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The energy-momentum tensor form factors contain a wealth of information about the nucleon. It is 
insightful to visualize this information in terms of 3D or 2D densities related by Fourier transformations 
to the form factors. The densities associated with the angular momentum distribution were recently 
shown to receive monopole and quadrupole contributions. We show that these two contributions are 
uniquely related to each other. The quadrupole contribution can be viewed as induced by the monopole 
contribution, and contains no independent information. Both contributions however play important roles 
for the visualization of the angular momentum density.

 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The form factors of the energy-momentum tensor (EMT) [1] are 
a rich source of information on the structure of hadrons, whose 
systematic exploration has begun only recently through studies of 
generalized parton distribution functions [2] entering the descrip-
tion of hard exclusive reactions, see [3] for extensive reviews.

The 3D EMT densities were introduced in [4] as an important 
concept to visualize the information content of the EMT form fac-
tors in the nucleon. By considering Fourier transforms of the EMT 
form factors, one gains access to so far unexplored information 
ranging from the energy density, over angular and spin momentum 
densities, to mechanical properties of hadrons. A first visualization 
of the EMT densities based on calculations in the chiral quark soli-
ton model was presented in [5]. The EMT density formalism was 
further developed in [6,7].

In this note we focus on an important aspect of the interpre-
tation of the EMT form factor Ja(t) where a = g, u, d . . . denotes 
the parton species. In Ref. [6] it was shown that the information 
content of the form factor Ja(t) is described in terms of an an-
gular momentum density which has a monopole contribution and 
a quadrupole contribution. The introduction of such densities (i) 
plays an important role in the visualization, and (ii) characterizes 
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the independent nonperturbative information contained in form 
factors. Despite careful treatments in the Refs. [4–7], these works 
remain incomplete with regard to the second aspect. The purpose 
of this work is to close this gap, and clarify what is the indepen-
dent information contained in the 3D and 2D angular momentum 
densities of the nucleon.

For more aspects of EMT form factors regarding mechanical 
properties [8–13], the spin [14–17] and mass [18–20] decom-

positions, applications to charmonia [21–24] and exotic hadrons 
[25–27], and extensions to higher spins [28–30] we refer to the 
literature.

2. EMT form factors and 3D densities

The nucleon form factors (we use the notation of [6,7] with 
P = 1

2
(p′ + p), � = p′ − p, t = �2) of the symmetric (Belifante-

improved) EMT can be defined as

〈p′, s′|T̂ a
μν(0)|p, s〉

= ū′(p′, s′)
[

Aa(t)
PμPν

m
+ Ja(t)

i P {μσν}ρ�ρ

2m

+ Da(t)
�μ�ν − gμν�2

4m
+mc̄a(t)gμν

]

u(p, s) . (1)

The form factors of different partons a = g, u, d . . . depend on 
the (not indicated) renormalization scale, and satisfy 

∑

a Aa(0) =
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1 and 
∑

a Ja(0) = 1
2

reflecting that the EMT encodes informa-

tion on the mass and the spin of the particle. The value of the 
D-term 

∑

a D
a(0) = D is not fixed [31]. EMT conservation implies 

∑

a c̄
a(t) = 0 ∀ t .

It is convenient to consider first the interpretation of EMT form 
factors in terms of 3D densities in the Breit frame characterized 
by P = (E, 0, 0, 0) and � = (0, ��) with t = − ��2 where one can 
introduce the static EMT [4]

T a
μν(�r,�s) =

∫

d3�

(2π)32E
e−i�r ��〈p′, s′|T̂ a

μν(0)|p, s〉, (2)

where it is implied that the nucleon polarization vectors in the 
initial and final state, sμ and s′μ , are chosen such that both cor-
respond to the same polarization vector (0, �s) in the rest frame 
of the corresponding nucleon [4]. In this work we will focus 
on the Belifante-improved angular momentum density J i,a(�r, �s) =
ǫ i jkr jT a,0k(�r, �s) [4]. In Ref. [6] it was shown that this density 
has the following decomposition in terms of a monopole and a 
quadrupole contribution,

J i,a(�r,�s) = J i,amono(�r,�s) + J
i,a
quad

(�r,�s) . (3)

These densities correspond to 〈 J i,a
Bel

〉mono(�r) and 〈 J i,a
Bel

〉quad(�r) in the 
notation of Ref. [6] and are defined as

J i,amono(�r,�s) = si
∫

d3�

(2π)3
e−i �� �r

[

Ja(t) + 2t

3

d Ja(t)

dt

]

t=− ��2

, (4)

J
i,a
quad

(�r,�s) = B
i j
a (�r) s j,

B
i j
a (�r) =

∫

d3�

(2π)3
e−i �� �r

(

�i� j − 1

3
��2 δi j

)[

d Ja(t)

dt

]

t=− ��2

.

