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The energy-momentum tensor form factors contain a wealth of information about the nucleon. It is
insightful to visualize this information in terms of 3D or 2D densities related by Fourier transformations
to the form factors. The densities associated with the angular momentum distribution were recently
shown to receive monopole and quadrupole contributions. We show that these two contributions are
uniquely related to each other. The quadrupole contribution can be viewed as induced by the monopole

contribution, and contains no independent information. Both contributions however play important roles
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1. Introduction

The form factors of the energy-momentum tensor (EMT) [1] are
a rich source of information on the structure of hadrons, whose
systematic exploration has begun only recently through studies of
generalized parton distribution functions [2] entering the descrip-
tion of hard exclusive reactions, see [3] for extensive reviews.

The 3D EMT densities were introduced in [4] as an important
concept to visualize the information content of the EMT form fac-
tors in the nucleon. By considering Fourier transforms of the EMT
form factors, one gains access to so far unexplored information
ranging from the energy density, over angular and spin momentum
densities, to mechanical properties of hadrons. A first visualization
of the EMT densities based on calculations in the chiral quark soli-
ton model was presented in [5]. The EMT density formalism was
further developed in [6,7].

In this note we focus on an important aspect of the interpre-
tation of the EMT form factor J9(t) where a=g, u, d ... denotes
the parton species. In Ref. [6] it was shown that the information
content of the form factor J%(t) is described in terms of an an-
gular momentum density which has a monopole contribution and
a quadrupole contribution. The introduction of such densities (i)
plays an important role in the visualization, and (ii) characterizes
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the independent nonperturbative information contained in form
factors. Despite careful treatments in the Refs. [4-7], these works
remain incomplete with regard to the second aspect. The purpose
of this work is to close this gap, and clarify what is the indepen-
dent information contained in the 3D and 2D angular momentum
densities of the nucleon.

For more aspects of EMT form factors regarding mechanical
properties [8-13], the spin [14-17] and mass [18-20] decom-
positions, applications to charmonia [21-24] and exotic hadrons
[25-27], and extensions to higher spins [28-30] we refer to the
literature.

2. EMT form factors and 3D densities

The nucleon form factors (we use the notation of [6,7] with
P= %(p/ +p), A=p —p, t = A?) of the symmetric (Belifante-
improved) EMT can be defined as

(p'.s'|T%,(0)[p.s)

P,P i P AP

=a’(p’,s’>[A“<t) R KCEEC e
m 2m

ApAy — g

2
+ D%(t) am + mE“(t)g,w]u(p, s). (1)

The form factors of different partons a =g, u,d ... depend on
the (not indicated) renormalization scale, and satisfy )", A%(0) =
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1 and >, J90) = % reflecting that the EMT encodes informa-
tion on the mass and the spin of the particle. The value of the
D-term )", D%(0) =D is not fixed [31]. EMT conservation implies
Y.l t) =0Vt

It is convenient to consider first the interpretation of EMT form
factors in terms of 3D densities in the Breit frame characterized

by P =(E,0,0,0) and A = (0, A) with t = —A2 where one can
introduce the static EMT [4]
d3A
TO G5 = [ oo A s'|T4,(0)p.s). 2
@3 /(zﬂ)m 5172, OIp,5) )

where it is implied that the nucleon polarization vectors in the
initial and final state, s* and s’#, are chosen such that both cor-
respond to the same polarization vector (0,5) in the rest frame
of the corresponding nucleon [4]. In this work we will focus
on the Belifante-improved angular momentum density J"%(7,3) =
elkpiTa0kF 3y [4]. In Ref. [6] it was shown that this density
has the following decomposition in terms of a monopole and a
quadrupole contribution,

JHE S = Jha (7, §)+jf1’§ad(F, s). (3)

These densities correspond to (];’gl)mono () and (]i;’g,)quad (7) in the
notation of Ref. [6] and are defined as

$A i 2t dJ°(t)
2 [J O+ =g L_&z, (4)

ia = - ij = i
Jauaa @9 =Ba () s’

A efiAF(AiAj 1Az 1]>[d]“(t)] .
(2m)3 3 dt  |,__xe
(5)

There is consensus in literature that the above decomposition is
correct [6,7]. Here we show that the two densities Jriono (7. 5) and
]:]"Sad(F, 5) are not independent of each other but characterized by

Jtono (7> 5) =

BI () =

one radial function ,o? (r) which has the property Za fd3x p‘} r)y=

% and encodes all independent information about the angular mo-
mentum density.

