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Abstract

We consider adaptations of the Mumford—Shah functional to graphs. These
are based on discretizations of nonlocal approximations to the Mumford—Shah
functional. Motivated by applications in machine learning we study the ran-
dom geometric graphs associated to random samples of a measure. We estab-
lish the conditions on the graph constructions under which the minimizers
of graph Mumford—Shah functionals converge to a minimizer of a contin-
uum Mumford—Shah functional. Furthermore we explicitly identify the limit-
ing functional. Moreover we describe an efficient algorithm for computing the
approximate minimizers of the graph Mumford—Shah functional.

Keywords: nonlocal variational problems, variational problems with random-
ness, discrete to continuum limit, asymptotic consistency, Gamma convergence,
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1. Introduction

Our investigation of graph based Mumford—Shah functionals is motivated by problems arising
in machine learning. Given a point cloud in a Euclidean space with (noisy) real-valued labels,
or an undirected graph with labeled vertices, we investigate a model to denoise the labels while
allowing for jumps (discontinuities) in label values. As does the classical Mumford—Shah for
images, the functional we consider allows one to identify the locations of sharp transitions of
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label values. Our primary focus is on graphs arising as neighborhood graphs of point clouds
in Euclidean spaces of dimension two or higher, where we can carry out rigorous analysis.
However some of the functionals we study can be formulated purely in the setting of weighted
graphs and may be useful in applications.

The model we study is based on ideas from image processing and go back to the cel-
ebrated Mumford and Shah [MS89] variational model for image segmentation. To adapt
the Mumford—Shah functional to point clouds and graphs we rely on the work of Gobbino
[Gob98] and Gobbino and Mora [GMO1] who introduced a family of nonlocal models which
approximate the Mumford—Shah functional. A discrete version of Gobbino’s work, on a uni-
form square/cubic lattice, was then studied in [Cha99]. Ruf [Ruf17] has recently adapted these
nonlocal models to random discrete setting and studied them in the setting of stochastic lat-
tices. Here we study such functionals in the setting of random geometric, and related, graphs
relevant to machine learning.

General graph setting. Consider an undirected weighted graph with vertices V = {1, ...,n}
and edge weights matrix W = [wj;]; j=1...., ». The edge weights are considered to be nonnegative
and symmetric. Let f : V — R be the observed noisy labels. Let ¢ : [0, co) — [0, c0) be con-
cave and such that ¢(0) = 0, 0 < {'(0) < oco. We define the graph Mumford—Shah functional
actingonu:V — R as

GMS (u) = Zwl f,|2+224( —uﬂ)wi,-. (0

i,j=1

We note that when the differences u; — u; are relatively small the functional is similar to the
graph dirichlet energy, while for large values of u; — u; the functional saturates and in some
ways considers u to be discontinuous over the edge. It then just penalizes the size of the set of
discontinuities. Minimizing the functional allows one to find the sharp transitions in the data
by detecting edges where u; — u; is large compared to €. That is the parameter € > 0 sets the
scale for what differences of the values are considered ‘large’. We note that the functional is
nonconvex.

Geometric graph setting. We now consider the setting of point clouds and the random geo-
metric graphs generated by them. The ability to measure the distance between vertices allow
us to create a larger family of graph Mumford—Shah functionals. Let V,, = {xi,...,x,} be a
set of points in RY. The points x; are typically random samples of a measure describing the
data distribution, but this interpretation is not essential in defining the functional. Given these
points we define a graph by setting the edge weights to be w;; = 0 and for i # j

_ Xi — Xj
wi; ="y <%) = n-(|xi — x;]) (1.2)

where 7 is a nonnegative, nonincreasing function which decays to O faster than a specified
algebraic rate. Let f : V,, — R be the observed noisy labels and let ¢ be as in the graph setting
above. Forp € [1,d) and g € [0, p — 1] we define the graph Mumford—Shah functional acting
onu:V,— Ras

3| P
GMS () = Z lux) — fi]* + 772 ¢ ( 1- p+q”(x'“(xf)|) ne(|x: — x;)).

— xila
=1 i — xj
(1.3)
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We note that taking ¢ = 0 reduces this functional to the one considered in the pure graph
setting.

We rigorously study of the asymptotics of GMS. () as n — oo and € — 0 and establish in
theorem 2.1 that its minimizers converge to minimizers of a Mumford—Shah functional posed
in a continuum Euclidean domain. We note that related results for a stochastic lattice model
have been obtained recently by Ruf [Ruf17], see remark 2.5. The conditions of the theorem 2.1
are optimal in terms of scaling of ¢, on n for which the convergence holds for all dimensions
d > 2.To show the result we follow the general strategy of [GTS16] and use a number of results
of calculus of variations, in particular the works of Gobbino and Mora [GMO01, Gob98]. There
are two notable advances:

(a) We introduce a strategy to overcome the issues that arise from the lack of control of the
denominator in (1.3). Namely the discrepancy in the quotients inside of { can be large if
the standard tools to compare the discrete and continuum functionals using a transport map
are used directly. In remark 4.6 we outline the steps we subsequently take to overcome
this difficulty.

(b) Unlike in [GTS16], our results have optimal scaling in 2D. Using lemmas 3.1 and 3.2
we develop an approach to I'-convergence that uses a more relaxed way to compare the
discrete and continuum measures. In particular the approach outlined at the beginning of
section 4.2 would allow one to obtain optimal estimates for total variation, Laplacian, and
p-Laplacian functionals considered in [GTS16, GTS18, ST19] respectively. We note that
for the graph total variation optimal estimates in 2D were recently obtained by Miiller
and Penrose [MP18]. The approach here is simpler, but does use the insight of Miiller and
Penrose that binning at an intermediate scale can be advantageous.

Organization. In section 1.1 we review the works on related problems, primarily on the
mathematical aspects of related data science questions. In section 2 we introduce the graph
based and the continuum functionals and state the main results. In section 3 we recall the
mathematical notion of I'-convergence and its main properties and we recall the TL” space
and its main properties. We introduce the relaxed way to compare measures with the empir-
ical measures of their samples. In section 4 we prove the main results on I'-convergence,
while in section 5 we prove the accompanying compactness result. In section 7 we describe
an algorithm for computing the approximate (local) minimizers of the graph Mumford—Shah
functional and perform numerical experiments on synthetic data to showcase its properties and
on real-estate sales data to highlight its applicability in prediction problems. In appendices A
and B we prove two technical results needed in section 4.

1.1. Related works

Here we review the related models in data analysis. The basic background about the Mum-
ford—Shah functional has been listed in the introduction. Further mathematical works which
serve as the basis for our proofs are recalled as we present our approach in sections 3 and 4.
Regularizing and denoising functions given on graphs has been studied in variety of con-
texts in machine learning. Here we focus on regularizations which still allow for the jumps
in the regularized function. There are two lines of research which have led to such function-
als. One, as is the case with our approach, is inspired by models in image processing where
variational approaches have been widely used for image denoising and segmentation. Par-
ticularly relevant in the context of imaging are the works of Chan and Vese [CV01, VCO02],
who proposed a piecewise constant simplification of the Mumford—Shah functional and have
shown its effectiveness in image segmentation, and Rudin ef al [ROF92] who proposed a TV
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(total variation) based regularization for the image denoising. In analogy with Chan and Vese,
[HLPB13] Hu et al formulated the piecewise-constant Mumford—Shah functional on graphs.
They also developed an efficient numerical approach to compute the minimizers and used it
to study a (multi-class) classification problem. An ROF functional on graphs, with L' fidelity
term, was studied by Trillos and Murray [GTM17].

TV based regularizations have also been developed in the statistics community. Mammen
and van de Geer [MvdG97] have considered it in the setting of nonparametric regression
and have shown that the TV regularization provides an estimator that achieves the opti-
mal min—max recovery rate in one dimension over noisy samples of functions in the unit
ball with respect to the BV norm. TV based regularizations in higher dimensions have been
considered by Tibshirani et al [TSR*05] who call the functional fused LASSO. Hiitter and
Rigollet [HR16], show that, up to logarithms, in dimension d > 2, the TV regularization on
grids achieves the optimal min—max rate over the unit ball with respect to the BV norm.
Recently, Padilla ef al [PSCW18] show for random geometric graphs and for KNN graphs
that up to logarithms, in dimension d > 2, TV regularization again achieves the optimal
min—max rate.

The work of Hallac et al [HLB15] extends the fused LASSO to the graph setting and consid-
ers some further functionals which are closely related to the graph Mumford—Shah functional
we consider here. In particular the initial models of the paper deal with convex function-
als which include graph total-variation based terms, and are thus called ‘network LASSO’.
The second part of the paper modifies the total-variation term, which leads to nonconvex func-
tionals. Here we interpret some of these nonconvex functionals, in particular model (7) of
[HLB15]), as the graph-based Mumford—Shah functional, which, together with our asymp-
totic results, explains the behavior of these models. Wang et al [WSST16] consider higher
order total variation regularizers on graphs. We also note that the use of total variation penal-
ization for signal denoising and filtering has also been considered in the signal processing
community, see for example the work of Chen et al [CSMK15].

2. Setting and main results

2.1. Continuum Mumford—-Shah functional and its nonlocal approximation

In their celebrated paper [MS89], Mumford and Shah proposed a variational approach for
image segmentation. Given a domain {2 C RY and a potentially noisy image with intensity f
they sought to approximate it by a piecewise smooth function u, whose discontinuities delineate
the segments of the image.

We recall their functional using the formulation in the space of special functions of bounded
variation. For background on spaces of (special) functions of bounded variation we refer the
reader to the book [AFP00]. For u € SBV((2)

MS ;(u) ::A/|u—f|2dx+/|W|2dx+7{d*1(su) 2.1
Q Q

where f € L>(2) is the noisy image, Vu is the absolutely continuous (in the measure theo-
retic sense, and with respect to the Lebesgue measure) part of the gradient Du (which is a
measure) of the function u, S, is the jump set of u, and H?~! is the (d — 1)—dimensional Haus-
dorff measure. The first term of the functional ensures the closeness of the approximation u
to the original image f, while the next two terms reward the regularity of u. The idea is that
natural images are piecewise smooth, but often do have jumps in intensity between different
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regions. Thus the functional rewards the regularity of u, while still allowing for jumps in the
intensity.

Thanks to the work of Ambrosio in [Amb89] and to the lower-semicontinuity of MS, with
respect to the topology of the space SBV(2), the direct method of calculus of variation ensures
us that a minimum uy, € SBV(2) for the functional (2.2) is always attained.

