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The energy momentum tensor (EMT) form factors pave new ways for exploring hadron structure.
Especially, the D-term related to the EMT form factor D(¢) has received a lot of attention due to its
attractive physical interpretation in terms of mechanical properties. We study the nucleon EMT form factors
and the associated densities in the bag model which we formulate for an arbitrary number of colors N, and
show that the EMT form factors are consistently described in this model in the large-N. limit. The
simplicity of the model allows us to test in a lucid way many theoretical concepts related to EMT form
factors and densities including recently introduced concepts like normal and tangential forces, or monopole
and quadrupole contributions to the angular momentum distribution. We also study the D-terms of the
p-meson, Roper resonance, other N* states, and A-resonances. Among the most interesting outcomes is
the lucid demonstration of the deeper connection of EMT conservation, stability, the virial theorem, and the

negative sign of the D-term.
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I. INTRODUCTION

The perspective to access the hadronic energy momen-
tum tensor (EMT) form factors [1] through studies of
generalized parton distribution functions (GPDs) [2] in
hard exclusive reactions [3—7] and their attractive inter-
pretation in terms of mechanical properties [8] have
attracted lots of interest in recent literature; see the review
[9]. EMT form factors were studied in models [10-41],
chiral perturbation theory [42-44], the meson-dominance
approach [45], dispersion relations [46], lattice QCD
[47-50], QCD light cone sum rules [51], and for photons
[52,53]. Especially, the form factor D(¢) [54,55] gained
increased attention due to its interpretation in terms of
internal forces [8] spurred by recent attempts to extract
phenomenological information on D(r) [56-58].

In this work, we present a study of EMT properties
in one of the simplest hadronic models: the bag model
[59-61]. This model was introduced more than 40 years
ago, but is still in use and continues giving helpful
contributions to the understanding of hadron structure. In
fact, the bag model has been used as an exploratory
theoretical framework in many instances, often being the
first model (or one of the first models) where newly
introduced hadronic properties were investigated, including
studies of nucleon structure functions [62,63], transversity
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and other chiral-odd parton distribution functions [64],
transverse momentum—dependent parton distributions
[65—-67], or double parton distribution functions [68,69].
The bag model was also the first model where GPDs and
EMT form factors were studied [10].

In the present study, we will extend the work of Ref. [10]
in multiple respects and investigate within this model
concepts which appeared only after Ref. [10]. This includes
the EMT densities introduced in Ref. [8] and further
developed in Refs. [9] and [70-77]. The bag model
provides an attractive theoretical framework for that. The
version of the bag model used in this work is at variance
with chiral symmetry which is a drawback. This model
has, however, also important advantages: it is a consistent
theoretical framework. Its simplicity allows one to obtain
lucid insights which are more difficult to deduce from more
complex models. Our results will help to improve the
understanding of the nucleon structure and the EMT
densities. The layout of our study is as follows.

After defining the EMT form factors and densities in
Sec. II, we briefly introduce the bag model in Sec. III
and study the quark EMT form factors in Sec. IV using a
formulation of the model for a large number of colors N,.
The large-N. limit will allow us to avoid technical
problems associated with the evaluation of form factors
in so-called independent-particle models like the bag
model. We will use the large-N,. limit as a tool to derive
consistent model expressions, and show that the 1/N_-
corrections to the form factors are relatively small for small
momentum transfers. In addition, the large-N, limit pro-
vides a rigorous justification for the concept of three-
dimensional (3D) densities which are studied in detail in
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Sec. V. We will evaluate the “gluonic” form factor ¢%(¢)
due to the bag, which can only be computed by taking
advantage of the EMT density formalism, and we will
rigorously prove the internal consistency of the description.
Section VI presents an extensive study of the D-term for
the nucleon and other hadronic states including N* states,
p-mesons, and the A-resonances. We also include an
insightful study of hypothetical highly excited bag model
states. This is the only study of EMT properties of excited
states available in the literature besides Q-balls [35], and
we make the interesting observation that in both systems
asymptotically the D-term grows as D = —const x M5/3
with the mass M of the excitation, even though the excited
states have much different internal structures in the two
frameworks. Section VII is dedicated to studies of limiting
cases like the heavy quark limit, the large bag-radius limit,
and the nonrelativistic limit of the nucleon, and discuss
the behavior of the D-term in these limits. Our study is
complemented by an instructive discussion in Sec. VIII of
the D-term in a predecessor of the bag model [78], the
Bogoliubov model [79], which is a counterexample where
the nucleon is not fully consistently described. As a
consequence, one finds an unphysical (positive) D-term
in this model. This example also illustrates the necessity to
study the complete EMT structure. The conclusions are
presented in Sec. IX, and technical details can be found in
Appendix. Some of our results were previously mentioned
in Refs. [80,81].

II. EMT FORM FACTORS

The EMT form factors [1] can be defined in QCD in the
following way,

(p'|T4,(0)|p)
=+ J9(1)

=u(p') A“(t)M—N M,

AA, - g,wA2
4M y

P,P i(P,0,, + P,0,,)A"

+ D%(1) + e (Mygy |u(p), (1)

where the kinematic variables are defined as

1
P ==

= t=A2  (2)

p+p)  A=({'-p),
The EMT form factors for different partons a = ¢, u, d, ...
depend on renormalization scale y, e.g., A%(t) = A%(t, u?),
which we do not always indicate for brevity. The total EMT
form factors A(¢) = >, A%(¢, 4*) and analog for J(t), D(t)
are renormalization scale independent. The appearance of
the form factors ¢¢(z, u*) signals that the separate quark and
gluon EMTs are not conserved. Only the total EMT is
conserved, and consequently >, ¢¢(t, u*) = 0.

