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Image Feature Correspondence Selection:
A Comparative Study and
a New Contribution
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Abstract—Image feature correspondence selection is pivotal
to many computer vision tasks from object recognition to 3D
reconstruction. Although many correspondence selection algo-
rithms have been developed in the past decade, there still lacks
an in-depth evaluation and comparison in the open literature,
which makes it difficult to choose the appropriate algorithm
for a specific application. This paper attempts to fill this gap
by evaluating eight competing correspondence selection algo-
rithms including both classical methods and current state-of-the-
art ones. In addition to preselected correspondences, we have
compared different combinations of detector and descriptor on
four standard datasets. The diversity of those datasets cover a
wide range of uncertainty factors including zoom, rotation, blur,
viewpoint change, JPEG compression, light change, different
rendering styles and multiple structures. We have measured
the quality of competing correspondence selection algorithms
in terms of four performance metrics - i.e., precision, recall,
F-measure and efficiency. Moreover, we propose to combine
the strengths of eight competing methods by combining their
correspondence selection results. Extensive experimental results
are reported to demonstrate the superiority of several fusion
strategies to individual methods, which suggests the possibility of
adaptively combining those methods for even better performance.

Index Terms—Image feature correspondence, feature match-
ing, correspondence selection, inliers.

I. INTRODUCTION

EATURE correspondence selection is a fundamental task
in computer vision, pattern recognition and robotics. It is
the building block to a wide range of applications such as
structure-from-motion [1], simultaneous localization and map-
ping [2], tracking [3], image stitching [4], face verification [5],
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Fig. 1. An exemplar illustration of image feature correspondence selection,
where colorized lines represent correspondences between two images. (a) Ini-
tial feature matches generated by brute-force matching. (b) Feature matches
after correspondence selection.

image retrieval [6], and object recognition [7]. The main
purpose of correspondence selection is to retrieve as many as
correct correspondences (also known as inliers) from the given
image pair. The general process of feature matching often
starts from detecting representative points (namely keypoints)
- e.g., local detectors [8]-[10] can be used to extract keypoints
from a given image. To establish the correspondence between
two images, keypoints with similar feature descriptors have to
be matched, generating a set of initial feature matches.

Initial feature matches often suffer from undesirable incor-
rect matches (as shown in Fig. 1 (a)) due to limited distinc-
tiveness of feature descriptors or/and external interference such
as noise and occlusion. This problem makes correspondence
selection a necessity for accurate feature matching. As shown
in Fig. 1 (b), matches after correspondence selection are far
more consistent, which greatly facilitate high-level vision tasks
such as the estimation of homography, affine transformation
and essential matrix [4]. Other applications such as camera
parameter estimation [1] and object tracking [3] also require
correspondence selection as a preprocessing step. Nonethe-
less, the correspondence selection problem is difficult in real
applications due to various uncertainty factors including zoom,
rotation, blur, viewpoint change, JPEG compression, light
change, different rendering styles, multiple structures etc.

To address these challenges, many approaches have been
developed in the past two decades and can be classified
into two categories [11]: parametric and non-parametric.
Parametric methods seek consistent correspondences defined
by parametric geometric models. Typical methods include the
random sample consensus (RANSAC) [12], the progressive
sample consensus (PROSAC) [13], the universal framework
for random sample consensus (USAC) [14], and etc. Non-
parametric methods often search correspondence inliers via
either feature similarity constraint or geometric constraint,
such as the nearest neighbor similarity ratio (NNSR) [8], spec-
tral technique (ST) [15], game-theoretic matching (GTM) [16],
graph-based matching [17], [18] and locality preserving
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matching (LPM) [19]. There are also constraint-independent
non-parametric methods such as identifying point correspon-
dences by correspondence function (ICF) [20], vector field
consensus (VFC) [11], grid-based motion statistics (GMS) [21]
and coherence based decision boundaries (CODE) [22].

Performance evaluation of competing image feature match-
ing techniques also exists in the literature. For instance, In [23]
and [24], the performance of several 2D feature descriptors is
compared; in [25] a similar study is conducted for 2D feature
detectors. An aggregated evaluation of both 2D detectors and
descriptors can be found in [26]. Additionally, performance
evaluation for a set of random sample consensus methods
including the popular RANSAC and its variants are conducted
in [27]. Unfortunately, existing studies are not comprehensive
enough for an in-depth comparison and suffer from the fol-
lowing limitations. First, the critical step in correspondence
selection is to reach correspondence consensus, while feature
detection and description only aim at building high-quality ini-
tial feature correspondences (note that consensus is difficult to
be guaranteed without correspondence selection [8]). Second,
only parametric methods are evaluated in [27] (non-parametric
approaches and more recent algorithms are left out).

In this paper, we present the first comprehensive evaluation
for image feature correspondence selection, to the best of our
knowledge. The considered methods in our evaluation range
from classical algorithms to the most recent ones, covering
both parametric and non-parametric approaches. More specif-
ically, RANSAC [12] and USAC [14] are selected from the
parametric family. As for non-parametric methods, we choose
NNSR [8] as the representative based on descriptor similarity
constraints. Additionally, ST [15], GTM [16] and LPM [19]
are selected as they all rely on geometric consensus. VFC [11]
and the recent GMS [21] are also taken into consideration
since they eliminate outliers from the perspective of statistical
measures.

In order to conduct a comprehensive comparison among
those competing methods, we choose four standard datasets
- ie., VGG [28], Heinly [24], Symbench [29], Adelai-
deRMF [30] - because together they cover a variety of
nuisances arising from real world scenarios. Among them,
VGG is a hybrid dataset containing challenges including zoom,
rotation, blur, JPEG compression, light and viewpoint change.
Heinly contains pure zoom and rotation. Symbench involves
scenes with light changes and varying rendering styles. Adelai-
deRMF possesses viewpoint change, multiple structures, and
dynamic scenes, resulting in multiple separate local trans-
formations. Although the size of these evaluated datasets is
smaller than some public datasets -e.g., Imagenet [31], in the
field of image classification, segmentation, and etc., datasets
employed in our evaluation benchmark cover most challenges
in correspondence selection and have been widely used in
previous correspondence selection approaches [19], [32]-[34].

The performance of each competing method is quantita-
tively measured using precision, recall and F-measure [19],
[21], [32]. The robustness against the specific nuisance and
efficiency with respect to different scales of initial feature
matches are also examined. In addition, the performance
under preselected correspondences (with higher inlier ratios)
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and different detector-descriptor combinations are accessed
to test their flexibility with respect to the inlier ratio and
correspondence distribution changes. Based on experimental
findings, we make an aggregated summary about the advan-
tages and limitations of our evaluated methods as well as
their suitable applications. Furthermore, we suggest that com-
bining correspondence selection results of different methods
is a convenient yet powerful solution to achieve even better
performance. We have compared several popular strategies of
combining strategies under the framework of correspondence
selection.

In a nutshell, the contributions of this paper are threefold:

e We conduct a comprehensive review of the core
computation steps in eight state-of-the-art image fea-
ture correspondence selection algorithms along with their
connections and differences.

o We quantitatively evaluate and compare the performance
(including the robustness and the efficiency) of each
algorithm on four standard datasets covering a wide range
of uncertainty factors such as zoom, rotation, blur, view-
point change, JPEG compression, light change, different
rendering styles and multiple structures.

