. We again allowed every tool to submit two command lines
per instance—one running the tool in a default configuration, the other being
allowed to use instance-specific parameters to tweak for maximum performance.
However, we relaxed the requirements for the default invocations: they need not
run the tool in its default configuration (modulo any parameters necessary to
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achieve the track’s correctness requirements), but could instead use the param-
eters that the tool’s authors would today recommend as defaults for the given
combination of formalism and property type. This is because a tool’s default
settings may be considered part of its interface, which authors may not want to
change for compatibility reasons, even though they would implement different
defaults today. This slightly reduces the ability to compare with QComp 2019.
The ability to submit specific invocations was not used by all tools, and over-
all only made a significant difference for Storm, and a noticeable but smaller
difference for Prism. In the remainder of this section, we thus mostly show the
performance of the default runs. As Storm was the only tool that participated in
the correct track, we do not show performance comparison results for this track.
Similarly, we found that the model checkers were able to obtain exact results on
almost all instances within the time limit of the 10-minute often ε-correct track,
rendering our intended comparison of the achieved relative error useless.

On Storm’s automatic engine choice. Storm can now automatically select a
specific configuration for each benchmark instance, and its authors recommend
doing so by default. This, however, would render QComp’s distinction between
default and specific invocations somewhat pointless. While QComp participants
agree that such automatic self-configuration is necessary to improve the usability
of quantitative verification tools as they gain more and more analysis engines,
algorithms, and parameters, it was not expected to appear in tools for QComp
2020. We will thus drop the default/specific distinction for future competitions.
For QComp 2020, we adopted the following pragmatic approach: Storm uses its
automatic engine choice by default, and does not use specific invocations. How-
ever, this configuration runs hors concours for the individual tool comparisons in
Sect. 5.2. In addition to Storm, we also evaluate “Storm-static” (abbreviated
St.-static): the same version of Storm, but without automatic engine choice. It
thus uses today’s recommended defaults for the default invocations, and hand-
tweaked command lines for the specific comparison. Storm-static is included in
all comparisons. Sect. 5.1 and the bottom-middle plot in Fig. 8 show the drastic
performance gains achieved by the automatic engine selection.

Incorrect results. For most—but not all—instances, we have reference results
obtained via exact algorithms, or reference intervals obtained via sound algo-
rithms using a low ε. Where available, we use these to establish whether a tool
delivers an incorrect result. Note that some incorrect results may go undetected
because no reference value is available. In all but the often ε-correct and probably
ε-correct tracks, tools shall not deliver incorrect results. In the probably ε-correct
track, we should expect no more than 5% of a tool’s results to be incorrect.

In the correct track, Storm did not deliver any incorrect results. In the
floating-point correct track, mcsta delivered 9, Storm-static 7, and Storm 3
incorrect results. In particular, mcsta terminated on several cyclic models where
VI was not expected to reach a fixpoint, indicating that the termination was en-
tirely due to rounding in floating-point computations. In the ε-correct track,
mcsta, PET, Prism, and Storm only returned correct result, with Storm-
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Fig. 1. Quantile plots for the floating-point correct track

static having just one incorrect result in its default invocations. In the probably
ε-correct track, where some incorrect results are allowed, one was delivered by
each of Storm-static, Prism, and Stamina. As tools switched to unsound al-
gorithms for the often ε-correct track, more incorrect results were delivered; see
the respective plots in Sect. 5.2 for an indication of their numbers per tool.

5.1 Quantile Plots

We first look at selected subsets of tools via quantile plots. We usually only
consider the instances supported by all of the tools shown in the plot; this is
to avoid unsupported instances having the same visual effect as timeouts and
errors. For example, for Fig. 1, the intersection of what mcsta and Storm
support contained n = 67 instances (shown as “of n” in the x-axis label). The
plots’ legends indicate the number of correctly solved benchmarks for each tool in
parenthesis (i.e. where no timeouts or error occurred and the result was correct).
A point 〈x, y〉 on the line of a tool in this type of plot signifies that the individual
runtime for the x-th fastest instance as solved by the tool was y seconds.