The form factors of the EMT in Eq. (1) can be interpreted
[8] in analogy to the electromagnetic form factors [82] in

the Breit frame where A? = 0. In the Breit frame, one can
define the static energy momentum tensor as

(7.5) = / d3A

with initial and final nucleon polarizations S and S’ defined
such that they are equal to (0,5) in the respective rest
frames, where the unit vector s denotes the quantization
axis for the nucleon spin. This interpretation is subject to
“relativistic corrections” as in the case of electromagnetic
form factors [8,82] and is exact in the large-N, limit [9].
The component Ty (7) describes the energy density, and
the components 7';;(7) characterize the spatial distributions
of forces experienced by the partons [8]. Both are inde-
pendent of the polarization vector. The components
T o (7, 5) are related to the distributions of angular momen-
tum. At t = 0, the form factors satisfy the constraints

1 -
MN/dSrTOO(r) = 1,
. oo 1
J(O) = /d3r€”ksl-ro0k(r,s) :E,

21\54N/d% i )(r rf—§5”) =D. (4)

The constraints on A(0) and J(0) can be traced back to the
fact that the EMT matrix elements contain information
on the particle’s mass and spin and are dictated by the
transformation properties of the states [83,84]. The value of
the form factor D(¢) at r =0 is not constrained by any
general principle. The components T;;(7) of the static
stress tensor encode the information on the distribution
of pressure and shear forces [8]

(=iAR)(p' S| TW(0)p.S)  (3)

A(0) =

D(0) =

Here, p(r) describes the radial distribution of the pressure
inside the hadron, and s(r) is the distribution of shear
forces [8]. Both functions are related to each other due to
the EMT conservation by the differential equation
20s(r) 2s(r)  9p(r)

z =0. 6
3 Or r * or (6)

The conservation of the EMT also provides two equivalent
expressions for the D-term in terms of p(r) or s(r) as

4
D = ——MN/d3rr2s(r)

G :MN/d3rr2p(r). (7)

Further properties of EMT densities will be discussed
below.
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I1II. BAG MODEL

In the bag model, one describes baryons (mesons) by
placing N. = 3 noninteracting quarks (a gg pair) in a color-
singlet state inside a “bag.” In its rest frame, the bag is a
spherical region of radius R carrying the energy density
B >0 [59]. The Lagrangian of the bag model can be
written as [78]

E - £Q+[’surf+[’G’

Lo=3 (=57 59 m Jwa0v,

q

I —_
‘Csurf = E;qu//qu”ay@v’ ‘CG = _B®V (8)

with the following definitions referring to the rest frame of
the bag:

®V = @(R - r),
' =(0,¢,),

5525(R—r),

e.="r/r, r=|rl. 9)

In Eq. (8), we defined for later convenience the contribu-
tions of quarks L, “gluons” L, and the interaction L
with the bag surface. We deal with a very crude model of
confinement, so the contribution of gluons should not be
understood literally. It “resembles” the QCD gluon con-
tribution remotely in the sense that (i) it cannot be
expressed in terms of fermionic degrees of freedom and
(i1) is crucial for the formation of bound states in this
model. In fact, if we let R — oo, then ® — 1, 9,0y — 0,
and we recover free and unbound quarks. The Euler-
Lagrange equations of the theory (8) are given by

(ig —m)y, =0 forr <R (freequarks), (10a)
iffw, =y, for7eS (linear boundary condition),
(10b)
1 _ "
- 52;7”8”1//,11//(1 =B forres
q
(non-linear boundary condition). (10¢)

The boundary conditions (10b) and (10c) are equivalent to
the statement that there is no energy momentum flow out of
the bag, i.e., n,T#(t,7) = 0 for ¥ € S [59], which provides
a simple model of confinement.

In the positive parity sector, which contains the ground
state, the wave functions are given by

Ws(t, 7) = e_isit¢s(?)’
bs(F) = i <a+j0(a)ir/R) s )
s - \/4_71, a_jl(wir/R)igngS ’

- Q.(Q, — mR) 12
A= <R3j<2)(wi)(29i(9i -1)+ mR)) 7

where a, = /1 £ mR/Q; with Q; = \/w? + m*R>. The
o' are 2 x 2 Pauli matrices, and y, are two-component
Pauli spinors. The spherical Bessel functions are defined
in Appendix. The single-quark energies are given by
e; = Q;/R where the w; denote solutions of the transcen-
dental equation

(11)

w; = (1 —mR — Q;) tan w;, (12)

the lowest (ground state) solution of which is w, =~ 2.04
for massless quarks. If mR is varied from O to infinity, the
ground state solution @y = wy(mR) covers the interval

2.04 S wy(mR) < 7. (13)

The momentum space wave functions are defined by the

-

Fourier transform ¢ (k) = [ d&* re=ik "¢(7) and given by

0,(K) = VATAR® (Zi‘:((l’;)ggw ) (14)

where &, = k/k with k = |k|. The functions #(k) for
[ =0, 1 are given by

(k) = / i (ukR) (). (15)

The constant A in Eqgs. (11) and (14) ensures the normali-
zation

3 - -
/ gl (D7) = / %@(kws(m 5y, (16)

The nucleon wave functions with definite spin-isospin
quantum numbers are constructed from the single-quark
wave functions (11) assuming SU(4) spin-flavor symmetry.
We will not need the explicit expressions here, and only
quote the resulting SU(4) spin-flavor factors which appear
in respectively spin-independent (N,) and spin-dependent
(P,) matrix elements for a proton made of N, quarks (for
neutron interchange u <> d) [85]

v N+l

, = , 17

u d 2 ( a)
- 1

p="2 p =Tl )
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For the proton and N. = 3, the familiar values N, = 2,
N,=1, P, =% and P; = —1 are reproduced.