« We propose a fusion-based strategy that combines the
strengths of different correspondence selection methods
and achieves even more robust correspondence selection
results.

The remainder of this paper is organized as follows. Sect. II
presents the background information related to image feature
correspondence selection and performance evaluation. Sect. III
presents the core computation steps of eight state-of-the-art
approaches and discusses their connections. Sect. IV proposes
the details of fusion-based strategies towards correspondence
selection. Sect. V describes the experimental setup including
test datasets, evaluation criteria and implementation details of
the evaluated methods. Qualitative and quantitative experimen-
tal results are shown in Sect. VI. We include summary and
discussion in Sect. VII. and draw some final conclusions in
Sect. VIIIL.

II. RELATED WORK
A. Correspondence Selection Methods

For parametric methods, the most well-known algorithm is
arguably RANSAC presented in [12]. RANSAC iteratively
explores the space of model parameters by randomly sam-
pling and estimates the most reliable model based on the
maximum number of inliers. Then, outliers can be removed
using the generated model. Several variants of RANSAC
such as MLESAC [35], LO-RANSAC [36], PROSAC [13]
and USAC [14] were proposed in the following decades.
MLESAC employs the maximum likelihood estimation rather
than the inlier count to check the solutions. LO-RANSAC
inserts an optimization process where the generated model is
refined by the subset of inliers. A weighted sampling step
is adopted instead of random sampling in PROSAC. This
method sorts the raw correspondences by matching quality
and generates hypotheses from the most promising correspon-
dences. USAC extends the standard hypothesize-and-verify
structure in RANSAC and presents a universal framework

Authorized licensed use limited to: West Virginia University. Downloaded on July 29,2020 at 23:24:03 UTC from IEEE Xplore. Restrictions apply.



3508

that integrates advantages of previous parametric methods.
In addition, some other approaches relying on local parametric
structures have also been developed, such as agglomerative
correspondence clustering (ACC) [37], multi-structures robust
fitting (Multi-GS) [38], Hough voting and inverted Hough
voting (HVIV) [39]. ACC uses Hessian-affine detector [40],
which is invariant to affine transformations, to estimate the
local homography matrix as constraints. The initial corre-
spondences are then clustered based on the constraints, and
the clusters with inliers are supposed to be larger than the
ones constituted by outliers. Multi-GS generates a series of
tentative hypotheses by random sampling and considers that
two correspondences from the same local structure are inliers
if they share a common list of hypotheses. HVIV employs the
BPLR detector [41] to cluster correspondences and estimates
the homographic transformation for each correspondence as
well. The most plausible correspondence in each cluster is
then selected using normalized kernel density estimation.

For non-parametric methods, their theoretical foundations
are not always the same. A widely-used strategy is exploiting
the consistency information of local geometric structures or
appearance (feature similarity). Specifically, in [8], a nearest
neighbor similarity ratio (NNSR) method was proposed to
assign a ratio-based penalty to each correspondence and treats
those correspondences with low ratios as inliers. In spectral
technique (ST) [15], an affinity matrix is built using pairwise
geometric constraints to remove mismatches in conflict with
the most credible correspondences. In [16] the selection of
correspondences was cast into a game theoretic framework,
known as game-theoretic matching (GTM), where a natural
selection process allows corresponding points that satisfy
a mutual distance constraint to thrive. In [42], reweighted
random walk algorithm (RRWM) was presented for graph
matching. An associated graph between two sets of candidate
correspondences is drawn at first, and reliable nodes indicating
the consistent correspondences in this graph are then selected
by the reweighted random walk algorithm. In [19], locality
preserving matching (LPM) was proposed to improve inlier
selection by maintaining the local neighborhood structures of
those potential true matches. Some non-parametric approaches
that formulate the correspondence selection problem as a sta-
tistics problem have also been used, e.g., vector field consensus
(VFC) [11] and grid-based motion statistics (GMS) [21]. VFC
supposes that the noise around inliers and outliers falls in dif-
ferent distributions. This approach estimates the probability of
inliers by the maximum likelihood estimation for parameters
in the mixture probabilistic model. Additionally, GMS rejects
false matches by counting the quantity of matches in small
neighborhoods and achieves real-time performance with an
efficient grid-based score estimator.

B. Performance Evaluation

In image feature matching, some evaluations of 2D/3D
local descriptors and detectors have been performed. For
instance, in [23] the performance of 2D feature descriptors was
evaluated under transformations of rotation, zoom, viewpoint
change, blur, JPEG compression, light change and keypoint
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localization errors. In [26], an evaluation of several groups
of 2D feature detectors and descriptors was conducted on
images captured from the same 3D object with different
viewpoints and lighting conditions. In [24], an evaluation of
several 2D binary descriptors was performed, aiming at testing
their descriptiveness under different feature detectors on sev-
eral scenes with illumination change, viewpoint change, pure
camera rotation and pure scale change. In [25] the performance
of several 2D feature detectors was investigated on a particular
dataset wherein each scene was depicted from 119 camera
positions with a range of light directions. In 3D domain, [43]
compared two categories (i.e., fixed-scale and adaptive-scale)
of 3D feature detectors in terms of distinctiveness, repeatabil-
ity and efficiency under the nuisances of viewpoint changes,
clutter, occlusions and noise. In [44], the descriptiveness,
robustness, compactness and efficiency of ten local geometric
descriptors were tested on eight datasets with radius varia-
tions, varying mesh resolution, Gaussian noise and etc. More
relevant to our work is the evaluation performed in [27],
where RANSAC and a set of its variants were examined under
different ratios of inliers. This paper, compared with [27],
considers both parametric and non-parametric methods as well
as a variety of nuisances for more comprehensive evaluation.

III. BENCHMARK METHODS

Eight image feature correspondence selection algorithms
including two parametric ones (i.e., RANSAC [12] and
USAC [14]) and six non-parametric ones (i.e., NNSR [8],
ST [15], GTM [16], VFC [11], GMS [21], LPM [19]) are
considered in our evaluation. To facilitate our review, we start
with some basic notations.

Given two images (I, 1), keypoint locations and local
feature descriptors are computed as (K, K’) and (F,F"),
respectively. This procedure can be done using off-the-shelf
detectors and descriptors (e.g., SIFT [8]). To generate initial
feature matches C, keypoints are matched with each other
based on the similarity of feature descriptors - i.e., a correspon-
dence (match) in C is defined as ¢ = {x, X/, arg mfgx se(f, 1)}

with x € K, x € K',f € F, ' € F and sz being
the feature similarity score. The objective of correspondence
selection is to seek the maximum consensus (inlier) subset
Cintier  C. Key principles and computation steps of eight
competing algorithms are briefly reviewed as follows. Values
of thresholds required by those algorithms are summarized
in Table I.

