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Slepčev3,4

1 Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, 00133 Rome, Italy
2 CMAP, École Polytechnique 91128 Palaiseau Cedex, France
3 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
15213, United States of America

E-mail: caroccia.marco@gmail.com, antonin.chambolle@polytechnique.fr and
slepcev@math.cmu.edu

Received 17 June 2019, revised 3 March 2020
Accepted for publication 20 March 2020
Published 5 June 2020

Abstract

We consider adaptations of the Mumford–Shah functional to graphs. These
are based on discretizations of nonlocal approximations to the Mumford–Shah
functional. Motivated by applications in machine learning we study the ran-
dom geometric graphs associated to random samples of a measure. We estab-
lish the conditions on the graph constructions under which the minimizers
of graph Mumford–Shah functionals converge to a minimizer of a contin-
uum Mumford–Shah functional. Furthermore we explicitly identify the limit-
ing functional. Moreover we describe an efficient algorithm for computing the
approximate minimizers of the graph Mumford–Shah functional.

Keywords: nonlocal variational problems, variational problems with random-
ness, discrete to continuum limit, asymptotic consistency, Gamma convergence,
regression
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1. Introduction

Our investigation of graph based Mumford–Shah functionals is motivated by problems arising
in machine learning. Given a point cloud in a Euclidean space with (noisy) real-valued labels,
or an undirected graph with labeled vertices, we investigate a model to denoise the labels while
allowing for jumps (discontinuities) in label values. As does the classical Mumford–Shah for
images, the functional we consider allows one to identify the locations of sharp transitions of
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label values. Our primary focus is on graphs arising as neighborhood graphs of point clouds
in Euclidean spaces of dimension two or higher, where we can carry out rigorous analysis.
However some of the functionals we study can be formulated purely in the setting of weighted
graphs and may be useful in applications.

The model we study is based on ideas from image processing and go back to the cel-
ebrated Mumford and Shah [MS89] variational model for image segmentation. To adapt
the Mumford–Shah functional to point clouds and graphs we rely on the work of Gobbino
[Gob98] and Gobbino and Mora [GM01] who introduced a family of nonlocal models which
approximate the Mumford–Shah functional. A discrete version of Gobbino’s work, on a uni-
form square/cubic lattice, was then studied in [Cha99]. Ruf [Ruf17] has recently adapted these
nonlocal models to random discrete setting and studied them in the setting of stochastic lat-
tices. Here we study such functionals in the setting of random geometric, and related, graphs
relevant to machine learning.
General graph setting.Consider an undirectedweighted graphwith verticesV = {1, . . . , n}

and edgeweights matrixW = [wi j]i, j=1,..., n. The edgeweights are considered to be nonnegative
and symmetric. Let f : V → R be the observed noisy labels. Let ζ : [0,∞)→ [0,∞) be con-
cave and such that ζ(0) = 0, 0 < ζ ′(0) <∞. We define the graph Mumford–Shah functional
acting on u : V → R as

GMS f (u) :=
λ

n

n
∑

i=1

|ui − fi|2 +
1
εn2

n
∑

i, j=1

ζ

(

1
ε
|ui − u j|2

)

wi j. (1.1)

We note that when the differences ui − uj are relatively small the functional is similar to the
graph dirichlet energy, while for large values of ui − uj the functional saturates and in some
ways considers u to be discontinuous over the edge. It then just penalizes the size of the set of
discontinuities. Minimizing the functional allows one to find the sharp transitions in the data
by detecting edges where ui − uj is large compared to ε. That is the parameter ε > 0 sets the
scale for what differences of the values are considered ‘large’. We note that the functional is
nonconvex.
Geometric graph setting.We now consider the setting of point clouds and the random geo-

metric graphs generated by them. The ability to measure the distance between vertices allow
us to create a larger family of graph Mumford–Shah functionals. Let Vn = {x1, . . . , xn} be a
set of points in R

d. The points xi are typically random samples of a measure describing the
data distribution, but this interpretation is not essential in defining the functional. Given these
points we define a graph by setting the edge weights to be wi,i = 0 and for i 6= j

wi j = ε−dη

( |xi − x j|
ε

)

=: ηε(|xi − x j|) (1.2)

where η is a nonnegative, nonincreasing function which decays to 0 faster than a specified
algebraic rate. Let f : Vn → R be the observed noisy labels and let ζ be as in the graph setting
above. For p ∈ [1, d) and q ∈ [0, p− 1] we define the graph Mumford–Shah functional acting
on u : Vn → R as

GMS f ,ε,n(u) :=
λ

n

n
∑

i=1

|u(xi)− fi|2 +
1
ε

1
n2

n
∑

i, j=1

ζ

(

ε1−p+q
|u(xi)− u(x j)|p

|xi − x j|q
)

ηε(|xi − x j|).

(1.3)
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We note that taking q = 0 reduces this functional to the one considered in the pure graph
setting.

We rigorously study of the asymptotics of GMSε,n(u) as n→∞ and ε→ 0 and establish in
theorem 2.1 that its minimizers converge to minimizers of a Mumford–Shah functional posed
in a continuum Euclidean domain. We note that related results for a stochastic lattice model
have been obtained recently by Ruf [Ruf17], see remark 2.5. The conditions of the theorem 2.1
are optimal in terms of scaling of εn on n for which the convergence holds for all dimensions
d > 2. To show the result we follow the general strategy of [GTS16] and use a number of results
of calculus of variations, in particular the works of Gobbino and Mora [GM01, Gob98]. There
are two notable advances:

(a) We introduce a strategy to overcome the issues that arise from the lack of control of the
denominator in (1.3). Namely the discrepancy in the quotients inside of ζ can be large if
the standard tools to compare the discrete and continuum functionals using a transportmap
are used directly. In remark 4.6 we outline the steps we subsequently take to overcome
this difficulty.

(b) Unlike in [GTS16], our results have optimal scaling in 2D. Using lemmas 3.1 and 3.2
we develop an approach to Γ-convergence that uses a more relaxed way to compare the
discrete and continuum measures. In particular the approach outlined at the beginning of
section 4.2 would allow one to obtain optimal estimates for total variation, Laplacian, and
p-Laplacian functionals considered in [GTS16, GTS18, ST19] respectively. We note that
for the graph total variation optimal estimates in 2D were recently obtained by Müller
and Penrose [MP18]. The approach here is simpler, but does use the insight of Müller and
Penrose that binning at an intermediate scale can be advantageous.

Organization. In section 1.1 we review the works on related problems, primarily on the
mathematical aspects of related data science questions. In section 2 we introduce the graph
based and the continuum functionals and state the main results. In section 3 we recall the
mathematical notion of Γ-convergence and its main properties and we recall the TLp space
and its main properties. We introduce the relaxed way to compare measures with the empir-
ical measures of their samples. In section 4 we prove the main results on Γ-convergence,
while in section 5 we prove the accompanying compactness result. In section 7 we describe
an algorithm for computing the approximate (local) minimizers of the graph Mumford–Shah
functional and perform numerical experiments on synthetic data to showcase its properties and
on real-estate sales data to highlight its applicability in prediction problems. In appendices A
and B we prove two technical results needed in section 4.

1.1. Related works

Here we review the related models in data analysis. The basic background about the Mum-
ford–Shah functional has been listed in the introduction. Further mathematical works which
serve as the basis for our proofs are recalled as we present our approach in sections 3 and 4.

Regularizing and denoising functions given on graphs has been studied in variety of con-
texts in machine learning. Here we focus on regularizations which still allow for the jumps
in the regularized function. There are two lines of research which have led to such function-
als. One, as is the case with our approach, is inspired by models in image processing where
variational approaches have been widely used for image denoising and segmentation. Par-
ticularly relevant in the context of imaging are the works of Chan and Vese [CV01, VC02],
who proposed a piecewise constant simplification of the Mumford–Shah functional and have
shown its effectiveness in image segmentation, and Rudin et al [ROF92] who proposed a TV
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(total variation) based regularization for the image denoising. In analogy with Chan and Vese,
[HLPB13] Hu et al formulated the piecewise-constant Mumford–Shah functional on graphs.
They also developed an efficient numerical approach to compute the minimizers and used it
to study a (multi-class) classification problem. An ROF functional on graphs, with L1 fidelity
term, was studied by Trillos and Murray [GTM17].

TV based regularizations have also been developed in the statistics community. Mammen
and van de Geer [MvdG97] have considered it in the setting of nonparametric regression
and have shown that the TV regularization provides an estimator that achieves the opti-
mal min–max recovery rate in one dimension over noisy samples of functions in the unit
ball with respect to the BV norm. TV based regularizations in higher dimensions have been
considered by Tibshirani et al [TSR+05] who call the functional fused LASSO. Hütter and
Rigollet [HR16], show that, up to logarithms, in dimension d > 2, the TV regularization on
grids achieves the optimal min–max rate over the unit ball with respect to the BV norm.
Recently, Padilla et al [PSCW18] show for random geometric graphs and for KNN graphs
that up to logarithms, in dimension d > 2, TV regularization again achieves the optimal
min–max rate.

Thework of Hallac et al [HLB15] extends the fused LASSO to the graph setting and consid-
ers some further functionals which are closely related to the graph Mumford–Shah functional
we consider here. In particular the initial models of the paper deal with convex function-
als which include graph total-variation based terms, and are thus called ‘network LASSO’.
The second part of the paper modifies the total-variation term, which leads to nonconvex func-
tionals. Here we interpret some of these nonconvex functionals, in particular model (7) of
[HLB15]), as the graph-based Mumford–Shah functional, which, together with our asymp-
totic results, explains the behavior of these models. Wang et al [WSST16] consider higher
order total variation regularizers on graphs. We also note that the use of total variation penal-
ization for signal denoising and filtering has also been considered in the signal processing
community, see for example the work of Chen et al [CSMK15].

2. Setting and main results

2.1. Continuum Mumford–Shah functional and its nonlocal approximation

In their celebrated paper [MS89], Mumford and Shah proposed a variational approach for
image segmentation. Given a domain Ω ⊂ R

d and a potentially noisy image with intensity f
they sought to approximate it by a piecewise smooth function u, whose discontinuities delineate
the segments of the image.

We recall their functional using the formulation in the space of special functions of bounded
variation. For background on spaces of (special) functions of bounded variation we refer the
reader to the book [AFP00]. For u ∈ SBV(Ω)

MS f (u) :=λ
∫

Ω

|u− f |2 dx+
∫

Ω

|∇u|2dx+Hd−1(Su) (2.1)

where f ∈ L∞(Ω) is the noisy image, ∇u is the absolutely continuous (in the measure theo-
retic sense, and with respect to the Lebesgue measure) part of the gradient Du (which is a
measure) of the function u, Su is the jump set of u, andHd−1 is the (d− 1)−dimensional Haus-
dorff measure. The first term of the functional ensures the closeness of the approximation u
to the original image f, while the next two terms reward the regularity of u. The idea is that
natural images are piecewise smooth, but often do have jumps in intensity between different
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regions. Thus the functional rewards the regularity of u, while still allowing for jumps in the
intensity.

Thanks to the work of Ambrosio in [Amb89] and to the lower-semicontinuity of MSf with
respect to the topology of the space SBV(Ω), the direct method of calculus of variation ensures
us that a minimum u0 ∈ SBV(Ω) for the functional (2.2) is always attained.

For the considerations we have in mind the fidelity term λ
∫

Ω|u− f|2dx is quite straightfor-
ward to treat. Hence, for readability, we introduce the functional without it and focus mainly
on this functional:

MS(u) :=
∫

Ω

|∇u|2dx+Hd−1(Su). (2.2)

As shown in [BDM97] any functional of the form of (2.2) cannot be approximated in the
sense of Γ-convergence by local integral functionals of the type

∫

Ω

hε(∇u(x))dx

where u ∈ W1,2(Ω). De Giorgi conjectured that the Mumford–Shah functional can be approx-
imated by nonlocal functionals. The conjecture was proved by Gobbino in [Gob98], who
showed that (2.2) can be approximated by the functionals

Gε(u) :=
1

εd+1

∫

Rd×Rd

arctan

( |u(y)− u(x)|2
|y− x|

)

e−
|y−x|2
ε2 dxdy (2.3)

defined for u ∈ L1loc(Ω). He shows that for appropriate dimensional constants θ, σ

Γ- lim
ε→0

Gε = θ

∫

Ω

|∇u|2dx+ σHd−1(Su)

where the Γ-limit is considered with respect to L1 topology. The work in [Gob98] has been
then generalized in [GM01] to functionals defined on SBV(Ω) of the form

F(u) :=
∫

Ω

ϕ
(

|∇u(x)|
)

dx+
∫

Su

ψ(|u+(x)− u−(x)|)dHn−1(x) (2.4)

where u+(x) and u−(x) denote the so-called approximate lim inf and lim sup of u at the point
x:

u+(x) = sup

{

t ∈ R : lim
r→0+

1
rn
|{y ∈ B(x, r) : u(y) > t}| > 0

}

. (2.5)

They show that for suitable ϕ,ψ the functional can be approximated in the Γ-convergence
sense with the family of non-local functionals of the form

Fε(u) :=
∫

Rd×Rd

ϕ|x−y|

( |u(x)− u(y)|
|x− y|

)

ηε (x− y) dxdy (2.6)

where {ϕε}ε is a family of functions related to ϕ,ψ and {ηε}ε>0 ⊂ L1(Ω) is a kernel.
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2.2. Point cloud Mumford–Shah functional

The above nonlocal approximation to the Mumford–Shah functional can be adapted to the
graph setting. We consider the setting of random geometric graphs formulated on random
samples of a measure µ with density ρ, which describes the underlying data distribution. Con-
sider an open, bounded set with Lipschitz boundary Ω. The density ρ is assumed to satisfy:
ρ ∈ C1(Ω) ∩ C0(Ω) and

0 < c 6 min
x∈Ω

ρ(x) 6 max
x∈Ω

ρ(x) 6 C <∞. (2.7)

We consider ζ : [0,∞)→ [0,∞) such that

(A1) ζ is concave and differentiable at 0;
(A2) ζ is non decreasing;
(A3) ζ ′(0) <∞ and

Θ := lim
x→∞

ζ(x). (2.8)

We fix p > 1, q ∈ [0, p) and we assume that the kernel η : [0,∞)→ [0,∞) satisfies

(B1) η is a nonincreasing L1 function, non identically 0;
(B2) 0 <

∫ ∞
0 (td + tp−q+d−1)η(t)dt <∞.