IV. EMT FORM FACTORS OF QUARKS

In this section, we compute the matrix elements of the
quark EMT T, in the limit of a large number of colors N,
check the consistency of the results, discuss the role of
1/N,. corrections, and compare to results from literature.

A. Kinematics and scaling of EMT form factors
in large-N, limit

In this limit, the nucleon mass behaves as My = O(N,.).
This means the nucleon is a heavy particle, and its motion is
nonrelativistic, i.e., the nucleon energies E and E’ are given
by My + O(NZ'), while the nucleon momenta p and p’
are of the order O(N?). For the kinematic variables (2),
this implies

P'=O(N.), P=0O(N?), A=O(N?), A'=O(N").
(18)
Thus, P* = (My.0,0,0) and A* = (0,A) and ¢ = —A”
modulo 1/N, corrections. Notice that the nonrelativistic
motion concerns only the nucleon. The motion of the
quarks inside the nucleon can still be ultrarelativistic for
light or massless quarks. In the large-N, limit, the bag
model is still a relativistic model. Only if in addition to the
large-N,. limit one also would choose to make the quarks
heavy would one recover the picture of a nonrelativistic
quark model (which we shall explore in Sec. VII).
In order to evaluate the expressions for the EMT form
factors (1), we also have to take into account the large-N,
behavior of the quark EMT form factors [6]

A2(1) = O(NY),
DO(1) = O(N2),

7o(1) = O(NY).

c2(1) = O(NY). (19)
Notice that the index Q denotes the isoscalar (u + d) flavor
combinations. The isovector (# — d) flavor combinations
have different N, scalings: A“~4(t) = O(N;'), J“=4(t) =
O(N,), D*4(t) = O(N,), and &“~4(t) = O(N:') [6].

|

B. Form factors of the symmetric quark EMT
in bag model

In the large-N,. limit, i.e., considering Eqgs. (18) and (19),
the expressions for the EMT form factors (1) become

(p'.s'ITG(0)

— oM [AQ(t) ~ ' pogn+ EQ(t)} S (20a)

p.s)

4M3,
(p.s'|T5(0)|p.s)
Al AK — §ikA? .
=2M3 {DQ(r) —ar EQ(t)é’k} S,y (20D)
N

<_ZA %S gs’s)k

’ /TOk
(.5 [T(0) i

p.s) =203 1200) | a0

where we used ;(I,)(S = 6,y and defined 6y, = ;(I,&’)(s. The
generic expression to evaluate nucleon matrix elements
of quark bilinear operators of the type ‘i’q O‘Pq in the bag
model in the large-N, limit is given by

3 . -
<N0ﬂﬂWEOTﬂN@J»=2Mw/é%%¢dﬁﬂwxm,

K

—k+A. (21)
The prefactor 2M y originates in the large-N . limit from the
factor 2P" in the covariant normalization of the nucleon
states. The symmetric quark EMT is given by (the arrows

indicate which wave functions are differentiated)

v 1 — [N .qv .3 v
Ty = Zl//q(—lﬁ”y” — iy +id'y +i0 ), (22)
In order to perform the calculations, we choose & =
(0,0,A%) and the nucleon polarization along the z-axis.
We define k2 = k2 + k2, k = |k|, K = || with k&' =k +
A = (k' k*,k* + A%) in our frame. The results read

t i 4zA2RON, [ &k L
AC(r) - MDQ(I) +el(n) = My, / 27)? eolad to(K)to(K') + a2 éxept, (k)1 (K')], (23a)
t _ 47A’R°N,. [ &3k k> 1 1
D0 =200 =T /Qﬂﬂw:§%QMW5ﬁ%WM%E} (230)
) 47A’R°N, [ &%k (K* + &%) K3 k>
—c9(1) = My / 27) I [fo(k)fl (k') w T to(K)t1 (k) ?] ; (23¢)
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d3k )

JWQzMMW/QﬂJMaAJEMHMM

Hereby, Eq. (23a) follows from TJ in (20a), Eq. (23b)
follows from 7' or T in (20b), Eq. (230) is obtained from
T3 in (20b), and Eq (23d) follows from T¢ or T{ in
(200) while T9} vanishes. The canonical EMT has a
symmetric part which coincides with what we discussed
above and an antisymmetric part which is discussed in
Appendix.

C. Numerical results

Evaluating Egs. (23a)—(23d) for massless quarks yields
the curves shown in Fig. 1 as solid lines. These results refer
to the leading order in the large-N,. limit and are con-
sequently valid for |t| < M. The obtained form factors
satisfy the general requirements at # = 0 namely A9 (0) = 1
and J9(0) = 1. Furthermore, it is ¢2(0) = —1 which is a
bag model specific result [10]. All three constraints can be
proven analytically, but the proofs are lengthy, not enlight-
ening, and we do not show them. The D-term is not fixed
by any general constraint. It assumes the value D?(0) =
—1.145 for massless quarks. We will discuss the D-term in
more detail below in Sec. VI.