A. Nearest Neighbor Similarity Ratio (NNSR) [8]

NNSR directly utilizes descriptor similarities to remove less
distinctive matches. Specifically, the ratio of the closest and
the second-closest feature distance to each correspondence is
used as a penalty. That is, a correspondence is judged as an
inlier if

I £ -1l

If =11l
where #,,5, € [0, 1], ||-||, denotes the L, norm as suggested
in [8], f 1’ and fé represent the most and the second most similar
feature descriptors of f, respectively.

(1)

E tl‘ll‘lS}’ >
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TABLE I

PARAMETER SETTINGS AND IMPLEMENTATIONS OF EVALUATED
ALGORITHMS, WHERE pix REPRESENTS THE PIXEL UNIT

No. Algorithm Implementation ~ Parameters Setting
1 NNSR [8] OpenCV trnsr Adaptive [45]
2 RANSAC [12] OpenCV transac 10pix
Nransac 2000
3 ST [15] MATLAB ot 0.3
4 GTM [16] OpenCV tgtm Adaptive [45]
Ngtm 100
Agtm 0.0001
5 USAC [14] OpenCV Nusac 850000
ta 10pix
ty 1.5pix
6 VEC [11] OpenCV B 0.1
Avfe 3
tufe 0.75
¥ 0.9
7 GMS [21] OpenCV o 4
3 LPM [10] MATLAB Npm 6
k 4

B. Random Sample Consensus (RANSAC) [12]

RANSAC follows a trial-and-error framework by repeating
procedures of random sampling and checking to maximize
the objective function. For image feature correspondence
selection, the desired parametric model is usually a plane
homography matrix or a fundamental matrix. Taking the
homography matrix as an example, it first randomly samples
several correspondences (at least 4) from C and generates the
model hypothesis H; for those samples at the ith iteration.
Then, the quality of hypothesis H; is checked via the following
objective function

0i = hi(c), )

ceC

where h(-) is a binary function defined as

X
1, if X' —p{ H; <t
h,‘(C) _ . ”X P( i |: 1 :|) ”2 = lransac (3)

0, otherwise,

with p([a; a3 a3]T) = [ai/a3 az/ag]T and f.4psqc being a
threshold that determines the confidence of an inlier. Those
steps are repeated n,qu5qc times and the model with the
maximum objective function is selected as the final model H*.
Correspondences consistent with H* (producing output value
of ones using Eq. 3) are identified as inliers.

C. Spectral (ST) [15]

This method locates the most reliable element by matrix
decomposition. It assumes that the connection among correct
matches is much tighter than the one among mismatches.
Based on this assumption, ST first builds an adjacency matrix

A as
/ /
[ Ixi = xll, X=Xl
aij =min| ———, ———2 ), )
Ix; =1, X =%,
where a;; € A is the affinity between ¢; and c;. Second,
the principal eigenvector vy, of A is computed using singular

value decomposition (SVD). Third, the maximum element in
vs; is selected as v; indicating ¢; being the most reliable
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correspondence. Fourth, set v; to zero and remove other
components of C that are in conflict with ¢;, i.e.,

ajj = Ist, (5)

where 7, is a predefined threshold. By repeating the third and
fourth steps until C is empty or v; = 0, the correspondences
related to all elements selected from vy, are determined as
inliers.

D. Game Theory Matching (GTM) [16]

GTM concentrates on extracting correspondences being
consistent to the majority of C. Specifically, this strategy
interprets the filtering process as a game-theoretic framework
where players attempt to obtain highest payoffs. At the begin-
ning of this game, every two players extracted from a large
population choose a pair of correspondences (served as strate-
gies of game playing in this context) from C. Then they will
receive a payoff linearly correlated to the coherence between
these correspondences. The player who gets high payoffs will
receive higher supports. In general, as the game going on,
players will prefer to select more reliable correspondences to
pursue higher pay-offs.

Given a pair of correspondences (c;, ¢;), the payoff function
is defined as

I = e—heTM max(lTi(Xi)—Tj(Xi)LITi(Xj)_Tj(Xj)I)’ (6)

where AgTy is a selectivity parameter, |-| represents the L
norm and 7;(x) is the similarity transformation estimated by
(similarly for T;(x))

nwzp@mﬁb, @

where H,, is the homographic transformation of ¢;. Note that
this algorithm particularly requires the local affine transfor-
mation cue to compute the pay-off function. Next, the payoff
matrix Pgry with the element in the ith row and jth column
that is defined as

0, otherwise,

pij = (8)
can be generated. The population vector q is updated by the
evolutionary stable states algorithm (ESS’s) [46] as

Pcrmq(k))i
q(k)"Peruqk)’
where ¢g; represents the element in the ith row of q and k is
the iteration number. After ngr s iterations, a correspondence

¢; is identified as inlier if its corresponding g; is higher than
a threshold tgrum.

qi(k + 1) = qi (k) 9

E. Universal RANSAC (USAC) [14]

USAC integrates a universal framework for RANSAC,
where each original step is optimized by referring to
the advantages of previous parametric approaches such as
PROSAC [13], SPRT test [47] and LO-RANSAC [36]. Fur-
ther, this algorithm inserts degeneracy and local optimization
processes after generating the minimal-sample model.
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During the sampling step, USAC uses a weighted sampling
algorithm named PROSAC [13], where the initial correspon-
dences are reordered at first based on the descending sort
order of brute-force matching scores and correspondences with
higher scores are preserved. At the checking stage of the model
(homography matrix or fundamental matrix), a correspondence
is judged as an inlier by Eq. (3) with the threshold g or
the epipolar geometry constraint with the threshold 7p. After
generating the minimal-sample model, USAC verifies whether
the model is interesting by the SPRT test [47]. The likelihood
ratio can be computed after evaluating n correspondences as

p(ri|Hp)
H (’"1|Hg)

where H, and H,, respectively represent a “good” model and
a “bad” model, r; is equal to 1 if ¢; is consistent with the
generated model and 0 otherwise, p(1|H,) is approximated by
the inlier ratio and p(r;|Hp) follows a Bernoulli distribution.
If the &, is higher than an adaptive threshold, the model
will be discarded. When fitting the fundamental matrix by
epipolar geometry constraint, USAC utilizes DEGENSAC [48]
for degeneracy. Eventually, USAC adds a local optimization
(LO-RANSAC [36]) to refine the minimal-sample model.

(10)

F. Vector Field Consensus (VFC) [11]

VFC interpolates a vector field where the posteriori proba-
bility of a correct correspondence is estimated by the Bayes
rule. For a correspondence c;, the transformation to a motion
field is expressed as (x;, x;) — (u;, v;), where u; = x;
and v; = X; — Xx;. In this motion field, VFC holds the
assumption that the noise around inliers indicated by z; = 1
follows the Gaussian distribution and the noise around outliers
indicated by z; = 0 follows the uniform distribution. Thus,
the probability is a mixture model given by

[lv; 4x)fc(“z)\|2 1 _ y

pUIV,0)= H(W 22 +T)» (11

where 6 = {fvfc, a2, y } is a set of unknown parameters, f, .
is the vector field expected to be recovered, y is the mixing
coefficient of the mixture probability model, i.e, p(z; = 1) =
y, U and V respectively are sets of u and v, ¢ is the uniform
standard deviation of Gaussian distribution, % is the probability
density of the uniform distribution and D is the dimension
of the output space. VFC employs the EM [49] algorithm
to deal with the maximum likelihood estimation with latent
variables. The E-step and M-step are repeated until parameters
are converged. Finally, the inlier set is generated as

Cinlier = {Ci S pi > tufc}a (12)

where t,7. is a predefined threshold.

