
Developer Reputation Estimator (DRE)

Sadika Amreen∗, Andrey Karnauch† and Audris Mockus‡

Department of Electrical Engineering and Computer Science

The University of Tennessee, Knoxville, TN, USA

Email: ∗samreen@vols.utk.edu, †akarnauc@vols.utk.edu, ‡audris@utk.edu

Abstract—Evidence shows that developer reputation is ex-
tremely important when accepting pull requests or resolving
reported issues. It is particularly salient in Free/Libre Open
Source Software since the developers are distributed around the
world, do not work for the same organization and, in most cases,
never meet face to face. The existing solutions to expose developer
reputation tend to be forge specific (GitHub), focus on activity
instead of impact, do not leverage social or technical networks,
and do not correct often misspelled developer identities. We
aim to remedy this by amalgamating data from all public Git
repositories, measuring the impact of developer work, expose
developer’s collaborators, and correct notoriously problematic
developer identity data. We leverage World of Code (WoC), a
collection of an almost complete (and continuously updated) set
of Git repositories by first allowing developers to select which of
the 34 million(M) Git commit author IDs belong to them and then
generating their profiles by treating the selected collection of IDs
as that single developer. As a side-effect, these selections serve
as a training set for a supervised learning algorithm that merges
multiple identity strings belonging to a single individual. As we
evaluate the tool and the proposed impact measure, we expect to
build on these findings to develop reputation badges that could
be associated with pull requests and commits so developers could
easier trust and prioritize them.

Link to demo video – https://youtu.be/KyfaXtv7hA8

Link to source code – https://github.com/ssc-oscar/DRE

Index Terms—Developer Reputation, Software Ecosystem,
Identity Disambiguation

Supported by NSF awards 1633437 and 1901102.

I. INTRODUCTION

Software development is a highly collaborative activity.

The version control system Git and “social coding” plat-

form GitHub, for example, support collaboration through

code contribution, code sharing and knowledge exchange, and

Free/Libre Open Source Software (FLOSS) software develop-

ment is no longer bound within small groups or communities

of developers. FLOSS developers can work together from

any physical location, during any time of the day, have any

educational background, and contribute to multiple projects

with varying degrees (e.g. adding features, writing patches,

enhancing documentation). This talent pool of software devel-

opers is vast and highly varied in the types and amounts of

experience. That makes it difficult to find collaborators with

sufficient and specific expertise.

To aid in this process, a reputation measurement tool is

needed for the size and diversity of FLOSS [7]. GitHub, for

example, provides developer profiles that show their activity

over all projects on GitHub. Expertise Browser [3] was used to

support globally distributed development by both showing the

proportion of developer’s or organization’s commits over the

entire code base. However, serious gaps remain in the existing

reputation estimation tools. First, none of them collect data

from the entirety of FLOSS projects, and even though GitHub

contains the bulk of such projects, many important projects are

not hosted or mirrored there. Making measurements based on

a comprehensive collection from diverse sources is, therefore,

our first aim. Second, none of the existing tools show the

impact of developers’ work. Google Scholar, for example, does

not only show the papers an author wrote but also provides

the number of citations for each paper (an indication that

the work was used or a measure of its impact). Providing a

measure of impact developers have on other FLOSS projects

and developers is, therefore, our second aim. Third, existing

tools have limited social network capabilities that do not

inform how important or impactful a developer’s collaborators

are. Thus, building a more comprehensive display of social

network including important collaborators and shortest path

to celebrities is our third aim. Longer term, we expect this

or similar tools to evolve into trusted reputation measurement

tools that could be deployed as badges to help, for example,

prioritize pull requests. Finally, we would like to address

a serious research problem in software development that

involves data correction, especially developer identity data that

is of rather poor quality in Git commits [2]. One of the biggest

challenges is the lack of large labeled datasets that could be

used to train supervised machine learning models to do error

correction. Since survey response rates are low, constructing

such data sets is a challenge. This tool, if it becomes popular,

would address that problem and help research on FLOSS in

general.

Our approach is to use the World of Code (WoC) infrastruc-

ture [1] to obtain over 34M developer identities used in over

1.6 billion(B) commits gathered from over 73M non-forked

repositories. Developers start by searching through these 34M

identities for the ones they used in their commits. Once they

select the IDs that belong to them, the tool runs a job in

the background to identify all commits made using these IDs

and, using the WoC infrastructure, obtains all files modified

by these commits, repositories where these commits occur,

and blobs created by these commits. Further calculations are

then done to construct the social network and measure the

impact as described below. This profile consolidates their

work (in terms of development languages, commits, projects

and files) across platforms and finds their collaborators with

their corresponding projects, all displayed in an interactive

1082

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00107

dashboard.