The results A2(0) = 1 and J2(0) = 1 mean that quarks
carry 100% of the momentum and spin of the nucleon. The
appearance of the form factor EQ(t) # 0 means, however,
that the quark part of the EMT, T,%, 1s not conserved.
To have a conserved total EMT, one must include also
nonfermionic contributions associated with the bag, i.e.,
“gluonic contributions” in the sense explained in Sec. III.
At this point, it is not clear how to formulate a wave
function of the bag and compute the gluonic EMT form
factors in the bag model, but in Sec. V, we will see that this
can be naturally achieved by taking advantage of the
concept of 3D spatial EMT densities.

@ (b)

0.6
large N (this work) \ large N (this work)
0.8 no boost (Jietal) ------ 0.5 ‘\\ no boost (Jietal) ------
boost (Jietal) ———-— \ boost (Jietal) ———-—
0.4
0.6
O@ S 03
% 0.4 =
0.2
0.2 0.1
0 e ——— e 0 —
0 0.2 0.4 0.6 0 0.2 0.4 0.6
(-)/GeV? (-)/GeV?
FIG. 1.

3 3 2
%+mmﬂmk)+5azi)(). (23d)

K K

D. 1/N, corrections

The large-N,. results are theoretically consistent, which is
crucial for our study. However, it is instructive to get insights
on the size of 1/N_-corrections by comparing our results
with those of Ref. [10] obtained for finite N,.. We can
distinguish different types of 1/N .-corrections. If we do not
implement the kinematic effects (18) and large-N . counting
rules (19), we recover the “no-boost results” by Ji et al. from
Ref. [10]. This type of 1 /N .-correction only affects the form
factor A(t) where it has a small effect for |¢| below 1 GeV?;
see the curve depicted by the dotted line in comparison to the
solid line in Fig. 1(a). The form factors J2(¢), D?(t), and
¢2(¢) are not affected by these corrections, so the no-boost
results from Ref. [10] (dotted lines) coincide with our large-
N, results (solid lines) in Figs. 1(b)-1(d).

A conceptually different type of corrections arises
because for finite N, it is necessary to take into account
relativistic corrections associated with boosting the quark
wave function (14) to a frame where the nucleon moves
with velocity ¥: w(t,X) = S(Ay)w(7,X") with S(A) =
exp(wy%?) where Aj; is the Lorentz transformation for a
boost along the z-axis with ¥ = (0,0, tanh(w)) where

sinh(w) = |&| /(2My) [10]. The results obtained in this
way are depicted as dashed lines in Fig. 1. The constraint
J2(0) = 1is no longer satisfied, see Fig. 1(b), because “the
boosted bag wave function does not have the correct
Lorentz symmetry” [10]. This artifact can in principle be
avoided using Peierls-Yoccoz projections [86] or center-of-
mass freedom separation methods [87], which were not
performed in Ref. [10]. For our purposes, it is completely
sufficient to observe that in practice such boost effects—
even if they were not entirely consistently estimated in
Ref. [10] constitute a small correction. It is important to

(©) (C))

-0.1

cQ(t)

%t

-0.2

large N, (this work)
no boost (Jietal) ------

/ .
/ large N (this work)
/ no boost (Jietal) ------

15 / boost (Jietal) —--- boost (Jietal) ———-
-0.3
0 0.2 0.4 0.6 0 0.2 0.4 0.6
(-)/GeV? (-)/GeV?

EMT form factors of quarks in the bag model in the large-N, limit (solid lines, this work). For comparison, we also show

results by Ji et al., Ref. [10], computed in the bag model without (dotted lines) and with (dashed lines) considering boosts. This
comparison shows the effects of relativistic and 1/N .-corrections within the “independent-particle model treatment” in the bag model.
For finite N, there are further corrections associated with the independent-particle model treatment; see the text.
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stress that in the large-N, limit |A|/(2My) — 0 and this
type of relativistic corrections is negligible.

The third type of 1/N, corrections is due to the fact that
the bag model belongs to a class of so-called independent-
particle models in which the form factors of one-body
operators are strictly speaking zero; the transferred momen-
tum is absorbed by only one “active quark,” while the motion
of the remaining “spectator” quarks is not affected. The
nucleon wave function of such a configuration is strictly
speaking zero. In a more realistic description, the nucleon
wave function would contain ‘“correlations” between the
constituents through which the momentum transferred to the
active quark would be redistributed among all constituents
of the system such that the nucleon as a whole would
recoil [10]. But the bag model quark wave functions are
independent of each other, and lack explicit correlations.

At least in principle, the bag model could provide
correlations: the elastic scattering process could be thought
of as consisting of two steps. In the first step, the active
quark absorbs the transferred momentum. In the second
step, the active quark “bounces off” the bag boundary,
which subsequently transfers momentum to the spectator
quarks, etc. Through such back-and-forth bouncing, the
transferred momentum would be redistributed among all
constituents. For larger |¢|, inelastic processes (bag defor-
mation and the creation of gg-pairs) may become possible.
Even though this simple mechanism cannot be expected
to be realistic, at least in principle, one could estimate
correlation effects in this way. In practice, this is too
complex to consider, and a different way to heuristically
estimate correlation effects was chosen in Ref. [10]: a free
parameter # was introduced such that the momentum

transfer to the active quark is A ;7&/ cosh(w). It is
intuitively expected that 7 ~ 1/3 to redistribute the momen-
tum transfer among three quarks in a recoiled nucleon. A
reasonable description of the proton electromagnetic form
factors was obtained for # in the range of # = 0.35-0.55
with the lower (higher) value yielding a better description
of the data at large (intermediate) values of |¢| [10]. The
correlations modeled in this way impact the EMT form
factors more strongly than the two above-discussed types
of 1/N, corrections. However, the discrepancy with the
general constraints at t =0 becomes also more pro-
nounced: e.g., for n = 0.35, one finds J2(0) ~ 0.25 [10]
instead of J9(0) =31, indicating that this method to
estimate correlation effects is not trustworthy at small
|#|, even though it improves the phenomenological descrip-
tion of electromagnetic form factors at |¢| <2 GeV? [10].
As our large-N. results are valid for small || < M%,, while
the results for # # 1 from Ref. [10] are more appropriate
at larger |7], a direct comparison is not meaningful, and we
refrain from it.