In the sequel, we always assume the functions η, ζ and ρ to satisfy the above assumptions.
Let x1, . . . , xn ∈ Ω a set of n i.i.d. random points on Ω chosen according to the probability

measure µ = ρdx. The empirical measure of the sample is defined by

µn :=
1
n

n
∑

i=1

δxi .

Given a Borel measure σ on Ω, the space Lp(Ω, σ) is the space of equivalence classes of mea-
surable functions u : Ω→ R with

∫

Ω|u|pdσ finite. Notice that, under this assumption on ρ, we
have that L1(Ω; ρ) = L1(Ω). For that reason we often write u ∈ L1(Ω) in place of u ∈ L1(Ω; ρ).

The graphMumford–Shah functional we devote the most attention to is the functional (1.3)
without the fidelity term. Namely for a function u ∈ L1(Ω;µn) let

GMSε,n(u) :=
1
ε

1
n2

n
∑

i, j=1

ζ

(

ε1−p+q
|u(xi)− u(x j)|p

|xi − x j|q
)

ηε(|xi − x j|). (2.9)

Here ηε(s) := ε−dη(s/ε).

2.3. Main results

In theorem 2.1 we prove the Γ-convergence of the graph Mumford–Shah functional (2.9)
as n→∞ and εn → 0 (at allowable rate) towards the following continuum Mumford–Shah
functional:

MSη,ζ (u; ρ) :=ϑη(p, q)ζ
′(0)

∫

Ω

|∇u(x)|pρ(x)2dx+ σηΘ

∫

Su

ρ(y)2dHd−1(y)

(2.10)
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defined for all u ∈ SBVp(Ω) and where Θ is defined by (2.8) and











ϑη(p, q) := 2ωd−1
Γ(p/2+ 1/2)Γ(d/2+ 1/2)

Γ(p/2+ d/2)

∫ ∞

0
tp−q+d−1η(t)dt

ση := 2ωd−1

∫ ∞

0
tdη(t)dt.

(2.11)

The Γ convergence is the TL1 sense, recalled in section 3.1. We point out that assumption (B2)
on η is the one that guarantees the finiteness of ση,ϑη(p, q).

Theorem 2.1 (Γ-convergence). LetΩ be an open, bounded set with Lipschitz boundary and

ρ be a probability density satisfying (2.7). Consider ζ, η satisfying the assumptions (A1)–(A3)
and (B1)–(B2).
Let {xi}i∈N be a sequence of i.i.d. random points chosen accordingly to the density ρ and

{εn}n∈N be a sequence of positive numbers converging to 0 such that

lim
n→∞

(log(n))1/d

εnn1/d
= 0 for d > 2. (2.12)

Then GMSεn,n, defined in (2.9), Γ−converges to MSη,ζ (·; ρ), defined in (2.2), in the TL1 sense.
We refer to [GTS16] for detailed introduction of the TLp topology. For the reader’s

convenience we retrieve the main concepts in section 3.1 below.

Remark 2.2. The condition (2.12) of theorem 2.1 comes from the following fact. Given
random samples {x1, . . . , xn} as above, we show in lemma 3.1 that there exists a sequence of
probability measures µ̃n, absolutely continuous with respect to Lebesgue measure such that
dµ̃n
dµ ⇒ 1 and whose ∞-Wasserstein distance from the empirical measure of the sample µn
is decaying faster than εn. More precisely, there exist Tn : Ω→ {x1, . . . , xn} transport maps
between µ̃n = ρnLd and µn = 1

n

∑n
i=1 δxi , such that

lim
n→∞

‖Tn − Id‖∞
εn

= 0. (2.13)

In section 5 we discuss compactness of the functionals. In particular we establish the
following:

Theorem 2.3. Let Ω, ρ, ζ , η, and xi, i = 1, . . . , n satisfy the assumptions of theorem 2.1.
Consider a sequence of {εn}n∈N satisfying (2.12). If un ∈ L∞(Ω;µn) satisfy

sup
n∈N

{‖un‖∞ + GMSεn,n(un)} <∞,

then the sequence {(µn, un)}n∈N is TL1-relatively compact.

Remark 2.4. Note that we ask for an L∞ bound on the sequence, instead of a weaker
L1 bound (as was done in [GTS16, theorem 1.2]). Here L1 bound would not be sufficient
as we show in section 5 and remark 5.1. On the other hand since the signal f in (2.1) is
bounded in applications, the minimizers are also bounded by the same bound, and hence the
L∞ boundedness of the sequence of interest is assured.

Remark 2.5. Recently Ruf [Ruf17] has studied the convergence of graph Mumford–Shah
functionals on random lattices to the continuum Mumford–Shah functional. These interest-
ing results are closely related, but also substantially different both in terms of their nature
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and the techniques used. One difference is the nature of randomness of the structure consid-
ered. Here we consider random samples, or in fact any discrete sets of points whose empirical
measures weakly approximate the continuum measure. Ruf considers random lattices in 2D,
which have precise requirements of the distribution of points. The disordered structure of the
points we allow forces us to require that the typical degree of a vertex converges to infinity
faster than logn, while Ruf is able to work with graphs of bounded degree. On the flip side
we identify the Γ-limit explicitly, while, due to the graph construction, Ruf only identifies the
functional up to a constant. In a sense he is able to work under homogenization type graph-
behavior where compactness arguments show that a Γ-limit exists without fully identifying
it.

2.3.1. Convergence of functionals with the fidelity term.. The theorems 2.1 and 2.3 enable us
to show the convergence of the Mumford–Shah functional with the fidelity term as well. We
establish two results. The first one is in the setting without noise. In order to be able to evaluate
the signal at sample points we assume that f is a bounded piecewise continuous function, that
is that the set of discontinuities Jf is of finite d− 1 dimensional Hausdorff measure,Hd−1(J f )
<∞.

Corollary 2.6. Let Ω, ρ, ζ, η, and xi, i = 1, . . . , n satisfy the assumptions of theorem 2.1
and assume that p > q+ 1. Assume f : Ω→ R is a bounded, piecewise continuous function.

Consider a sequence of {εn}n∈N satisfying (2.12). Then the functional GMS f ,ε,n defined in

(1.3), considered with fi = f(xi) for i = 1, . . . , n, Γ-converges in TL2 topology to MSη,ζ (u; ρ)
+ λ

∫

|u− f|2ρ(x)dx, whereMSη,ζ(u; ρ) is defined in (2.10). Furthermore any sequence of mini-
mizers un of GMS f ,ε,n, converge along a subsequence to a minimizer ofMSη,ζ(u; ρ)+ λ

∫

|u−
f|2ρ(x)dx.

We note that due to the fidelity term the topology of Γ convergence in the corollary is TL2

instead of TL1. We remark that the change of the topology when considering the fidelity term
was not needed in [Gob98] since Gobbino could rely on the Fubini’s theorem.However due the
fact that we also deal with the discrete-to-continuum passage, the stronger topology is needed.

More importantly and more interestingly we are able to establish the convergence of min-
imizers of the graph Mumford–Shah functional when the labels are noisy. We note that the
limit is a minimizer of a deterministic variational problem, even though the amount of noise
does not vanish as n→∞.

Corollary 2.7. Let Ω, ρ, ζ, η satisfy the assumptions of theorem 2.1 and assume that p >

q+ 1. Assume f :Ω→ R is a bounded, piecewise continuous function. Let β be a measure

on R modeling the noise. We assume β has compact support and mean zero. Let (xi, yi) for
i = 1, . . . , n be i.i.d. samples of the measure µ× β. Consider a sequence of {εn}n∈N satisfying
(2.12).
Then the functional GMS f ,ε,n defined in (1.3), considered with

fi = f (xi)+ yi for i = 1, . . . , n,

Γ-converges in TL2 topology to MSη,ζ (u; ρ)+ λ
∫

|u− f|2ρ(x)dx+ Var(β), where MSη,ζ (u; ρ)
is defined in (2.10). Furthermore any sequence of minimizers un of GMS f ,ε,n, converge along

a subsequence to a minimizer of MSη,ζ(u; ρ)+ λ
∫

|u− f|2ρ(x)dx.
We make several observations. Note that while the minimizers of the random functional

converge to the minimizers of a deterministic functional, and that the limit of the minimizers
does not depend on the amount of noise. In a sense noise does not create a bias. The randomness
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affects the limit in that the actual values of the random discrete functionals are higher when
there is more noise which leads to the presence of Var(β) in the deterministic limit. We note
that while we do not allow for Gaussian noise this is purely for technical reasons, to make the
proof of compactness easier. On the other hand we do not require the noise to have continuous
density with respect to Lebesgue measure.

Remark 2.8. Let us contrast the result of corollary 2.7 to results on min–max recovery
rates in nonparametric regression that we mentioned in the introduction (see [HR16, MvdG97,
PSCW18, WSST16]). In the setting of regression one is concerned with recovering a function
f † in some functional class (e.g., BV unit ball) whose noisy samples are available. Thus the
fidelity term is made stronger as n→∞. Namely λ in (1.3) is taken to infinity at appropriate
rate as n increases. The works obtain rates at which minimizers of functionals like (1.3), with
TV regularization instead of the Mumford–Shah term, converge to f †. We conjecture that for
the functions f † in BV ball the functional (1.3) also achieves the optimal min–max rate. One
difference between the Mumford–Shah and the TV regularization is that the Mumford–Shah
one does not decrease the contrast over sharp edges as TV regularization does. See example 7.1.
In the context of regression our contribution is that by taking the limit n→∞ as λ is fixed we
shed the light onwhat is the precise amount of regularization introduced by theMumford–Shah
term at finite λ.

2.3.2. Extension to data on a manifold. In machine learning it is often relevant to consider
data that lie in a potentially high dimensional space, but have an intrinsic low dimensional
structure. Here we remark that it is straightforward to extend our results to the setting where
data are sampled from a measure µ whose support is a d-dimensional C2 manifold, with-
out boundary, M, embedded in R

D for some D > d. We require that the measure µ has a
continuous density ρ with respect to the volume form of the manifold M: dµ = ρdVolM.
The form of the graph Mumford–Shah functional remains the same, while the only change
in the limiting functional (2.10) is that ∇u is replaced by the manifold gradient gradMu. We
note that the scaling of ηε and the definition of ση depend on the intrinsic dimension d, but not
the ambient dimension D. Full details of how related statements are extended to the manifold
setting can be found in [GTGHS18].

2.3.3. Extension to vector valued functions. We note that in machine learning it is also natural
to consider functions on graphs which are vector valued. The graphMumford–Shah functional
(1.3) can be considered for functions u with values in R

m. In fact such functionals have been
used in the work of Hallac et al [HLB15]. We do not rigorously treat the limits of vector-
valued functionals in this paper. Nevertheless we remark that we expect that the Γ-limit of
the vector valued graph Mumford–Shah functional for p = 2 is the followingMumford–Shah
type functional: for u ∈ SBV(Ω)m

MSmη,ζ (u; ρ) :=ϑη(2, q)ζ
′(0)

∫

Ω

|∇u(x)|2ρ(x)2dx+ σηΘ

∫

Su

ρ(y)2dHd−1(y)

where Su is the union of jump sets for each of coordinate functions, u = (u1, . . . , um) and Su =
⋃m

j=1 Sui , and where Θ is defined by (2.8) and ϑη and ση by (2.11). We furthermore expect
that one can prove this using similar techniques that we use. We note that this would require a
careful verification of the slicing argument in multiple dimensions.
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3. Γ-convergence and topology in the space of configuration

Given a sequence of functionals Fn : X → R and a metrizable (and separable) topology T on
X we say that FnΓ-converges at F : X→ R with respect to the topology T if the following two
conditions are satisfied:

(a) For every sequence {xn}n∈N ⊂ X such that xn
T−→x it holds that

lim inf
n→∞

Fn(xn) > F(x);

(b) For all x ∈ X there exists a sequence {xn}n∈N ⊂ X such that xn
T−→x and for which

lim sup
n→∞

Fn(xn) 6 F(x).

In this case we write

Γ- lim
n→0

Fn = F.

Notice that, if Γ - limn→0Fn = F then the following assertions also hold:

(a) F is lower semi-continuous and

F(x) = inf
{

lim inf
n→∞

Fn(xn)
∣

∣

∣ {xn}n∈N ⊂ X, xn
T−→x

}

= inf

{

lim sup
n→∞

Fn(xn)

∣

∣

∣

∣

{xn}n∈N ⊂ X, xn
T−→x

}

;

(b) If {xn}n∈N is a sequence of minima of Fn on X, namely

Fn(xn) = min
y∈X

{Fn(y)},

converging to some x ∈ X in the topology T then x is a minimum of F on X:

F(x) = min
y∈X

{F(y)}.

3.1. The TLp topology: brief overview

The TLp space has been introduced in [GTS16]. Given a bounded open set Ω let P(Ω) be the
set of Borel probability measures on Ω. The space TLp(Ω) is defined by

TLp(Ω) := {(µ, f ) : µ ∈ P(Ω) f ∈ Lp(Ω;µ)}. (3.1)

Given (µ, f), (ν, g) ∈ TLp(Ω) their TLp distance is defined as follows

dTLp((µ, f ), (ν, g)) :=















inf
π∈Γ(µ,ν)

(∫

Ω×Ω

|x− y|p + | f (x)− g(y)|pdπ(x, y)
) 1

p

if p ∈ [1,∞),

inf
π∈Γ(µ,ν)

ess sup(x,y)∈supp π|x− y|+ | f (x)− g(y)| if p= ∞

where the infimum is taken among all transport plans π (i.e. couplings) between µ and ν:

Γ(µ, ν) := {γ ∈ P(Ω× Ω) : (∀ABorel) γ(A× Ω) = µ(A), γ(Ω× A) = ν(A)}.
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Given µ ∈ P(Ω) and a measurable mapping T :Ω→ Ω, we recall that ν = T#µ is the push-
forward of µ by T, namely the measure on Ω such that for any A Borel ν(A) = µ(T−1(A)). A
consequence of the definition is the following change of variables identity

∫

Ω

f (T(x))dµ(x) =
∫

Ω

f (y)dν(y). (3.2)

Well-known results of the theory of optimal transportation, [Bre87] for p = 2, [GM96] for
p <∞ and [CDPJ08], for p = ∞, provide that when µ is absolutely continuous with respect
to Ld then there exists an optimal transport map between µ and ν, namely T :Ω→ Ω such that
T#µ = ν and

dpp(µ, ν) := inf
γ∈Γ(µ,ν)

∫

Ω×Ω

|x− y|pdγ(x, y) =
∫

Ω

|T(x)− x|pdµ(x) when p<∞,

d∞(µ, ν) := inf
γ∈Γ(µ,ν)

ess sup(x,y)∈supp(γ)|x− y| = ess supx∈supp(µ)|T(x)− x| when p= ∞.