In the rest of this paper, we describe the intended users of

our demonstrated tool, how to use it, the software engineering

challenges we faced in construction of this tool and finally,

our planned evaluation studies.

II. INTENDED USERS

DRE is designed and built keeping a number of users and

challenges in mind. For example, a service that consolidates

developer activity, much like scholarly activity showcased on

Google Scholar Profile or work history as on LinkedIn, is

not available for software engineers. Measures such as the

researchers total citation count, the h-index etc. showcase the

level of expertise of an academic scholar in a holistic sense,

and a more granular measure of citation count for a given

scientific publication showcases the impact of the researcher

in a particular domain. Similarly, a number of measures such

as a developer’s commit count, the number of projects the

developer has worked on, the languages the developer uses

for coding and the number of collaborators can indicate a

developer’s expertise in a domain. Furthermore, a developer’s

impact can be measured by calculating the extent of reuse

of the code created by the developer. Here, we outline the

potential users of the implemented DRE and the benefits it

can bring them.

Individual Developers: DRE aggregates a developer’s con-

tribution from multiple forges (and from multiple author IDs

found in Git commits) and creates a consolidated measure

of impact and enables showcasing their areas of expertise in

the form of a personalized profile. The profiles of users can

be helpful in assessing their centrality, reach and contribution

to FLOSS. From the user’s standpoint, this tool can provide

evidence to support their stature of professional expertise

as well. Summarized data can be used to create reputation

badges which can act as a signal for the quality of the work

they are doing and, therefore, increase the confidence that

their issues and/or pull requests are of high quality. DRE

enables developers to quench their curiosity regarding their

contribution, impact, social centrality etc.

Researchers: The software engineering community is going

through an evolution of practices with contributors adopting

social platforms for development and knowledge exchange.

As a result, researchers in commerce and academia are trying

to understand the participation and contributions of developers

in this collaborative environment. Mining software repositories

help researchers answer a number of questions, such as “Who

are the most influential developers?”, “What is a developer’s

contribution across platforms?” [6], “What are the roles of

the various contributors?” [4]. Unearthing answers to these

questions help researchers understand the OSS development

process better in terms of realizing who’s driving the evolution

process and who are the central people to a software project.

To find answers to these, a complete set of data containing

software development activities across all platforms is required

as realized in, for example [1]. For any research to be effective,

the data also needs to be free of errors, especially errors related

to misrepresentations of the the developer identity. DRE allows

researchers to upload and correct a list of developer IDs

through advanced methods of disambiguation carried out in

the backend and validated by the developers themselves.

Recruiters: Seeking expertise required for a particular

software development task is a challenging process. While

job seekers may claim proficiency in various languages and

domains, verification of the claim requires large amounts of

resources such as time (for lengthy interviews) and expert

judges of performance. An online profile of developers can act

as a bridge between job seekers and potential employers by

corroborating claims of expertise. Data from OSS repositories

have been useful for discovering technical expertise in the

past [5]. For example, a developer’s contribution to a project

in terms of commits and number of commits made in various

languages can corroborate claims made in a resume by a job

seeker. DRE reserves the capacity to introduce badging metrics

in the future that can provide further confidence to recruiters.

III. SOFTWARE ENGINEERING CHALLENGES

Many tasks in software engineering evolve around modeling

and supporting developer activity. Software developers can

participate in multiple projects at a given time in various

ways such as sharing code and collaborating and exchang-

ing knowledge through question/answers or documentation.

Measuring such activity, especially the more complicated

measures such as impact, is highly complicated. We start from

author IDs as used in Git commits, determine all projects

(and all other developers who worked on these projects) the

commits belong to, and all files and blobs created by these

commits. The blobs authored by a developer are scrutinized

for impact as described below. We also calculate the full

bi-partite graph (with 34M developers and 73M projects) of

developer to project (repository) links which we use to identify

collaborators and to calculate the shortest paths.

Data collection: It is not possible to see an individual’s

global impact if the activities of the individual are scattered

across multiple platforms. Software development activity data

poses this problem as it is dispersed across multiple forges,

version control tools, issue trackers etc. and is extremely large

in volume. In order to showcase all contributions of a partic-

ular individual, a full collection of data that is merged from

all platforms is required. Collecting and hosting such huge

volumes of data is extremely time and space consuming. We

utilize the WoC infrastructure to build our tool. As described

above, the WoC mines this data from various version control

systems, that serve as the backend for this online tool.