Notice that in the large-N,. limit also this type of
corrections vanishes. Let us recall that correlations were
introduced to allow the active quark to redistribute the

momentum transfer among all constituents such that the
entire system changes its direction and the nucleon as a
whole is deflected. However, in the leading order of the
large-N . limit, the momentum transfer is small, || < M%,
and the recoil of the heavy nucleon (M ~ N_) is negli-
gible. Thus, one can consistently evaluate form factors in
the bag model without the need to introduce correlations.
(Notice that the absence of correlations in the large-N . limit
is a peculiarity of the bag model. Other models formulated
in the large-N,. limit like the chiral quark soliton or Skyrme
models [16-23] exhibit strong correlations.)

To summarize, we may regard the results for the EMT
form factors shown in Fig. 1 as valid for || < M3 and
theoretically consistent within the bag model in the large-
N, limit. These results are subject to 1/N, corrections
which we may expect to be modest at smaller |¢| and more
sizable especially at larger |¢|. Our observations are in line
with results from the Skyrme model of Ref. [88] where
relativistic recoil corrections (to electromagnetic form
factors) were also found small for || < 1 GeV>.

V. EMT DENSITIES IN BAG MODEL

In order to compute the EMT densities, one can perform
the Fourier transforms in Eq. (3). In the large-N . limit in the
bag model, one can also directly evaluate the EMT matrix
elements in coordinate space. Both ways yield the same
result for quark EMT densities. But only the direct
evaluation in coordinate space allows us to compute the
contributions of the gluons in L£; and the “quark-gluon
interaction” in Lg,s as defined in (8). We obtain

NA*Q ,
TP(r) = — — 3 (@3 + a2 j})8y,

(24a)

- 1P,A? Q 2
To(7) = — =1 <2a+a_—joj1 + a2 J—1> ekimel M@,
r

a 2 4r R
(24b)
i VoA N AW
Ti(F) = Z;r 0‘+“—<<]0]'1 — JoJ1 —T> elek
IOt 5!*) ey, (24c)
;.
TG (r) = ¢“BOy, (24d)
™ (7) = 0. (24e)

For brevity, we suppress the arguments of the Bessel
functions j; = j;(wr/R), and primes denote differentiation
with respect to r. The quark flavor dependence is encoded
in the SU(4) spin-flavor factors (17). The contribution
of Ly, vanishes, but we obtain the contribution 7% (r) =
g BOy associated with nonfermionic (gluonic) effects.

034013-6



ENERGY MOMENTUM TENSOR AND THE D TERM IN THE ...

PHYS. REV. D 101, 034013 (2020)

A. Energy density and mass

The energy density T(o(r) receives the contribution
Tgo(r) from quarks, Eq. (24a), and a contribution from
gluons T§(r) = BOy in Eq. (24d). The quark and gluon
contributions to the energy density are shown in Fig. 2(a).
The integrated contributions are

4
MG =" R3B.

M = N g, 3

(25)

For massless quarks, the relative contributions of quarks

and gluons to the nucleon mass are Mz% :M§ = 3:1. This
can be derived in two ways: (i) it follows from the nonlinear
bag boundary condition (10c), and, equivalently, (ii) it can
be derived from minimizing the nucleon mass understood
as a function of R as follows. Since &y = @w,/R, we have

0 4
M’y (R) <N Do 4 —”R3B) =0 < N, = 47R*B.

“OR\''‘R "3
(26)

From Eqgs. (25) and (26), we see that ME = %M y and
M = iM y (for massless quarks). This can be viewed as a
bag-model version of the “virial theorem.” We recall that
e.g., in soliton models virial theorems are derived by
rescaling the coordinates 7 — A7 in the functional defining
the nucleon mass. Considering infinitesimal variations
around 4 =1 leaves the nucleon mass invariant, i.e.,
oMy = 0. This implies relations among different contri-
butions to the nucleon mass [16,19]. In the bag model, the
situation is simpler: the “variation” of the nucleon mass
assumes the simple form stated in Eq. (26) for massless
quarks. For massive quarks, oy = @wy(mR) depends also on
R, and the virial theorem has a somewhat different form;
see Appendix A 1. Notice that (26) shows that the constant
B = O(N,) where one has to keep in mind that the bag
radius R = O(N?) since the size of baryons is of order N¥
in the large-N . limit.

(b)

B. Angular momentum density

The components T (7) depend on the nucleon polari-
zation (which we do not indicate for brevity), and receive
only a contribution from quarks. The angular momentum
density is given by

Ji(F) = eijkrogk(F)
) . |
=s" |:5lmp3(r)mono + (elre’;l - g‘slnl)pg(r)quad] ’
(27)
with the monopole [16] and quadrupole [70] contributions

2
pg(r)mono = _gp[]](r)quad = /)3(")’

1P,A% [2Q o 72
,03(1”) = 3 Z” r<?a+a_JoJ1 +a? 71) Oy. (28)
The relation pf (7)o = —%pg(r)quad is a general result

[71] which the bag model respects. The total angular

momentum density p,(r) =", pj(r) is normalized as
J &rp;(r) =3 and shown in Fig. 2(b).