G. Grid-Based Motion Statistics (GMS) [21]

GMS proves that besides feature descriptiveness, feature
number also contributes to the quality of correspondences.
It supposes that the quantity of correspondences in a small
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neighborhood around a true match is larger than that around a
false match under the smooth motion. In over-large neighbor-
hoods, regions are divided into multiple small region pairs
where distributions of correspondence number are approxi-
mated by Binomial distributions. Given a correspondence c;,

the joint statistical distribution is modeled as
S ~ B(Kn, p;), ifc is’inlier (13)

B(Kn, pr), otherwise,
where S; is the total number of correspondences in a region
pair (a, b) around ¢;, K is the quantity of small region pairs,
p: is the probability that the nearest neighbor of each keypoint
in a is located in b under the condition that a and b view the
same location, and p is the probability provided that a and
b view the different locations. p; and ps can be estimated by

pr=0+(1—-90)¢m/M, (14)
and

py =0 =0)(m/M),

where J is the probability of a correspondence being correct,
m is the amount of keypoints in region b, M is the size of
K’ in I’, and ¢ is a factor added to balance deviations caused
by repeated structures. A quantitative score is next designed
to evaluate the distinction between two distributions as
p="t"" (16)
S+ 5§

5)

where m is the mean value and s is the standard deviation.
This equation can be simplified as

P x~Kn,

where the distinction is positive correlated to the number of
correspondences.

In addition, to incorporate this approach into a real-time sys-
tem, a fast gird-based score estimator is developed as follows.
First, I and I’ are divided into 20 x 20 non-overlapping cells.
Second, for each cell in I, the cell containing the maximum
amount of correspondences is grouped in I’. Third, in cell-pair
(i, j) as well as its small neighborhoods (eight cell-pairs), S;;
is estimated as

a7)

(18)

K=9
Sij = 2 |xw;

k=1
where |y| is the amount of correspondences in the cell-pair
(i%, j%). All correspondences in (i, j) are judged as inliers if
Sij > tems, Where tg,s is a threshold approximated by a./n;
with o being a given parameter and n; being the average (of
the nine cell-pairs) amount of correspondences.

H. Locality Preserving Matching (LPM) [19]

This algorithm removes mismatches by enforcing local
geometric structure constraints. With the hypothesis that the
local structure around a correspondence may not change freely,
a cost function is deﬁned as

LWV, /llpm) = z wl

i=1

Alpm) + /11pm (19)

Authorized licensed use limited to: West Virginia University. Downloaded on July 29,2020 at 23:24:03 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: IMAGE FEATURE CORRESPONDENCE SELECTION: A COMPARATIVE STUDY AND A NEW CONTRIBUTION

where Ajp,m is a regularization parameter, ¥V is a set of
indicators that w; = 1 indicates the inlier and w; = 0
otherwise, N is the size of K, and

I =

; z d(x;,x;)—i— Z d(xi,xj)

L T
Jlxjely; JIx;ek,
1

(20)

is a constraint term measuring the local geometric structure
changes, where K, is the set of the k nearest neighbors of
x; (K, in the same way), and d indicates whether x; (as an
exempiar) is one of the k nearest neighbors of x;. With the
objective of minimizing the cost function, a correspondence
with the cost (i.e., [; > Ajpm) turns negative. Accordingly,
the correct correspondence set is determined by

1, it < Apm

) ., N.
0, otherwise,

wi = i=1, 1)

To summarize, we note that the six non-parametric methods
can be interpreted under a unified energy minimization frame-
work. The key difference among them lies in the choice of
mathematical formulation (e.g., graph theoretic vs Bayesian)
and the definition of cost or objective functions.

IV. NEW CONTRIBUTION: FROM COMBINATION
TO CONCATENATION

In the literature, the idea of combining classifiers [50], [51]
has been extensively studied. However, correspondence selec-
tion differs from traditional pattern classification in that the
solution space is not characterized by a scalar (e.g., binary
decision or matching score) but a collection of vectors.
We have found it is easier to implement feature-level instead
of decision-level combination. For instance, SUM-rule based
combination accumulates the output indexes (i.e., 0 vs. 1) of
all correspondence selection algorithms; the correspondence
decision is made by comparing the accumulated result against
the predefined threshold. A more flexible strategy is selec-
tively combine a subset (usually the top-ranked ones) of the
competing algorithms.

In this work, we propose a novel approach toward fusing
different methods which we call concatenation. Unlike com-
bination (conceptually similar to parallel processing), we sug-
gest an alternative concatenation strategy (analogous to serial
processing). The key idea is to concatenate a non-parametric
algorithm with a parametric algorithm (so the former serves
the purpose of preprocessing stage to the latter). Specifically,
NNSR-RS (as an exemplar) combines NNSR and RANSAC,
where NNSR plays the role of preselecting some candidates
from the initial correspondences; and RANSAC is then per-
formed in the candidate correspondences. In this manner,
the generated parametric transformation is consequently uti-
lized to extract the final inlier subset from the initial correspon-
dence set. As demonstrated by our experimental results later,
we have found that newly-proposed concatenation strategy
often outperforms the conventional combination strategy for
image feature correspondence selection.
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TABLE 11
SUMMARY OF FOUR EXPERIMENTAL DATASETS

Dataset Challenges Matching pairs
VGG [28] Zoom, rotation, blur, viewpoint change, 40
light change and JPEG compression
Symbench [29] Light change, 46
different rendering styles
Heinly [24] Zoom and rotation 29
AdelaideRMF [30] Multiple structures, 38

viewpoint change

V. EXPERIMENTAL SETUP
A. Implementation Details

In our experiments, Hessian-affine detector [40] and SIFT
descriptor [8] (a popular detector-descriptor combination [26])
are used as the default for image keypoint detection and
description. Note that Hessian-affine detector is also required
by the GTM method; other different combinations of detector-
descriptor are considered in Sec. VI-E. The initial correspon-
dence set C is generated by brute-force matching- i.e., greedy
comparison of two feature sets. Detailed comparisons among
parameter settings and implementation platforms for eight
competing algorithms are listed in Table I. For NNSR and
GTM methods, we set ty,s, and fg, adaptively using the
OTSU [45] algorithm to reduce the thresholding errors. All
benchmark methods are implemented under OpenCV or MAT-
LAB and tested on a standard desktop with a 3.2GHz proces-
sor and 8GB memory.

B. Benchmark Datasets

We conduct our experiments on four datasets-
ie., VGG [28], Symbench [29], Heinly [24], and
AdelaideRMF [30]. A brief summary of dataset characteristics
(e.g., challenging factors and database size) are shown
in Table II. Exemplar images of datasets can be found in the
supplementary material.

1) The VGG Dataset [28]: VGG is a hybrid dataset involv-
ing eight scenes. Each scene consists of six images with the
first image being the reference one with respect to the others.
Challenges including blur, viewpoint change, zoom, rotation,
light change, and JPEG compression exist in this dataset. The
ground-truth is the homography matrix H, indicating that the
transformation between two images on each scene satisfies
the plane homographic constraint.