For the considerations we have in mind the fidelity term A [ o|u — f|*dx is quite straightfor-
ward to treat. Hence, for readability, we introduce the functional without it and focus mainly
on this functional:

MS(u) = / |Vul*dx + H(S,). (2.2)
Q

As shown in [BDM97] any functional of the form of (2.2) cannot be approximated in the
sense of I'-convergence by /ocal integral functionals of the type

/ h-(Vu(x))dx
Q

where u € W'?(£2). De Giorgi conjectured that the Mumford—Shah functional can be approx-
imated by nonlocal functionals. The conjecture was proved by Gobbino in [Gob98], who
showed that (2.2) can be approximated by the functionals

1
G.(u):= ~F arctan <
e R4 xR

_ 2 y—x2
%) e "3 dxdy 2.3)

defined for u € L} (£2). He shows that for appropriate dimensional constants 6, o
I-1imG. =6 / |Vul*dx + oH"'(S,)
e—=0 Q

where the T-limit is considered with respect to L' topology. The work in [Gob98] has been
then generalized in [GMO1] to functionals defined on SBV(2) of the form

F(u) = /Q<p(|Vu(x)|)dx+ D(|lut () — u” @))dH" (x) (2.4)

Su

where u™(x) and u~ (x) denote the so-called approximate lim inf and lim sup of u at the point
x:

ut(x) = sup {t eR: E(r)rj_ r—ln|{y € B(x,r):u(y) > t}| > 0} . (2.5)

They show that for suitable ¢, ¢ the functional can be approximated in the I'-convergence
sense with the family of non-local functionals of the form

Fa=[ o ('“(x)_”(”') e (x — y) dady 2.6)
Rd x R4 lx =yl

where {.}. is a family of functions related to ¢, 1) and {1.}.~o C L'(€) is a kernel.
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2.2. Point cloud Mumford-Shah functional

The above nonlocal approximation to the Mumford—Shah functional can be adapted to the
graph setting. We consider the setting of random geometric graphs formulated on random
samples of a measure ;. with density p, which describes the underlying data distribution. Con-
sider an open, bounded set with Lipschitz boundary 2. The density p is assumed to satisfy:
p € C()NCQ)and

0 < ¢ < min p(x) < max p(x) < C < oo. 2.7
Q

xef xe
We consider ( : [0, c0) — [0, 0o) such that

(A1) ( is concave and differentiable at O;
(A2) ( is non decreasing;
(A3) ¢'(0) < co and

0= lim C(x). (2.8)

We fix p > 1, g € [0, p) and we assume that the kernel 7 : [0, 00) — [0, c0) satisfies

(B1) 7 is a nonincreasing L' function, non identically 0;
(B2) 0 < [;° @+ P=a"Nn(ndt < oo.

In the sequel, we always assume the functions 7, ¢ and p to satisfy the above assumptions.
Let xi,...,x, € Q aset of n i.i.d. random points on €2 chosen according to the probability
measure ;1 = pdx. The empirical measure of the sample is defined by

1 n
— 2;6%

Given a Borel measure o on (2, the space L”(£2, o) is the space of equivalence classes of mea-
surable functions u : {2 — R with f o|ulPdo finite. Notice that, under this assumption on p, we
have that L' (€2; p) = L'(€Q). For that reason we often write u € L'(£2) in place of u € L'(£2; p).

The graph Mumford—Shah functional we devote the most attention to is the functional (1.3)
without the fidelity term. Namely for a function u € L'($2; 1,,) let

GMS. ()= Z ¢ ( " WW) 1 (| — x;)- 2.9)

= xjle

Here 7.(s) :== (s /¢).

2.3. Main results

In theorem 2.1 we prove the I'-convergence of the graph Mumford—Shah functional (2.9)
as n — oo and g, — 0 (at allowable rate) towards the following continuum Mumford—Shah
functional:

MS,, (u; p) :=1,(p, )¢ (0) /Q |Vu)|Pp(x)*dx + 0,0 [ p(»)*dH " ()
S,

(2.10)
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defined for all u € SBV”((2) and where O is defined by (2.8) and

D(p/2+ 1/DT@/2+1/2) [* i
T2+ d)2) /O 4 n(t)de

oy =2wy 1 /0 tdn(t)dt.

1‘977(17’ CI) = defl
2.11)

The I convergence is the TL' sense, recalled in section 3.1. We point out that assumption (B2)
on 7 is the one that guarantees the finiteness of o, 9, (p, ¢).

Theorem 2.1  (I'-convergence). Let ) be an open, bounded set with Lipschitz boundary and
p be a probability density satisfying (2.7). Consider (,n satisfying the assumptions (Al)—(A3)
and (B1)—(B2).

Let {x;}icy be a sequence of i.i.d. random points chosen accordingly to the density p and
{&n}nen be a sequence of positive numbers converging to 0 such that

(log(n))"/4

n—oo g nl/d

=0 ford>2. (2.12)

Then GMS., ,, defined in (2.9), I'—converges to MS, c(-; p), defined in (2.2), in the TL' sense.

We refer to [GTS16] for detailed introduction of the 7L’ topology. For the reader’s
convenience we retrieve the main concepts in section 3.1 below.

Remark 2.2. The condition (2.12) of theorem 2.1 comes from the following fact. Given
random samples {xi,...,x,} as above, we show in lemma 3.1 that there exists a sequence of
probability measures fi,, absolutely continuous with respect to Lebesgue measure such that
gd% — 1 and whose co-Wasserstein distance from the empirical measure of the sample i,
is decaying faster than ,. More precisely, there exist 7, : Q — {xi,...,x,} transport maps
between fi, = p, L and p,, = %Z;’Zl dy,, such that

T, — Id||~
o 17— 1]

n—00 En

—0. (2.13)

In section 5 we discuss compactness of the functionals. In particular we establish the
following:

Theorem 2.3. Let ), p, ¢, , and x;,i = 1,...,n satisfy the assumptions of theorem 2.1.
Consider a sequence of {, }nen satisfying (2.12). If u, € L>(SY; uy) satisfy

sup {||unlloc + GMS., n(un)} < 00,
neN

then the sequence {(fin, Up) }nen IS TL!-relatively compact.

Remark 2.4. Note that we ask for an L™ bound on the sequence, instead of a weaker
L' bound (as was done in [GTS16, theorem 1.2]). Here L' bound would not be sufficient
as we show in section 5 and remark 5.1. On the other hand since the signal f in (2.1) is
bounded in applications, the minimizers are also bounded by the same bound, and hence the
L™ boundedness of the sequence of interest is assured.

Remark 2.5. Recently Ruf [Ruf17] has studied the convergence of graph Mumford—Shah
functionals on random lattices to the continuum Mumford—Shah functional. These interest-
ing results are closely related, but also substantially different both in terms of their nature
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and the techniques used. One difference is the nature of randomness of the structure consid-
ered. Here we consider random samples, or in fact any discrete sets of points whose empirical
measures weakly approximate the continuum measure. Ruf considers random lattices in 2D,
which have precise requirements of the distribution of points. The disordered structure of the
points we allow forces us to require that the typical degree of a vertex converges to infinity
faster than logn, while Ruf is able to work with graphs of bounded degree. On the flip side
we identify the I'-limit explicitly, while, due to the graph construction, Ruf only identifies the
functional up to a constant. In a sense he is able to work under homogenization type graph-
behavior where compactness arguments show that a I'-limit exists without fully identifying
1t.

2.3.1. Convergence of functionals with the fidelity term.. The theorems 2.1 and 2.3 enable us
to show the convergence of the Mumford—Shah functional with the fidelity term as well. We
establish two results. The first one is in the setting without noise. In order to be able to evaluate
the signal at sample points we assume that fis a bounded piecewise continuous function, that
is that the set of discontinuities J; is of finite d — 1 dimensional Hausdorff measure, H?~!(J;)
< Q.

Corollary 2.6. Ler ), p, ¢, n, and x;,i = 1,...,n satisfy the assumptions of theorem 2.1
and assume thatp > q + 1. Assume [ : Q — R is a bounded, piecewise continuous function.
Consider a sequence of {€,}nen satisfying (2.12). Then the functional GMS ., defined in
(1.3), considered with f; = f(x;) for i = 1,...,n, I-converges in TL* topology to MS,, (u; p)
+ A f |u fﬂzp(x)dx, where MS,, ¢ (u; p) is defined in (2.10). Furthermore any sequence of mini-
mizers u, of GMS s ., converge along a subsequence to a minimizer of MS, ¢ (u; p) + X [ |u —
I p(x)dx.

We note that due to the fidelity term the topology of I" convergence in the corollary is TL?
instead of TL'. We remark that the change of the topology when considering the fidelity term
was not needed in [Gob98] since Gobbino could rely on the Fubini’s theorem. However due the
fact that we also deal with the discrete-to-continuum passage, the stronger topology is needed.

More importantly and more interestingly we are able to establish the convergence of min-
imizers of the graph Mumford—Shah functional when the labels are noisy. We note that the
limit is a minimizer of a deterministic variational problem, even though the amount of noise
does not vanish as n — oc.

Corollary 2.7. Let Q, p, ¢, 1 satisfy the assumptions of theorem 2.1 and assume that p >
q+ 1. Assume [ :Q — R is a bounded, piecewise continuous function. Let 5 be a measure
on R modeling the noise. We assume 3 has compact support and mean zero. Let (x;,y;) for
i=1,...,nbeliid samples of the measure |1 X . Consider a sequence of {e, },cn satisfying
(2.12).

Then the functional GMS ¢ ., defined in (1.3), considered with

fi=f)+yi fori=1,....n,

T'-converges in TL? topology to MS,, :(u; p) + A f |u —f]zp(x)dx + Var(f3), where MS, :(u; p)
is defined in (2.10). Furthermore any sequence of minimizers u, of GMS ¢ . ,, converge along
a subsequence to a minimizer of MS, c(u; p) + X [ |u — 1> p(x)dx.

We make several observations. Note that while the minimizers of the random functional
converge to the minimizers of a deterministic functional, and that the limit of the minimizers
does not depend on the amount of noise. In a sense noise does not create a bias. The randomness
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affects the limit in that the actual values of the random discrete functionals are higher when
there is more noise which leads to the presence of Var(f3) in the deterministic limit. We note
that while we do not allow for Gaussian noise this is purely for technical reasons, to make the
proof of compactness easier. On the other hand we do not require the noise to have continuous
density with respect to Lebesgue measure.

Remark 2.8. Let us contrast the result of corollary 2.7 to results on min—max recovery
rates in nonparametric regression that we mentioned in the introduction (see [HR16, MvdG97,
PSCW18, WSST16]). In the setting of regression one is concerned with recovering a function
fT in some functional class (e.g., BV unit ball) whose noisy samples are available. Thus the
fidelity term is made stronger as n — co. Namely ) in (1.3) is taken to infinity at appropriate
rate as n increases. The works obtain rates at which minimizers of functionals like (1.3), with
TV regularization instead of the Mumford—Shah term, converge to f'. We conjecture that for
the functions £ in BV ball the functional (1.3) also achieves the optimal min—max rate. One
difference between the Mumford—Shah and the TV regularization is that the Mumford—Shah
one does not decrease the contrast over sharp edges as TV regularization does. See example 7.1.
In the context of regression our contribution is that by taking the limit n — oo as A is fixed we
shed the light on what is the precise amount of regularization introduced by the Mumford—Shah
term at finite \.

2.3.2. Extension to data on a manifold. In machine learning it is often relevant to consider
data that lie in a potentially high dimensional space, but have an intrinsic low dimensional
structure. Here we remark that it is straightforward to extend our results to the setting where
data are sampled from a measure p whose support is a d-dimensional C> manifold, with-
out boundary, M, embedded in R? for some D > d. We require that the measure p has a
continuous density p with respect to the volume form of the manifold M: du = pdVol .
The form of the graph Mumford—Shah functional remains the same, while the only change
in the limiting functional (2.10) is that Vu is replaced by the manifold gradient grad ,,u. We
note that the scaling of 7). and the definition of ¢, depend on the intrinsic dimension d, but not
the ambient dimension D. Full details of how related statements are extended to the manifold
setting can be found in [GTGHS18].