C. Shear forces and pressure

The pressure and shear forces encoded in the stress
tensor (5) are given by the expressions

N_.A?
2w

N A2

s(r) = { 4n

The numerical results for massless quarks are shown in
Figs. 2(c) and 2(d).

In the liquid drop model of a large nucleus which
exhibits a “sharp edge” at the radius R, the shear force

v =|

C oy .2,
aLa_ (]o]ﬁ — JoJ1 +;]0]1> - B] Oy,

R S
a,a_ Jo]l—Joh—;Jo]l Oy. (29)

(c) @

0.04 8
total (quark) —— total (quark) —— total ——
otal (quark) otal (quark) 20 SN quark ———
— 60f 0.03 Tl gluon e
“g — < & ~
s & £ g 10
z W S 0.02 3 =
= s =) =)
= = — =~ 0
% 20 & 001 C )
= @ =
0 0 S LU ORI
0 0.5 1 15 0 0.5 1 15 0 05 1 15 0 0.5 1 15
r [fm] r [fm] r [fm] r [fm]
FIG.2. (a) The energy density To(r), (b) density p;(r) characterizing the angular momentum density, (c) shear force distribution s(r),

and (d) pressure distribution p(r) as functions of r in the bag model for massless quarks. The vertical lines mark the position of the bag
boundary (at R = 1.71 fm for massless quarks). In the case of Ty (r) and p(r), the contributions from quarks and gluons are shown in
addition to the total result. For p,(r) and s(r), the total result is entirely due to quarks.
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is given by s(r) = y8(r — Ry) Where y is the surface
tension [8]. The nucleon is a far more diffuse object than a
large nucleus, and Fig. 2(c) shows that s(r) is consequently
much more “spread out” than a S-function characterizing
the shear force distribution of a large nucleus.

In all model calculations so far, the pressure was
found positive in the inner region and negative in the
outer region. This is also the case in the bag model; see
Fig. 2(d). The positive pressure in the inner region is
associated with repulsive forces directed toward the
outside. The negative pressure in the outer region
corresponds to attractive forces directed toward the
inside. The repulsive and attractive forces must compen-
sate each other according to the von Laue condition,
which is a necessary condition for stability and will be
discussed below in Sec. VE

The pressure distribution and the shear forces in Eq. (29)
satisfy the differential equation (6). This relation is a
consequence of the conservation of the EMT, 8,, T =0,
and hence reflects the fact that in the bag model the EMT is
conserved and the description is internally consistent.

D. Normal and tangential forces

The stress tensor (5) is a symmetric 3 x 3 matrix of
which the eigenvectors are the unit vectors ¢,, éy, €, of
the spherical coordinate system and eigenvalues are
related to normal and tangential forces [9]. For spin-0
and spin—% particles, the tangential eigenvalues (pertaining
to eigenvectors €y, €,) are degenerate with the degen-
eracy being lifted only for higher spin J > 1 particles. In
our case, the normal and tangential forces per unit area
are given by [9]

.. dF . 2 .
raa] = Gt ae = (350 + p(r) ) e
.. dF . 1 .
ledA{() = —dAt dAg% = (—gs(r) + p(r))dAlgei(), (30)
9

where dﬁr =dA,e,, etc., denote the corresponding infini-
tesimal area elements. The results for normal forces
dF,/dA, and tangential forces dF,/dAy = dF,/dA, are
shown in Fig. 3.

Mechanical stability requires that dF,/dA, >0 with
strictly dF,,/dA, > 0 at all values of r within the system
[23]. The position where dF,,/dA, = 0 marks the “end” of
the system [9]. In the bag model, it is consequently
dF,/dA, > 0 for 0 < r < R, and the normal force vanishes
at the finite radius r = R, as shown in Fig. 3(a). This is a
distinctly different situation than in soliton models where
dF,/dA, > 0 for all 0 <r < oo and the normal forces
vanish only in the limit r — oo [16-23]. Other examples of
finite size systems which are analogous in the sense that
dF,/dA, vanishes at a finite radius are the liquid drop
model [8] and neutron stars of which the radius is defined

(@ (b)

8 Z(ry+p(r) 8 -Ls(p)
_ 6 _ 6
r &
£ 4 £ 4
2 Z
z? z?
= 0 = 0
2 !
) )
E] E]
4 4
6 6
0 0.5 1 15 0 0.5 1 15
r [fm] r [fm]

FIG. 3. Densities of (a) normal dF,/dA, = %s(r) + p(r) and
(b) tangential dF,/dAy = dF,/dA, = —{s(r) + p(r) forces per
unit area in the bag model as functions of ». Mechanical stability
requires 35(r) + p(r) > 0 inside the bag, which is the case.

as that value of r where the normal force per unit area (also
called the hydrostatic pressure) vanishes [89].

E. Mechanical radius, surface tension,
and diffusiveness

The positivity of the normal forces allows one to
introduce the notion of a mechanical radius defined as [9]

fd3rr2[%s(r) + p(r)]

() mech = : (1)
TR+ p(r)
We obtain <r2)rln/ezch = 1.10 fm, which is smaller than the

proton charge radius (r?) il/ ? = 1.25 fm with our parame-
ters. The values of the radii depend on how model
parameters are fixed; e.g., a smaller proton charge radius
of 1 fm was found in Ref. [60] with a different parameter
fixing. A more robust prediction might be the ratio
(P2 7(2)? = 0.88 which is independent of how
model parameters are fixed (for massless quarks).
Interestingly, also the chiral quark soliton model predicts
the mechanical radius to be smaller than the proton charge
radius (by 25% in that model) [9]. Notice that the
mechanical radius is the same for the proton and neutron
modulo small isospin violating effects, and hence con-
stitutes a better concept for the nucleon ‘“size” than the
charge radius (which is negative for the neutron, giving
insights on the distribution of charge inside neutron but
not on its size).