2) The Symbench Dataset [29]: The Symbench dataset is
composed of 46 image pairs. Each pair includes the same
object with light change or different rendering styles. The
homographic transformation H of each image pair is given
as the ground-truth.

3) The Heinly Dataset [24]: The Heinly dataset comprises
images with dense or sparse viewpoint change, illumination,
pure large-scale zoom or rotation. Considering that nuisances
of viewpoint change and illumination have been covered in the
other three datasets, we choose a subset of Heinly containing
29 pairs of image shot on 4 scenes with the specific challenges,
i.e., pure zoom or rotation, to perform a more targeted test. The
ground-truth is provided as the homographic transformation.
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4) The AdelaideRMF Dataset [30]: AdelaideRMF includes
38 pairs of image with viewpoint change and multiple struc-
tures. The keypoint coordinates of initial correspondences are
provided and the ground-truth correspondences are manually
labeled in this dataset.

Motivations of employing these datasets can be summa-
rized as: (i) The eight scenes in the VGG dataset cover a
peculiar wide range of interferences such as the rigid/non-
rigid transformation and image quality variation. Both the
generality to diverse conditions and the robustness to a specific
nuisance can be assessed on this dataset. (ii) The focus of
Symbench is the image quality variation caused by light
change and different rendering styles that give rise to potential
errors of feature detection and description. The performance
in the context of image quality variation can be specifically
evaluated. (iii) The subset of Heinly is selected with the
aim of testing the performance under the condition of a
geometrical structure deformation (pure zoom or rotation).
(iv) AdelaideRMF aims at evaluating the performance of those
correspondence selection algorithms where plane homographic
constraint fails and multiple consistent correspondence sets
are involved due to multiple structures. All above peculiarities
make the evaluation benchmarks complementary to each other
and allow us to find the most appropriate algorithms for a
specific nuisance.

C. Performance Evaluation

The performance of eight algorithms is evaluated by pre-
cision, recall and F-measure as in [19], [21], [32]. First,
we denote the selected correspondence set, the ground-truth
correspondence set and the correct subset in the selected
correspondence set as Cipjier Cﬁfm and Cf:l’i;ﬁ” , respectively.
Then, the precision, recall and F-measure are respectively
defined as

| correct

inlier
b

Icinlierl
|C_cor_rect

_ inlier
Recall = |CGT |,
inlier

Precision = (22)

(23)

and

2Precision x Recall
F-measure =

— ) (24
Precision + Recall
where |-| denotes the cardinality of a set. A correspondence

¢ = {x,x'} belongs to CZ1. if

Ixi = p (Hgf [’?’ D l2 < ter,

where Hyg, is the ground-truth homography matrix and f¢; is
a threshold set to 10pix (pix being the unit of pixel) that
controls the upper bound of the accuracy of a true inlier in
our experiments.

Similarly, a correspondence belonging to C£%7¢“" is defined
by

.
oo (3]

(25)

(26)
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with 7 being the matching tolerance. We vary 7 from 1pix to
tg; with an interval of 1pix in order to generate the curves like
previous works [21], [32].

D. Experimental Protocols

Our experimental protocols are designed as follows.
In Sec. VI-A, the overall performance of the evaluated algo-
rithms on four different datasets is tested. In Sec. VI-B,
the robustness to different nuisances (i.e., blur, viewpoint
change, zoom, rotation, light change, and JPEG compression)
is independently examined on the VGG dataset. In Sec. VI-C,
we address concerns about the efficiency in those algorithms
by examining their overall time cost on different datasets
paired with the speed comparison under different scales of
initial matches. In Sec. VI-D, the performance with prese-
lected correspondences by NNSR (i.e., commonly employed
to improve the inlier ratio of initial matches [11], [27], [52],
[53]) is tested on four datasets. In Sec. VI-E, different detector-
descriptor combinations are considered to examine the per-
formance variation of correspondence selection algorithms.
Note that different combinations of detector and descriptor
are desired in different application domains [26], [40] and
will result in different distributions and inlier ratios. Finally,
representative visual results of the evaluated algorithms and
comparison results between combination and concatenation
are shown in Sec. VI-F.

VI. EXPERIMENTAL RESULTS
A. Performance on Different Datasets

In the following, we show the overall precision, recall and
F-measure performance of our evaluated algorithms on four
datasets (please refer to Fig. 2 for an overview).

1) Performance on the VGG Dataset: Fig. 2 (a) shows
outcomes on the VGG dataset. It is interesting to see that
NNSR achieves the best precision performance, being mar-
ginally better than USAC, RANSAC and GMS. This result is
due to the fact that the feature distinctiveness cue is rather
selective with rich-textured images, e.g., images in the VGG
dataset. On the down side, feature distinctiveness is sometimes
ambiguous and not a robust constraint as we can see that the
recall of NNSR is just mediocre. It indicates that many correct
correspondences have been filtered by NNSR. For ST and
LPM, they are generally inferior to the others on this dataset
in terms of the F-measure. That is because ST may fail to
locate the main cluster in the spectral domain if the ourlier
ratio is large, resulting in quite poor recall performance. LPM
achieves much better recall performance than ST, while its
precision performance is surpassed by most compared ones.
It arises from the loose constraint employed in LPM. Overall,
USAC is the best method on this dataset. Explanation behind
is that USAC is a parametric method and the parametric model
of each image pair existed in this dataset can be properly fitted.

2) Performance on the Symbench Dataset: Fig. 2(b)
presents results on the Symbench dataset. All methods suffer a
clear drop in performance on this dataset when compared with
that on the VGG dataset, which is attributed to light change
and various rendering styles. More specifically, we observed
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that the average inlier ratio of initial correspondences on this
dataset is lower than 10%. As previously explained, the feature
distinctiveness constraint strongly relies on the discriminative
power of the local feature descriptor. However, the render-
ing style variation makes it fairly challenging to maintain
descriptiveness in this case. As a result, NNSR delivers very
poor precision performance. Another significant difference
compared to that on the VGG dataset is USAC’s performance.
One can see that USAC returns the most and the second
most inferior precision and recall performance, respectively.
That is because USAC may find empty inlier sets in some
cases when its average estimated scores decreases owing to
the multiple constraints in this algorithm [14]. In general,
GMS and VFC are the two most well-behaved methods after
referring their F-measure rankings. A common trait of these
two algorithms is that both of them are independent from the
descriptor similarity.

3) Performance on the Heinly Dataset: Fig. 2 (c) presents
results on the Heinly dataset. Image pairs on this dataset only
contain pure zoom or rotation, and we can observe that all
methods obtain relatively decent performance on this dataset.
In terms of precision, NNSR and RANSAC neatly outperform
the others. Regarding recall, LPM and RANSAC are the two
best ones. Note that the reason for the high recall of LPM is
that most inliers are selected with the loose constraint designed
by this algorithm. For NNSR and RANSAC, the former one
is attributed to the high distinctiveness of SIFT (we will see
its performance variation with less distinctive descriptors in
Sect. VI-E), whereas the latter one is owing to the powerful
homography fitting ability of RANSAC. GMS, due to its sen-
sitivity to large degrees of rotation [21], shows worse results
compared to its performance on the VGG and Symbench
datasets.