By ordering instances independently for each tool, quantile plots only allow
a comparison of the total performance of tools over the included instances. In
particular, cases where e.g. a tool is slower overall, but manages to solve some
hard instances much faster than any other, will not be visible in a quantile plot.
We thus exclude the specialised tools, whose the entire purpose is to solve some
hard instances better than anyone else, from most of the quantile plots we show.

floating-point correct. The quantile plots in Fig. 1 show that mcsta’s ad-hoc
“just try VI” approach to get floating-point correct results turned out to be
rather competitive. Storm-static more often timed out and delivered four more
incorrect results. The automatic engine selection moves Storm into a class of
its own. As the right-hand side of Fig. 1 shows, its performance is only nearly
matched by the hand-optimised configurations of the same tool.

ε-correct. In Fig. 2, we compare the general-purpose tools that participated in
the ε-correct track. Since Prism only supports models in the Prism language,
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Fig. 3. Quantile plots for the probably ε-correct track

the plots only range over 43 instances; the intersection of what mcsta and
Storm support covers 86 instances. We see that mcsta, Prism, and Storm-
static perform similarly with default settings. Once it can make use of its wide
range of different engines and algorithms, however, Storm cannot be matched.

probably ε-correct. Once statistical model checkers can join in, the competition
becomes more diverse. If we plot the results of the probably ε-correct track for the
general-purpose tools, the overall relationships remain the same as in Fig. 2, thus
we do not show these plots. Instead, we restrict to DTMC and CTMC. Then, we
can make a useful comparison that includes modes, as shown on the left-hand
side of Fig. 3. We see that modes is drastically faster than the model checkers
in most cases, needing just a few seconds for more than 20 of the instances.
Its runtime only rises significantly when confronted with somewhat rare events
(due to the relative-error requirement), and for some complex models where
computing the available transitions in itself takes significant computation time.
On the right-hand side of Fig. 2, we show a quantile plot over all 100 instances
and all tools in the track. This mainly shows how many instances each tool can
solve, but does not do justice to the specialised tools.

often ε-correct. All QComp 2020 participants compete in the often ε-correct
track, including in particular the fourth general-purpose model checker, ePMC.



16

20 40
≤1

6

60

600

1800

instances, default (of 56)

ti
m
e
(s
)

ePMC (29)
mcsta (40)
St.-static (44)
Storm (51)

10 20 30 40
≤1

6

60

600

1800

instances, default (of 41)

ti
m
e
(s
)

ePMC (26)
mcsta (30)
Prism (38)
St.-static (36)
Storm (41)

10 20 30
≤1

6

60

600

1800

instances, default (DTMC&CTMC)

ti
m
e
(s
)

ePMC (12)
mcsta (15)
modes (19)
Prism (24)
St.-static (26)
Storm (33)

20 40 60 80
≤1

6

60

600

1800

instances, default (all)

ti
m
e
(s
)

DFTRES (5) ePMC (31)
mcsta (62) modes (19)
MFPL (11) PET (9)
Prism (54) Stamina (1)
St.-static (77) Storm (86)

Fig. 4. Quantile plots for the often ε-correct track

We show the results in Fig. 4, limited to default results since few tools supplied
and gained from specific invocations. The top two plots in Fig. 4 can be compared
with QComp 2019 [46, Fig. 2] modulo the relaxed definition of default settings,
while the bottom two plots correspond to Fig. 3. In particular, we see that SMC
in the form of modes is no longer competitive given the much increased precision
requirement of ε = 10−3. This confirms the results of earlier comparisons between
PMC- and SMC-based methods in different settings [88].

5.2 Scatter Plots

We next show scatter plots that compare the performance of each tool over all
individual instances to the best-performing other tool for each instance, using
default invocations only. A point 〈x, y〉 states that the runtime of the plot’s tool
on one instance was x seconds while the best runtime on the same instance
among all other tools except Storm with automatic engine selection9 was y
seconds. Thus points above the solid diagonal line indicate instances where the
plot’s tool was the fastest; it was more than ten times faster than any other
tool on points above the dotted line. Points on the “TO”, “ERR” and “INC” lines
indicate instances where the plot’s tool encountered a timeout, reported an error
(such as running out of memory), or returned an incorrect result, respectively.
Points on the “n/a” line indicate instances that none of the other tools was able
9 Storm, on the other hand, is not compared with Storm-static, thus its “wins n”
numbers, marked *, are not part of the same sum as those of the other tools.
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Fig. 5. Scatter plots for the floating-point correct track

to solve. These plots provide more detailed information than the quantile plots
since they compare the performance on individual instances, and also include
instances outside of the intersections of what is supported by multiple tools. For
example, the right-hand plot of Fig. 5 shows that mcsta manages to be faster
than Storm on a few instances whereas Fig. 1 looked like mcsta is always slower.