(3.3)

In particular the transport plan induced by T, namely π := (Id, T)#µ, is optimal. The distance
dp(µ, ν) we define in the expressions above is called the p-transportation metric (also referred
to as the p-Wasserstein distance).

When considering convergence of a sequence (µn, fn) toward (µ, f), the following sufficient
criterion will be useful. We say that a sequence of transportation maps is stagnating if

Tn#µ = µn and ‖I − Tn‖pLp(µ) =
∫

Ω

|x− Tn(x)|p dµ(x)→ 0 (3.4)

as n→∞. To show TLp convergence it thus suffices to find a stagnating sequence of
transportation maps such that

∫

| f(x)− fn(Tn(x))|pdµ(x) converges to zero as n→∞.
We now introduce the new results that allow us to obtain the optimal scaling of εn for Γ-

convergence in 2D. Namely while d∞(µ,µn) ∼ (ln n)3/4√
n

when d = 2 we introduce an auxiliary
measure µ̃n which is absolutely continuouswith respect to Lebesguemeasure and satisfies both

that d∞(µ̃n,µn) ∼
√

(ln n)
n

when d = 2 and that its density with respect to measure µ uniformly
converges to 1. These two facts are enough to pass to the limit in the functionals we consider,
andmany others (like total variation or dirichlet energy).Lemma3.2 is a technical result needed
to transfer the TLp convergence to the desired measures.

Lemma 3.1. Let µ be a probability measure with continuous density ρ, supported on Ω,

where Ω is a bounded open set with Lipschitz boundary in R
d, d > 2 and which satisfies the

assumption (2.7). Let εn be a sequence of positive numbers converging to zero and satisfying
(2.12). Let {xi}i∈N be a sequence of i.i.d. random points chosen according to the density ρ,
and let µn =

1
n

∑n
i=1 δxi . Then there exists a sequence of probability measures µ̃n which are

absolutely continuous with respect to the measure µ and satisfy

(a) Almost surely ℓn := d∞(µn, µ̃n) ≪ εn
(b) As n→∞, dµ̃n

dµ almost surely converges to 1 uniformly on Ω.

Proof. Let us first consider the case that Ω = [0, 1]d. Given a sequence εn satisfying the
assumptions of the lemma let {bn}n∈N and {cn}n∈N be increasing sequences of positive numbers

such that
(

bn
ln n
n

)−1/d
is integer and
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bn →∞, εn ≫
(

bn
ln n
n

)1/d

and c2n ≫ bn ≫ cn as n→∞. (3.5)

Let, for n > 2,

δd = bn
ln n
n

and t = cn
ln n
n
.

Note that they both t and δ depend on n but we decided to omit the index n to lighten the
notation.We divide [0, 1]d intom =

(

bn
ln n
n

)−1
disjoint cubesKj, j = 1, . . . ,mwith side length

δ. Note that the probability pj that a point xi is in the box Kj is equal to µ(Kj) and that

cδd 6 pj 6 Cδd.

Bernstein’s inequality [Ber24] gives

P
(

|µn(K j)− pj| > t
)

< 2 exp

(

−
1
2nt

2

pj(1− pj)+ 1
3 t

)

< 2 exp

(

− nt2

3pj

)

6 2 exp

(

−c2n ln n
3Cbn

)

= 2n−
c2n

3Cbn . (3.6)

It follows, by union bound, that the probability that in all boxes |µn(Kj)− pj| < t satisfies

P({(∀ j = 1, . . . , m) |µn(K j)− pj| < t) > 1− m2n−
c2n

3Cbn > 1− n−2, (3.7)

for all n large enough. By Borel–Cantelli lemma we conclude that almost surely for n
sufficiently large for all boxes it holds that |µn(Kj)− pj| < t.

Define the measure µ̃n as follows:

dµ̃n =
m

∑

j=1

1K j

µn(K j)
δd

dx.

Since µ̃n(K j) = µn(K j), the distance d∞(µ̃n,µn) is at most the diameter of the boxes, namely

d∞(µ̃n,µn) 6
√
d δ.

For large n and arbitrary x ∈ Ω let Kj be such that x ∈ Kj. Using (3.6) we obtain

∣

∣

∣

∣

dµ̃n
dµ

(x)− 1

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

µn(K j)
δd

− ρ(x)

ρ(x)

∣

∣

∣

∣

∣

6
|µn(K j)− µ(K j)|

δd ρ(x)
+

∫

K j
|ρ(z)− ρ(x)| dz
δd ρ(x)

6
t

cδd
+

1
c
ω
(√

d δ
)

6
cn

cbn
+

1
c
ω
(√

d δ
)

,

where ω is the modulus of continuity of ρ. The uniform convergence follows since the terms
on the right-hand side converge to zero.

Extending the argument to generalΩwith smooth boundary is straightforward using the par-
tition procedure detailed in section 3 of [GTS15]. To general case ofΩwith Lipschitz boundary
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can be reduced to domainswith smooth boundary using the result of Ball and Zarnescu [BZ17],
as was done is the step 2 of the proof of theorem 1.2 in [GTS15]. �

Lemma 3.2. Let µ be a probability measure with density ρ supported on a compact set in
R
d. Let µ̃n be a sequence of probability measures which are absolutely continuous with respect

to µ such that

dµ̃n
dµ

→ 1 uniformly on the support ofµ.

Assume fn → f in Lp(µ) as n→∞. Then

(µ̃n, fn)→ (µ, f ) in TLp as n→∞. (3.8)

Proof. From the assumption that dµ̃n
dµ

uniformly converges to 1 follows that the
Lévy–Prokhorov metric between µ̃n and µ converges to zero. Since the Lévy–Prokhorov and
the p-transportation metric, dp, defined by (3.3), both metrize the weak convergence of mea-
sures on compact sets we conclude that dp(µ, µ̃n)→ 0 as n→∞. Thus there exists a sequence
of transportation plans πn ∈ Π(µ, µ̃n) such that

∫

|x− y|pdπn(x, y)→ 0 as n→∞.

Since Lipschitz continuous functions are dense in Lp(µ) there exists a sequence of Lipschitz
continuous functions gm which converges to f in Lp(µ). Let ρn be the Lebesgue density of µ̃n.
Since ρn

ρ uniformly converges to 1, there exists n1 such that for all n > n1, 1
2 6 ρn

ρ 6 2. For
n > n1

∫

| fn(y)− f (x)|pdπn(x, y) 6 2p
(∫

| fn(y)− f (y)|pdµ̃n(y)+
∫

| f (y)− f (x)|pdπn(x, y)
)

.

We estimate the terms separately:
∫

| fn(y)− f (y)|pdµ̃n(y) 6 2
∫

| fn(y)− f (y)|pdµ(y),

which converges to zero as n→∞.
∫

| f (y)− f (x)|pdπn(x, y) .
∫

| f (y)− gm(y)|p + |gm(y)− gm(x)|p + |gm(x)− f (x)|pdπn(x, y)

. ‖ f − gm‖pLp(µ) +
∫

Lip(gm)|x− y|pπn(x, y).

We observe that the right hand can be made arbitrarily small by takingm large enough and then
taking n sufficiently large. Consequently

∫

|fn(y)− f(x)|pdπn(x, y) converges to zero as n→∞,
which implies that (3.8) holds. �

4. Proof of the Γ-convergence (theorem 2.1)

We prove theorem 2.1 by separately proving the Γ-liminf bound and by building a recovery
sequence. The proof of Γ-liminf bound relies on slicing (i.e. one dimensional decomposi-
tion) as used by Gobbino [Gob98] and the techniques of [GTS16] to deal with randomness
of the sample. However since the spatial coordinates appear also in a denominator within the

3858



Nonlinearity 33 (2020) 3846 M Caroccia et al

functional (2.9), the way [GTS16] deals with space is not precise enough and new ideas are
needed to overcome this challenge. These are discussed in section 4.3. In the subsection below
we introduce notation and present the one-dimensional slicing of the continuum Mum-
ford–Shah functional.

4.1. One dimensional slicing

We repeatedly use the following computation, which we sketch for a generic function f.
Let f : Ω× Ω→ R be an integrable function. Then, for ε > 0 it holds that

∫

Ω×Ω

f (x, y)dxdy = εd
∫

Ω

dx
∫

Ω−x
ε

f (x, x+ εξ)dξ

= εd
∫

Rd

dξ
∫

Ω∩(Ω−εξ)
f (x, x+ εξ)dx (4.1)

where we exploited the identity

1Ω(x)1(Ω−x)/ε(ξ) = 1
Rd (ξ)1Ω∩(Ω−εξ)(x)

and then Fubini’s theorem (here 1E(x) stands for the characteristic function of the set E and
takes value 1 for x ∈ E and 0 otherwise). Given A ⊆ R

d and ξ ∈ R
d we define for z ∈ ξ⊥ the

one dimensional slice

[A]z := {t ∈ R : z+ tξ/|ξ| ∈ A}. (4.2)

Abovewe are omitting the dependence on ξ, since it will be clear from the context.We proceed
to consider one dimensional slices as follows

∫

Ω×Ω

f (x, y)dxdy = εd
∫

Rd

dξ
∫

Ω∩(Ω−εξ)
f (x, x+ εξ)dx

= εd
∫

Rd

dξ
∫

ξ⊥
dz
∫

[Ω∩(Ω−εξ)]z
f

(

z+ t
ξ

|ξ| , z+ (t + ε|ξ|) ξ|ξ|

)

dt.

(4.3)

When using one dimensional decompositions we will make several uses of the following
notation. Given g :Rd → R, ξ ∈ R

d and z ∈ ξ⊥ we define

gξ(t; z) := g

(

z+ t
ξ

|ξ|

)

. (4.4)

We now state and prove two technical lemmas that we use in the sequel.

Lemma 4.1. Let u ∈ SBV(Ω)p. Then

MSη,ζ (u; ρ) = ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

ξ⊥
dz
∫

[Ω]z

∣

∣u′ξ(t; z)
∣

∣

p
ρξ(t; z)

2dt

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

ξ⊥
dz
∫

Suξ (·;z)
ρξ(t; z)

2dH0(t) (4.5)
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=ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

Ω

∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

ρ(x)2dx

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

Su

∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

ρ(y)2dHd−1(y). (4.6)

where Nu(y) is any vector field normal to Su.

Proof. We can rewrite the right-hand side of (4.5) as follows

ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

ξ⊥
dz
∫

[Ω]z

∣

∣u′ξ(t; z)
∣

∣

p
ρξ(t; z)

2dt

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

ξ⊥
dz
∫

Suξ (·;z)
ρξ(t; z)

2dH0(t)

= ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

ξ⊥
dz
∫

[Ω]z

∣

∣

∣

∣

∇u
(

z+ t
ξ

|ξ|

)

· ξ|ξ|

∣

∣

∣

∣

p

ρ

(

z+ t
ξ

|ξ|

)2

dt

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

ξ⊥
dz
∫

Suξ (·;z)
ρ

(

z+ t
ξ

|ξ|

)2

dH0(t)

= ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

Ω

∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

ρ(x)2dx

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

Su

∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

ρ(y)2dHd−1(y).

The last equality above follows from the Coarea formula, using a well known relation between
the one-dimensional slices of an SBV function and the total length of its jump set (see for
instance [Amb89]). Notice that

∫

Rd

|ξ|η(|ξ|)
∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

dξ =
∫ ∞

0
tdt

∫

∂Bt

η(t)

∣

∣

∣

∣

Nu(y) ·
ξ

t

∣

∣

∣

∣

dHd−1(ξ)

=

∫ ∞

0
tdη(t)dt

∫

∂B1

|Nu(y) · v| dHd−1(v)

= 2ωd−1

∫ ∞

0
tdη(t)dt = ση

where we have exploited the relation
∫

∂B1

|Nu(y) · v| dHd−1(v) = 2ωd−1.

Moreover

∫

Rd

|ξ|p−qη(|ξ|)
∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

dξ

=

∫ ∞

0
tp−q+d−1η(t)dt

∫

∂B1

|∇u(x) · v|pdHd−1(v)
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= 2|∇u(x)|pωd−1
Γ(p/2+ 1/2)Γ(d/2+ 1/2)

Γ(p/2+ d/2)

∫ ∞

0
tp−q+d−1η(t)dt

= |∇u(x)|pϑη(p, q)

where we made use of
∫

∂B1

|w · v|pdHd−1(v) = 2|w|pωd−1
Γ(p/2+ 1/2)Γ(d/2+ 1/2)

Γ(p/2+ d/2)
.

In particular

ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

ξ⊥
dz
∫

[Ω]z

∣

∣u′ξ(t; z)
∣

∣

p
ρξ(t; z)

2dx

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

ξ⊥
dz
∫

Suξ (·;z)
ρξ(t; z)

2dH0(t)

= ζ ′(0)
∫

Rd

|ξ|p−qη(|ξ|)dξ
∫

Ω

∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

ρ(x)2dx

+Θ

∫

Rd

|ξ|η(|ξ|)dξ
∫

Su

∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

ρ(y)2dHd−1(y)

= ϑη(p, q)ζ
′(0)

∫

Ω

|∇u(x)|pρ(x)2dx

+ σηΘ

∫

Su

ρ(y)2dHd−1(y) = MSη,ζ (u; ρ).