2.3.3. Extension to vector valued functions. We note that in machine learning it is also natural
to consider functions on graphs which are vector valued. The graph Mumford—Shah functional
(1.3) can be considered for functions u with values in R™. In fact such functionals have been
used in the work of Hallac et al [HLB15]. We do not rigorously treat the limits of vector-
valued functionals in this paper. Nevertheless we remark that we expect that the I'-limit of
the vector valued graph Mumford—Shah functional for p = 2 is the following Mumford—Shah
type functional: for u € SBV(Q)™"

MS;! (u; p) =19, (2, 9)¢'(0) /Q |Vu)|*px)*dx + 0,0 / PO dH T ()
Su

where S, is the union of jump sets for each of coordinate functions, u = (uy, ..., u,) and S, =
U= Su;» and where © is defined by (2.8) and ¥, and o, by (2.11). We furthermore expect
that one can prove this using similar techniques that we use. We note that this would require a
careful verification of the slicing argument in multiple dimensions.
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3. I'-=convergence and topology in the space of configuration

Given a sequence of functionals F, : X — R and a metrizable (and separable) topology 7 on
X we say that F,,['-converges at F : X — R with respect to the topology 7 if the following two
conditions are satisfied:

(a) For every sequence {x, },eny C X such that x,, T, x it holds that
lim inf F,,(x,,) > F(x);
n—o00
(b) For all x € X there exists a sequence {x, },en C X such that x, T, x and for which

lim sup F,(x,) < F(x).

n—00

In this case we write

I'-limF, = F.
n—0

Notice that, if I'-lim,_F, = F then the following assertions also hold:

(a) Fis lower semi-continuous and

F(x) = inf { lim inf F, (x,)
n—0o0

T
{xn}nEN (- X’ Xn _”C}

= lnf { llm Sup Fn(xn)

n—

{xn}neN C X, Xn L)x} 5
(b) If {x, },en is a sequence of minima of F, on X, namely
Fn n) = i Fn 5
() = min {F,()}
converging to some x € X in the topology 7 then x is a minimum of F on X:

F(x) = min {F(y)}.
yeX

3.1. The TLP topology: brief overview

The TL? space has been introduced in_ [GTS16]. Given a bounded open set €2 let P(£2) be the
set of Borel probability measures on 2. The space TL”(f2) is defined by

TLAQ) = {(u. f): p € PO f € L )} (3.1)
Given (u, ), (v, g) € TLP()) their TL? distance is defined as follows

»
inf (/ [x —yP 4+ |f(x) — g(y)|pd7r(x,y)> if p e [1,00),
drrr((p, ), (v, 8)) == { 7P \Jaxa
weil“rg; V)CSS Sup(x,y)esuppﬂlx - y| + |f(x) - g(y)‘ lfp =00

where the infimum is taken among all transport plans 7 (i.e. couplings) between . and v:

T(u,v):={7 € P(Q x Q) : (VABorel) y(A x Q) = pu(A), 7( x A) = v(A)}.

3855



Nonlinearity 33 (2020) 3846 M Caroccia et al

Given i € P(2) and a measurable mapping 7': Q2 — €, we recall that v = Ty is the push-
forward of 1 by T, namely the measure on € such that for any A Borel v(A) = w(T~'(A)). A
consequence of the definition is the following change of variables identity

/Q ST ))dp(x) = /Q JS)dv(y). (3.2)

Well-known results of the theory of optimal transportation, [Bre87] for p = 2, [GM96] for
p < oo and [CDPJO08], for p = oo, provide that when p is absolutely continuous with respect
to £ then there exists an optimal transport map between j and v, namely 7': 2 — € such that
Typ = v and

dh(p,v):= inf / |x — y[Pdy(x,y) = / |T(x) — x|’du(x) when p < oo,
yel'(p,v) QxQ Q

doo(u,v) = ”’Eil—‘rg: &5 SUP(, y)csupp( | — Y| = €88 SUP, oo |T(X) — x| when p = oo.
i 8

(3.3)

In particular the transport plan induced by 7, namely 7 := (Id, T)#u, is optimal. The distance
d, (11, v) we define in the expressions above is called the p-transportation metric (also referred
to as the p-Wasserstein distance).

When considering convergence of a sequence (i, f,,) toward (1, f), the following sufficient
criterion will be useful. We say that a sequence of transportation maps is stagnating if

Topit = o and |1 =T, ||7n,y = /Q|x — T,(0)[7 dp(x) — 0 (3.4

as n— oo. To show TL” convergence it thus suffices to find a stagnating sequence of
transportation maps such that f | f(x) — fu(T,(x))|Pdu(x) converges to zero as n — co.

We now introduce the new results that allow us to obtain the optimal scaling of ¢, for I'-
convergence in 2D. Namely while d (1, ft,) ~ % when d = 2 we introduce an auxiliary
measure [i, which is absolutely continuous with respect to Lebesgue measure and satisfies both

that doo (fins ftn) ~ 1/ (I“T") when d = 2 and that its density with respect to measure y uniformly

converges to 1. These two facts are enough to pass to the limit in the functionals we consider,
and many others (like total variation or dirichlet energy). Lemma 3.2 is a technical result needed
to transfer the 7L? convergence to the desired measures.

Lemma 3.1. Let p be a probability measure with continuous density p, supported on
where Q is a bounded open set with Lipschitz boundary in RY, d > 2 and which satisfies the
assumption (2.7). Let €, be a sequence of positive numbers converging to zero and satisfying
(2.12). Let {x;}ien be a sequence of i.i.d. random points chosen according to the density p,
and let p, = %Z?:l Oy, Then there exists a sequence of probability measures [i, which are
absolutely continuous with respect to the measure p and satisfy

(a) Almost surely £, = do(fn, fin) < €p

(b) As n — o0, %% almost surely converges to 1 uniformly on ).

Proof. Let us first consider the case that 2 = [0, 1]%. Given a sequence ¢, satisfying the
assumptions of the lemma let {b, } ,cy and {¢, }.en be increasing sequences of positive numbers

such that (b, 1) 1y integer and
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| 1/d
b, — 00, &,> (bn nn) and ci >b,>c, asn— oo. 3.5)
n

Let, forn > 2,

1 |
5¢ bM and t:c,,M

Note that they both # and § depend on n but we decided to omit the index n to lighten the
notation. We divide [0, 1]1?into m = (b, 1“7”)71 disjoint cubes Kj, j = 1, ..., m with side length
d. Note that the probability p; that a point x; is in the box K is equal to x(K;) and that

co? < pj < co?.

Bernstein’s inequality [Ber24] gives

P (|un(K;) |>t)<2ep( il ><Zep< mz)
pin(Kj) — pjl = xp | ———2—+F xp | —>—
! ! pi(l—py)+ it 3p;
Alnn i
<2exp (- — 20 5t .
exp( 3Ch, > n (3.6)

It follows, by union bound, that the probability that in all boxes |1,(K;) — p;| < t satisfies

7
P =1,...,m) | (K)) —pj| <) =1 —m2n 3 > 1 —n"2, (3.7)

for all n large enough. By Borel-Cantelli lemma we conclude that almost surely for n
sufficiently large for all boxes it holds that |x,(K}) — p;| < 1.
Define the measure /i, as follows:

2(K
d/ln ZHK]M( J)

Since 1,(K;) = p,(K;), the distance d(fi,, f1,) is at most the diameter of the boxes, namely

oo (s 1) < Vd6.

For large n and arbitrary x € {2 let K; be such that x € K;. Using (3.6) we obtain

L,,K
Pt — p(x)

k
px)

()1’

ln(K)) — (K| S|P = p()] dz
54 p(x) 5 p(x)

+ w(x/_é)

6" cb (\/_ 5)

where w is the modulus of continuity of p. The uniform convergence follows since the terms
on the right-hand side converge to zero.

Extending the argument to general 2 with smooth boundary is straightforward using the par-
tition procedure detailed in section 3 of [GTS15]. To general case of €2 with Lipschitz boundary
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can be reduced to domains with smooth boundary using the result of Ball and Zarnescu [BZ17],
as was done is the step 2 of the proof of theorem 1.2 in [GTS15]. (|

Lemma 3.2. Let p be a probability measure with density p supported on a compact set in
RY. Let [i, be a sequence of probability measures which are absolutely continuous with respect
to  such that
djiy,
dp

— 1 uniformly on the support of .

Assume f, — fin [P(u) as n — oo. Then

(fins fn) = (1, f)  inTL? asn — oo. (3.8)
Proof. From the assumption that % uniformly converges to 1 follows that the

Lévy—Prokhorov metric between fi, and p converges to zero. Since the Lévy—Prokhorov and
the p-transportation metric, d,, defined by (3.3), both metrize the weak convergence of mea-
sures on compact sets we conclude that d,(u, f,) — 0 as n — co. Thus there exists a sequence
of transportation plans m, € II(u, f1,) such that

/|x*y\pd7fn(x,y)%0 as n — oo.

Since Lipschitz continuous functions are dense in L”(u) there exists a sequence of Lipschitz
continuous functions g,, which converges to fin L”(u). Let p, be the Lebesgue density of [i,.
Since % uniformly converges to 1, there exists n; such that for all n > n,, % < %” < 2. For
n>=n

/\fn(y)— f)Pdm,(x,y) <27 (/Ifn(y) —f(y)lpd/ln(y)+/\f(y)— f(X)Ipdﬂn(x,y))

We estimate the terms separately:

/ /o) = S OIPd () < 2/ ) = fOD[Pdpu(y),

which converges to zero as n — oco.

/ |f(y) - f(x)‘pdﬂ'n(x’ y) ,S / |f(y) - gm()’)|p + |gm(Y) - gm(x)‘p + ‘gm(x)_f(x)‘pdﬂ'n(xa y)

SIS — gml iﬂ(u) + /Lip(gm)|x — y[Pmax, y).

We observe that the right hand can be made arbitrarily small by taking m large enough and then
taking n sufficiently large. Consequently f /() — fx)|Pd7,(x, y) converges to zero as n — oo,
which implies that (3.8) holds. O

4. Proof of the I'-convergence (theorem 2.1)

We prove theorem 2.1 by separately proving the I'-liminf bound and by building a recovery
sequence. The proof of I'-liminf bound relies on slicing (i.e. one dimensional decomposi-
tion) as used by Gobbino [Gob98] and the techniques of [GTS16] to deal with randomness
of the sample. However since the spatial coordinates appear also in a denominator within the
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functional (2.9), the way [GTS16] deals with space is not precise enough and new ideas are
needed to overcome this challenge. These are discussed in section 4.3. In the subsection below
we introduce notation and present the one-dimensional slicing of the continuum Mum-
ford—Shah functional.

4.1. One dimensional slicing

We repeatedly use the following computation, which we sketch for a generic function f.
Let f: @ x €2 — R be an integrable function. Then, for € > 0 it holds that

f(x,y)dxdy = &? / dx / fx,x + e&)dE
Q Q 2o

= ¢ / d¢ / e, x +eé)dx 4.1
R QN(Q—ef)

Qx

where we exploited the identity

To@) 10—/ = Tra(©)Tan@—-co(x)

and then Fubini’s theorem (here 1z(x) stands for the characteristic function of the set E and
takes value 1 for x € E and 0 otherwise). Given A C R and ¢ € R? we define for z € ¢ the
one dimensional slice

[Al.:={reR:z+1£/|¢| € A}. 4.2)

Above we are omitting the dependence on &, since it will be clear from the context. We proceed
to consider one dimensional slices as follows

fx,y)dxdy = & / d¢ f,x+efdx
Q R4 QN(Q2—=)

zed/ d¢ dz/ f<z+t£,z+(t+5§|)§) dr.
R4 el [QN(Q2—£8)], ‘§| ‘§|
4.3)

Qx

When using one dimensional decompositions we will make several uses of the following
notation. Given g : RY — R, ¢ € R? and z € £+ we define

get;z)=g (z + t|§|) . 4.4)

We now state and prove two technical lemmas that we use in the sequel.

Lemma 4.1. Letu € SBV(Q). Then

MS,,c(u; p) = ¢'(0) /R €17~ n(1€])dg / dz /{m |ue(1;2)|" pe(r;2)dr
d fl .

+© /R [SUIGIPLS / dz pe(t; 2)2dH (1) (4.5)
d SL

S%tw
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—¢(0) / €7 (€ de / ‘vm) L3 PRCIR

0 [ lelnehas /

where N,(y) is any vector field normal to S,,.