Data quality: The extremely large volumes of data collected

from various forges and version control tools are of low

quality. Particularly, this data is ridden with identity errors

in the form of synonyms (a single developer with multiple

IDs) and homonyms (a single ID that may be used by

multiple developers and carry no information pertaining to

the developer). This makes consolidation efforts extremely

challenging as each developer is represented through various

credentials across and within platforms. In an effort to correct

1083

Fig. 1. Layout of the Developer Reputation Estimator (DRE): Front and back end

these errors, DRE leverages the disambiguation framework

ALFAA [2], that finds matches between developer names,

email addresses and other activity traces found in the commit

using supervised machine learning techniques.

Data size: To locate the initial set of author IDs, an author

database of over 34M IDs is queried against several search

parameters provided by the user. This process is done in real

time and users expect results within seconds. Another time-

sensitive operation comes soon after author selection, where

a user waits for the backend to perform aggregations and

network calculations on graphs of hundreds of millions of

nodes and edges. To address these concerns, the databases

are sharded across multiple machines for higher throughput

and faster queries. For the expensive backend calculations, an

initial set of blacklisted entities (e.g. a Git project that is trying

to reach 1M commits artificially) that mislead graph traversals

and kill computation time has been created.

IV. DRE: USAGE AND CAPABILITIES

To use the tool, new users create an account by providing an

email address and a password for the account. Once an account

is created the users are requested for additional information

such as the user’s first and last names, any additional email

addresses and user names (i.e. email handles, GitHub user

names etc.). The search returns a list of IDs that are potential

matches for the user based on exact string comparisons of

the search parameters provided by the user. The user is then

requested to select all IDs that belong to them.

After selections are made, the data is stored in one of the

three MongoDB collections: Author, User, and Profile.

The Author schema is built from information on WoC and

contains the first and last names, email, user name and an

author ID (name<email>). The User collection is populated

during account creation and the schema includes the user’s

email, password hash, search parameters, selected IDs and

omitted IDs (all IDs from the search not selected by the user),

and last updated date (determines whether or not a new set

of calculations is needed for this user). The User database

feeds the selected and omitted IDs directly to the backend for

its main operations. The selected and omitted IDs are used by

the backend in two ways: (1) A dashboard is populated with

a number of measures of the user’s activity, a result of the

amalgamation of all activities of all selected IDs, as we discuss

below and (2) An input to the disambiguation algorithm that

compares all the selected IDs with all other IDs in the dataset

and predicts an outcome of match or non-match using a

supervised learning technique described in [2]. While account

creation is the main trigger of backend calculations, any update

to the user’s selected and omitted IDs (e.g. as a result of

the disambiguation algorithm) is also recorded, indicating a

need for re-calculation. Once the backend operations finish,

the Profile database is populated and/or updated with the

measures listed below. The tool, a layout of which is depicted

in Figure 1, will be notifying the users via email that their

interactive dashboard is ready for viewing which displays the

following measures and capabilities.

Number of Commits, Projects, Collaborators and Files:

The number of commits help show the overall lifetime activity

of a developer. A higher project count may be a reflection of

the expertise, passion and drive of a developer. The collabo-

rator count can reveal a developer’s willingness to work with

others. The number of files modified can show the developer’s

impact on the OSS ecosystem.

List of Projects: An interactive list of projects showing

project names, number of commits made by the user in the

particular project and the total number of commits made in

the project. This can help assess contribution of the user for

each project.

Distribution of Coding Languages: A pie chart showing

the coding languages used by the user and the number of

files associated with each language in the user’s commits. This

shows the user’s language proficiency and preference.

List of Collaborators: A consolidated list of collaborators,

across all projects and platforms. Each collaborator’s commit

count (a measure of contribution) for a given project and the

1084

total number of commits in that project is provided as well to

demonstrate the productivity of the collaborators and the size

of the projects they work on.

Torvalds Index: Like Erdös number1, the Torvalds index

is the shortest path, with collaborators as nodes and projects

as edges (seen on mouse-over), to Linus Torvalds, the creator

and developer of the Linux kernel. Apart from being cute, this

index allows the user to measure his/her position in the social

network graph defined by people they collaborate with. It can

provide further insight about a user’s collaborators, revealing

projects or persons that may be of interest to the user.

List of Blobs: Google Scholar Profiles show the impact

of an academic through citation count. Similarly, we suggest

to measure an aspect of the impact of a developer through

the number of reuses of their code. For each blob created

by a developer’s commit, we first determine an author for

that blob. To obtain this author, all commits creating the

blob are gathered and the first commit (in calendar time)

is identified. The author of that commit is considered to be

author of the blob. In the impact measure, only blobs where

the developer is the author (as defined above) are considered.