3. The monopole density

The monopole contribution can be used to define the density
p§(r) where r = 7] as

mono(r 5)=s' ,0](1‘)

o [ A _izr 2t dJO)
”1(”—/<zn>3" [1 O+ = l_af (6)

Without loss of generality we choose the z-axis of the A-inte-
gration to be along the vector P oso AF = c059r|l|. Using the
expansion of a plane wave e A7 in terms of spherical Bessel func-
tions ji(x) = (—x)! (de) (S‘"(X)) and Legendre polynomials P;(x)
and their orthogonality relation,

eiAT _ > (=) @+ 1) ji(1Alr) Py(cost) .
=0

2
dcoso P 0)P f)=——35§ 7
cos® Pj(cos@)Py(cos) = TR (7)

Lo _

we obtain from (6) the result

(8)

2t dJo(1t)
3 dt :|t— Az'
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p,(r)=f ) Jo(|AI) [! O+~

It is convenient to rename the dummy integration variable such
that |A| — q and to express the derivative of J%(t) under the inte-
gral of Eq. (8) as

[dj (t>] __1dfee) 1 d)e
dt t=—q? 2q dq 2q dq
where we in the last step we introduced the sloppy notation

JU(t) — J%q) to simplify the notation in the following. We thus
obtain

(9)

q d]"(Q)] (10)

¢y — d3q . r[ @+
pj( —/—(27_[)310(51) IC)) 3 dg

4. The quadrupole density

The quadrupole density is described by the 3 x 3 matrix B ()
which is symmetric and traceless. Notice that 7 is the only avail-
able vector in the integral defining BY (). The symmetric matrix
B” () can therefore only be constructed from the tensors 84U and
riri. On general grounds the matrix BY (r) can be expressed as
BY () = 8l a%(r) + elel b%(r) where el =ri/r. Since B¢ () is trace-
less, the functions a’(r) and b%(r) are actually not independent of
each other, and satisfy B("J" () =3a%(r) + b%(r) = 0. Thus, the matrix
BY () is given by

BY() = (e‘ el — 8"1'> be(r). (11)

In order to compute the function b?(r) we contract Bf,j () with the

tensor el e

elel BY(7) = b“(r)

A s
@ e (“’f“

dje)
3 A )[ dt }t:Az .
(12)

Choosing the z-axis of the &—integration along the vector 7 we
have (é;A)2 — A2 = £ Py(cos#) A% and exploring the plane wave
expansion and orthogonality of Legendre polynomials in Eq. (7) we
obtain

a <[ dJe®)
b (r) = /(2 )31 i2(Al) A [ it ]t_iAZ

qdj@q)
f(2n)3 han 3 5 (13)

5. Proof that pg (r) and b?(r) are related

In order to prove that the densities ,07 (r) and b%(r) are related
to each other, we notice that the integrand of ,o‘]’ (r) can be ex-

pressed as
i) [q dJ (q)]

q d]"(q)}
3 d

q Jo(qr)[l @+ 5
q

+1i[2' ‘ } (14)
rag|T AN @y
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which can be verified by using identities for spherical Bessel func-
tions or by simply inserting their explicit definitions. The last term
on the right-hand-side of Eq. (14) is a total derivative in g and
drops out in the integral over d3q. Thus we see from the identity
(14) that the density b%(r) characterizing the quadrupole term can
be expressed as

a 3 a
b=~ P, (15)
and is therefore uniquely defined in terms of the monopole den-
sity.

The relation of the monopole and quadrupole densities be-
comes most lucid if we choose the nucleon polarization along a
specific axis, say z-axis. Both angular momentum densities have
then only a z-component given by

[=0 for type= mono,
=2 for type=quad,
(16)

Jope® =1 Pz<§) pj(r)  with {

where the second case “type = quad” follows from Eqs. (11) and
(15).

6. Comment on Ref. [5]

When defining the monopole density p?(r) we used the no-
tation of Ref. [5] where the density p?(r) was computed in the
chiral quark soliton model for the flavor combination Q = u + d.
What remains to be done is the proof that the ,0‘} (r) defined in
this work in fact coincides with the density introduced in Ref. [5].

For that we invert the Fourier transform in Eq. (4) and obtain

204/ /d3r]o(f«/_)/0](r) (17)

J (f)+?—

which is an ordinary linear differential equation for J%(t) with the
initial condition J?(0) = [ d3r ,o?(r). The unique solution to this
differential equation is

1) = /dg 3]1(rJ_) o

P (r) (18)
which coincides with the expression for p;(r) quoted in Eq. (48)
of Ref. [5].

7. Comment on 2D distributions

The 3D density formalism is justified for heavy particles whose
Compton wave length is much smaller than the particle size [32].
This condition is very well satisfied for nuclei, and for the nucleon
it is satisfied to a good approximation [33]. The formalism of 2D
lightcone densities has the advantage of being rigorous and free of
approximations, even for light hadrons, as the transverse coordi-
nates b; remain invariant under boosts along the lightcone [34].