NO) - = p0)*dH ). (4.6)

|§|

Proof. We can rewrite the right-hand side of (4.5) as follows

+®/ |§|n(|€|)d€/ dz/ pe(t; 2)2dH (1)

uf(
&) €
V”( +’|s> 5

— ) / €l de / & /S §
+0 / €ln(€Dde / dz / ( +’H> ()
— ) / €7 (|€)de / ‘Vu(x) £

4 £ 2
( +’|5)

itg( 2)

p(x)zdx

N(y) PP dHT ().

IEI

The last equality above follows from the Coarea formula, using a well known relation between
the one-dimensional slices of an SBV function and the total length of its jump set (see for
instance [Amb89]). Notice that

/If\n(lfl) Ny - [dE = /tdz/ n(t)
R4 |§| 0B,

= / 'n(t)dt / N - v dH ()
0 0B

dH(©)

M- ’
= 2wd71/ t'n(tydt = o,
0
where we have exploited the relation
/ INJ) - v] dH (w) = 2wy .
OB,

Moreover

p

Vu(x) - d¢

P—q
/ €7 m(le) |€|

— / T / |Vu(x) - v[PdH ! (v)

0 0B,
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= 2|Vu(x)|Pwy_

T(p/2 + UDT@/2+1/2) [ ) v
T(p/2+ d/2) /o T

= |Vu)|P9,(p. q)
where we made use of

L(p/2+1/2T(d/2+1/2)
T(p/2+d/2)

/ |w - v|PdH (v) = 2|w|Pwa-
OBI
In particular

¢(0) / P leDde / az / 2| pers 2P dx
R4 ¢l Q]

w0 [ Jeniepas [ x| oorarc

Su5(~;z)

P
— ') / €7t / ]wm S prda
R4 Q |§|
+@/ |§|n(l€|)d£/ Nu(y)~£ p(AH ()
R4 Su |§|

— 0,(p.9)C'(0) /Q IV u(o) P p(xdx

+ 0,0 [ pO)?dH () = MS,c(u; p).
Su

4.2. Auxiliary functionals

We introduce two auxiliary functionals: GMS and GAMS. The first one is motivated by the
calculation below and allows us to switch the auxiliary measure /i,, constructed in lemma 3.1
by the measure p. The functionals GAMS moves a step further towards to local, limiting,
functional by replacing the integral over the product measure by one with the weight p(x)*. We
will first establish the lim inf and lim sup bounds on an auxiliary energy GAMS, and then,
by exploiting lemma 4.2 apply these bounds to GMS. Thanks to (4.7) we can then prove the
statement of theorem 2.1 for GMS.

Consider the setting of theorem 2.1 and let [, be the measures constructed in lemma 3.1.
Let 7, : Q — Q be the d., optimal transport from fi,, to p,,. Let £, = doo(fins ptn) = ||T — Id|| 1.
By exploiting the change of variable (3.2), we can rewrite the Mumford—Shah functional on
the point clouds in the following integral form:

n

gMSEn(“) = E%Z C <EIP+QM) 775(|xi _xj|)

ij=1 i — 205
1 — p
= g/g QC <51P+q|l/t()|2_z|(;)|> N=(|x — y]d e, (x)d e, (v)
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1 _ )4
_ /Q < (s”’“M> 01 = YDA fin) AT fin)(¥)

£ lx — yla

_! g [(Tn() —u(Tn<y>>|”> _ (O
- E/Q/QC (a T o) I T IO @A)

2
Pn 1// (1_,,+q|u(Tn(X))—u(Tn(y))”>
<sup| | — (| T, () =T, () Ddp(r)dp(y).
supl” N - ) Qé £ Tt = Ta)|7 1=(| T, (0= T,(») Ddp(x)dp(y)
Analogously
2
TS - |u(Tn<x))—u(Tn<y>)|P> -
oM. zing 22| L[ [ (sl GO =8O, (17,00 1,0 aptananc),

In the light of the above computation, we consider three different functionals, which, as we
show, share the same I'-limit. We consider

1—p+q |u(xi) - M()Cj)|p
i — x|

11
GMSepy=——> ¢ <s

ij=1

GMS _1 u(T,(x)) — u(T,()[" B
GMSen(u):=_ /Q /Q ¢ <€pq1|Tn(x) — Tn(y)|‘1> (| Tu () = T,(»)dp(x)dp(y)

1 u(T,(9) — u(T o) B ,
GAMS ()= | /Q /Q ¢ (gp—q—wrn o Tn<y>|q> n(1T,0) — T,)p(xVdxdy.

) 7o — )

Notice that since % uniformly converges to 1 (by lemma 3.1)

I- lim GMS.,, =T- lim GMS., . A4.7)

n——+oo n——+oo

The next lemma shows that, in case of a compactly supported kernel 7, the auxiliary energy
GAMS is asymptotically equivalent to GMS.

Lemma 4.2. Let {&,}uen be any sequence satisfying (2.12). Le {u, },en be a sequence in
LY(Q; 1) and assume that the kernel 1) is compactly supported. Then

lim inf GMS., ,(u,) = lim inf GAMS,, ,,(u,)
n—0o0

n—00

lim sup GMS., »(u,) = lim sup GAMS., ,,(u,)

n—0o0 n—o0
Proof. Let T, be the transport maps as above and let

Roity) = i/ (|Mn(Tn(x)) — un(T,O)[P
e axa \ e T, () — T,(n)|e

n

) e, (| T (x) = T, DIp(y) — p(x)]p(x)dxdy.

Notice that
nge,l,n(un) = g-AMSE,,,n(un) + Rn(un)-

Moreover, due to the properties of p, we can find a constant L > 1 such that

%nggn,n(u) < GAMS., (1) < LGMS., ,()
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forall u € L'(; u,,) and for all n € N. In particular
GMS., w(up) =0 & GAMS., 1(uy) =0
GMS., (,) = +00 = GAMS., ,(u,) = +oo.
For the purpose of our proof we can hence restrict to
0 < GAMS,, ,(u,) < +oo foralln € N.

since otherwise the seek equality trivially hold. With this assumption in mind we consider the
finite ratio D, := R, (u,)/GAMS., .(u,) so that

gMSs,,,n(un) = gAMsg,,n(un)(l + Dn) (48)
Since 7 is compactly supported, and since
‘Tn(x) - Tn(y)| 2 |X - y| - 2511

we have that ., (|T,(x) — T,(x)|) = 0 for all x,y such that |x — y| > Mg, for some M € R.
Moreover if |x — y| < Me, we have |p(x) — p(y)| < Lip(p)Me,. Thus, since p is bounded from
below, we get

Lip(p)Me,
Rutun) < PO G ANMS., ),
Hence
IimD, =0
n—00
that, combined with (4.8) completes the proof. O

4.3. The liminf inequality

This subsection is devoted to the proof of the liminf inequality claim of the I'-convergence of
theorem 2.1:

Proposition 4.3. Let {c,},cn be any sequence satisfying (2.12). Let u, € L'(2; ), u €
LY() such that (ji,, u,) — (. u) in TL'. Then

lim inf GMS.., ,,(u,) = MS, - (u; p).

n—00

The proof relies on the following result, which can be obtained following ideas of [GMOI,
corollary 3.3]. Its proof is provided in the appendix A.

Lemma 4.4. Let A C R be a finite union of intervals and f € C'(A) N C°(A) be such that

0 < e < min{f(0} < max {f()} < C < oo.
X€EA X€EA

Define for every ¢ € R? the one-dimensional functional

1 olE) — P
e Y K G = e PN +9)
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and

&, 4) = C(O)|¢]7 / WP rdxole [ FoaHo) 4.10)
A Su

NA

foru € SBVP(R). Then

lim inf E5(us: €, A) > E(u; §,4) (4.11)
=

for all {us}s~o C L'(A), u € SBVP(A) such that us — u in L.
We also need the following lemma.

Lemma 4.5. Ler u,:{x1,...,x,} =R be a sequence of function LP(u,) such that
(b ) — (p1, 1) in TL'. Let [i,, be the sequence of measures provided by lemma 3.1 and con-
sider T, : R — R 1o be the associated transport maps between fi, and ju,. Fix ¢ € RY, 7 € £+
and define the sectional functions

= iye(t;2) =u, 0T, <Z + té) )

Then up to extracting a subsequence (not relabeled), for H* '-a.e. 7 € & it holds

e (5 2) = ue(32)  inL'(R; pe(-32) L")

Proof. Thanks to the TL! convergence of the sequence (j,, 1,) and to the properties of our
measures fi, given by lemma 3.1 we can infer (fi,, u, o T;) — (i, u) in TL'. In particular thanks
also to [GTS16, assertion 5, proposition 3.12]) we know that

n—00

lim/ |ty 0 Ty(x) — u(x)|p(x)dx = 0. (4.12)
R4

We can rearrange and estimate the above integral as

/Rd|u” o T,(x) — u(x)|p(x)dx = / dt/{ y }\un o T, (x)—u(x)| p(x)dH" ' (x)
—00 W:l

:/ dt/ |ﬁ5,n(t;z)—ug(t;z)lpg(t;z)dH”’l(z)
—00 51_

= / dH" ' (z) / litg (13 2) — ue(t; 2)| pe(t; 2)dt.

¢t —o0
Using (4.12), this goes to zero as n — o0, so that up to a subsequence the term under the integral
goes to zero for a.e. 7 L&. O

Remark 4.6. The strategy adopted to prove the lim inf inequality is based on the integral
form of the functional GMS (more precisely on its asymptotic counterpart GAMS). Substan-
tially we exploit such an integral form and the monotonicity of 7, ( to compare our energy with
the energy

/ 77(|§Dd§/ EE;,(ﬁf,n(';Z);g; Q)de*l(Z)
Rd L
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in order to apply lemmas 4.5 and 4.4. To achieve this goal we need to compare |T,,(x) — T, (y)|
and [x — y|, as well as it and 1. Notice that |7,(x) — T,(y)| = [x — y| £ 24, and in
particular due to the fact that £, < &, it is not difficult to compare |T,,(x) — T,,(y)| to |x — y| for
couples such that |x — y| & ¢,. The problems arise for all those points x, y that lie very close to
one another. The strategy we adopt to overcome this difficulty is to create a hole of fixed size

r around the origin in the kernel 7. That is to replace 7 by

' (@) =nO)(1 = Ti,(0)

and thus to neglect all the, small, contributions we cannot compare and then progressively
recover the full energy by shrinking the hole in a limit process at the end of our proof. In
the sequel we will often write GMS., ,(u,; 1), GAMS., ,(uy; r) to denote the corresponding
energies having 7" in place of 7.