�

4.2. Auxiliary functionals

We introduce two auxiliary functionals: GMS and GAMS. The first one is motivated by the
calculation below and allows us to switch the auxiliary measure µ̃n, constructed in lemma 3.1
by the measure µ. The functionals GAMS moves a step further towards to local, limiting,
functional by replacing the integral over the product measure by one with the weight ρ(x)2. We
will first establish the lim inf and lim sup bounds on an auxiliary energy GAMS , and then,
by exploiting lemma 4.2 apply these bounds to GMS . Thanks to (4.7) we can then prove the
statement of theorem 2.1 for GMS.

Consider the setting of theorem 2.1 and let µ̃n be the measures constructed in lemma 3.1.
Let Tn :Ω→ Ω be the d∞ optimal transport from µ̃n to µn. Let ℓn = d∞(µ̃n,µn) = ‖T − Id‖L∞ .
By exploiting the change of variable (3.2), we can rewrite the Mumford–Shah functional on
the point clouds in the following integral form:

GMSε,n(u) :=
1
ε

1
n2

n
∑

i, j=1

ζ

(

ε1−p+q
|u(xi)− u(x j)|p

|xi − x j|q
)

ηε(|xi − x j|)

=
1
ε

∫

Ω×Ω

ζ

(

ε1−p+q
|u(x)− u(y)|p

|x− y|q
)

ηε(|x− y|)dµn(x)dµn(y)
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=
1
ε

∫

Ω×Ω

ζ

(

ε1−p+q
|u(x)− u(y)|p

|x− y|q
)

ηε(|x− y|)d(Tn#µ̃n)(x)d(Tn#µ̃n)(y)

=
1
ε

∫

Ω

∫

Ω

ζ

(

ε1−p+q
|u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q
)

ηε(|Tn(x)− Tn(y)|)dµ̃n(x)dµ̃n(y)

6 sup
x∈Ω

∣

∣

∣

∣

ρn
ρ

∣

∣

∣

∣

2 1
ε

∫

Ω

∫

Ω

ζ

(

ε1−p+q
|u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q
)

ηε(|Tn(x)−Tn(y)|)dρ(x)dρ(y).

Analogously

GMSε,n(u)> inf
x∈Ω

∣

∣

∣

∣

ρn
ρ

∣

∣

∣

∣

2 1
ε

∫

Ω

∫

Ω

ζ

(

ε1−p+q
|u(Tn(x))− u(Tn(y))|p

|Tn(x)− Tn(y)|q
)

ηε(|Tn(x)−Tn(y)|)dρ(x)dρ(y).

In the light of the above computation, we consider three different functionals, which, as we
show, share the same Γ-limit. We consider

GMSε,n(u) :=
1
ε

1
n2

n
∑

i, j=1

ζ

(

ε1−p+q
|u(xi)− u(x j)|p

|xi − x j|q
)

ηε(|xi − x j|)

GMSε,n(u) :=
1
ε

∫

Ω

∫

Ω

ζ

( |u(Tn(x))− u(Tn(y))|p
εp−q−1|Tn(x)− Tn(y)|q

)

ηε(|Tn(x)− Tn(y)|)dρ(x)dρ(y)

GAMSε,n(u) :=
1
ε

∫

Ω

∫

Ω

ζ

( |u(Tn(x))− u(Tn(y))|p
εp−q−1|Tn(x)− Tn(y)|q

)

ηε(|Tn(x)− Tn(y)|)ρ(x)2dxdy.

Notice that since ρn
ρ
uniformly converges to 1 (by lemma 3.1)

Γ- lim
n→+∞

GMSεn,n = Γ- lim
n→+∞

GMSεn,n. (4.7)

The next lemma shows that, in case of a compactly supported kernel η, the auxiliary energy
GAMS is asymptotically equivalent to GMS .
Lemma 4.2. Let {εn}n∈N be any sequence satisfying (2.12). Le {un}n∈N be a sequence in
L1(Ω;µn) and assume that the kernel η is compactly supported. Then

lim inf
n→∞

GMSεn,n(un) = lim inf
n→∞

GAMSεn,n(un)

lim sup
n→∞

GMSεn,n(un) = lim sup
n→∞

GAMSεn,n(un)

Proof. Let Tn be the transport maps as above and let

Rn(un) :=
1
εn

∫

Ω×Ω

ζ

( |un(Tn(x))− un(Tn(y))|p
εp−q−1
n |Tn(x)− Tn(y)|q

)

ηεn(|Tn(x)− Tn(y)|)[ρ(y)− ρ(x)]ρ(x)dxdy.

Notice that

GMSεn,n(un) = GAMSεn,n(un)+Rn(un).

Moreover, due to the properties of ρ, we can find a constant L > 1 such that

1
L
GMSεn,n(u) 6 GAMSεn,n(u) 6 LGMSεn,n(u)
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for all u ∈ L1(Ω;µn) and for all n ∈ N. In particular

GMSεn,n(un) = 0 ⇔ GAMSεn,n(un) = 0

GMSεn,n(un) = +∞ ⇔ GAMSεn,n(un) = +∞.

For the purpose of our proof we can hence restrict to

0 < GAMSεn,n(un) < +∞ for all n ∈ N.

since otherwise the seek equality trivially hold. With this assumption in mind we consider the
finite ratio Dn :=Rn(un)/GAMSεn,n(un) so that

GMSεn,n(un) = GAMSεn,n(un)(1+Dn). (4.8)

Since η is compactly supported, and since

|Tn(x)− Tn(y)| > |x− y| − 2ℓn

we have that ηεn(|Tn(x)− Tn(x)|) = 0 for all x, y such that |x− y| > Mεn for some M ∈ R.
Moreover if |x− y| < Mεn we have |ρ(x)− ρ(y)| 6 Lip(ρ)Mεn. Thus, since ρ is bounded from
below, we get

Rn(un) 6
Lip(ρ)Mεn

c
GAMSεn,n(un).

Hence

lim
n→∞

Dn = 0

that, combined with (4.8) completes the proof. �

4.3. The liminf inequality

This subsection is devoted to the proof of the liminf inequality claim of the Γ-convergence of
theorem 2.1:

Proposition 4.3. Let {εn}n∈N be any sequence satisfying (2.12). Let un ∈ L1(Ω;µn), u ∈
L1(Ω) such that (µn, un)→ (µ, u) in TL1. Then

lim inf
n→∞

GMSεn,n(un) > MSη,ζ (u; ρ).

The proof relies on the following result, which can be obtained following ideas of [GM01,
corollary 3.3]. Its proof is provided in the appendix A.

Lemma 4.4. Let A ⊂ R be a finite union of intervals and f ∈ C1(A) ∩ C0(A) be such that

0 < c 6 min
x∈A

{ f (x)} 6 max
x∈A

{ f (x)} 6 C <∞.

Define for every ξ ∈ R
d the one-dimensional functional

Eδ(u; ξ,A) :=
1
δ

∫

A

ζ

( |u(x+ δ|ξ|)− u(x)|p
δp−1|ξ|q

)

f (x)dx (4.9)
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and

E(u; ξ,A) := ζ ′(0)|ξ|p−q
∫

A

|u′(x)|p f dx+Θ|ξ|
∫

Su∩A
f (y)dH0(y) (4.10)

for u ∈ SBVp(R). Then

lim inf
δ→0

Eδ(uδ; ξ,A) > E(u; ξ,A) (4.11)

for all {uδ}δ>0 ⊂ L1(A), u ∈ SBVp(A) such that uδ → u in L1.

We also need the following lemma.

Lemma 4.5. Let un : {x1, . . . , xn} → R be a sequence of function Lp(µn) such that

(µn, un)→ (µ, u) in TL1. Let µ̃n be the sequence of measures provided by lemma 3.1 and con-
sider Tn : Rd → R

d to be the associated transport maps between µ̃n and µn. Fix ξ ∈ R
d, z ∈ ξ⊥

and define the sectional functions

t 7→ ũn,ξ(t; z) := un ◦ Tn
(

z+ t
ξ

|ξ|

)

.

Then up to extracting a subsequence (not relabeled), forHd−1-a.e. z ∈ ξ⊥ it holds

ũξ,n(·; z)→ uξ(·; z) in L1(R; ρξ(·; z)L1)

Proof. Thanks to the TL1 convergence of the sequence (µn, un) and to the properties of our
measures µ̃n given by lemma 3.1 we can infer (µ̃n, un ◦ Tn)→ (µ, u) in TL1. In particular thanks
also to [GTS16, assertion 5, proposition 3.12]) we know that

lim
n→∞

∫

Rd

|un ◦ Tn(x)− u(x)|ρ(x)dx = 0. (4.12)

We can rearrange and estimate the above integral as
∫

Rd

|un ◦ Tn(x)− u(x)|ρ(x)dx =
∫ ∞

−∞
dt
∫

{

x·ξ
|ξ| =t

}

|un ◦ Tn(x)−u(x)|ρ(x)dHn−1(x)

=

∫ ∞

−∞
dt
∫

ξ⊥
|ũξ,n(t; z)− uξ(t; z)|ρξ(t; z)dHn−1(z)

=

∫

ξ⊥
dHn−1(z)

∫ ∞

−∞
|ũξ,n(t; z)− uξ(t; z)|ρξ(t; z)dt.

Using (4.12), this goes to zero as n→∞, so that up to a subsequence the term under the integral
goes to zero for a.e. z⊥ξ. �

Remark 4.6. The strategy adopted to prove the lim inf inequality is based on the integral
form of the functionalGMS (more precisely on its asymptotic counterpartGAMS). Substan-
tially we exploit such an integral form and the monotonicity of η, ζ to compare our energywith
the energy

∫

Rd

η(|ξ|)dξ
∫

ξ⊥
Eεn(ũξ,n(·; z); ξ;Ω)dHd−1(z)
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in order to apply lemmas 4.5 and 4.4. To achieve this goal we need to compare |Tn(x)− Tn(y)|
and |x− y|, as well as 1

|Tn(x)−Tn(y)| and
1

|x−y| . Notice that |Tn(x)− Tn(y)| ≈ |x− y| ± 2ℓn and in
particular due to the fact that ℓn ≪ εn it is not difficult to compare |Tn(x)− Tn(y)| to |x− y| for
couples such that |x− y| ≈ εn. The problems arise for all those points x, y that lie very close to
one another. The strategy we adopt to overcome this difficulty is to create a hole of fixed size
r around the origin in the kernel η. That is to replace η by

ηr(t) := η(t)(1− 1[0,r)(t))

and thus to neglect all the, small, contributions we cannot compare and then progressively
recover the full energy by shrinking the hole in a limit process at the end of our proof. In
the sequel we will often write GMSεn,n(un; r),GAMSεn,n(un; r) to denote the corresponding
energies having ηr in place of η.

Proof of proposition 4.3. We can assume, without loss of generality, that

sup
n∈N

{GMSεn,n(un)} <∞. (4.13)

Notice that it is enough to assume that η is compactly supported. Indeed we can always replace
η with ηR := η(t)1[0,R)(t) and notice that, by meaning of lemma 4.2 and (4.7) we have

lim inf
n→∞

GMSεn,n(un) > lim inf
n→∞

GMSεn,n(un) > lim inf
n→∞

GAMSεn,n(un; ηR)

where GAMSεn,n(un; ηR) denotes the usual energy GAMSεn,n with ηR in place of η. In
particular if we can prove that, for compactly supported kernel, it holds

lim inf
n→∞

GAMSεn,n(un; ηR) > MSηR ,ζ(u)

then the continuity of the constants in MS allows us to send R to infinity and recover

lim inf
n→∞

GMSεn,n(un) > MSη,ζ (u).

We thus focus on proving the theorem for a compactly supported kernel η.
With this assumption in mind we invoke again lemma 4.2 and (4.7) to infer

lim inf
n→∞

GMSεn,n(un) > lim inf
n→∞

GAMSεn,n(un; r) for all r > 0. (4.14)

For the reader’s convenience in what follows we write ε and ℓ := ‖Tn − Id‖∞ in place of εn
and ℓn by omitting the dependence on n. Thanks to (2.13) we have

|x− y|
ε

− 2ℓ
ε

6
|Tn(x)− Tn(y)|

ε
6

|x− y|
ε

+
2ℓ
ε
. (4.15)

On the set {|Tn(x)− Tn(y)| > rε} we thus have

|x− y|
1+ 2ℓ

εr

6 |Tn(x)− Tn(y)| 6
|x− y|
1− 2ℓ

εr

.

In particular, since the function t→ ζ(a/tq)ηrε(t) is non-increasing for all ε, r, a ∈ R, we
conclude that
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GAMSε,n(un; r) >
1
ε

∫

Ω×Ω

ζ







|un(Tn(x))− un(Tn(y))|p
εp−q−1

(

1− 2ℓ
εr

)q |x− y|q






ηrε

( |x− y|
1− 2ℓ

εr

)

ρ(x)2dxdy

=
1
ε

∫

Ω×Ω

ζ









|un(Tn(x))− un(Tn(y))|p
εp−q−1

(

1− 2ℓ
εr

)q−p+1

(

1− 2ℓ
εr

)1−p|x− y|q









ηr
( |x− y|
ε
(

1− 2ℓ
εr

)

)

ε−dρ(x)2dxdy

>
1
ε

∫

Ω×Ω

ζ

(

|un(Tn(x))− un(Tn(y))|p
[

ε
(

1− 2ℓ
εr

)]p−q−1|x− y|q

)

ηr
( |x− y|
ε
(

1− 2ℓ
εr

)

)

ε−dρ(x)2dxdy.

By setting

δ = δε := ε

(

1− 2ℓ
εr

)

and

Gδ,n(un, r) :=
1
δ

∫

Ω×Ω

ζ

( |un(Tn(x))− un(Tn(y))|p
δp−q−1|x− y|q

)

ηrδ
(

|x− y|
)

ρ(x)2dxdy

=
1
δ

∫

Rd

ηr
(

|ξ|
)

dξ
∫

Ω∩(Ω−δξ)
ζ

( |un(Tn(x+ δξ))− un(Tn(x))|p
δp−1|ξ|q

)

ρ(x)2dx

(where we applied the change of variable (4.1)) we obtain
(

1− 2ℓ
εr

)−d−1

GAMSε,n(u; r) > Gδ,n(un, r). (4.16)

Notice that, since ℓ≪ ε, we have δ = δε → 0 and
(

1− 2ℓ
εr

)−d−1 → 1. We now focus our
attention on the energy Gδ,n and more precisely on

Eδ,n(un; ξ) :=
1
δ

∫

Ω∩(Ω−δξ)
ζ

( |un(Tn(x+ δξ))− un(Tn(x))|p
δp−1|ξ|q

)

ρ(x)2dx.