One may define the property of “surface tension” for a
hadron as

y = Am drs(r), (32)

if this integral exists. In the bag model, we find y =
4.26 MeV /fm?. The concept of a surface tension is well
justified in certain situations, for instance for large nuclei
[8] or Q-balls [34]. The nucleon is much more diffuse.
In order to quantify the “diffusiveness” of a particle, we

034013-8



ENERGY MOMENTUM TENSOR AND THE D TERM IN THE ...

PHYS. REV. D 101, 034013 (2020)

introduce the dimensionless measure Aw” for the “skin
thickness” of a particle defined in terms of the moments
(r") of the shear force distribution as follows [34]:

(1 = (P _ ), =

(r*), ; (r*)y ’
(ry, :l/drr”s(r).

/4

Aw? =

(33)

For a nucleus with a sharp edge in the liquid drop model,
the shear force is given by s(r) = y8(r — R,) where R,
denotes the radius of the nucleus, and Aw? = 0. One also
finds Aw? — 0 in the limit of very large Q-balls [34]. For
realistic nuclei and finite-size Q-balls, the diffusiveness
parameter Aw? is small. For the nucleon, Aw? = 0.48 in the
bag model, indicating that the nucleon is much more diffuse
than a nucleus, which is not unexpected.

F. EMT conservation: Von Laue condition
and its lower-dimensional analogs

The pressure and shear forces must obey the following
integral relations:

/oo drr?p(r) =0,

0

A‘” drr(—%s(r) + p(r)) o,
A“’ dr(—gs(r) + p(r)) —0.

The first of these relations was introduced by von Laue in
Ref. [90] and holds in three dimensions; the other two
hold in respectively two dimensions and one dimension and
were derived in Ref. [9].

The conditions in (34) are proven analytically in
Appendix A 2. The physical interpretation of the first

(34)

(a) (b)

condition in (34) is as follows. The positive pressure in
the inner region corresponds to repulsion, and the negative
pressure in the outer region corresponds to attraction.
Mechanical stability requires that the attractive and repul-
sive forces compensate each other in the 3D integral in (34)
which is satisfied in the bag model as shown in Fig. 4(a).
The tangential force per unit area, —1s(r) 4+ p(r), must
satisfy the two-dimensional (2D) relation in (34), which is
the case in the bag model as illustrated in Fig. 4(b).
The interpretation of this condition is that the tangential
forces within a 2D slice must compensate each other [9].
Similarly, also the one-dimensional (1D) condition in (34)
is satisfied in the bag model, which is illustrated in
Fig. 4(c). It is also instructive to discuss the “finite-volume
von Laue condition” [9]

where the integration goes over the volume V(r) = %JZFS.

The sum rule (35) is satisfied for all 0 < r < R. However,
in the bag model at r = R, one practically deals with the
3D relation in (34). Since V(R) # 0 is nonzero, this means
that the normal force per unit area %s(r) + p(r) must
vanish at the bag boundary, which is the case and emerges
here as a necessary condition to comply with the von Laue
condition in (34). Notice that s(r) + p(r) must vanish
at the bag boundary also in order to comply with (6).
The differentiation of Oy-functions in the bag model
expressions (29) for p(r), s(r) yields the contribution
8(r = R)[s(r) + p(r)] to (6), which must and does vanish
at r = R.

The integrands pGP)(r) = p(r), p@P)(r) = —1s(r)+
p(r), and pUP)(r) = —3s(r) 4 p(r) in (34) are special
cases of pressures in n-dimensional (nD) spherically
symmetric mechanical systems. In general, the pressure
and shear forces of a kD system are related to those in nD

(©

10 10 10
&
E -
z 5 S s E s
Z <
= = 2 +
% + = + =
=0 = 0 =0
= = =
& - b = = -
o 5 = -5 £ -5
- —len z
I w
p— <t|en
= N
-10 -10 -10
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5

r [fm]

r [fm] r [fm]

FIG.4. The 3D von Laue condition (a) and its lower-dimensional analogs in two dimensions (b) and one dimension (c) in the
bag model for massless quarks. The areas above and below the r-axis are equal and compensate each other according to the

integrals in Eq. (34).
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subsystems (if k < n, the roles of system and subsystem
interchange) as [91]

k k(n—k)1 [r
poo)(r) = & o)y L K20 T / dr'r= o) (),
n n ™ Jo
2 r
S("D)(r) — _n - 1p(kD)(,,) + — 17 i dr/r/k_lp<kD)(r/).

(36)

The s"P)(r) and p"P)(r) in (36) satisfy =12 s("P)(r) +
1=1 5nD) (7) + %p("m(r) =0and [Pdrr!ptP)(r) =0,
which are nD-versions of respectively (6) and (34). Such
relations can be useful e.g., in holographic approaches to
QCD or in fractal theories [91]. In the bag model, these
relations are valid for all n, kK > 0 including noninteger and
arbitrarily large values. The practical verification of such
relations can in practice be numerically challenging espe-
cially for large n. In the bag model, thanks to the finite
range of the densities, it is possible to test the validity and
consistency of the relations (36) for any value of n, k > O in
a nontrivial model.