Proof of proposition 4.3. We can assume, without loss of generality, that

sup {GMS;, 1(un)} < 0. (4.13)

neN

Notice that it is enough to assume that 7 is compactly supported. Indeed we can always replace
1 with ng :=n(#)1j0.r)(t) and notice that, by meaning of lemma 4.2 and (4.7) we have

lim inf GMS., (1) > lim inf GM S, ,,(u,) > lim inf GAMS., (5 M)
n—00 )

n—0o0 n—00

where GAMS., ,(un;nr) denotes the usual energy GAMS., , with ng in place of 7. In
particular if we can prove that, for compactly supported kernel, it holds

lim inf GAMS., (s mr) = M, (1)
n—00
then the continuity of the constants in MS allows us to send R to infinity and recover

lim inngse,,,n(un) = MST],C(M)'

n—00

We thus focus on proving the theorem for a compactly supported kernel 7.
With this assumption in mind we invoke again lemma 4.2 and (4.7) to infer

lim inf GMS,, ,(u,) > lim inf GAMS,, ,(u,;r) for allr > 0. (4.14)
n—0o0 n—o0

For the reader’s convenience in what follows we write ¢ and ¢ :=||T,, — Id||~ in place of ¢,
and 7, by omitting the dependence on n. Thanks to (2.13) we have

M_Z_Z < |Tn(x)—Tn()’)| < |x_y| +2_£
€ € € € c

(4.15)

On the set {|T,,(x) — T,(y)| > re} we thus have

X —y
<T@ = T < |1_—2_(;

x — |
1+ %

~)

9l

er

In particular, since the function # — ((a/t?)n(¢) is non-increasing for all ¢,r,a € R, we
conclude that
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QAMSE’n(un; r) > 1/ C |Mn(Tn(X)) - Mn(Tn(y))|P . ()C o y‘
€Jaxn

2
Gyl )AL > pey ey
17% er

1 |tn(T0(x)) — un(T, ()" < lx =yl ) 42
_ L dxd
S e e ) LS
17% er
1 |un(Tn(~x)) - un(Tn(y))|p r ( ‘X - y‘ ) —d 2
> — .
() v (i) o
By setting
0=0.=¢ (1 — 28)
er
and
1 u,(T,(x)) — u,(T,(y))|? r
gé,n(un’r) = S QXQC <| 51’*‘1*1|x7y|‘7 | ) s (‘x_y|) p(x)zd-Xdy
o 4 (T + 58)) — un<Tn(x»P) )
- d d
6/Rd77 (|£|) g QQ(Q(SOC( 6P*1‘§|(1 p(x) X
(where we applied the change of variable (4.1)) we obtain
—d-1
(1 - if) gAMSE,H(u; r) > gé,n(una r)- (416)

. . —d—1
Notice that, since ¢ < ¢, we have 6 = §. — 0 and ( — %f) — 1. We now focus our
attention on the energy Gs,, and more precisely on

1 (T (x + 08)) — un(T,(x))|? > 2
Esn(y; &)= — dx.
ot €) 0 Jan@-se) ( op=1igla pLxydx
Clearly
Gt ) = / (€D (4.17)
R

Fix ¢ and consider an open bounded set with finite perimeter and smooth boundary A CC 2
and notice that, for  small enough, we have

ACQNEQ - 89).

In particular

. 1 |un(Tn(x + 55)) - un(Tn(x))‘p
go",n(un’ 6) 2 S/AC ( 6p71|€|q ) p(x)zdx

1 el litg n(t + 0|5 2) — e u(t;2)|7 .
a 5/5LdH © [A]ZC( or-1(gle pelt 2y dr

_ / Exiten(=2): & [AL)AH (2.
€L
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Thanks to the co-area formula we have that, for H¢~' almost every z € £*, the set [A]. must
be a finite union of open intervals. Let now 7 be the subsequence achieving

lg -i-lglof Esn(un; &) = kllinoo Esm (U3 &)

By applying lemma 4.5 and the boundedness of p we conclude that, up to extracting a further
subsequence (not relabeled), for ¢! almost every z € £ we have

lim |ﬁ§,,,k(l; 7) — uf(t; Z)|dl‘ — 0.
Al

k——+o00 L
Henceforth, by applying lemma 4.4, for H4'-a.e. z € £ we can infer that
lim inf Ej (i, (.2): €. [AL) > Elue(12):€, [ALL) (4.18)

being E the one dimensional functional defined in (4.10). An application of Fatou’s lemma
yields then

P ey — T LS P ~ oy d—1
ligﬁgfgé’n(un, E) kl}inoo Eé,nk(unk, 5) = /;L lliglﬁ}orleé(u&nk( b Z)7 57 [A]Z)dH (Z)
which, combined with (4.18), leads to

lim inf €, (13 €) > [€]77¢'(0) / / (1 )| pe(t: 2 drdH T ()
n—00 é‘L [A]Z (4.19)
+ O pe(t, )X dH (dH T (2).

€ SugoNlAL:

In particular, from (4.6), (4.19), (4.17) and Fatou’s lemma we get

P
lim inf G, (un; 1) = ¢'(0) / 117" (|€])dE / ‘VM(X)-g px)*dx
n00 R A €]

+0 [ e [

SuNA

N,(y) - ;’ P dH ()

which, being holds for all A CC (2. Consequently

P
tim inf Gs.,(s: 1) > ¢'(0) /RA& [P ([€])dg /Q ‘Vu(x) : §| P9 dx
+ 6/ |§|77r(|§|)d§/ Nu() - i‘ p()2AH ().
# S €]

Thanks to (4.6), we have that

lim inf GAMS.  ,(uy; r) = lim inf Gs, ,,(un; 1) = MS,y (15 p).
n—0o0 n—00

By exploiting once more the continuity in r of the quantities ¥, (p, ¢), o, we can take the limit
as r — 0. This, considering also (4.14), completes the proof. (]
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4.4. The limsup inequality
We now prove the limsup inequality part of theorem 2.1:

Proposition 4.7. Let {¢,},en be any sequence satisfying (2.12). Let u € SBV(Q2). Then
there exists u, € L'(S2; ) such that (pi,, u,) — (p, ) in TL' and

lim sup gMSEn,n(un) < MSW/,C(M; P)
00

n—

We prove the proposition by providing a recovery sequence for regular functions and argue
by approximation. We start by showing how to recover the energy of a function u € SBV(RY)
having the following properties:

(H1) S, is the union of a finite number of (d — 1)-dimensional simplexes, H¢~'(S,\S,,) = 0;
(H2) u € C(Q\S,) N WH2(Q\S,);
(H3) MS, (1) < oo.

We then use of the following density theorem which is a consequence of a well known result
of Cortesani and Toader [CT99].

Theorem 4.8. Let Q) be an open bounded set with Lipschitz boundary and u € SBV(Q).
Then there exists a sequence of function u; € SBV(Q)Y satisfying (HI), (H2) and (H3) such
that:

(@) lim sup, . [y, pOPAHI () < 5 p()2dH 0);
(b) Vu;LPNVu and u; L—m where Vu is, as before, the absolutely continuous part of the
gradient Du.

The following lemma is used to compare the energy of u o T,, with the energy of u.

Lemma4.9. Ler {x;}!_, be a sequence of i.i.d. points chosen according to the density p. Let
[in be the measures provided by lemma 3.1 and T,, : Q2 — {xi,...,x,} be the transport maps
between [i,, and pi,. Let {€, }nen be a sequence satisfying (2.12). Forany u € SBV(Q) satisfying
(HDH—H2), £ € RY, [ > 0and ¢ > 0 define

(S)e={x € Q:d(x,S,) < ¢},
(S — €€)e = {x € Q1d(x. S, — £€) < 0},
D(e l) = (Su)e U (Su — &)y
Let {, = ||T, — Id||.. Then for any x € Q\D(c,., £, it holds
(T, (x + £,8)) — w(T(0))| < ulx + €,8) — u(X)| + 20,]| Vit . (4.20)

Moreover

1. |D(€n’ gn)| .
m--———-=

n—00 En

0. (4.21)

The proof is presented in appendix B.

Proposition 4.10. Ler {c,},en be any sequence satisfying (2.12). Let u € SBV(Q) sat-
isfying (H1)—(H3). Then there exists a sequence of function {u, }nen C LY(S2; j1,) such that
(fns ty) = (pt,u) in TL' and

lim sup GMS., ,(u,) < MS, ¢ (u; p). (4.22)
00

n—
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Proof. We start by noticing that, since {2 has Lipschitz boundary, for any polyhedral set
A DD Q, there exists an extension iz € SBV(RY), still satisfying hypothesis (H1)—(H3), such
that | Diz|(0€2) = 0 and & = 0 outside A (see for example [AFP00, proposition 3.21]). We thus
fix A D 2 and consider such an extension (still denoted, with a slight abuse of notation, by u).
We also extend p(x) = 0 on R\ Q. For every n, consider /i, of lemma 3.1. Let T,,, as before be
the d, optimal transport map between i, and 1, and ¢, = ||T — I||.~(q). Notice that, since
MS,, ¢(u; p) < oo we can infer that, for Llae £ eRYand HY -ae.z € §l it holds

/ lug (13 2)| pe(t: 2)*dt + / pe(t; 2*dH (1) < oo (4.23)
R N

ug(2)

We define u, : {x,..., x,} = Ras

u(x;) ifx; € Q\S.;
(i) = (4.24)
ut(x;) ifx; €8,
where u™ is defined in (2.5). We now divide the proof in two steps.
Step one: lim sup bound on GAMS. We first prove that the lim sup bound holds for the
auxiliary energy

1 |1 (To(x)) — un(T, ()" B 2
GAMS., (u,) = - /Q mg( T — Tl )ns,,(Tn(x) T,(y)|)p(x)"dxdy

From now on, we will omit, as in other proofs, the dependence on n of ¢, and ¢,,. Define, for
t € R, the kernel 7j(¢) := n(max{r — 2¢/e,0}) (where we are omitting to explicitly denote the
dependence on ¢). Since

lx —y| =20 < |T,(x) = T,(»)| < [x —y| +2¢

and since 7 is non-increasing, we deduce

3 (0T (e {12212 ) < (),
3 9 S £

Since ( is non-decreasing we have

1 g [Un(Ta(0)) — un(T,(0)[”
AMS€ n n g — ! erq
g o) a/nmg (5 (Jx =y = 207%

1 hmnu+¢»—%m@m3_ ,
sz 9 dx.
5/Rd g/ﬂﬁ(ﬂsg)g ( er=1(|¢] —2¢/e)% n(EDpx)dx

> 7-(]x = y))p(x)*dxdy

For any fixed £ € R? set ', :=Q N (2 — ££) (where we omit the dependence of w’. on &)
and consider

1 / C <|un(Tn(-x + 56)) - un(Tn(x))‘p

. I 2
fs,n(“m&) = e Jo 6‘1771(|£| — 26/6)'] > p(x) dx

so that

%M%MK/W@HWW& 4.25)
Rd
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Let D(e, ¢) be the set defined in lemma 4.9. Notice that

/ <|Mn(Tn(x +&8)) — u, (T, (x))|?
QD0 er=1(|§] —2¢/e)%

1/ (|un(Tn(x + €6)) — un (T, ()|
€Jpen er (€] — 2¢/2)%

The second integral (4.27) can be easily estimated as

1/ <|Mn(Tn(x +€8)) — u, (T, (x))[?
€ b er~1(|€] - 2¢/e)%

which, thanks to (4.21), is decaying to 0 as n — oo (recall that e = ¢, — 0).
Let us now treat the first term (4.26) in the light of lemma 4.9. Since ( is non-decreasing

1
fs,n(un; 5) = -

. ) p(x)’dx  (4.26)

+

) p(x)*dx.  (4.27)

2@ |D(€’ €)|
IS

) p(x)*dx < C (4.28)

€JQD( er(lg] —2¢/e),
1 | u(x + &) — u(x))| + 20| Vul||?
: 5/9; ( er (€] - 2¢/0); ) pL*dx.  (4:29)

From now on, we use the same arguments of of the proof of Gobbino [Gob98, theorem 3.4,
proposition 3.5, theorem 3.6], suitably adapted to our situation (see also [GMO1]). By slicing
along £ we get

1/ | |u(x + €€) — u(x))| + 2¢||Vul||?
e Ja er (€] = 2¢/e)}

1 3 | ue(t + €|€]: 2) — ue(t;2))| + 20|Vl |
I de 1 (
e/fi ® (2] ‘ er (€] - 2¢/2)

and, for the sake of clarity we introduce the notation

: <| |ue(t + |€]; 2) — ue(t;2))| + 20| V] oo|?
an 5p_l(|§|_2€/5)i

) p(x)*dx

) pe(t; 2)7dr.

r4

1
Folug(32): 6, [941) = — /

[

) pe(t; 2)7dr.
We define
[S],:={t € [, : [t,t+¢lé)) N Suc(z2) # 0} (4.30)

and, for a fixed £ € R?\{0},z € &t we split once again F_(u¢(-; 2); &, [©2];) as (notice that, for
any fixed & we can find € > 0 small enough such that |{| — 2¢/e > 0)