(5)

There is consensus in literature that the above decomposition is 
correct [6,7]. Here we show that the two densities J i,amono(�r, �s) and 
J
i,a
quad

(�r, �s) are not independent of each other but characterized by 

one radial function ρa
J (r) which has the property 

∑

a

∫

d3x ρa
J (r) =

1
2
and encodes all independent information about the angular mo-

mentum density.

3. The monopole density

The monopole contribution can be used to define the density 
ρa

J (r) where r = |�r| as

J i,amono(�r,�s) = si ρa
J (r) ,

ρa
J (r) =

∫

d3�

(2π)3
e−i �� �r

[

Ja(t) + 2t

3

d Ja(t)

dt

]

t=− ��2

. (6)

Without loss of generality we choose the z-axis of the ��-inte-

gration to be along the vector �r, so ���r = cos θ r | ��|. Using the 
expansion of a plane wave e−i �� �r in terms of spherical Bessel func-
tions jl(x) = (−x)l( 1

x
d
dx

)l(
sin(x)

x
) and Legendre polynomials P l(x)

and their orthogonality relation,

e−i �� �r =
∞
∑

l=0

(−i)l(2l + 1) jl(| ��|r) P l(cos θ) ,

1
∫

−1

dcos θ P l(cos θ)Pk(cos θ) = 2

2l + 1
δlk (7)

we obtain from (6) the result

ρa
J (r) =

∫

d3�

(2π)3
j0(| ��|r)

[

Ja(t) + 2t

3

d Ja(t)

dt

]

t=− ��2

. (8)

It is convenient to rename the dummy integration variable such 
that | ��| → q and to express the derivative of Ja(t) under the inte-
gral of Eq. (8) as
[

d Ja(t)

dt

]

t=−q2
= − 1

2q

d Ja(−q2)

dq
≡ − 1

2q

d Ja(q)

dq
(9)

where we in the last step we introduced the sloppy notation 
Ja(t) → Ja(q) to simplify the notation in the following. We thus 
obtain

ρa
J (r) =

∫

d3q

(2π)3
j0(qr)

[

Ja(q) + q

3

d Ja(q)

dq

]

. (10)

4. The quadrupole density

The quadrupole density is described by the 3 × 3 matrix B i j
a (�r)

which is symmetric and traceless. Notice that �r is the only avail-
able vector in the integral defining B i j

a (�r). The symmetric matrix 
B
i j
a (�r) can therefore only be constructed from the tensors δi j and 

ri r j . On general grounds the matrix B i j
a (�r) can be expressed as 

B
i j
a (�r) = δi j aa(r) + eire

j
r b

a(r) where eir = ri/r. Since B i j
a (�r) is trace-

less, the functions aa(r) and ba(r) are actually not independent of 
each other, and satisfy B ii

a (�r) = 3 aa(r) +ba(r) = 0. Thus, the matrix 

B
i j
a (�r) is given by

B
i j
a (�r) =

(

eir e
j
r − 1

3
δi j

)

ba(r) . (11)

In order to compute the function ba(r) we contract B i j
a (�r) with the 

tensor eire
j
r

eir e
j
r B

i j
a (�r) = 2

3
ba(r)

=
∫

d3�

(2π)3
e−i �� �r

(

(�er ��)2 − 1

3
��2

)[

d Ja(t)

dt

]

t=− ��2

.