4) Performance on the AdelaideRMF Dataset: Fig. 2(d)
presents results on the AdelaideRMF dataset. Two explana-
tions should be given on this dataset. First, as only manual
labeled ground-truth correspondences are available, we present
the exact scores rather than curves with respect to matching
tolerance for each method. Second, the keypoints on this
dataset are not located by image detectors. Rather, they were
labeled manually. Thus, GTM requiring local affine infor-
mation and NNSR based on auto-detected keypoints are not
assessed on this dataset. Since each scene in this dataset
contains multiple planes, the fundamental matrix based on
the epipolar geometry constraint is employed to approximate
the parametric model for RANSAC and USAC. By observing
the scores in Fig. 2 (d), one can see that GMS, LPM and
VEC achieve the best precision, recall and F-measure perfor-
mance, respectively. All the three methods are non-parametric.
This is reasonable since the AdelaideRMF contains multiple
structures, and the parametric assumption for methods like
RANSAC and USAC will fail in this case.

5) Overall Performance: By weighing up the results pre-
sented in Fig. 2, we can draw the following conclusions. First,
the performance of all correspondences selection algorithms is
affected by the initial inlier ratio. For instance, the performance
of all algorithms deteriorates dramatically on the Symbench
dataset with less than 10% inliers. Second, NNSR simply
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Fig. 2. Performance of the evaluated algorithms on four datasets,
i.e., (a) VGG, (b) Symbench, (c) Heinly, and (d) AdelaideRMF, in terms
of precision, recall and F-measure under different matching tolerance 7. The
maximum values of precision, recall and F-measure are shown in bold face
on the AdelaideRMF dataset.

relying on feature’s distinctiveness produces pleasurable
results if images are well-textured and clean. Third, parametric
approaches, i.e., RANSAC and USAC, prefer the context that
the transformation between two images can be well fitted by
a parametric model. While non-parametric algorithms perform
better in situations without large degrees of rigid/non-rigid
transformation. Overall, VFC and RANSAC are the two best
algorithms under across-dataset experiments. A more detailed
view that illustrates F-measure scores for each image pair on
the four datasets can be found in the supplementary material.

B. Robustness

In this section, we independently evaluate the robustness of
these algorithms to a specific nuisance, e.g., zoom, rotation,
blur, viewpoint change, light change and JPEG compression
on the VGG dataset. Results are listed in Table III. Some
exemplar images with different nuisances are exhibited in the
supplementary material.

Under zoom and rotation (casel and case3), USAC and
RANSAC, i.e., two parametric methods, behave the best
(F-measure is referred) mainly attributed to that zoom and
rotation are faint impact on homography fitting. Under blur
(case2 and case6), GMS and NNSR outperform others. GMS
is independent from feature similarity constraint, thus making
it rational. For NNSR, it is still explicable as SIFT is very
robust to blur. Regarding viewpoint change (case4 and case8),
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TABLE III

ROBUSTNESS RESULTS OF EVALUATED ALGORITHMS AGAINST
DIFFERENT NUISANCES WITH 7 = 5. THE BEST
RESULT Is EXPRESSED IN BOLD FACE

NNSR RANSACST GTM UASC VFC GMS LPM
P(%) 81.16 76.11 17.98 4322 7738 67.19 63.61 42.50
Casel R(%) 77.68 9286 4.51 79.60 99.05 86.11 11.45 83.54
F(%) 7735 8242 6.56 53.69 84.48 7427 1846 54.75
P(%) 74.57 3687 4423 67.00 49.66 29.44 41.71 27.73
Case2 R(%) 79.39 4185 823 56.74  60.00 51.41 5045 54.75
F(%) 71.87 3871 1346 61.12 5430 3527 4554 35.86
P(%) 61.53 7054 1597 4492 67.41 4938 58.57 44.59
Case3 R(%) 5791 8328 197 52.16  79.95 99.22 5721 7643
F(%) 5374 7481 3.50 4483 7312 6191 56.35 55.10
P(%) 51.77 5558 3721 5094 63.01 57.86 57.05 45.08
Case4 R(%) 61.63 6638 3.52 68.55 79.73 97.08 75.52 83.97
F(%) 5175 5856 641 55.69 70.23 71.23 64.55 56.56
P(%) 7628 81.44 6190 6890 8376 71.99 64.89 57.65
Case5 R(%) 63.75 8697 6.76 80.35 100 100 87.95 84.46
F(%) 68.00 8234 11.61 7394 91.11 8249 7437 67.90
P(%) 31.90 4533 2495 3345 3223 31.18 57.10 26.72
Case6 R(%) 69.13 27.06 257 39.10  40.00 40.00 47.00 66.81
F(%) 3149 2886 4.34 3429 3568 35.02 50.80 35.82
P(%) 89.47 87.07 89.46 80.66 89.59 89.48 79.87 75.87
Case7 R(%) 61.17 97.41 2859 9442 100 100  96.70 93.38
F(%) 7242 91.81 43.07 86.88 9443 9426 87.25 83.43
P(%) 6727 7442 5234 72.05 73.03 7240 80.86 62.67
Case8 R(%) 61.08 79.03 4.02 80.12 80.00 79.51 73.10 81.76
F(%) 5839 7623 17.36 7342 7633 75.74 76.08 69.64
. OpenCV = 5 MATLAB
INSR AN
g 7o R
o 56 usac | g
3 54 i Séifs 3 30
3., A 3
. d
[m]
48 10
104 102 10° 102 10! 10° 10 102 10°
Time (s) Time (s)
(a) VGG
. OpenCV . MATLAB
'RANSAC| AN
< 90 o) ch §80 f;M
T v s | g
2 Bovs | @60
g 60 —T g
£ 50 £
e 40 40
=+
3?0'3 102 107! 10° 3?0'2 10! 10°
Time (s) Time (s)
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Fig. 3. Efficiency v.s. F-measure plots on the (a) VGG and (b) AdelaideRMF
datasets. The efficiency-axis is shown logarithmically for clarity. The methods
implemented in OpenCV and MATLAB are separately compared.

USAC and VFC are the best methods. Note that VFC generally
delivers good performance under all kinds of nuisances, being
benefited from the consensus search in the non-parametric
field. USAC also achieves the best performance under light
change (case5) and JPEG compression (case7), being the one
that is robust to the broadest categories of nuisances.

C. Efficiency

To provide an overview of the evaluated methods by taking
both selection performance and efficiency into consideration,
we present the efficiency v.s. F-measure plots on the four
experimental datasets in Fig. 3. Owing to fast execution speed
and overall decent performance, USAC strikes a good balance
between selection performance and efficiency.
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Fig. 4. Speed comparison of evaluated algorithms with respect to different
numbers of initial correspondences. (a) and (b) present the results of methods
implemented in OpenCV and MATLAB, respectively. To give a better
comparison, VFC is implemented in both platforms. The time-axis is shown
logarithmically for clarity.