floating-point correct. Fig. 5 compares mcsta to Storm-static and Storm using
floating-point correct algorithms. The “n/s” lines indicate instances not supported
by the other tool. Storm behaves nearly like Storm-static in specific mode,
which is why we show Storm on the right-hand side. Both tools solve several
instances where the other fails with a timeout; in the default case, performance is
similar when we exclude timeouts. As mentioned, mcsta’s approach surprisingly
worked, usually correctly, on models where it was not expected to terminate.
In summary, the two tools’ very different approaches appear complementary,
together being able to solve many more instances than each on its own.

ε-correct. Data for the ε-correct track is plotted in Fig. 6. These now include
useful data for PET: we see that it times out on most instances, but is the fastest
of all tools on nearly half of the ones that it does solve in time. This matches
the expectations for an approach highly dependent on the models’ structure.

probably ε-correct. Fig. 7 now includes SMC tools for the probably ε-correct track.
We do not show Stamina since it works for only three instances, out of which
it solves one successfully; the current QComp benchmarks simply do not match
Stamina’s purpose as discussed in Sect. 4. We now see the typical behaviour of
a specialised tool for DFTRES again, with PET showing markedly improved
performance relative to the other tools due to the relaxed precision requirement.
modes’ ability to solve many models in almost no time is evident.

often ε-correct. Fig. 8 provides the details for QComp 2020’s largest track, with
often ε-correct results. We omit DFTRES (it only solves two instances now,
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Fig. 6. Scatter plots for the ε-correct track

facing the same problems as modes from the increased precision requirement),
PET (with the same pattern as in the probably ε-correct track at somewhat
worse performance), and Stamina (as before). These plots can be compared
with QComp 2019 [46, Figs. 4–6]. The bottom-middle plot compares Storm to
Storm-static (default), again highlighting the gains of automatic engine choice.

6 Conclusion

QComp 2020 conservatively extended QComp 2019, focusing on the critical field
of problems and performance trade-offs around the correctness and precision of
results in quantitative verification. The different tools provide different ranges of
guarantees, from exact rational results to no sure guarantees at all in the often
ε-correct track. Overall, Storm with its new automatic engine selection domi-
nates the competition. As the first significantly self-configuring model checker in
QComp, it advances the usability of PMC tools but also poses challenges to com-
petition design. Still, once we look more deeply into the results—e.g. via scatter
plots—we see that each tool contributes to solving the QComp benchmark set,
and several specialised tools successfully occupy clearly defined niches.

QComp 2020 did not evaluate usability: aside from Storm’s improved au-
tomation, little has changed, with still only Prism providing a graphical user
interface. In particular, we learned from the previous competition that a usabil-
ity evaluation needs clear and widely agreed-upon criteria to be useful, and plan
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Fig. 7. Scatter plots for the probably ε-correct track

to create such a usability scorecard for a future edition of QComp. More tools
now venture into stochastic games, opening a direction to expand QComp.

Roles of authors and acknowledgments. Arnd Hartmanns and Michaela Klauck
organised QComp 2020. Carlos E. Budde submitted DFTRES; the tool’s main
developer is Enno Ruijters. Andrea Turrini submitted ePMC; its main devel-
oper is Ernst Moritz Hahn. Arnd Hartmanns develops and submitted mcsta
and modes; Yuliya Butkova added many new MA model checking algorithms to
mcsta. Michaela Klauck develops and submitted Modest FRET-π LRTDP.
Jan Křetínský submitted PET; it is developed by Pranav Ashok, Tobias Meggen-
dorfer, and Maximilian Weininger. David Parker submitted Prism with support
from Joachim Klein. Tim Quatmann submitted Storm; it is co-developed by
Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Jip Spel, Matthias
Volk, and many others. Zhen Zhang submitted Stamina; it is developed by
Thakur Neupane, Brett Jepsen, Riley Roberts, and Zhen Zhang.

Data availability. The tools used and data generated in the performance evalu-
ation are archived at qcomp.org and DOI 10.5281/zenodo.3965313 [57].
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