If we choose the z-axis as spatial direction for the lightcone the
2D angular momentum densities can be derived (for type = mono,
quad) from the 3D densities as [6]

JE0 b)) = / dz J20. 7). (19)

With the results from Eqgs. (16) the 2D densities can be expressed
as

o
z,a _ ;| z a 2 2
Jiype(b1) = /le Pl(i\/bi?)/o](\/m +z>

(20)

with =0 for type= mono,
=2 for type=quad.

We see that the monopole and quadrupole contributions are both
uniquely determined through integral relations in terms of the
same “generating function” p%(r). It is interesting to remark that
Eq. (20) could be used to def'{ne also higher multipoles. The odd
multipoles vanish (and are forbidden by parity reversal in QCD).
The even multipoles | =0, 2 appear in the decomposition of angu-
lar momentum densities. Even multipoles can be defined also for
I > 2 in Eq. (20), though we are not aware whether such multipoles
have a physical meaning.

8. Visualization of the densities

Let us assume for illustrative purposes that J%(t) has the fol-
lowing analytical form, which is a useful Ansatz for many form
factors,

J4(0)
(1—t/M?)%°

Ansatz

Jh® (21)
In this case the densities can be evaluated analytically, and we find
from Egs. (10), (13) the results

4 4

M M
PN =10 S e b =—J0) —re M

(22)

The results in Eq. (22) satisfy the general relation (15) as expected.
In order to have a feeling how these densities look like, we
use results from the chiral quark soliton model [5] which pre-
dicts (r7)/(r3,) ~ 1.5 where (r}) = [d®r12p;(r)/ [d®r p;(r) is the
mean square radius of the density p;(r) and (rfh) is the pro-
ton mean square charge radius defined analogously. In this model
the total form factor J2(t), Q = u +d, can be approximated by
the analytic expression (21). The numerical result for o;(r) from
[5] are reasonably approximated by the analytic form (22) in the
range 0.3 <r < 1.5fm with M ~ 0.83GeV. This is sufficient for
our purposes to visualize the main features. The result for p;(r)
from Eq. (22) is shown in Fig. 1a. The results for the 2D densi-
t1es (20) are displa ged in Fig. 1b. Similar results were obtained for
mono (b1) and Jquad(bl) in a scalar diquark model in Ref. [6]. The
main quantitative difference is that the results based on the chi-
ral quark soliton, Fig. 1b, are much softer at small b; compared
to the results from Ref. [6]. This is presumably due to the fact
that the diquark model essentially describes the nucleon struc-
ture in terms of a hard perturbative nucleon-quark-diquark ver-
tex, while the results from Ref. [5] are due to soft chiral interac-
tions.

9. Conclusions

It was shown that the monopole and quadrupole contributions
to the Breit-frame 3D angular momentum density of the Belifante-
improved EMT are not independent of each other, but are charac-
terized in terms of a density ,07 (r) normalized as ), fd3r ,0‘} )=
%. This is due to the fact that the information content of one
Lorentz-scalar form factor, like J%(t), is in one-to-one correspon-
dence to one 3D density defined in the Breit frame, say p?(r).
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Fig. 1. (a) 3D Breit-frame density p;l (r) (solid line) which determines the 3D monopole contribution to the angular momentum density via Eq. (10) and the 3D quadrupole

contribution via Egs. (11), (15). (b) The 2D lightcone densities of the monopole (dashed line) and quadrupole (dotted line) contributions, ],Z,;f}m(bL) and ]Z'Q (b1), which
are determined by means of Eq. (20). The densities satisfy [d3r p? =1, [ Jadob1)=1 and fd?by J22 (b1) =0.

The polarization axis of the nucleon spin breaks spherical symme-
try. This induces a quadrupole contribution which, however, con-
tains no independent information, and is uniquely related to the
monopole contribution. This is analog to the case of the mechani-
cal densities, pressure p(r) and shear forces s(r), which are derived
from the same form factor D(t) and hence also not independent
but related to each other by a differential equation following from
EMT conservation [4].

The monopole and induced quadrupole components are never-
theless both essential for the visualization of the angular momen-
tum density J“4(7,5) as a 3D vector field. The 2D monopole and
quadrupole densities in elastic frames [6], or equivalently on the
lightcone in the Drell-Yan frame [34,6], are expressed through in-
tegral relations in terms of p‘]‘(r). In this work we focused on the
Belifante-improved angular momentum density, but the same re-
sult holds also for the monopole and quadrupole contributions to
several other densities defined in Ref. [6].

This result is of importance for two reasons. First, it clarifies
which information about the spatial distribution of the nucleon
spin is independent, and which can be expressed in terms of other
densities. Second, it is model-independent. This provides a valu-
able test and is worth exploring in models [35-52], lattice QCD
[53-58] and effective chiral theories [59].
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