1 ||ug(t+€|§ ;Z)Mg(t;z))|+2£||vu||oo|p) ,
€ t;z)"dt
€ /[Qélz\mzC ( eP=1(|€] —2¢/e)% pe(t;2)

1 | ue(t + £]€]:2) — ue(t:2))| + 2¢)| V]| oo | .
' /[Slzc ( er-1(|¢| — 2¢/e)%. pe(t;2)"de

e

pe(t; 2)*dt

¢'(0) / | |u§(t+5|§|;z)—u5(t;z))\ +2£‘|Vu||oo|p
(el = 2¢/e) i s, er

4.31)
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1
+0- / pe(t; 2)*dt (4.32)
€JIs1

Notice that, if € [QL],\[S]., we have

52) — 5 cl¢l P
e uig,@)H%“WHm'IJ ggpl/ <|”§(I+T A+ g elg Vulloc) 1
0
elé]
< g*1|f|P*1/ {|u’£(t+7;z)| 4+ — iE vu”oc] dr
0
t+z¢] »
= 571|§|P—1/ |:|M£(S 2)| + T |||Vum]
hence
_do |ue(t + e|€;2) — ue(t; )| + 20| Vaul||?
(¢l - 26/5)‘]/[9’] \[ST: &P pe(t;2)~dt
"0)|¢pte! tele]
%// [|M§(S 2|+ e |||Vu||oo] dspe(t; 2)de
_ C/(O)|£|p71€71 P ps .
m/[l ug(s:2)| + e |IIWIIOO} /5 pe(t; 2)*deds (4.33)

where we used the identity

TR T 14c1en () = TR T fs—cje).51(D)-

Notice now that, for £'-a.e. s € R, we have
lim (/€)™ {|M5(S )| + e |||Vul|oc} / pe(t; 2)*dt = Jug(s;2)| pe(s; 2)°.
s—el¢]

In particular by exploiting the dominated convergence theorem (the sequence is dominated by
twice its limit for example, which, for £9-a.e. €R? is summable for H¢ '-a.e. z € £+ due to
(4.23)) we obtain for £-a.e. fixed ¢ and H? !-a.e. fixed z € {L

— ue(t;2))| + 20| Vul |

BRSO .
sggl (¢l - 24/8)5’/9’] \IS; P pe(t;2)°dt
< C’(O)IEI’H’/ (53 2)[” pe(s:2)*ds
R
= ¢'(O)[¢]" /Q [ue(s:.2)|"pe(5:2)%ds (4.34)
[£2];

since p is defined to be zero outside €2. Let w be the modulus of continuity of p? on 2. That is,
forr >0

w(r) = sup{|p*(x) — P’ )| 12,y €Q  |x—y| <r}.
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From the definition of [S], in (4.30) follows that

— [ pe(ydr < — / / pe(t;2)* dr dHO(y)
[S]: “5( 12) 6\5\,)’](7[92]1
@IEI/ pe(v:2)* + w(el€]) dHO(y)
Sug(:NIe 1z
< Ol pe(y; 2)* + w(el¢) dH () (4.35)

Sug(‘;z)m[QJz
where the last inequality follows from the fact that
[Q]; =[2N Q=] C [..

By collecting together (4.34) and (4.35) we get, for £%-a.e. £ € R and for H¢ '-a.e z € £*,
that

lim sup F.(ug(: ;€. 2110 < O[] /Q 53 )7 pe(s: 2°ds
e [

x4

+ ©[¢| pe(t: 2)2dHO(2).
Suf(v,z)m[Q]z

In particular we can apply the reverse Fatou’s lemma (again for every &, F. is dominated by
twice its limit which is summable in z due to MS, (1) < oo) and conclude that

limsup [ Fo(ug(-52); & Q)R (2) < (O] / dH"(2) / |ug(s3.2)|” pe(s; 2)*ds
&t I €1,

e—=0

+ O] / dH\(2) pe(t; 2 dH (1).
fi

Sus(-;z)m[Q]z

By collecting (4.26)—(4.29) the definition of F. and lemma 4.9 we get, for £%-a.e. £ € R?, that

n—00

lim sup .., (uty: §) <C’(0)|€|”_"/Ld3‘i"‘l(z)/ | (53 2)|” pe(s 2)°ds
¢ [2;

+ 0] / A (2) pe(t;2)°dH (1)
EL Sug(-;z)m[Q]z
A further application of the reverse Fatou’s lemma on (4.25), combined with the fact that

7(t) = n(max{t — 2¢/e,0}) — n(¢) in L' as ¢ — 0, leads to

lim sup GAMS., (u,) < (’(0)/dn(|§|)|§|”*"d§/ dZ/ | (s53.2)|” pe(s: 2)*ds
IR &t Q1

e / neDlelde / & / pelts 2P dHO0)
R4 ¢t Sug ()N

which, thanks to (4.5) achieves the proof of step one.
Step two: lim sup bound on GMS. Consider ny := T (#)n(?) and notice that, by exploit-
ing the notation of the proof of lemma 4.2, we have
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gMSen,n(un) = gAMSe,,,n(un) + Rn(un)
= gAMSE,,,n(”n) + R (up; 77M) + Ru(up; n— TIM)
where, with R, (tt,; M), Ru(ttn; 1 — 1ar) we mean the energy R, (u,) with n, n — n™ in place

of n. Since R, (s ny) = GMS..,, n(n; r) — GAMS,, »(un; my), by virtue of lemma 4.2 we
have

n—0o0
From the other side, since p is bounded from above and below we have that

‘Rn(un;n - 77M)| g CgAMSsn,n(un; n— 77M)

for a universal constant C. Thanks to the step one and to proposition 4.3 we thus have
lim Ry 1t — )| < C [ 1im GAMS., ) — Tim GAMS., ot )|
= CMS, ;(u) — MS,,, (u)).

Since MS, ;(u) < +oo by taking the limit as M — oo and by exploiting the continuity of the
constants in MS we get

lim lim |R, (.31 — nm)| = O,

M—00 n—0o0
yielding
lim R,(u,) = 0.

n——+oo

In particular, by invoking (4.7), we reach

lim sup GMS., ,(u,) < lim sup GMS., ,(u,) = lim sup GAMS., ,,(u,) < MS,, ((u).

n— n—0o0 n—o0

O

Proof of proposition 4.7. Assume now that u € SBV(Q). Let u; be the sequence given
by theorem 4.8. Then u; — u in L' which means that dg;1((, uj), (i, u)) — 0. Set (up to a
subsequence)

L:=1im sup MS, ;(u;).
Jj—o0

Notice that thanks to assertions (a) and (b) of theorem 4.8 we have that L < MS,, ¢(u). For all
k € N, consider j; such that

dypr (s ), (i, w) < 1/(2k)
MSn,C(ujk) <L+ 1/(2]()
In particular it also holds that
MS,c(uj) < L+1/2k) < MS, (u)+ 1/(2k).

For every ji chosen as above let {u;fk}neN be the sequence given by proposition 4.10 relative to
u;,. By exploiting proposition 4.3 we can infer
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MSn,C(Mjk) = nliroré gMSE,,,n(”?k)
Choose now ny, such that

drpy (s ), (i, 1)) <1/(2k)
GMSe, n(U) <MS, (u)+1/(2k) foralln > ny

1
<< MSU,C(M)—i—% for alln > nk> .

Define now the following recovery sequence

wy, =u";, ifn€ [ng,nr1), k€N (4.36)

- e
This means that, for any n € [ng, n;+1) we have
dTL1 ((Mlb u;!k)’ (/1’9 M)) < 1/k’
1
gMSan,n(M";‘k) < MST],((M) + % .

Implying
A (s wn), (o u)) < 1/k,  for alln € [ng, ngy1)

1
GMS., (wy) < MS;, ¢ (u) + x for alln € [ng, ng41).

In particular, (u,, w,) — (1, u) in TL! and

lim sup GMS., ,(w,) < MS,, ¢ (u).

k—00

0
5. Proof of the compactness result (theorem 2.3)

This section is devoted to the proof of theorem 2.3 that establishes a compactness result for
sequences of functions with uniformly bounded GMS., , where ¢, is any sequence satisfying
(2.12).

Remark 5.1. Let us point out that, in contrast to [GTS16] where an L' bound is assumed,
our compactness theorem 2.3 requires an L> bound on the sequence u,,. Namely due to the fact
that in GMS., ,(u,) the differences in u, are inside a bounded concave function ¢ a uniform
bound on GMS,, ,(u,) is, in general, not translatable into a uniform bound on GTV. . This is
not just a technical issue and in fact an L'-type bound is not sufficient for compactness. Here
we provide a counterexample to compactness if one only assumes an L' bound on u,. Choose
p = 1 and Q = Q the unit cube centered at 0. Let {Q¥ ffl be a di-adic division of Q in cubes
of edges-size 2 and let {x¥}2, be the uniform grid given by the baricenter of each cube Q.
Consider the sequence of functions uy : {x\}2, — R defined as

15, )5
Mk(x];) = :Jdrd !
k

with ry :=27%2. Notice that xf‘ € B,,(0) implies Qf-‘ C By, (0) and thus

#({i:xf € B (O} < #({i: 0F C By (0)}) = 29w 2.
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On the other hand
#({i: 0f CB, (=2 | 0 =2"B,,n0) =2 w2 "
Qf By (0)
Since Q¥ C B,,(0) implies x} € B, (0), we conclude
27w 2% < #({i Xk € B (0)}) < 2%w 2.

kd
In particular, setting v := 2 Zle 0%, we have

d
/Q v — 2kd§: ey = 2 frgBrk(O)}) _#i :i;dirk(m})
and so
274 K /Qukduk <2? forallk € N. (5.1)
This means that u; € L' (Q; ;) and that
sup { [lug| 1} <27 (5.2)
keN

Consider now ¢; := 2% for some 1/2 < a < 1 and notice that it satisfies (2.12), since

log (n)'/4

lim =
1/d
k—00 5knk/

(here n; = 2% and we are also considering d > 2). Now we choose ( as

X forx
(x) = { (5.3)

<
1 forx >

With all these choices in mind, for any kernel 7 satisfying the assumptions (B1) and (B2), we
can conclude

ny k _ xk P
gMSek,nk(uk) = E (511P+£IW> nsk(|x;€ B XI;‘)
i J

1
2
ExNy byt

2
Som D 20 il =) = 26T Ve (1, O)).
bk €By, (0)¢ eBy (0)
Notice that sup; {GT'V-, (15, (0))} < co and so

sup {GMS., ,, (up)} < . (5.4)

keN

By collecting (5.2) and (5.4) we are finally lead to

Sup{Huk”L] + gMSEk,nk(uk)} < 00.
keN
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Nonetheless we cannot expect any sort of L' compactness for the sequence (v, uy). Indeed,
the only possible pointwise limit for u o T,,, : Q — {0,7,9/w,} can be u = 0 but

/ up(Ty, (x))dx = / wdy, >274>0
(4] 0

because of (5.1).

Our proof is based on the approach to compactness for general non-local functionals
established in [GMO]1, theorem 5.1].

Proposition 5.2. Letp > 1 and consider an open set A C R? with Lipscthiz boundary. Let
u. € L"(R?) be a sequence of function such that

i u(x) — u.

inf {/ |()7()))|JE(|)C — yPdxdy + ||uc||oc} < 400
RIxRA b=yl

where J is any kernel such that {& : J(€) > ¢} has non-empty interior for some ¢ > 0. Then the

sequence u. is compact in L' (RY).