(12)

Choosing the z-axis of the ��-integration along the vector �r we 
have (�er ��)2 − 1

3
��2 = 2

3
P2(cos θ) ��2 and exploring the plane wave 

expansion and orthogonality of Legendre polynomials in Eq. (7) we 
obtain

ba(r) =
∫

d3�

(2π)3
i2 j2(| ��|r) ��2

[

d Ja(t)

dt

]

t=− ��2

=
∫

d3q

(2π)3
j2(qr)

q

2

d Ja(q)

dq
. (13)

5. Proof that ρa
J (r) and ba(r) are related

In order to prove that the densities ρa
J (r) and ba(r) are related 

to each other, we notice that the integrand of ρa
J (r) can be ex-

pressed as

q2 j0(qr)

[

Ja(q) + q

3

d Ja(q)

dq

]

= −q2 j2(qr)

[

q

3

d Ja(q)

dq

]

+ 1

r

d

dq

[

q2 j1(qr) Ja(q)

]

, (14)
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which can be verified by using identities for spherical Bessel func-
tions or by simply inserting their explicit definitions. The last term 
on the right-hand-side of Eq. (14) is a total derivative in q and 
drops out in the integral over d3q. Thus we see from the identity 
(14) that the density ba(r) characterizing the quadrupole term can 
be expressed as

ba(r) = −3

2
ρa

J (r) , (15)

and is therefore uniquely defined in terms of the monopole den-
sity.

The relation of the monopole and quadrupole densities be-
comes most lucid if we choose the nucleon polarization along a 
specific axis, say z-axis. Both angular momentum densities have 
then only a z-component given by

J
z,a
type(�r) = il P l

(

z

r

)

ρa
J (r) with

{

l = 0 for type = mono,

l = 2 for type = quad,

(16)

where the second case “type = quad” follows from Eqs. (11) and 
(15).

6. Comment on Ref. [5]

When defining the monopole density ρa
J (r) we used the no-

tation of Ref. [5] where the density ρa
J (r) was computed in the 

chiral quark soliton model for the flavor combination Q = u + d. 
What remains to be done is the proof that the ρa

J (r) defined in 
this work in fact coincides with the density introduced in Ref. [5].

For that we invert the Fourier transform in Eq. (4) and obtain

Ja(t) + 2t

3

d Ja(t)

dt
=

∫

d3r j0(r
√

−t)ρa
J (r) (17)

which is an ordinary linear differential equation for Ja(t) with the 
initial condition Ja(0) =

∫

d3r ρa
J (r). The unique solution to this 

differential equation is

Ja(t) =
∫

d3r
3 j1(r

√−t)

r
√−t

ρa
J (r) (18)

which coincides with the expression for ρ J (r) quoted in Eq. (48) 
of Ref. [5].

7. Comment on 2D distributions

The 3D density formalism is justified for heavy particles whose 
Compton wave length is much smaller than the particle size [32]. 
This condition is very well satisfied for nuclei, and for the nucleon 
it is satisfied to a good approximation [33]. The formalism of 2D 
lightcone densities has the advantage of being rigorous and free of 
approximations, even for light hadrons, as the transverse coordi-
nates �b⊥ remain invariant under boosts along the lightcone [34].

If we choose the z-axis as spatial direction for the lightcone the 
2D angular momentum densities can be derived (for type = mono, 
quad) from the 3D densities as [6]

J
z,a
type(b⊥) =

∞
∫

−∞
dz J

z,a
type(�r) . (19)

With the results from Eqs. (16) the 2D densities can be expressed 
as

J
z,a
type(b⊥) =

∞
∫

−∞
dz il P l

(

z
√

b2⊥ + z2

)

ρa
J

(

√

b2⊥ + z2
)

with

{

l = 0 for type = mono,

l = 2 for type = quad.
(20)

We see that the monopole and quadrupole contributions are both 
uniquely determined through integral relations in terms of the 
same “generating function” ρa

J (r). It is interesting to remark that 
Eq. (20) could be used to define also higher multipoles. The odd 
multipoles vanish (and are forbidden by parity reversal in QCD). 
The even multipoles l = 0, 2 appear in the decomposition of angu-
lar momentum densities. Even multipoles can be defined also for 
l > 2 in Eq. (20), though we are not aware whether such multipoles 
have a physical meaning.