Clearly

Gδ,n(un, r) =
∫

Rd

ηr(|ξ|)Eδ,n(un; ξ)dξ. (4.17)

Fix ξ and consider an open bounded set with finite perimeter and smooth boundary A ⊂⊂ Ω

and notice that, for δ small enough, we have

A ⊂ Ω ∩ (Ω− δξ).

In particular

Eδ,n(un; ξ) >
1
δ

∫

A

ζ

( |un(Tn(x+ δξ))− un(Tn(x))|p
δp−1|ξ|q

)

ρ(x)2dx

=
1
δ

∫

ξ⊥
dHn−1(z)

∫

[A]z

ζ

( |ũξ,n(t+ δ|ξ|; z) − ũξ,n(t; z)|p
δp−1|ξ|q

)

ρξ(t; z)
2dt

=

∫

ξ⊥
Eδ(ũξ,n(·; z); ξ, [A]z)dHd−1(z).
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Thanks to the co-area formula we have that, for Hd−1 almost every z ∈ ξ⊥, the set [A]z must
be a finite union of open intervals. Let now nk be the subsequence achieving

lim inf
n→+∞

Eδ,n(un; ξ) = lim
k→+∞

Eδ,nk (unk ; ξ)

By applying lemma 4.5 and the boundedness of ρ we conclude that, up to extracting a further
subsequence (not relabeled), forHd−1 almost every z ∈ ξ⊥ we have

lim
k→+∞

∫

[A]z

|ũξ,nk(t; z)− uξ(t; z)|dt→ 0.

Henceforth, by applying lemma 4.4, forHd1-a.e. z ∈ ξ⊥ we can infer that

lim inf
k→+∞

Eδ(ũξ,nk(·; z); ξ, [A]z) > E(uξ(·; z); ξ, [A]z) (4.18)

being E the one dimensional functional defined in (4.10). An application of Fatou’s lemma
yields then

lim inf
n→+∞

Eδ,n(un; ξ) = lim
k→+∞

Eδ,nk (unk ; ξ) >
∫

ξ⊥
lim inf
k→+∞

Eδ(ũξ,nk(·; z); ξ, [A]z)dHd−1(z)

which, combined with (4.18), leads to

lim inf
n→∞

Eδ,n(un; ξ)> |ξ|p−qζ ′(0)
∫

ξ⊥

∫

[A]z

|u′ξ(t; z)|pρξ(t; z)2dtdHd−1(z)

+Θ|ξ|
∫

ξ⊥

∫

Suξ (·;z)∩[A]z
ρξ(t, z)

2dH0(t)dHd−1(z).
(4.19)

In particular, from (4.6), (4.19), (4.17) and Fatou’s lemma we get

lim inf
n→∞

Gδ,n(un; r) > ζ ′(0)
∫

Rd

|ξ|p−qηr(|ξ|)dξ
∫

A

∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

ρ(x)2dx

+Θ

∫

Rd

|ξ|ηr(|ξ|)dξ
∫

Su∩A

∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

ρ(y)2dHd−1(y)

which, being holds for all A ⊂⊂ Ω. Consequently

lim inf
n→∞

Gδ,n(un; r)> ζ ′(0)
∫

Rd

|ξ|p−qηr(|ξ|)dξ
∫

Ω

∣

∣

∣

∣

∇u(x) · ξ|ξ|

∣

∣

∣

∣

p

ρ(x)2dx

+Θ

∫

Rd

|ξ|ηr(|ξ|)dξ
∫

Su

∣

∣

∣

∣

Nu(y) ·
ξ

|ξ|

∣

∣

∣

∣

ρ(y)2dHd−1(y).

Thanks to (4.6), we have that

lim inf
n→∞

GAMSεn,n(un; r) > lim inf
n→∞

Gδn ,n(un; r) > MSηr ,ζ (u; ρ).

By exploiting once more the continuity in r of the quantities ϑηr (p, q), σηr we can take the limit
as r→ 0. This, considering also (4.14), completes the proof. �
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4.4. The limsup inequality

We now prove the limsup inequality part of theorem 2.1:

Proposition 4.7. Let {εn}n∈N be any sequence satisfying (2.12). Let u ∈ SBV(Ω). Then
there exists un ∈ L1(Ω;µn) such that (µn, un)→ (µ, u) in TL1 and

lim sup
n→∞

GMSεn,n(un) 6 MSη,ζ (u; ρ).

We prove the proposition by providing a recovery sequence for regular functions and argue
by approximation. We start by showing how to recover the energy of a function u ∈ SBV(Rd)
having the following properties:

(H1) Su is the union of a finite number of (d− 1)-dimensional simplexes,Hd−1(Su\Su) = 0;
(H2) u ∈ C∞(Ω\Su) ∩W1,∞(Ω\Su);
(H3) MSη,ζ (u) <∞.

We then use of the following density theoremwhich is a consequence of a well known result
of Cortesani and Toader [CT99].

Theorem 4.8. Let Ω be an open bounded set with Lipschitz boundary and u ∈ SBV(Ω)p.
Then there exists a sequence of function uj ∈ SBV(Ω)p satisfying (H1), (H2) and (H3) such
that:

(a) lim sup j→∞
∫

Su j
ρ(y)2dHd−1(y) 6

∫

Su
ρ(y)2dHd−1(y);

(b) ∇u jLp∇u and u j L1−−→u, where ∇u is, as before, the absolutely continuous part of the
gradient Du.

The following lemma is used to compare the energy of u ◦ Tn with the energy of u.
Lemma 4.9. Let {xi}ni=1 be a sequence of i.i.d. points chosen according to the density ρ. Let
µ̃n be the measures provided by lemma 3.1 and Tn :Ω→ {x1, . . . , xn} be the transport maps
between µ̃n andµn. Let {εn}n∈N be a sequence satisfying (2.12). For any u ∈ SBV(Ω) satisfying
(H1)–(H2), ξ ∈ R

d, ℓ > 0 and ε > 0 define

(Su)ℓ := {x ∈ Ω : d(x, Su) 6 ℓ},
(Su − εξ)ℓ = {x ∈ Ω : d(x, Su − εξ) 6 ℓ},

D(ε,ℓ) := (Su)ℓ ∪ (Su − εξ)ℓ.

Let ℓn = ‖Tn − Id‖∞. Then for any x ∈ Ω\D(εn, ℓn) it holds

|u(Tn(x+ εnξ))− u(Tn(x))| 6 |u(x+ εnξ)− u(x)|+ 2ℓn‖∇u‖∞. (4.20)

Moreover

lim
n→∞

|D(εn, ℓn)|
εn

= 0. (4.21)

The proof is presented in appendix B.

Proposition 4.10. Let {εn}n∈N be any sequence satisfying (2.12). Let u ∈ SBV(Ω) sat-
isfying (H1)–(H3). Then there exists a sequence of function {un}n∈N ⊂ L1(Ω;µn) such that
(µn, un)→ (µ, u) in TL1 and

lim sup
n→∞

GMSεn,n(un) 6 MSη,ζ (u; ρ). (4.22)
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Proof. We start by noticing that, since Ω has Lipschitz boundary, for any polyhedral set
A ⊃⊃ Ω, there exists an extension ũ ∈ SBV(Rd), still satisfying hypothesis (H1)–(H3), such
that |Dũ|(∂Ω) = 0 and ũ = 0 outside A (see for example [AFP00, proposition 3.21]). We thus
fix A ⊃ Ω and consider such an extension (still denoted, with a slight abuse of notation, by u).
We also extend ρ(x) = 0 on Rd\Ω. For every n, consider µ̃n of lemma 3.1. Let Tn, as before be
the d∞ optimal transport map between µ̃n and µn and ℓn = ‖T − Id‖L∞(Ω). Notice that, since
MSη,ζ (u; ρ) <∞ we can infer that, for Ld-a.e. ξ ∈ R

d andHd−1-a.e. z ∈ ξ⊥ it holds
∫

R

|u′ξ(t; z)|ρξ(t; z)2dt +
∫

Suξ (·;z)
ρξ(t; z)

2dH0(t) <∞. (4.23)

We define un : {x1, . . . , xn}→ R as

un(xi) =

{

u(xi) if xi ∈ Ω\Su;
u+(xi) if xi ∈ Su

(4.24)

where u+ is defined in (2.5). We now divide the proof in two steps.
Step one: lim sup bound on GAMS . We first prove that the lim sup bound holds for the

auxiliary energy

GAMSεn,n(un) =
1
εn

∫

Ω×Ω

ζ

( |un(Tn(x))− un(Tn(y))|p
εp−q−1
n |T(x)− Tn(y)|q

)

ηεn (|Tn(x)− Tn(y)|)ρ(x)2dxdy

From now on, we will omit, as in other proofs, the dependence on n of εn and ℓn. Define, for
t ∈ R, the kernel η(t) := η(max{t − 2ℓ/ε, 0}) (where we are omitting to explicitly denote the
dependence on ε). Since

|x− y| − 2ℓ 6 |Tn(x)− Tn(y)| 6 |x− y|+ 2ℓ

and since η is non-increasing, we deduce

η

( |Tn(x)− Tn(y)|
ε

)

6 η

(

max

{ |x− y|
ε

− 2ℓ
ε
, 0

})

6 η

( |x− y|
ε

)

.

Since ζ is non-decreasing we have

GAMSε,n(un) 6
1
ε

∫

Ω×Ω

ζ

(

ε1−p+q
|un(Tn(x))− un(Tn(y))|p

(|x− y| − 2ℓ)q+

)

ηε(|x− y|)ρ(x)2dxdy

6
1
ε

∫

Rd

dξ
∫

Ω∩(Ω−εξ)
ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q+

)

η(|ξ|)ρ(x)2dx.

For any fixed ξ ∈ R
d set Ω′

ε :=Ω ∩ (Ω− εξ) (where we omit the dependence of ω′
ε on ξ)

and consider

Fε,n(un; ξ) =
1
ε

∫

Ω′
ε

ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q

)

ρ(x)2dx

so that

GAMSε,n(un) 6
∫

Rd

η(|ξ|)Fε(un; ξ)dξ. (4.25)
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Let D(ε, ℓ) be the set defined in lemma 4.9. Notice that

Fε,n(un; ξ) =
1
ε

∫

Ω′
ε\D(ε,ℓ)

ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx (4.26)

+
1
ε

∫

D(ε,ℓ)
ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx. (4.27)

The second integral (4.27) can be easily estimated as

1
ε

∫

D(ε,ℓ)
ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx 6 C2Θ
|D(ε, ℓ)|

ε
(4.28)

which, thanks to (4.21), is decaying to 0 as n→∞ (recall that ε = εn → 0).
Let us now treat the first term (4.26) in the light of lemma 4.9. Since ζ is non-decreasing

1
ε

∫

Ω′
ε\D(ε,ℓ)

ζ

( |un(Tn(x+ εξ))− un(Tn(x))|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx

6
1
ε

∫

Ω′
ε

ζ

( | |u(x+ εξ)− u(x))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx. (4.29)

From now on, we use the same arguments of of the proof of Gobbino [Gob98, theorem 3.4,
proposition 3.5, theorem 3.6], suitably adapted to our situation (see also [GM01]). By slicing
along ξ⊥ we get

1
ε

∫

Ω′
ε

ζ

( | |u(x+ εξ)− u(x))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρ(x)2dx

=
1
ε

∫

ξ⊥
dHd−1(z)

∫

[Ω′
ε]z

ζ

( | |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρξ(t; z)
2dt.

and, for the sake of clarity we introduce the notation

Fε(uξ(·; z); ξ, [Ω′
ε]z) :=

1
ε

∫

[Ω′
ε]z

ζ

( | |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρξ(t; z)
2dt.

We define

[S]z := {t ∈ [Ω′
ε]z : [t, t + ε|ξ|) ∩ Suξ(·;z) 6= ∅} (4.30)

and, for a fixed ξ ∈ R
d\{0}, z ∈ ξ⊥, we split once again Fε(uξ(·; z); ξ, [Ω]z) as (notice that, for

any fixed ξ we can find ε > 0 small enough such that |ξ| − 2ℓ/ε > 0)

1
ε

∫

[Ω′
ε]z\[S]z

ζ

( | |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρξ(t; z)
2dt

+
1
ε

∫

[S]z

ζ

( | |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp−1(|ξ| − 2ℓ/ε)q+

)

ρξ(t; z)
2dt

6
ζ ′(0)

(|ξ| − 2ℓ/ε)q

∫

[Ω′
ε]z\[S]z

| |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp

ρξ(t; z)
2dt

(4.31)
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+Θ
1
ε

∫

[S]z

ρξ(t; z)
2dt (4.32)

Notice that, if t ∈ [Ω′
ε]z\[S]z, we have

| |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp

6 ε−p
[

∫ ε|ξ|

0

(

|u′ξ(t + τ ; z)|+ ℓ

ε|ξ| ‖∇u‖∞
)

dτ

]p

6 ε−1|ξ|p−1
∫ ε|ξ|

0

[

|u′ξ(t+ τ ; z)|+ ℓ

ε|ξ| ‖∇u‖∞
]p

dτ

= ε−1|ξ|p−1
∫ t+ε|ξ|

t

[

|u′ξ(s; z)|+
ℓ

ε|ξ| ‖∇u‖∞
]p

ds

hence

ζ ′(0)
(|ξ| − 2ℓ/ε)q

∫

[Ω′
ε]z\[S]z

| |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp

ρξ(t; z)
2dt

6
ζ ′(0)|ξ|p−1ε−1

(|ξ| − 2ℓ/ε)q

∫

R

∫ t+ε|ξ|

t

[

|u′ξ(s; z)|+
ℓ

ε|ξ| ‖∇u‖∞
]p

dsρξ(t; z)
2dt

=
ζ ′(0)|ξ|p−1ε−1

(|ξ| − 2ℓ/ε)q

∫

R

[

|u′ξ(s; z)|+
ℓ

ε|ξ| ‖∇u‖∞
]p∫ s

s−ε|ξ|
ρξ(t; z)

2dtds (4.33)

where we used the identity

1R(t)1[t,t+ε|ξ|](s) = 1R(s)1[s−ε|ξ|,s](t).