Before proceeding to the proof of theorem 2.3 and in order to apply proposition 5.2 (which
holds for functions defined on the whole R¢) we need the following extension lemma in the
same spirit of [GTS16, lemma 4.4].

Lemma 5.3. Suppose that Q is abounded open set with C* boundary. Let 1) be a compactly
supported, non-increasing kernel which is not identically equal to zero. Let {u.}-~o C LY(€)
be a sequence. Then there exists a sequence of function {v.}.~o C L'(R?) such that

(@) v. = u. L%a.e. on Q;
(b) There exists a kernel J" such that {£ : J'(|€|) > ¢} has not empty interior for some ¢ > 0
and such that if

_ NP
sup {/ |u5(x)u5(y)|n6(|x_y|)(|xy|> dxdy + uaoo} < 0,
QxQ g

e>0 |x__y|
|OQ} < 0.

Proof. Since Q has C* boundary we can find § > 0 for which the projection operator x —
Px € Q is well defined on U := {x € R9|d(x, ) < §} and satisfies

then

sup { / [0 =20 111y + o
>0 R x R4 |X - y|

|x — Px| = d(x, §2).

We moreover consider a smooth cut off function 7(s) < 1, such that 7(s) = 1 for s < §/8 and
7(s) = 0 for s > 0/4 and we consider the reflection Rx :=2Px — x. Set also

W= {z € R\Q|d(x,Q) < §/4}
Vi={z € R\Q|d(x,Q) < §/8}.
It has been shown in the proof of [GTS16, lemma 4.4] that
1
Z|x —y| < |Rx—Ry| < 4|x—y| forallx,y € W, (5.5)
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|Rx —y| <2|x —y| forallxe W,yec Q; (5.6)

Since 77 can be extended continuously at O with 7(0) > 0, up to decreasing the value of J, we
can also guarantee that

JI(@0) = 1"n (40 (1 — Ty 5(D)
is such that {¢|J7(#) > ¢} has not empty interior for some ¢ > 0. Notice also that
3
\Rx—y|>z|x—y| forx,y € W, [x —y| = 4. (5.7)

In the light of this fact, we introduce the functions @ := u.(Rx) and v.(x) := 7(|Px — x|)0.(x).
Clearly (a) is satisfied. Notice that for y € Q

Ix —y] > d(x, Q)
€ €

Thus, if d(x, 2) > 6/8, for & small enough and thanks to the fact that ) is compactly supported,
we conclude that

n-(4]x —y[) = 0.

Consequently

/ |[ve(x) — Ua(y)'J;’Qx ~ y[)dxdy
RN\Q)xQ \x -

V:(x) — V. X — r X —
= / [ve) = ve)] — (y)|775(4|x—)’|)<| y|) (1 —Tis <| y)) dxdy
RN\ xQ lx =yl € €

~ 5 _ p
-/ 'wwvxmm@u—ﬂ(”y>dMy
xX—y €

X | |
{lx—y[=de}

“(Rx) — u. Rx — P
VxQ |RX7y| £
{lx—y|=0e}

Rx) — Rx — P
VxQ 9

|Rx — y|
_ _ p
<c/“ Eii—ﬁﬂﬂmakybci—ﬂ>dMy
axa 2= £
_ _ P
QxQ Iz—yl €

Where we have exploited (5.5)—(5.7) the change of variable Rx = z and the fact that R is bi-
Lipscthiz on W. From the other side, for (x,y) € W x W we have
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[v-(x) — v-()| - T(|Px — x|)(|0:(x) — 2-()|) + 7(|Px — x]) — 7(|Py — y])|0-(»)|
-y x — |
< |u-(Rx) — u-(Ry)|
lx =yl

|uc(Rx) — u-(Ry)|

1
EDOL' gi
HllelLipr) < MR

+ [Jve [| o Lip(7).

Moreover

_ p _ _ )4
m@x—y><x€”> Q—wwm<x8y0)sgm@x_y)<x€y>
_ p
< Cn=(|Rx — Ry|)<|Rx€Ry|) .

In particular with the same change of variable as above we achieve

/ [v(x) — vs()’)|1g(|x — y|)dxdy
RA\ Q) x (R4\2)

X —
e =yl 5.9)
QxQ lx =y
By collecting (5.8), (5.9) and the definition of v. we prove (b). O

Proof of theorem 2.3. Since p is always bounded from above and below, without loss of
generality we can assume p = 1. Moreover we can always assume that 1 is compactly sup-
ported since, by replacing 1 with 7719 4; for suitable M, we are decreasing the energy. Without
loss of generality we may also assume that 7 is supported on [0, 1]. Moreover, as usual, we

will omit the dependence on n of the sequences ¢, and ¢, = ||T,, — Id|| .-
Due to the properties of ( we can always find real constants (, and ¢, > 0 such that
!/
YO O <
2 t (5.10)
e < () fort > G.

Set i, (x) :==u, o T,, where T, : Q — {x,...,x,} is the map that transports [, to f,; the
measures given by lemma 3.1. We define

g1k ) = B } (5.11)

&:{“”EQXQ IT,(0) — T,

We immediately see that

l 14+g— |L~tn(x) - ﬁn@)\" B
gMSs,n(un) = 5/A5€ <5 4 p|T,,(x) — Tn()’)|q 775(|Tn(x) Tn(y)DdXdy

>§ T = T,y

Moreover since 7 is non increasing and non identically 0 we can find a positive » > 0 such that
1(t + r)T,1(1) is not identically 0. Set 7)(¢) :=n(t + r)1j0,1;(#) and notice that 7 is still a non
increasing kernel, supported on [0, 1 — r]. Since for € small enough we can always guarantee
that

|T,(x) — T,()| < Ix?yl +r:>n(|Tn(x);Tn(y)l> > <x—y|).

9 £
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We can also infer, for [x — y|/e < (1 —r)

<|x€ > e(jx—y)) <A —=r)P~ L 'nc(lT<x> T»D-

Thus we can conclude

~ iy _ p p
Ac

(5.12)

for a universal constant C > 0. For the remaining part we notice the following thing. On (£2 x
O)\A. it holds

¢ (51p+q it (x) — an<y>|”) S SO () =, )IP e (Ix - yl)
|Tn(-x) - Tn()’)|" 2 |.X - )’|p |Tn(x) - Tn()’)|" £

and for € small enough we have

el 1 1
T =T = (il o 2\ © (o o )"
! ! (T + ?) (— + 1)

This yields, by recalling that 77.(|x — y|) = O for |x — y| > (1 — r)e, that

- - ) ?
¢ |12 (xX) — ita ()" ( e ) _
5 g7=(jx — y[)dxdy
2 Jaxopa. =yl (‘“‘j‘ + 1)

~ o~ _ P P
. A]-pc( / 2, (x) un<y>|<x y) ngqx_y)dxdy)
(2x)\Ae lx — | €

(5.13)

X — X —
A ::/ <| |> 7= (Jx — y|)dxdy < / (| > 7e(|x — y[)dxdy
(Qx)\Ae € QxQ €

<2l / €PcleDde < 219 / €PIEDdE < +oo.
R4 B1(0)

GMS.(uy) >

where

By collecting (5.12) and (5.13) we conclude that

() — )| [ ]x =¥\’ _ -
sup {/ | (] | e, (|x — yDdxdy + ||it |0 p < +00.
neN QxQ lx — ] En

(5.14)

We now divide the proof in three steps.
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Step one: Q2 has C* boundary. In this case, by applying lemma 5.3 we can find a sequence
of {v, }nen C L'(RY) such that v, = i1, £¢-a.e. on Q. Moreover, due to (5.14) there exists a
kernel J7 such that {£ : J7(|€]) > ¢} has not empty interior for some ¢ > 0 and for which

sup {/ M]ﬁﬂﬂx — ypdxdy + ||vn||oc} < +o0.
neN RA x R4 lx —

Then, by applying proposition 5.2 we deduce that {v, },en is compact in L'(R?) and thus
{it, } nery is compact in L'(€2).
Step two: 2 has Lipschitz boundary. Thanks to [BZ17, remark 5.3] there exists a bi-

Lipscthiz map Q) — Q where  is a domain with smooth boundary. Consider i, := i, o
U : Q — R. Clearly ||é,]|oo < [|fin]| - Moreover

50 — _uI\P
[ SO BON NG wipawy b yharey

~n B ~n v -v p_ . -
ccf e b0 YON G Lipw) w0 - vty

N U\
< C/ |un(x) un(y)| <|x y| ) 775,1(|x — y|)dxdy.
QxQ

|x_y| En

By exploiting (5.14), lemma 5.3 and by arguing as in Step one we conclude that {i, },ey is
compact in LY(©)). Since ¥ is bi-Lipschitz, a simple change of variable shows that {ii, },en is
compact in L'(Q).

Step three: compactness of (fu,,u,) in TL'. Thanks to steps one and two we obtained
that {it, :=u, o T, }nen is compact in L'Y(€) and converges to some u up to a subsequence.
Thanks to lemma 3.2 we deduce that (fi,, u, o T,,) — (11, u) in TL! as well. In particular, since
doo(ftns f1n) — 0, we have

dTL1 ((/~Lm un)s (/149 Lt)) g dTLl ((Mm un)’ (ﬂm Uy © Tn) + dTLl ((ﬁ/n, Uy © Tn)’ (/st I/t))
= doo(ftns fin) + dyp1 ((fin, tn © Ty), (o, u)) — 0.

6. Proofs of corollaries

We now prove the corollary 2.6.

Proof. Let u,:V, — R be a sequence of functions such that (u,,u,) converges in TL?
towards (i, u). Let T,, be the oo-optimal transport map between p and . To show the lim-
inf inequality needed for I'-convergence, it suffices to establish the convergence of the fidelity
term, as the other terms are same as in theorem 2.1. Note that

1 : 2 3l |2
o> ) = F0P = [ o T, — £ 0T, ot
s @

We claim that since fis piecewise continuous f o T, converges to fin L*(;). Namely let Jybe
the set of discontinuities of fand let J; = J; UOQ. Let Js5 = {x € Q:d(x,J ;) < &}. Since
Hd_l(jf U o) < oo, u(]f,(g) — 0 as § — 0. To establish the convergence let € > 0. Let § be
such that 4|/ f || p(J r.5) < €. Let n be so large that ||T,, — I|[;~ < 16. Since f is uniformly
continuous on Q\J 5> and |7, — I|[z~ — 0 as n — oo, f o T, converges uniformly to f on
Q\J f5. Therefore for all n large enough
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— ~ — € 9
17 = £ oTuPpnax < 2u0publif i+ [ 1F = foTofpodr< 5+ 5.
Q Q\J/’(;

Since (tty, tty) — (j1,u) in TL?, and T, is a stagnating sequence of transport maps we con-
clude that we conclude that u, o7, — u in Lz(u). Combining with the convergence for
f o T, obtained above we conclude that [, [u, o T, — f o T,|*p(x)dx — [,|u — f|*p(x) dxas
n— 00.

Establishing the limsup inequality is straightforward by using the same approximation
argument and recovery sequence as in the proof of theorem 2.1.

To establish the compactness of the sequence of minimizers, let u, be a minimizer of
GMS . ,. By truncation it is immediate that ||u,,||z(,,) < || f |- Therefore the compact-
ness claim of the theorem 2.3 implies that (u,,u,) converges along a subsequence in TL!
to (u,u) for some u € L*(p). The boundedness in L implies, via interpolation, that the
convergence is in TL2. The fact that u is a minimizer follows from I"-convergence. |

We now prove the corollary 2.7.