In order to further test an algorithms’ efficiency regarding
different numbers of initial correspondences, i.e., the number
of initial correspondences may vary in different applications or
with different feature detectors, we vary the amount of initial
correspondences from 1000 to 5000 and record the average
speed of the eight methods. This experiment has been repeated
for 10 rounds and average statistics are retained. Because
codes of these algorithms are implemented either in OpenCV
(C++) or MATLAB, we assess methods within the same plat-
form independently. In addition, the VFC method is evaluated
on both platforms and can be a reference for comparing across-
platform methods. Results are reported in Fig. 4.

For methods implemented in OpenCV, the efficiency of
GMS is beyond all others. That is because GMS involves a grid
framework for fast scoring. NNSR ranks the second, as only
sort operation is needed to rank correspondences. RANSAC
is slightly slower than USAC, and the core time consump-
tion of both methods is dedicated to hypothesis generation-
verification. GTM, with the computational complexity of
O (n?) (n being the number of input correspondences), is sig-
nificantly slower than the other five methods. The margin is
rather significant as the number of correspondences increases.
For methods implemented in MATLAB, LPM is very efficient
as it relies on a simple yet efficient strategy by preserving local
neighborhood structure. ST is the most inefficient method,
being slower than others by tens of magnitude with dense
correspondences. It is due to the fact that the time consumption
for computing eigenvalues increases exponentially with the
size of the affinity matrix.

D. Performance on Selected Matches

Many existing works [11], [27], [52], [53] first prune false
correspondences via NNSR and then use parametric or non-
parametric methods to for further selection. This experiment
then checks this scenario. Remarkably, since NNSR fails
to work on the AdelaideRMF dataset, this dataset is not
considered in this test. Fig. 5 shows the difference between
correspondences before and after applying NNSR, and results
using NNSR-selected correspondences for selection are shown
in Fig. 6.

On the VGG dataset shown in Fig. 6(a), one can see that the
performance of all methods has been improved using NNSR-
selected matches compared to brute-force matches in Fig. 2(a).
Particularly, USAC manages to be the best method regarding
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(b) NNSR-selected matching

Fig. 5. Examples of correspondence sets obtained via brute-force matching
(a) and NNSR selection (b). Sample image pairs are taken from the VGG
dataset.
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(c) (C))

Fig. 7. [Initial correspondences using (a) SIFT + SIFT, (b) ORB + ORB,
(c) ASIFT + ASIFT and (d) BLOB + FREAK on an exemplar image pair
taken from the VGG dataset.

TABLE IV

F-MEASURE (%) PERFORMANCE UNDER DIFFERENT GROUPS
OF DETECTOR AND DESCRIPTOR ON THE SYMBENCH
AND HEINLY DATASETS WITH 7 = 5

NNSR  RANSAC ST USAC VFC GMS LPM

(a) SIFT + Symbench 9.34 3.02 122 327 1156 11.64 9.36
SIFT Heinly 94.13 95.43 33.82 98.75 83.08 40.29 89.84

ORB + Symbench 4.70 5.27 2,13 333 3.00 11.62 631
RANSAC ST GTM USAC VFC GMS LPM ORB Heinly 57.62 58.98 17.57 56.45 56.30 50.24 60.30

Symbench 17.26 ~ 5.06 1846 14.84 2237 26.59 18.04 ASIFT + | Symbench 7.00  7.15 329 454 1442 1748 1254
Heinly 97.12 5120 5841 8745 96.16 7045 97.27 ASIFT Heinly  69.31 9231 2747 7872 78.75 4421 88.21
®) BLOB + Symbench 4.62 2.35 0.95 197 625 050 219

FREAK Heinly 68.63 76.25 2032 7445 68.71 430  66.64

Fig. 6. Performance of evaluated algorithms (except NNSR) on selected

matches on the (a) VGG, (b) Symbench and Heinly datasets. For aggregated
view, precision, recall and F-measure curves are shown for the VGG dataset,
and F-measure (%) performance under r = 5 is shown for the Symbench
and Heinly datasets. The AdelaideRMF dataset is not tested as NNSR fails
to work on this dataset.

precision, recall and F-measure. Also, gaps between most
curves excluding that of ST are relatively small. On the
Symbench and Heinly datasets, GMS and LPM respectively
achieve the best overall performance, where LPM even pro-
duces an extremely high F-measure score, i.e., 97.27%, on the
Heinly dataset. We can infer that LPM adapts well to initial
correspondence sets with high inlier ratio.

E. Performance Under Different Detectors and Descriptors

In addition to Hessian-affine 4+ SIFT, we also consider four
other popular detector-descriptor combinations, i.e., SIFT +
SIFT [8], ORB + ORB [9], ASIFT + ASIFT [54], and
BLOB [55] + FREAK [56]. Fig. 7 shows the initial corre-
spondences with these combinations on a sample image pair.
Note that GTM is excluded in this test as it requires local
affine information and these detectors do not provide this
information. Also, the AdelaideRMF dataset is not considered
due to human-labeled keypoints. The results are reported
in Fig. 8 and Table IV.

A common characteristic of these results is that the best
correspondence selection algorithm generally varies with com-
binations of detector and descriptor. While we can still find
some consistencies, e.g., the VFC method achieves pleasurable
performance on the VGG dataset in spite of the descriptor-
detector combinations. The performance of some methods

fluctuates dramatically. For example, NNSR ranks the first
with SIFT + SIFT while performs poorly using ASIFT +
ASIFT on the VGG dataset. On the Symbench and Heinly
datasets, GMS and RANSAC are two prominent methods
under different kinds of detector-descriptor combinations.

F. Visual Comparison and Fusion Results

To obtain a qualitative sense of outputs of evaluated algo-
rithms, we present several visual results of these algorithms
on the four experimental datasets in Fig. 9.

Two main observations can be made from the figure.
First, distributions of selected correspondences by differ-
ent algorithms are generally different from each other. For
instance, few correspondences are found by GTM on the
bread in Fig. 9(d). However, NNSR and LPM get plenty
of correspondences on it. Second, the quantity of selected
correspondences also varies with different methods. In partic-
ular, LPM manages to return dense correspondences on most
datasets, while ST seeks out much less than others.

Finally, we report our experimental results with combination
and concatenation strategies of fusing different correspondence
selection algorithms. Fig. 10 illustrates the evaluation results of
these fusion methods on VGG dataset. SUM denotes standard
sum-based combination, and RANKED-SUM accumulates the
indexes of USAC, VFC, RANSAC, and NNSR which achieve
better F-measure. As shown in Fig. 10, the combination
methods with proper 7 and the concatenation methods achieve
superior performance compared with the baselines, -i.e., the
single selection approaches, which confirms the superiority of
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Gl
(d) AdelaideRMF

Fig. 9. Visual results of evaluated algorithms on examplar image pairs
respectively taken from the (a) VGG, (b) Symbench, (c) Heinly and (d) Ade-
laideRMF datasets. For the best view, lines with different colors represent
results of different algorithms.

fusion strategies. Moreover, the concatenation methods out-
perform the combination methods in most cases, verifying the
strengths of individual approaches are more effectively lever-
aged. As aforementioned, parametric methods (e.g., RANSAC)
are sensitive to the inlier ratio in the initial correspondence set,
so the performance is able to be remarkably improved as a pre-
selection is incorporated which significantly boosts the inlier
ratio in a candidate correspondence set.