Notice now that, for L1-a.e. s ∈ R, we have

lim
ε→0

(ε|ξ|)−1

[

|u′ξ(s; z)|+
ℓ

ε|ξ| ‖∇u‖∞
]p∫ s

s−ε|ξ|
ρξ(t; z)

2dt = |u′ξ(s; z)|pρξ(s; z)2.

In particular by exploiting the dominated convergence theorem (the sequence is dominated by
twice its limit for example, which, for Ld-a.e. ξRd is summable for Hd−1-a.e. z ∈ ξ⊥ due to
(4.23)) we obtain for Ld-a.e. fixed ξ andHd−1-a.e. fixed z ∈ ξ⊥

lim
ε→0+

ζ ′(0)
(|ξ| − 2ℓ/ε)q

∫

[Ω′
ε]z\[S]z

| |uξ(t + ε|ξ|; z)− uξ(t; z))|+ 2ℓ‖∇u‖∞|p
εp

ρξ(t; z)
2dt

6 ζ ′(0)|ξ|p−q
∫

R

|u′ξ(s; z)|pρξ(s; z)2ds

= ζ ′(0)|ξ|p−q
∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds (4.34)

since ρ is defined to be zero outside Ω. Let ω be the modulus of continuity of ρ2 on Ω. That is,
for r > 0

ω(r) = sup{|ρ2(x)− ρ2(y)| : x, y ∈ Ω, |x− y| < r}.
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From the definition of [S]z in (4.30) follows that

Θ

ε

∫

[S]z

ρξ(t; z)
2dt 6

Θ

ε

∫

Suξ (·;z)

∫

(y−ε|ξ|,y]∩[Ω′
ε]z

ρξ(t; z)
2 dt dH0(y)

6 Θ|ξ|
∫

Suξ (·;z)∩[Ω
′
ε]z

ρξ(y; z)
2 + ω(ε|ξ|) dH0(y)

6 Θ|ξ|
∫

Suξ (·;z)∩[Ω]z

ρξ(y; z)
2 + ω(ε|ξ|) dH0(y) (4.35)

where the last inequality follows from the fact that

[Ωε]z = [Ω ∩ (Ω− εξ)]z ⊂ [Ω]z.

By collecting together (4.34) and (4.35) we get, for Ld-a.e. ξ ∈ R
d and for Hd−1-a.e z ∈ ξ⊥,

that

lim sup
ε→0

Fε(uξ(·; z); ξ, [Ω′
ε]z)6 ζ ′(0)|ξ|p−q

∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+Θ|ξ|
∫

Suξ (·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).

In particular we can apply the reverse Fatou’s lemma (again for every ξ, Fε is dominated by
twice its limit which is summable in z due to MSη,ζ (u) <∞) and conclude that

lim sup
ε→0

∫

ξ⊥
Fε(uξ(·; z); ξ, [Ω′

ε]z)dHd−1(z) 6 ζ ′(0)|ξ|p−q
∫

ξ⊥
dHd−1(z)

∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+Θ|ξ|
∫

ξ⊥
dHd−1(z)

∫

Suξ (·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).

By collecting (4.26)–(4.29) the definition of Fε and lemma 4.9 we get, forLd-a.e. ξ ∈ R
d, that

lim sup
n→∞

Fε,n(un; ξ) 6ζ
′(0)|ξ|p−q

∫

ξ⊥
dHd−1(z)

∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+ Θ|ξ|
∫

ξ⊥
dHd−1(z)

∫

Suξ (·;z)∩[Ω]z

ρξ(t; z)
2dH0(t).

A further application of the reverse Fatou’s lemma on (4.25), combined with the fact that
η(t) = η(max{t − 2ℓ/ε, 0})→ η(t) in L1 as ε→ 0, leads to

lim sup
n→∞

GAMSεn,n(un) 6 ζ ′(0)
∫

Rd

η(|ξ|)|ξ|p−qdξ
∫

ξ⊥
dz
∫

[Ω]z

|u′ξ(s; z)|pρξ(s; z)2ds

+Θ

∫

Rd

η(|ξ|)|ξ|dξ
∫

ξ⊥
dz
∫

Suξ (·;z)∩[Ω]z

ρξ(t; z)
2dH0(t)

which, thanks to (4.5) achieves the proof of step one.
Step two: lim sup bound on GMS . Consider ηM := 1[0,M)(t)η(t) and notice that, by exploit-

ing the notation of the proof of lemma 4.2, we have
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GMSεn,n(un) = GAMSεn,n(un)+Rn(un)

= GAMSεn,n(un)+Rn(un; ηM)+Rn(un; η − ηM)

where, withRn(un; ηM),Rn(un; η − ηM) we mean the energyRn(un) with ηM, η − ηM in place
of η. Since Rn(un; ηM) = GMSεn,n(un; ηM)− GAMSεn,n(un; ηM), by virtue of lemma 4.2 we
have

lim
n→∞

Rn(un; ηM) = 0.

From the other side, since ρ is bounded from above and below we have that

|Rn(un; η − ηM)| 6 CGAMSεn,n(un; η − ηM)

for a universal constant C. Thanks to the step one and to proposition 4.3 we thus have

lim
n→∞

|Rn(un; η − ηM)| 6 C
[

lim
n→∞

GAMSεn,n(un)− lim
n→∞

GAMSεn,n(un; ηM)
]

= C(MSη,ζ (u)−MSηM ,ζ (u)).

Since MSη,ζ (u) < +∞ by taking the limit as M→∞ and by exploiting the continuity of the
constants inMS we get

lim
M→∞

lim
n→∞

|Rn(un; η − ηM)| = 0,

yielding

lim
n→+∞

Rn(un) = 0.

In particular, by invoking (4.7), we reach

lim sup
n→∞

GMSεn,n(un) 6 lim sup
n→∞

GMSεn,n(un) = lim sup
n→∞

GAMSεn,n(un) 6 MSη,ζ (u).

�

Proof of proposition 4.7. Assume now that u ∈ SBV(Ω). Let uj be the sequence given
by theorem 4.8. Then uj → u in L1 which means that dTL1((µ, u j), (µ, u))→ 0. Set (up to a
subsequence)

L := lim sup
j→∞

MSη,ζ (u j).

Notice that thanks to assertions (a) and (b) of theorem 4.8 we have that L 6 MSη,ζ(u). For all
k ∈ N, consider jk such that

dTL1((µ, u jk), (µ, u)) 6 1/(2k)

MSη,ζ (u jk) 6 L+ 1/(2k).

In particular it also holds that

MSη,ζ (u jk ) 6 L+ 1/(2k) 6 MSη,ζ (u)+ 1/(2k).

For every jk chosen as above let {unjk}n∈N be the sequence given by proposition 4.10 relative to
u jk . By exploiting proposition 4.3 we can infer
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MSη,ζ (u jk ) = lim
n→∞

GMSεn,n(unjk ).

Choose now nk such that

dTL1((µn, u
n
jk
), (u jk ,µ)) <1/(2k)

GMSεn,n(u
n
jk
)<MSη,ζ (u jk)+1/(2k) for all n > nk

(

< MSη,ζ (u)+
1
k

for all n > nk

)

.

Define now the following recovery sequence

wn := unjk , if n ∈ [nk, nk+1), k ∈ N (4.36)

This means that, for any n ∈ [nk, nk+1) we have

dTL1((µn, u
n
jk
), (µ, u)) < 1/k,

GMSεn,n(unjk) 6 MSη,ζ (u)+
1
k
.

Implying

dTL1((µn,wn), (µ, u)) < 1/k, for all n ∈ [nk, nk+1)

GMSεn,n(wn) 6 MSη,ζ (u)+
1
k

for all n ∈ [nk, nk+1).

In particular, (µn,wn)→ (µ, u) in TL1 and

lim sup
k→∞

GMSεn,n(wn) 6 MSη,ζ (u).

�
5. Proof of the compactness result (theorem 2.3)

This section is devoted to the proof of theorem 2.3 that establishes a compactness result for
sequences of functions with uniformly bounded GMSεn,n where εn is any sequence satisfying
(2.12).

Remark 5.1. Let us point out that, in contrast to [GTS16] where an L1 bound is assumed,
our compactness theorem 2.3 requires an L∞ bound on the sequence un. Namely due to the fact
that in GMSεn,n(un) the differences in un are inside a bounded concave function ζ a uniform
bound on GMSεn,n(un) is, in general, not translatable into a uniform bound on GTVε,n. This is
not just a technical issue and in fact an L1-type bound is not sufficient for compactness. Here
we provide a counterexample to compactness if one only assumes an L1 bound on un. Choose
ρ = 1 and Ω = Q the unit cube centered at 0. Let {Qk

i }2
kd

i=1 be a di-adic division of Q in cubes
of edges-size 2−k and let {xki }2

kd

i=1 be the uniform grid given by the baricenter of each cube Qk
i .

Consider the sequence of functions uk : {xki }2
kd

i=1 → R defined as

uk(x
k
j) :=

1Brk (0)
(xkj)

ωdrdk

with rk := 2−k/2. Notice that xki ∈ Brk (0) implies Qk
i ⊂ B2rk (0) and thus

#({i : xki ∈ Brk (0)}) 6 #({i : Qk
i ⊂ B2rk (0)}) = 2dωd2

dk/2.
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On the other hand

#({i :Qk
i ⊂ Brk (0)}) = 2kd

∣

∣

∣

∣

∣

∣

∣

⋃

Qk
i
⊂Brk (0)

Qk
j

∣

∣

∣

∣

∣

∣

∣

> 2kd|Brk/2(0)| = 2−dωd2
kd/2.

Since Qk
i ⊂ Brk (0) implies xki ∈ Brk (0), we conclude

2−dωd2
dk/2 6 #({i : xki ⊂ Brk (0)}) 6 2dωd2

dk/2.

In particular, setting νk := 2−kd
∑2kd

i=1 δxk
i
, we have

∫

Q

ukdνk = 2−kd
2kd
∑

i=1

uk(x
k
i ) = 2−kd

#({i : xki ∈ Brk (0)})
ωdr

d
k

=
#({i : xki ∈ Brk (0)})

ωd2kd/2

and so

2−d 6
∫

Q

ukdνk 6 2d for all k ∈ N. (5.1)

This means that uk ∈ L1 (Q; νk) and that

sup
k∈N

{‖uk‖L1} 6 2d (5.2)

Consider now εk := 2−kα for some 1/2 < α < 1 and notice that it satisfies (2.12), since

lim
k→∞

log (nk)1/d

εkn
1/d
k

= 0

(here nk = 2kd and we are also considering d > 2). Now we choose ζ as

ζ(x) =

{

x for x 6 1,

1 for x > 1.
(5.3)

With all these choices in mind, for any kernel η satisfying the assumptions (B1) and (B2), we
can conclude

GMSεk,nk (uk) =
1
εkn2k

nk
∑

i, j=1

ζ

(

ε1−p+qk

|uk(xki )− uk(xkj)|p
|xki − xkj|q

)

ηεk (|xki − xkj|)

6
2
εkn2k

∑

xk
i
∈Brk (0)c

∑

xk
j
∈Brk (0)

ηεk (|xki − xkj|) = 2GTVεk,nk (1Brk (0)).

Notice that supk{GTVεk ,nk (1Brk (0))} <∞ and so

sup
k∈N

{GMSεk ,nk (uk)} <∞. (5.4)

By collecting (5.2) and (5.4) we are finally lead to

sup
k∈N

{‖uk‖L1 + GMSεk ,nk (uk)} <∞.
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Nonetheless we cannot expect any sort of TL1 compactness for the sequence (νk, uk). Indeed,
the only possible pointwise limit for uk ◦ Tnk : Q→ {0, r−dk /ωd} can be u = 0 but

∫

Q

uk(Tnk (x))dx =
∫

Q

ukdνk > 2−d > 0

because of (5.1).

Our proof is based on the approach to compactness for general non-local functionals
established in [GM01, theorem 5.1].

Proposition 5.2. Let p > 1 and consider an open set A ⊂ R
d with Lipscthiz boundary. Let

uε ∈ L1(Rd) be a sequence of function such that

inf

{∫

Rd×Rd

|uε(x)− uε(y)|
|x− y| Jε(|x− y|)dxdy+ ‖uε‖∞

}

< +∞

where J is any kernel such that {ξ : J(ξ) > c} has non-empty interior for some c > 0. Then the
sequence uε is compact in L

1(Rd).

Before proceeding to the proof of theorem 2.3 and in order to apply proposition 5.2 (which
holds for functions defined on the whole Rd) we need the following extension lemma in the
same spirit of [GTS16, lemma 4.4].

Lemma 5.3. Suppose that Ω is abounded open set with C2 boundary. Let η be a compactly
supported, non-increasing kernel which is not identically equal to zero. Let {uε}ε>0 ⊂ L1(Ω)
be a sequence. Then there exists a sequence of function {vε}ε>0 ⊂ L1(Rd) such that

(a) vε = uε Ld-a.e. on Ω;

(b) There exists a kernel Jη such that {ξ : Jη(|ξ|) > c} has not empty interior for some c > 0
and such that if

sup
ε>0

{∫

Ω×Ω

|uε(x)− uε(y)|
|x− y| ηε(|x− y|)

( |x− y|
ε

)p

dxdy+ ‖uε‖∞
}

<∞,

then

sup
ε>0

{∫

Rd×Rd

|vε(x)− vε(y)|
|x− y| Jηε (|x− y|)dxdy+ ‖vε‖∞

}

<∞.

Proof. Since Ω has C2 boundary we can find δ > 0 for which the projection operator x→
Px ∈ Ω is well defined on U := {x ∈ R

d|d(x,Ω) 6 δ} and satisfies

|x− Px| = d(x,Ω).