Proof. Let us first establish the liminf inequality. Let u, : V,, — R be a sequence of func-
tions such that (u,, u,) converges in TL? towards (u, u). Given the results of theorem 2.1 and
assumptions on [, it suffices to show that the fidelity term converges, that is that

1 n
> ) = fOw) =y / /Q JuC) —f@ — P dxdfy)  (6.1)
i=1 x

as n— oo. Note that 137" | |u,(x;) — f(x)[> = [, |u(x) — f(0)[*p(x)dx follows from the
proof of corollary 2.6. The fact that %Z:’zl 0y, weakly converges to 3 follows from
Glivenko—Cantelli lemma. Due to boundedness of moments we conclude that 1™ | 6, con-
verges to [3 is g—Wasserstein distance for all ¢ > 1. Using the boundedness of 3 we con-
clude that 23" | [y;|* converges to [,y?dB()= [[q, ry*p(x)dxdB(y) since [ op(x)dx = 1.
Note that ~, == %Z:’zl Oy converges to y:=p x 3 in Wasserstein distance, again due to
Glivenko—Cantelli lemma. Let «, be the optimal transport plan for the Wasserstain dis-
tance between v and ~,. Let 7, := H1,3u/<0n where 11 3 is the projection to the first and the
third variable. By definition 7, is a stagnating sequence of transport plans. Therefore, by
proposition 3.12 of [GTS16], since (i, u, — f)TL*(uu,u — f) by the proof of corollary 2.6,
TS 1 =% + [ua () — f(X) — u@x) + f&)[*dra(x,y, %) — 0 as n— oo. Thus (Y, uy —

2
f)TLz(y, u— f)as n— oo. Similarly (v,,y) —>TL (7,y) as n — oo. Consequently (,, (4, —
1
) =5 (v, (u — £)y) as n — oo. Thus

1 n
=3 ) = fO))yi— / / (u(x) = £y p(x) dxdB(y)
ni:l QxR

_ / / / Un(®) — FENF — (W)~ F @)y dra(r, v, 5.5) =0 as 1 — oo.

Combining with the limits above establishes (6.1).
The proofs of limsup inequality, compactness and the converge of minimizers are as
before. ]
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7. Numerical algorithm and experiments

Here we desribe an efficient numerical algorithm for computing the, approximate, minimiz-
ers of the graph Mumford—Shah functional and illustrate its behavior on a real world set of
data. We note that similar functionals were minimized using the ADMM algorithm by Hallac
et al by [HLB15]. Here we minimize (1.1), where ( is non convex. We use a standard ;iterated
reweighted least square’ approach which in this context dates back at least to [GR92] (c¢f also
the implementation in [Cha99]). In our case, the idea is to perform several iteration, linearizing
each time the problem with respect to ¢ around the previous value.

This can be presented as follows: we assume that ¢ is concave, with '(0) = 1 and ((+o0) =
1, for instance ((r) = t/(1 + ¢) for ¢ > 0. Then, using the Legendre transform, one can write
for t > 0((f) = minejo,172t + V(2) for some convex function ¥. (One has ((f) = —V*(—¢) and
W(z) = max,((t) — tz, where ¥* denotes the classical convex conjugate of W.) The minimum
(if unconstrained) is reached at z which solves ¢t + ¥/(z) = 02, hence z = (V*)(—1) = {'(0).

s

We consider the edge weights given by kernel 7(s) = e 202 where o is a parameter that can
be tuned. Minimizing (1.1) is equivalent to solving:

< |-~ 1 1 i — x;?
2 2 i X
n;}ZnZl: lu(x;) — fil* + en Z (Z,-,jg|u(x,-) — u(x))|” + \I/(z,-,j)) 7 &XP (_T%Z

ij=1

where the new variable (z;;) is defined on the active edges. This is computed by alternatively
minimizing the problem with respect to # and z: in u, the problem is quadratic and can be
minimized efficiently, depending on the graph, by inverting the graph Laplacian (plus identity)
or a conjugate gradient method. In z, the solution is explicitly given by

zij=( <|u(x,~) - u(xj)|2) .

3

In practice, we have implemented the following cases:

2 , |

() = = aretan (%t) . )= T (7.2)
_ 2 ! — 71

C) = V& +1, ¢ = SN/ (7.3)

¢ =t, d=1, (7.4)

The choice (7.3) leads as § — 0 to a consistent approximation of the graph total variation which
was first proposed in [VO96]. The choice ((#) = ¢ corresponds to regularization by Dirichlet
energy, which corresponds to (unnormalized) graph Laplacian. Our implementation is available
on bitbucket: https://bitbucket.org/AntoninCham/ms_on_graphs/

71. A synthetic example

We consider denoising and detecting edges in the signal given by piecewise linear function
u on domain [0, 1]%, shown on figure 1(a). The signal is sampled at 10 000 points, X000,
and corrupted by Gaussian noise with variance 0.2. We build the graph using 1 as in (7.1) with
o = 5and e = 0.0225 and with the maximum number of neighbors k = 8. We considered three
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(© (D)
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(B) (F)

-0.1

Figure 1. Denoising (regression) and edge detection. (A) Noiseless function. (B) Func-
tion sampled at 10 000 random points and corrupted by Gaussian noise with o = 0.2.
(C) Minimizer uyg of (1.1) for A = 162. Edges with jump over 0.075 are red. (D) Min-
imizer uty of the graph TV functional for A = 438. Edges with jump over 0.14 are red.
(E) Minimizer u;, for ¢ given by (7.4) with A = 248. Edges with jump over 0.09 are
red. (F) The difference upms — ury tends to be positive on the upper side of jumps and
negative on the lower side.
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Figure 2. Denoising of housing prices. The maximum price per square foot. (A)
The recorded price per square foot. (B) The minimizer of the graph Mumford—Shah
functional computed. (C) Detail of the image above. (D) Detail of the image
above.

models for denoising and edge detection given by ( in (7.2)—(7.4). Namely on figure 1(c) we
display the computed minimizer of the graph Mumford—Shah for ¢ given by (7.2) and A = 162.
On figure 1(d) we display the minimizer of the approximation of the graph TV functional for
¢ given by (7.3) with § = 0.001 and A = 438. On figure 1(e) we show the minimizer of the
functional with dirichlet regularization, corresponding to ¢ given by (7.4) and \ = 248. For
comparison, for each of the models we display the result for parameter A which minimizes
the Ll(,uloooo) error between the minimizer and the clean signal u restricted to Xjop00. The
errors observed for optimal lambdas were |Juys — u||1 = 0.0258, ||ups — ul|,1 = 0.0297, and
ler, — ul|;1 = 0.0392. We note that the recovery by Mumford—Shah is somewhat better than
for graph TV. We think that the main reason is that the graph TV tends to decrease contrast
(as is well known in image processing, see page 30 of [CCCT10]) while the Mumford—Shah
does not have this bias.

We also observe to what extent the minimizers recover the edges of the domains by
labeling the graph edges that have a relatively large difference between values at the nodes.
These are shown in red on the plots. The critical jump size was set manually for visu-
ally the best results for each model. We note that Mumford—Shah and TV give simi-
lar results, while the Laplacian smoothing blurs the edges as expected. Taking the differ-
ence between the minimizers uys — ury shows, on figure 1(f) that indeed jumps across
the edges are typically larger for the Mumford—Shah minimizers that for total-variation
regularization.
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72. Denoising housing prices

Here we present an example of minimization of Mumford—Shah functionals on graphs aris-
ing from real-world data samples. This example is given as an illustration of the nature of
minimizers.

We consider denoising the real estate prices in King County, WA. The housing
prices in the period May 2014 to May 2015 are obtained from the Kaggle website:
https://kaggle.com/harlfoxem/housesalesprediction.

We removed the geographical outliers (east of longitude —121.68°) and data rows missing
square footage. The recorded price per square foot is shown on the left. This left 21 594 usable
records. The maximum price per square foot was $810.14. We normalized the input prices per
square foot by dividing by the maximal price. On figure 2 we present the computed minimizers
of the graph Mumford—Shah functional with € = 0.04, A = 14, and o = 1. We also allow
one to limit the maximal degree of a vertex considered, which we set to k = 15. On a 2018
Macbook Pro, the computation takes 31 s, including the construction of the graph. The denoised
data allow one to visualize by how much the typical price per square foot depends on the
location.
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Appendix A. Proof of lemma 4.4

The proof of lemma 4.4 is obtained as a slight modification of the proof contained in [GMO1]
for f = 1. In particular we apply [GMO1, theorems 3.1 and 3.2] on the family of functions

el (e
o= e (1)

Indeed we note the following facts

|ux+61ED—u@)| | _ 1 [uGe+0lED—u@)P Y.
(a) Ps¢| (T) = g( (W)’

(b) lim__p+ ¢ (r) = ¢'(0)[§[P~rP;
(¢) lim_yrep-(r/c) = B[]

In particular, by combining (a)—(c) and with a slight variation of the proof of [GMOI,
theorem 3.1] (as in [Cha99, section 3.2]) we conclude that

o0+ or-tele

A A
(A.1)

We now proceed to the proof of lemma 4.4.
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Proof of lemma 4.4. Forevery k € N consider a partition of A in small intervals {/} }‘f:l/lk.

Then
|A]/k
1 luCx + &) — u(x)|? . 1 luCx + d|&]) — u(x)|?
E/AC< G )f(x)dx}jz_:ln}%n{f}g/f< 51l )dx.

In particular, by applying (A.1) on each intervals / f we reach

Al /k

1l 01D — ueol? o el o
lim inf /A c( )f(x)dx> O q; /1 /) min {}dx

aP-tgle

|A]/k
+>o el [ min{f)aro)
=1 Sunlf 1
Since f'is a Lipschitz function we now notice that, given € > 0, we can find p such that
=yl <p=|f) - fO|<e.
In particular, for any fixed € > 0, we can find a k € N big enough such that

m}%n{f} >m'21x{f}75 > fx)—¢ forallxelf
g f

Thus,
|A|/k
o1 lu(x + 6|€]) — ux)|? , . , )
= > P=q P
hrglﬁ%)nf(s/AC < =T F)dx = ¢'(0)¢| ; /Ijku (€3] rr};nf(x)dx
|Al/k
+) Ol / min £ ()dH ()
=1 Stk I
> Ol [ WP - o
A
+0[¢] / (fO) = )dH’ ().
SunA
Since the above holds for arbitrarily small positive ¢, we conclude that (4.11) holds. |

Appendix B. Proof of lemma 4.9

Proof. Note that for all x € Q\D(e,, ¢,) it holds that
@ {x+s(Ty(x) —x):s5 €[0,1]} NS, = 0.
b) {x+e &+ s(Tux+e,8)—x+e:s€[0,1]}NS, =0.

Indeed, assume by contradiction that x + 7o(7,(x) — x) € S,. Then d(x, S,) < to||Tu(x) —
x|| < tof, which would imply x € (S,)g,. Thus (a) holds. Analogously assume that for some
to € [0, 1] we have x + £,& + to(T,(x + €,€) — x + £,€) € S,,.. Then
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d(x, Sy — £28) < [|x = (x4 £2& + 10(T(x + ,8) — x + £,8) — £,8)|
= 1o||(Tu(x + €,6) —x+€,9)|| < ¢,
again contradicting x € Q\D(g,, £,). In particular
(T (x + 6) —~u(T, ()| < JuCx + £€)—u)| + |u(T,(x + £€)—ulx + )| + [u(T,(x) ()|

and, since u is regular outside S,,,

1
(T (x + €8)) — u(x + €§)| < én/ [Vu((x +e&)s + (1 — )T, (x + €§))[ds
0

u(T(x)) — u(0)| < £, /O 1 [Vu(xs + (1 — )T, (x)))[ds,
which is proving (4.20). In order to prove (4.21) we just notice that
|(Su = €n8)e, | = [(Su)g, |
and that, since S, is a ployhedral set, for big n
[(Su)g,| = 26,H(S) + o(ly).
This, combined with (2.13), implies (4.21). J
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