For each such blob we count the number of commits done

by other developers. Such commits indicate that these other

developers have copied the original author’s code for use in

their projects: similar to academic citations indicating the use

of others’ results. The user is shown a list of blobs which they

have created along with a number of commits done by others

creating the same blob, and authors of these commits. The

duplication is a measure of the impact of the user, indicating

how many times the blob has been copied. The authors of

these blobs allows the user to see their impact in the social

network graph by observing which of their collaborators (if

any) used their code/blob.

Upload list of IDs: Researchers in academics and com-

merce have the option to upload a list of authorship identities

from various projects. This list will be fed to the disambigua-

tion process [2] in the backend which can correct low quality

developer identity data derived from various online tools. Once

the correction is complete, the tool will export the corrected

list of developer IDs to the user via email.

V. PLANNED EVALUATION STUDIES

The approach for evaluation studies starts with the recog-

nition of two user bases: those looking to utilize developer

profiles and those strictly seeking identity disambiguation

capabilities.

Developer Profiles: To evaluate the tool’s capability and

effectiveness in regards to the developer profiles it generates,

a modular approach has been designed. The initial study

includes a smaller user base consisting of co-workers, peers,

and others within a close circle who have shown interest and

are already signed up as users in the early stages of the tool.

Since this user base provides easy contact, the intent is to

perform either in-person or online interviews to obtain initial

1https://en.wikipedia.org/wiki/Erdos number

reactions, feedback, and evaluation of the tool. Some of the

insights we hope to gain include:

• As a new user, how difficult was it to navigate and get

full use out of the tool?

• What features would you like the tool to have that it does

not currently have?

• In what scenarios can you anticipate using this tool?

• Did you get what you wanted out of the tool?

Once this initial wave of feedback has resonated in the form

of new features, deletions, or any modifications with the tool,

a second set of evaluation has been planned to better gauge

effectiveness. With this second study, the goal is to bring

competitors, such as GitHub and LinkedIn, into the picture

to compare how our tool holds up against the competition.

The study revolves around providing users with a “task” (e.g.

find a developer to work on someone’s Javascript project) and

evaluating which platform provides the “best” suggestion for

each, individual user. From there, we can gauge what our

tool lacks in terms of developer profile information, what

users look for when comparing developers, etc. We plan to

investigate the utility of DRE for badging as well. First, we

will create a set of our own (impact) badges and compare

them to GitHub’s current badges to answer questions such as

- “Whose badge did you find more useful? Whose pull request

are you more willing to merge based on GitHub’s badge vs.

our badge?”.

Identity Disambiguation: We plan to measure the precision

of the identity disambiguation tool suggestions by counting

how many of the suggested author IDs are accepted as correct

by the developer. We also plan to measure how the accuracy

of the disambiguation approach increases with more and more

data gathered. Finally, we will consider ways to address ethical

(a barrier to entry for underrepresented groups), privacy (email

harvesting), and societal (artificially boosting the measure)

issues that may arise in the course of the tool usage.
REFERENCES

[1] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki and A. Mockus “World
of Code: An Infrastructure for Mining the Universe of Open Source
VCS Data,” in Proceedings of the International Conference for Mining
Software Repositories. Montreal, May 2019.

[2] S. Amreen, R. Zaretzki and A. Mockus, C. Bogart and Y. Zhang
“ALFAA: Active Learning Fingerprint Based Anti-Aliasing for Correct-
ing Developer Identity Errors in Version Control Data,” arXiv preprint
arXiv:1901.03363, 2019.

[3] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in IEEE, Proceedings of the 24th
International Conference on Software Engineering, 2002, pp. 503–512.

[4] R. Milewicz, G. Pinto and P. Rodeghero, “Characterizing the Roles of
Contributors in Open-source Scientific Software Projects” in Proceed-
ings of the International Conference for Mining Software Repositories.
Montreal, May 2019.

[5] R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu and V. Bhat
“Discovery of technical expertise from open source code repositories,”
in Proceedings of the 22nd International Conference on World Wide
Web, pp. 97–98, 2013.

[6] A. S. Badashian, A. Esteki, A. Gholipour, A. Hindle, and E. Stroulia,
“Involvement, contribution and influence in GitHub and stack overflow,”
Proceedings of 24th Annual International Conference on Computer
Science and Software Engineering, vol. 2, pp. 19–33, 2014.

[7] A. Bosu and J. C. Carver,“Impact of developer reputation on code review
outcomes in oss projects: An empirical investigation,” Proceedings of
the 8th ACM/IEEE international symposium on empirical software
engineering and measurement, pp. 33, 2014.

1085