We moreover consider a smooth cut off function τ (s) 6 1, such that τ (s) = 1 for s 6 δ/8 and
τ (s) = 0 for s > δ/4 and we consider the reflection Rx := 2Px− x. Set also

W := {z ∈ R
d\Ω|d(x,Ω) < δ/4}

V := {z ∈ R
d\Ω|d(x,Ω) < δ/8}.

It has been shown in the proof of [GTS16, lemma 4.4] that

1
4
|x− y| 6 |Rx− Ry| 6 4|x− y| for all x, y ∈ W; (5.5)
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|Rx− y| 6 2|x− y| for all x ∈ W, y ∈ Ω; (5.6)

Since η can be extended continuously at 0 with η(0) > 0, up to decreasing the value of δ, we
can also guarantee that

Jη(t) := tpη (4t)
(

1− 1[0,δ](t)
)

is such that {t|Jη(t) > c} has not empty interior for some c > 0. Notice also that

|Rx− y| > 3
4
|x− y| for x, y ∈ W, |x− y| > δ. (5.7)

In the light of this fact, we introduce the functions ṽε := uε(Rx) and vε(x) := τ (|Px− x|)ṽε(x).
Clearly (a) is satisfied. Notice that for y ∈ Ω

|x− y|
ε

>
d(x,Ω)
ε

.

Thus, if d(x,Ω) > δ/8, for ε small enough and thanks to the fact that η is compactly supported,
we conclude that

ηε(4|x− y|) = 0.

Consequently

∫

(Rd\Ω)×Ω

|vε(x)− vε(y)|
|x− y| Jηε (|x− y|)dxdy

=

∫

(Rd\Ω)×Ω

|vε(x)− vε(y)|
|x− y| ηε(4|x− y|)

( |x− y|
ε

)p(

1− 1[0,δ)

( |x− y|
ε

))

dxdy

=

∫

V×Ω
{|x−y|>δε}

|ṽε(x)− ṽε(y)|
|x− y| ηε(4|x− y|)

( |x− y|
ε

)p

dxdy

6 C

∫

V×Ω
{|x−y|>δε}

|uε(Rx)− uε(y)|
|Rx− y| ηε(4|x− y|)

( |Rx− y|
ε

)p

dxdy

6 C

∫

V×Ω

|uε(Rx)− uε(y)|
|Rx− y| ηε(2|Rx− y|)

( |Rx− y|
ε

)p

dxdy

6 C

∫

Ω×Ω

|uε(z)− uε(y)|
|z− y| ηε(2|z− y|)

( |z− y|
ε

)p

dzdy

6 C

∫

Ω×Ω

|uε(z)− uε(y)|
|z− y| ηε(|z− y|)

( |z− y|
ε

)p

dzdy. (5.8)

Where we have exploited (5.5)–(5.7) the change of variable Rx = z and the fact that R is bi-
Lipscthiz onW. From the other side, for (x, y) ∈ W×W we have
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|vε(x)− vε(y)|
|x− y| 6

τ (|Px− x|)(|ṽε(x)− ṽε(y)|)+ τ (|Px− x|)− τ (|Py− y|)|ṽε(y)|
|x− y|

6
|uε(Rx)− uε(Ry)|

|x− y| + ‖vε‖∞Lip(τ ) 6
1
4
|uε(Rx)− uε(Ry)|

|Rx− Ry| + ‖vε‖∞Lip(τ ).

Moreover

ηε(4|x− y|)
( |x− y|

ε

)p(

1− 1[0,δ)

( |x− y|
ε

))

6 ηε(4|x− y|)
( |x− y|

ε

)p

6 Cηε(|Rx− Ry|)
( |Rx− Ry|

ε

)p

.

In particular with the same change of variable as above we achieve
∫

(Rd\Ω)×(Rd\Ω)

|vε(x)− vε(y)|
|x− y| Jηε (|x− y|)dxdy

6 C

(

1+
∫

Ω×Ω

|uε(x)− uε(y)|
|x− y| ηε(|x− y|)

( |x− y|
ε

)p

dxdy

)

.

(5.9)

By collecting (5.8), (5.9) and the definition of vε we prove (b). �

Proof of theorem 2.3. Since ρ is always bounded from above and below, without loss of
generality we can assume ρ = 1. Moreover we can always assume that η is compactly sup-
ported since, by replacing η with η1[0,M] for suitableM, we are decreasing the energy.Without
loss of generality we may also assume that η is supported on [0, 1]. Moreover, as usual, we
will omit the dependence on n of the sequences εn and ℓn = ‖Tn − Id‖∞.

Due to the properties of ζ we can always find real constants ζ2 and c2 > 0 such that






ζ ′(0)
2

6
ζ(t)
t

for t 6 ζ2

c2 6 ζ(t) for t > ζ2.
(5.10)

Set ũn(x) := un ◦ Tn, where Tn :Ω→ {x1, . . . , xn} is the map that transports µ̃n to µn; the
measures given by lemma 3.1. We define

Aε :=

{

(x, y) ∈ Ω× Ω

∣

∣

∣

∣

ε1−p+q
|ũn(x)− ũn(y)|p
|Tn(x)− Tn(y)|q

> ζ2

}

. (5.11)

We immediately see that

GMSε,n(un) >
1
ε

∫

Aε

ζ

(

ε1+q−p
|ũn(x)− ũn(y)|p
|Tn(x)− Tn(y)|q

)

ηε(|Tn(x)− Tn(y)|)dxdy

>
c2

ε

∫

Aε

ηε(|Tn(x)− Tn(y)|)dxdy.

Moreover since η is non increasing and non identically 0 we can find a positive r > 0 such that
η(t + r)1[0,1)(t) is not identically 0. Set η̄(t) := η(t + r)1[0,1](t) and notice that η̄ is still a non
increasing kernel, supported on [0, 1− r]. Since for ε small enough we can always guarantee
that

|Tn(x)− Tn(y)|
ε

6
|x− y|
ε

+ r ⇒ η

( |Tn(x)− Tn(y)|
ε

)

> η̄

( |x− y|
ε

)

.
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We can also infer, for |x− y|/ε 6 (1− r)

( |x− y|
ε

)p

η̄ε(|x− y|) 6 (1− r)p−1 |x− y|
ε

ηε(|Tn(x)− Tn(y)|).

Thus we can conclude

(∫

Aε

|ũn(x)− ũn(y)|
|x− y|

( |x− y|
ε

)p

η̄ε(|x− y|)dxdy
)p

6 C‖un‖p∞GMSε,n(un)
p

(5.12)

for a universal constant C > 0. For the remaining part we notice the following thing. On (Ω×
Ω)\Aε it holds

ζ

(

ε1−p+q
|ũn(x)− ũn(y)|p
|Tn(x)− Tn(y)|q

)

> ε
ζ ′(0)
2

|ũn(x)− ũn(y)|p
|x− y|p

εq

|Tn(x)− Tn(y)|q
( |x− y|

ε

)p

and for ε small enough we have

εq

|Tn(x)− Tn(y)|q
>

1
(

|x−y|
ε

+ 2ℓ
ε

)q >
1

(

|x−y|
ε

+ 1
)q .

This yields, by recalling that η̄ε(|x− y|) = 0 for |x− y| > (1− r)ε, that

GMSε,n(un) >
ζ ′(0)
2

∫

(Ω×Ω)\Aε

|ũn(x)− ũn(y)|p
|x− y|p

(

|x−y|
ε

)p

(

|x−y|
ε + 1

)q η̄ε(|x− y|)dxdy

> Λ1−pC

(∫

(Ω×Ω)\Aε

|ũn(x)− ũn(y)|
|x− y|

( |x− y|
ε

)p

η̄ε(|x− y|)dxdy
)p

(5.13)

where

Λ :=
∫

(Ω×Ω)\Aε

( |x− y|
ε

)p

η̄ε(|x− y|)dxdy 6
∫

Ω×Ω

( |x− y|
ε

)p

η̄ε(|x− y|)dxdy

62|Ω|
∫

Rd

|ξ|pη̄(|ξ|)dξ 6 2|Ω|
∫

B1(0)
|ξ|pη̄(|ξ|)dξ < +∞.

By collecting (5.12) and (5.13) we conclude that

sup
n∈N

{∫

Ω×Ω

|ũn(x)− ũn(y)|
|x− y|

( |x− y|
εn

)p

η̄εn(|x− y|)dxdy+ ‖ũn‖∞
}

< +∞.

(5.14)

We now divide the proof in three steps.
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Step one: Ω has C2 boundary. In this case, by applying lemma 5.3 we can find a sequence
of {vn}n∈N ⊂ L1(Rd) such that vn = ũn Ld-a.e. on Ω. Moreover, due to (5.14) there exists a
kernel Jη̄ such that {ξ : Jη̄(|ξ|) > c} has not empty interior for some c > 0 and for which

sup
n∈N

{∫

Rd×Rd

|vn(x)− vn(y)|
|x− y| Jη̄εn(|x− y|)dxdy+ ‖vn‖∞

}

< +∞.

Then, by applying proposition 5.2 we deduce that {vn}n∈N is compact in L1(Rd) and thus
{ũn}n∈N is compact in L1(Ω).

Step two: Ω has Lipschitz boundary. Thanks to [BZ17, remark 5.3] there exists a bi-
Lipscthiz map Ψ : Ω̂→ Ω where Ω̂ is a domain with smooth boundary. Consider ûn := ũn ◦
Ψ : Ω̂→ R. Clearly ‖ûn‖∞ 6 ‖ũn‖∞. Moreover

∫

Ω̂×Ω̂

|ûn(x)− ûn(y)|
|x− y|

( |x− y|
εn

)p

η̄ε(Lip(Ψ)−1|x− y|)dxdy

6 C

∫

Ω×Ω

|ũn(x)− ũn(y)|
|Ψ(x)−Ψ(y)|

( |Ψ(x)−Ψ(y)|
εn

)p

η̄εn(Lip(Ψ)−1|Ψ(x)−Ψ(y)|)dxdy

6 C

∫

Ω×Ω

|ũn(x)− ũn(y)|
|x− y|

( |x− y|
εn

)p

η̄εn(|x− y|)dxdy.

By exploiting (5.14), lemma 5.3 and by arguing as in Step one we conclude that {ûn}n∈N is
compact in L1(Ω̂). Since Ψ is bi-Lipschitz, a simple change of variable shows that {ũn}n∈N is
compact in L1(Ω).

Step three: compactness of (µn, un) in TL1. Thanks to steps one and two we obtained
that {ũn := un ◦ Tn}n∈N is compact in L1(Ω) and converges to some u up to a subsequence.
Thanks to lemma 3.2 we deduce that (µ̃n, un ◦ Tn)→ (µ, u) in TL1 as well. In particular, since
d∞(µn, µ̃n)→ 0, we have

dTL1((µn, un), (µ, u)) 6 dTL1((µn, un), (µ̃n, un ◦ Tn)+ dTL1((µ̃n, un ◦ Tn), (µ, u))
= d∞(µn, µ̃n)+ dTL1((µ̃n, un ◦ Tn), (µ, u))→ 0.

�

6. Proofs of corollaries

We now prove the corollary 2.6.

Proof. Let un : Vn → R be a sequence of functions such that (µn, un) converges in TL2

towards (µ, u). Let Tn be the ∞-optimal transport map between µ and µn. To show the lim-
inf inequality needed for Γ-convergence, it suffices to establish the convergence of the fidelity
term, as the other terms are same as in theorem 2.1. Note that

1
n

n
∑

i=1

|un(xi)− f (xi)|2 =
∫

Ω

|un ◦ Tn − f ◦ Tn|2ρ(x) dx.

We claim that since f is piecewise continuous f ◦ Tn converges to f in L2(µ). Namely let Jf be
the set of discontinuities of f and let J̃ f = J f ∪ ∂Ω. Let J̃ f ,δ = {x ∈ Ω : d(x, J̃ f ) < δ}. Since
Hd−1(J̃ f ∪ ∂Ω) <∞, µ(J̃ f ,δ)→ 0 as δ→ 0. To establish the convergence let ε > 0. Let δ be
such that 4‖ f ‖L∞µ(J̃ f ,δ) < ε. Let n be so large that ‖Tn − I‖L∞ < 1

2δ. Since f is uniformly
continuous on Ω\J̃ f ,δ/2 and ‖Tn − I‖L∞ → 0 as n→∞, f ◦ Tn converges uniformly to f on
Ω\J̃ f ,δ . Therefore for all n large enough
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∫

Ω

| f − f ◦ Tn|2ρ(x) dx 6 2µ(J̃ f ,δ|)‖ f ‖L∞ +

∫

Ω\J̃ f ,δ
| f − f ◦ Tn|2ρ(x) dx <

ε

2
+
ε

2
.

Since (µn, un)→ (µ, u) in TL2, and Tn is a stagnating sequence of transport maps we con-
clude that we conclude that un ◦ Tn → u in L2(µ). Combining with the convergence for
f ◦ Tn obtained above we conclude that

∫

Ω
|un ◦ Tn − f ◦ Tn|2ρ(x) dx→

∫

Ω
|u− f |2ρ(x) dx as

n→∞.
Establishing the limsup inequality is straightforward by using the same approximation

argument and recovery sequence as in the proof of theorem 2.1.
To establish the compactness of the sequence of minimizers, let un be a minimizer of

GMS f ,ε,n. By truncation it is immediate that ‖un‖L∞(µn) 6 ‖ f ‖L∞(µ). Therefore the compact-
ness claim of the theorem 2.3 implies that (µn, un) converges along a subsequence in TL1

to (µ, u) for some u ∈ L∞(µ). The boundedness in L∞ implies, via interpolation, that the
convergence is in TL2. The fact that u is a minimizer follows from Γ-convergence. �

We now prove the corollary 2.7.