VII. SUMMARY AND DISCUSSION

To facilitate the decision in practical applications, we pro-
vide a “user manual” for image feature correspondence selec-
tion in Table V. Some tips and lessons associated with each
evaluated algorithm are presented as follows:
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Performance of evaluated algorithms on the VGG dataset using four different detector-descriptor combinations, i.e., (a) SIFT + SIFT,
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Fig. 10.  Performance comparison of fusion methods and the baselines -
i.e., single evaluated methods on VGG dataset, where SUM accumulates the
output indexes (i.e., 0 vs. 1) of all evaluated approaches, and RANKED-SUM
accumulates the indexes of USAC, VFC, RANSAC, and NNSR that achieve
better F-measure. The matches are determined as inliers if the corresponding
accumulated indexes are higher than 7. NNSR-RS (as an example) represents
a fusion method that combines NNSR and RANSAC, where RANSAC is
performed in a subset of candidate correspondences preselected by NNSR, and
the estimated parametric transformation is consequently employed to select
the final inlier subset from the initial correspondence set.

TABLE V

SUMMARY OF CORRESPONDENCE SELECTION ALGORITHM COMPARISON
IN DIFFERENT SCENARIOS BASED ON THE EVALUATION RESULTS.
NOTE THAT THIS CONCLUSION IS DRAWN UPON THE F-MEASURE,
I.E., THE AGGREGATE PERFORMANCE REGARDING BOTH PRE-
CISION AND RECALL. KEYPOINT DETECTOR AND DESCRIP-

TOR ARE ABBREVIATED TO DET AND DES,

RESPECTIVELY
Scenarios Superior methods Inferior methods
VGG USAC, RANSAC, VFC ST
Datasets Symbench GMS ST, USAC
Heinly RANSAC, NNSR, LPM ST, GTM, GMS
AdelaideRMF VFC, LPM ST, RANSAC
Pre- VGG USAC, RANSAC, LPM ST
selection Symbench GMS, VEC ST
Heinly LPM, RANSAC, VFC ST, GMS
Det/Des SIFT+SIFT USAC, NNSR, GMS ST, RANSAC
groups ORB+ORB LPM, GMS, USAC ST, VFC
ASIFT+ASIFT VEC, RANSAC, GMS ST, USAC, NNSR
BLOB+FREAK VFC, NNSR, RANSAC ST, GMS, USAC
Robust- Zoom and rotation USAC, RANSAC ST, GTM, GMS
ness Blur NNSR, GMS ST, RANSAC
Viewpoint change USAC, VFC ST, NNSR
Light change USAC, VFC ST
JPEG compression USAC, VFC ST, NNSR
Efficiency GMS, NNSR ST, GTM

o NNSR is arguably the most straightforward strategy to
select correspondences. Its key strength is that repeatable
patterns can be removed reliably in certain circumstances,
provided that its employed feature detectors can locate
the keypoints accurately and descriptors possess strong
discriminative power, e.g., SIFT. Also, the high execution
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speed makes it suitable for real-time or near real-time
systems. However, the limitation of NNSR is obvious
because of the simple descriptor similarity constraint.
It is vulnerable when image quality is low (e.g., facing
with light change, blur, exposure, and style-transfer) and
texture information is limited.

« RANSAC and USAC, ie., two evaluated parametric
approaches, can fit the parametric models including
the homography and fundamental matrices between two
images effectively, with the premise that the image pair
has homography or epipolar geometry constraint. Thus,
they are prior options in such circumstances. Neverthe-
less, such assumption also brings drawbacks, e.g., when
non-rigid objects are captured in images with large scale
of parallax or the pure rotation between two camera
positions, resulting in the failure of RANSAC and USAC.
Further, the reliable models may not be generated by
limited iterations with high outlier ratios, which will give
rise to expensive time cost. For RANSAC, the minimal-
sample models sometimes fall into the local optimization.
USAC optimizes over RANSAC, though, it does not
guarantee convergence and may produce an empty inlier
set due to strict constraints.

o ST and GTM are methods relying on the affinity matrix
computed from initial matches. We can find that these two
methods are relatively time-consuming, especially for the
ST method. The performance of GTM is much better than
ST, mainly because GTM employs local affine informa-
tion to judge the compatibility of two correspondences.
While ST is based on rigid constraint. ST, when inputted
with high-quality correspondences, is able to achieve high
precision performance (as verified in Sect. VI-D). These
two methods are optional for off-line applications desiring
high precision and with high-quality input.

o« LPM rejects outliers by the local structure consistency.
The constraint item in LPM is relatively loose, resulting
in high recall yet relatively low precision. LPM prefers
scenarios where the geometric structure information is
well preserved between the same local pattern in the
image pairs, e.g., small degrees of rigid transformations.
Similar to NNSR, it relies strongly on the discriminative
power of the feature descriptor. In other words, retrieving
the local consistency can be problematic if the local
region contains too few inliers. We therefore suggest
to choose LPM in the context that has well preserved
geometric structures and requires dense correspondences.

o VFC, as revealed by our experiment, is the most robust
method under all tested scenarios. This is attributed to the
fact that VFC is independent from the feature similarity
and parametric models. Specifically, it performs inlier
selection in a vector field. VFC generalizes well under
different application contexts and can cope with various
kinds of nuisances, especially for viewpoint change, light
change and JPEG compression.

o GMS, similar to VFC, is also independent from the
feature similarity and parametric models. However,
it assumes that the motion between two images is smooth.
Accordingly, it behaves unsatisfactory for image pairs
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undergoing large degrees of rotation. While if the motion
smoothness assumption holds, its performance is superior
even for correspondence set with very limited number
of inlier, e.g., correspondences generated from the Sym-
bench dataset. Another attractive merit of GMS is the
ultra fast execution speed even under several thousands
of initial correspondences, making it a prior selection for
real-time applications.

VIII. CONCLUSIONS

This paper has comprehensively evaluated eight state-of-
the-art image correspondence selection algorithms, covering
both parametric and non-parametric families. The experi-
ments addressed several critical issues regarding correspon-
dence selection, e.g., different application scenarios (datasets),
robustness under various challenging conditions including
zoom, rotation, blur, viewpoint change, JPEG compression,
light change, different rendering styles and multi-structures,
efficiency, and inputs from different combinations of feature
detector and descriptor. Advantages and limitations, in light
of experimental outcomes, are summarized so as to guide
developers to choose a proper algorithm given a specific
scenario. According to the evaluation results that the best
option varies in different circumstances, we suggest that fusing
the selected results of different approaches is a promising
solution, taking account of the generalization and robustness.

Remarkably, the performance of most existing algorithms
changes dramatically in different scenarios and most methods
fail to achieve satisfactory results when the inlier ratio of the
initial correspondence set is low. Therefore we believe it is
worth pursuing future research towards the development of
correspondence selection algorithms with improved generality
and robustness to low inlier rate. Concatenation-based fusion
might be a promising strategy toward this direction; we will
explore other ways of concatenation in future studies.
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