8. Visualization of the densities

Let us assume for illustrative purposes that Ja(t) has the fol-
lowing analytical form, which is a useful Ansatz for many form 
factors,

Ja(t)
Ansatz= Ja(0)

(1− t/M2)2
. (21)

In this case the densities can be evaluated analytically, and we find 
from Eqs. (10), (13) the results

ρa
J (r) = Ja(0)

M4

24π
r e−M r , ba(r) = − Ja(0)

M4

16π
r e−M r .

(22)

The results in Eq. (22) satisfy the general relation (15) as expected.
In order to have a feeling how these densities look like, we 

use results from the chiral quark soliton model [5] which pre-
dicts 〈r2J 〉/〈r2ch〉 ≈ 1.5 where 〈r2J 〉 =

∫

d3r r2ρ J (r)/ 
∫

d3r ρ J (r) is the 

mean square radius of the density ρ J (r) and 〈r2
ch

〉 is the pro-
ton mean square charge radius defined analogously. In this model 
the total form factor J Q (t), Q = u + d, can be approximated by 
the analytic expression (21). The numerical result for ρ J (r) from 
[5] are reasonably approximated by the analytic form (22) in the 
range 0.3 � r � 1.5 fm with M ≈ 0.83 GeV. This is sufficient for 
our purposes to visualize the main features. The result for ρ J (r)

from Eq. (22) is shown in Fig. 1a. The results for the 2D densi-
ties (20) are displayed in Fig. 1b. Similar results were obtained for 
J
z,Q
mono(b⊥) and J z,Q

quad
(b⊥) in a scalar diquark model in Ref. [6]. The 

main quantitative difference is that the results based on the chi-
ral quark soliton, Fig. 1b, are much softer at small b⊥ compared 
to the results from Ref. [6]. This is presumably due to the fact 
that the diquark model essentially describes the nucleon struc-
ture in terms of a hard perturbative nucleon-quark-diquark ver-
tex, while the results from Ref. [5] are due to soft chiral interac-
tions.

9. Conclusions

It was shown that the monopole and quadrupole contributions 
to the Breit-frame 3D angular momentum density of the Belifante-
improved EMT are not independent of each other, but are charac-
terized in terms of a density ρa

J (r) normalized as 
∑

a

∫

d3r ρa
J (r) =

1
2
. This is due to the fact that the information content of one 

Lorentz-scalar form factor, like Ja(t), is in one-to-one correspon-
dence to one 3D density defined in the Breit frame, say ρa

J (r). 
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Fig. 1. (a) 3D Breit-frame density ρQ
J (r) (solid line) which determines the 3D monopole contribution to the angular momentum density via Eq. (10) and the 3D quadrupole 

contribution via Eqs. (11), (15). (b) The 2D lightcone densities of the monopole (dashed line) and quadrupole (dotted line) contributions, J z,Qmono(b⊥) and J z,Q
quad

(b⊥), which 
are determined by means of Eq. (20). The densities satisfy 

∫

d3r ρQ
J (r) = 1

2
, 
∫

d2b⊥ J
z,Q
mono(b⊥) = 1

2
and 

∫

d2b⊥ J
z,Q
quad

(b⊥) = 0.

The polarization axis of the nucleon spin breaks spherical symme-

try. This induces a quadrupole contribution which, however, con-
tains no independent information, and is uniquely related to the 
monopole contribution. This is analog to the case of the mechani-

cal densities, pressure p(r) and shear forces s(r), which are derived 
from the same form factor D(t) and hence also not independent 
but related to each other by a differential equation following from 
EMT conservation [4].

The monopole and induced quadrupole components are never-
theless both essential for the visualization of the angular momen-

tum density J i,a(�r, �s) as a 3D vector field. The 2D monopole and 
quadrupole densities in elastic frames [6], or equivalently on the 
lightcone in the Drell-Yan frame [34,6], are expressed through in-
tegral relations in terms of ρa

J (r). In this work we focused on the 
Belifante-improved angular momentum density, but the same re-
sult holds also for the monopole and quadrupole contributions to 
several other densities defined in Ref. [6].

This result is of importance for two reasons. First, it clarifies 
which information about the spatial distribution of the nucleon 
spin is independent, and which can be expressed in terms of other 
densities. Second, it is model-independent. This provides a valu-
able test and is worth exploring in models [35–52], lattice QCD 
[53–58] and effective chiral theories [59].
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