Proof. Let us first establish the liminf inequality. Let un : Vn → R be a sequence of func-
tions such that (µn, un) converges in TL2 towards (µ, u). Given the results of theorem 2.1 and
assumptions on β, it suffices to show that the fidelity term converges, that is that

1
n

n
∑

i=1

|un(xi)− f (xi)− yi|2→
∫∫

Ω×R

|u(x)− f (x)− y|2ρ(x) dxdβ(y) (6.1)

as n→∞. Note that 1
n

∑n
i=1 |un(xi)− f (xi)|2 →

∫

Ω
|u(x)− f (x)|2ρ(x) dx follows from the

proof of corollary 2.6. The fact that 1
n

∑n
i=1 δyi weakly converges to β follows from

Glivenko–Cantelli lemma. Due to boundedness of moments we conclude that 1
n

∑n
i=1 δyi con-

verges to β is q−Wasserstein distance for all q > 1. Using the boundedness of β we con-
clude that 1

n

∑n
i=1 |yi|2 converges to

∫

R
y2dβ(y)=

∫∫

Ω×R
y2ρ(x) dxdβ(y) since

∫

Ωρ(x)dx = 1.
Note that γn := 1

n

∑n
i=1 δ(xi ,yi) converges to γ :=µ× β in Wasserstein distance, again due to

Glivenko–Cantelli lemma. Let κn be the optimal transport plan for the Wasserstain dis-
tance between γ and γn. Let πn :=Π1,3♯κn where Π1,3 is the projection to the first and the
third variable. By definition πn is a stagnating sequence of transport plans. Therefore, by
proposition 3.12 of [GTS16], since (µn, un − f )TL2(µ, u− f ) by the proof of corollary 2.6,
∫∫∫∫

|x− x̃|2 + |un(x̃)− f (x̃)− u(x)+ f (x)|2dκn(x, y, x̃, ỹ)→ 0 as n→∞. Thus (γn, un −
f )TL2̃(γ, u− f ) as n→∞. Similarly (γn, y)

TL2−−→(γ, y) as n→∞. Consequently (γn, (un −
f )y)

TL1−−→(γ, (u− f )y) as n→∞. Thus

1
n

n
∑

i=1

(un(xi)− f (xi))yi−
∫∫

Ω×R

(u(x)− f (x))y ρ(x) dxdβ(y)

=

∫∫∫∫

(un(x̃)− f (x̃))ỹ− (u(x)− f (x))ydκn(x, y, x̃, ỹ)→ 0 as n→∞.

Combining with the limits above establishes (6.1).
The proofs of limsup inequality, compactness and the converge of minimizers are as

before. �
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7. Numerical algorithm and experiments

Here we desribe an efficient numerical algorithm for computing the, approximate, minimiz-
ers of the graph Mumford–Shah functional and illustrate its behavior on a real world set of
data. We note that similar functionals were minimized using the ADMM algorithm by Hallac
et al by [HLB15]. Here we minimize (1.1), where ζ is non convex.We use a standard ;iterated
reweighted least square’ approach which in this context dates back at least to [GR92] (cf also
the implementation in [Cha99]). In our case, the idea is to perform several iteration, linearizing
each time the problem with respect to ζ around the previous value.

This can be presented as follows: we assume that ζ is concave,with ζ ′(0) = 1 and ζ(+∞) =
1, for instance ζ(t) = t/(1+ t) for t > 0. Then, using the Legendre transform, one can write
for t > 0ζ(t) = minz∈[0,1]zt+Ψ(z) for some convex functionΨ. (One has ζ(t) = −Ψ∗(−t) and
Ψ(z) = maxtζ(t)− tz, where Ψ∗ denotes the classical convex conjugate of Ψ.) The minimum
(if unconstrained) is reached at z which solves t+Ψ′(z) = 0, hence z = (Ψ∗)′(−t) = ζ ′(t).

We consider the edge weights given by kernel η(s) = e−
s2

2σ2 where σ is a parameter that can
be tuned. Minimizing (1.1) is equivalent to solving:

min
u,z

n
∑

i=1

|u(xi)− fi|2 +
1
λεn

n
∑

i, j=1

(

zi, j
1
ε
|u(xi)− u(x j)|2 +Ψ(zi, j)

)

1
εd

exp

(

−|xi − x j|2
2σ2ε2

)

(7.1)

where the new variable (zi,j) is defined on the active edges. This is computed by alternatively
minimizing the problem with respect to u and z: in u, the problem is quadratic and can be
minimized efficiently, depending on the graph, by inverting the graph Laplacian (plus identity)
or a conjugate gradient method. In z, the solution is explicitly given by

zi, j = ζ ′
( |u(xi)− u(x j)|2

ε

)

.

In practice, we have implemented the following cases:

ζ(t) =
2
π
arctan

(πt

2

)

, ζ ′(t) =
1

1+ π2t2

4

(7.2)

ζ(t) =
√

δ2 + t, ζ ′(t) =
1

2
√
δ2 + t

, (7.3)

ζ(t) = t, ζ ′(t) = 1, (7.4)

The choice (7.3) leads as δ→ 0 to a consistent approximation of the graph total variationwhich
was first proposed in [VO96]. The choice ζ(t) = t corresponds to regularization by Dirichlet
energy,which corresponds to (unnormalized)graphLaplacian.Our implementation is available
on bitbucket: https://bitbucket.org/AntoninCham/ms_on_graphs/

7.1. A synthetic example

We consider denoising and detecting edges in the signal given by piecewise linear function
u on domain [0, 1]2, shown on figure 1(a). The signal is sampled at 10 000 points, X10000,
and corrupted by Gaussian noise with variance 0.2. We build the graph using η as in (7.1) with
σ = 5 and ε = 0.0225 andwith themaximumnumber of neighbors k = 8.We considered three
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Figure 1. Denoising (regression) and edge detection. (A) Noiseless function. (B) Func-
tion sampled at 10 000 random points and corrupted by Gaussian noise with σ = 0.2.
(C) Minimizer uMS of (1.1) for λ = 162. Edges with jump over 0.075 are red. (D) Min-
imizer uTV of the graph TV functional for λ = 438. Edges with jump over 0.14 are red.
(E) Minimizer uL for ζ given by (7.4) with λ = 248. Edges with jump over 0.09 are
red. (F) The difference uMS − uTV tends to be positive on the upper side of jumps and
negative on the lower side.
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Figure 2. Denoising of housing prices. The maximum price per square foot. (A)
The recorded price per square foot. (B) The minimizer of the graph Mumford–Shah
functional computed. (C) Detail of the image above. (D) Detail of the image
above.

models for denoising and edge detection given by ζ in (7.2)–(7.4). Namely on figure 1(c) we
display the computedminimizer of the graphMumford–Shah for ζ given by (7.2) andλ = 162.
On figure 1(d) we display the minimizer of the approximation of the graph TV functional for
ζ given by (7.3) with δ = 0.001 and λ = 438. On figure 1(e) we show the minimizer of the
functional with dirichlet regularization, corresponding to ζ given by (7.4) and λ = 248. For
comparison, for each of the models we display the result for parameter λ which minimizes
the L1(µ10000) error between the minimizer and the clean signal u restricted to X10000. The
errors observed for optimal lambdas were ‖uMS − u‖L1 = 0.0258, ‖uMS − u‖L1 = 0.0297, and
‖uL − u‖L1 = 0.0392. We note that the recovery by Mumford–Shah is somewhat better than
for graph TV. We think that the main reason is that the graph TV tends to decrease contrast
(as is well known in image processing, see page 30 of [CCC+10]) while the Mumford–Shah
does not have this bias.

We also observe to what extent the minimizers recover the edges of the domains by
labeling the graph edges that have a relatively large difference between values at the nodes.
These are shown in red on the plots. The critical jump size was set manually for visu-
ally the best results for each model. We note that Mumford–Shah and TV give simi-
lar results, while the Laplacian smoothing blurs the edges as expected. Taking the differ-
ence between the minimizers uMS − uTV shows, on figure 1(f) that indeed jumps across
the edges are typically larger for the Mumford–Shah minimizers that for total-variation
regularization.
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7.2. Denoising housing prices

Here we present an example of minimization of Mumford–Shah functionals on graphs aris-
ing from real-world data samples. This example is given as an illustration of the nature of
minimizers.

We consider denoising the real estate prices in King County, WA. The housing
prices in the period May 2014 to May 2015 are obtained from the Kaggle website:
https://kaggle.com/harlfoxem/housesalesprediction.

We removed the geographical outliers (east of longitude−121.68◦) and data rows missing
square footage. The recorded price per square foot is shown on the left. This left 21 594 usable
records. The maximum price per square foot was $810.14. We normalized the input prices per
square foot by dividing by the maximal price. On figure 2 we present the computedminimizers
of the graph Mumford–Shah functional with ε = 0.04, λ = 14, and σ = 1. We also allow
one to limit the maximal degree of a vertex considered, which we set to k = 15. On a 2018
MacbookPro, the computation takes 31 s, including the constructionof the graph. The denoised
data allow one to visualize by how much the typical price per square foot depends on the
location.
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Appendix A. Proof of lemma 4.4

The proof of lemma 4.4 is obtained as a slight modification of the proof contained in [GM01]
for f = 1. In particular we apply [GM01, theorems 3.1 and 3.2] on the family of functions

ϕε(r) :=
|ξ|
ε
ζ

(

εrp

|ξ|q−p+1

)

.

Indeed we note the following facts

(a) ϕδ|ξ|
(

|u(x+δ|ξ|)−u(x)|
δ|ξ|

)

= 1
δ
ζ
(

|u(x+δ|ξ|)−u(x)|p
δp−1 |ξ|q

)

;
(b) limε→0+ϕε(r) = ζ ′(0)|ξ|p−qrp;
(c) limε→0+εϕε(r/ε) = Θ|ξ|.
In particular, by combining (a)–(c) and with a slight variation of the proof of [GM01,

theorem 3.1] (as in [Cha99, section 3.2]) we conclude that

lim inf
δ→0+

1
δ

∫

A

ζ

( |u(x+ δ|ξ|) − u(x)|p
δp−1|ξ|q

)

> ζ ′(0)|ξ|p−q
∫

A

|u′(x)|pdx+Θ|ξ|H0(Su ∩ A).

(A.1)

We now proceed to the proof of lemma 4.4.
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Proof of lemma 4.4. For every k ∈ N consider a partition of A in small intervals {Ikj}|A|/kj=1 .
Then

1
δ

∫

A

ζ

( |u(x+ δ|ξ|)− u(x)|p
δp−1|ξ|q

)

f (x)dx >
|A|/k
∑

j=1

min
Ik
j

{ f }1
δ

∫

A

ζ

( |u(x+ δ|ξ|)− u(x)|p
δp−1|ξ|q

)

dx.

In particular, by applying (A.1) on each intervals Ikj we reach

lim inf
δ→0

1
δ

∫

A

ζ

( |u(x+ δ|ξ|)− u(x)|p
δp−1|ξ|q

)

f (x)dx> ζ ′(0)|ξ|p−q
|A|/k
∑

j=1

∫

Ik
j

|u′(x)|pmin
Ik
j

{ f }dx

+

|A|/k
∑

j=1

Θ|ξ|
∫

Su∩Ikj
min
Ik
j

{ f }dH0(y).

Since f is a Lipschitz function we now notice that, given ε > 0, we can find ρ such that

|x− y| < ρ⇒ | f (x)− f (y)| < ε.

In particular, for any fixed ε > 0, we can find a k ∈ N big enough such that

min
Ik
j

{ f } > max
Ik
j

{ f } − ε > f (x)− ε for all x ∈ Ikj

Thus,

lim inf
δ→0

1
δ

∫

A

ζ

( |u(x+ δ|ξ|) − u(x)|p
δp−1|ξ|q

)

f (x)dx > ζ ′(0)|ξ|p−q
|A|/k
∑

j=1

∫

Ik
j

|u′(x)|pmin
Ik
j

f (x)dx

+

|A|/k
∑

j=1

Θ|ξ|
∫

Su∩Ikj
min
Ik
j

f (x)dH0(y)

> ζ ′(0)|ξ|p−q
∫

A

|u′(x)|p( f (x)− ε)dx

+Θ|ξ|
∫

Su∩A
( f (y)− ε)dH0(y).

Since the above holds for arbitrarily small positive ε, we conclude that (4.11) holds. �

Appendix B. Proof of lemma 4.9

Proof. Note that for all x ∈ Ω\D(εn, ℓn) it holds that
(a) {x+ s(Tn(x)− x) : s ∈ [0, 1]} ∩ Su = ∅.
(b) {x+ εnξ + s(Tn(x+ εnξ)− x+ εξ) : s ∈ [0, 1]} ∩ Su = ∅.
Indeed, assume by contradiction that x+ t0(Tn(x)− x) ∈ Su. Then d(x, Su) 6 t0‖Tn(x)−

x‖ 6 t0ℓn which would imply x ∈ (Su)ℓn . Thus (a) holds. Analogously assume that for some
t0 ∈ [0, 1] we have x+ εnξ + t0(Tn(x+ εnξ)− x+ εnξ) ∈ Su. Then
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d(x, Su − εnξ) 6 ‖x− (x+ εnξ + t0(Tn(x+ εnξ)− x+ εnξ)− εnξ)‖
= t0‖(Tn(x+ εnξ)− x+ εnξ)‖ 6 ℓn

again contradicting x ∈ Ω\D(εn, ℓn). In particular

|u(Tn(x+ εξ))−u(Tn(x))| 6 |u(x+ εξ)−u(x)|+ |u(Tn(x+ εξ))−u(x+ εξ)|+ |u(Tn(x))−u(x)|

and, since u is regular outside Su,

|u(Tn(x+ εξ))− u(x+ εξ)| 6 ℓn

∫ 1

0
|∇u((x+ εξ)s+ (1− s)Tn(x+ εξ))|ds

|u(Tn(x))− u(x)| 6 ℓn

∫ 1

0
|∇u(xs+ (1− s)Tn(x)))|ds,

which is proving (4.20). In order to prove (4.21) we just notice that

|(Su− εnξ)ℓn | = |(Su)ℓn |

and that, since Su is a ployhedral set, for big n

|(Su)ℓn| = 2ℓnHd−1(Su)+ o(ℓn).

This, combined with (2.13), implies (4.21). �

ORCID iDs

Marco Caroccia https://orcid.org/0000-0002-9200-8856
Antonin Chambolle https://orcid.org/0000-0002-9465-4659
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