G. EMT conservation: Equivalence
of D-term expressions

The D-term can be computed using the expressions in
terms of (i) pressure and (ii) shear forces according to Eq. (7).
From (29), we find that the two equivalent expressions in
Eq. (7) yield the same result, which can be written as

b Ly AR < 45
=-MyN,—a,a_| —— o+ ag
3N 15

- ga)osinza)o — sin @ cos w0> ; (37)

see Appendix A 3 for a detailed proof. The possibility to
compute the D-term by means of two different equivalent
expressions is also due to EMT conservation. We will discuss
the D-term in Sec. VI in more detail.

H. EMT conservation: Form factor ¢¢ (¢)

In Sec. IV, we found the form factor ¢2(¢) # 0 from the

evaluation of the quark EMT, which means that T% by
itself is not conserved. EMT conservation requires
> . ¢(t) =0 if one takes into account all contributions
in a system, i.e., in the bag model also the contribution of
the bag which simulates gluons in the sense discussed in
Sec. III. However, while it was straightforward to compute

|

the quark EMT form factors in Sec. IV, it is not clear how to
compute the bag contribution to the form factors. At this
point, we can take advantage of the EMT density frame-
work. Instead of using EMT form factors as an input for an
interpretation in terms of EMT densities [8], we proceed
in the opposite direction and invert Eq. (3) for the gluon
contribution 75, (r) in Eq. (24d). We obtain for massless
quarks the result

%jl(qR)
4 gR ~

q=v~t,
(38)

1 -
co(1) :—/ d*rexp(iA7)BOy, =
My

where we eliminated the bag constant B by means of
Eq. (26). From the behavior of spherical Bessel functions
for small arguments j,(z) = z//(21 + 1)!! + O(z/*?), we
find ¢%(0) =1 to be compared with ¢9(0) = —4; see
Sec. IV C and Fig. 1(d). In Appendix, we show that we

have V¢,
c2(1) +c%(1) =0, (39)
as it is required by the conservation of the total EMT.

VI. D-TERM

In this section, we discuss the D-term for the nucleon and
other hadrons, and we consider then several instructive
limiting cases in the bag model. Here and throughout in
Secs. VI A-VIF, we consider massless quarks. In Sec. VII,
we will discuss also m # 0. The expression for the D-term
of the nucleon was already quoted in (37). Let us generalize
this result to a general state. Mesons (baryons) are con-
structed in the bag model by placing a g¢g (gqq) in the bag
in a color singlet state. The mass and bag radius of a general
bag model state (for massless quarks) are given by

- (22" w

which follows from the virial theorem (26). For baryons,
the summation goes over N, = 3 occupied bag levels w;,
for mesons over two levels. The bag constant is fixed as
B = 0.0559 fm™ to reproduce the nucleon mass. Inserting
the expressions for the normalization constant A and a.
defined in (11) and mass (40) into Eq. (37), we obtain the
result for the D-term of a general bag model state (made of
massless quarks)

M=o
3 R

i=1

4 [N ] [N w;(4w? — 15) + 6w; sin’w; + 15 sin w; cos w;
w; .

41
54(1),-(a)l- - 1)Sin2a),- ( )
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We make two important observations. First, since w; >
@y = 2.04, it is D < 0 for all hadron states constructed in
the bag model including unstable resonances. This is in line
with results from all theoretical studies so far. Second, the
dependence on the model parameter bag radius R or bag
constant B cancels out in the D-term, which therefore only
depends on the dimensionless numbers w; (for massless
quarks, cf. Sec. VII for the case of massive quarks).

A. D-term of the nucleon

For the nucleon, we obtain from (37) and (41) in the case
of massless quarks the result

D pycteon = —1.145, (42)

which is in agreement with the numerical bag model
calculation of nucleon GPDs and EMT form factors in
Ref. [10]. The magnitude of the nucleon D-term in the bag
model is smaller compared to soliton models [16-23]. This
is not surprising considering that D = My [ d*rr*p(r) is
sensitive to long distances. In fact, in chiral models, |D| is
larger in the chiral limit where p(r) and s(r) o 1/7°. For
finite pion masses m,, the densities decay exponentially
like e™™". The range of internal forces decreases in the
soliton models, and |D| diminishes [16]. Since the bag
model has a finite radius, the value for |D| is small. We
remark that through the SU(4) spin-flavor factors (17) the
bag model complies with the large-N, predictions [6]

(D" + DY) = O(NY).

(D" = DY), oo = O(N,).

(43)

nucleon nucleon

B. p-meson

Placing in the lowest level of the bag a gg pair with
aligned spins yields a state with the quantum numbers of a
p-meson. When B is fixed to reproduce the nucleon mass,
one obtains a p-meson mass of 692 MeV. This is within
10% of the experimental p-meson mass value of 775 MeV.
Other ways to fix model parameters can also be considered
[92]. In contrast to this, there is no ambiguity as to the
bag model prediction for the D-term (41) which does not
depend on the bag radius R or bag constant B. The model
prediction is

4
Dp—meson = mDnucleon = —0.509. (44)

Recalling that Dpyeeon = O(N?), cf. (43), we see that the
D-term of the p-meson (and all mesons) is of O(N?).
As there is no spin-spin interaction, a gg pair with
antialigned spins corresponding to a state with pion
quantum numbers has exactly the same mass (and D-term)
as the p-meson. However, since the bag boundary does not
respect chiral symmetry, the description of the pion in the
bag model is inadequate. This becomes evident here in two

ways. First, in the chiral limit, the pion is massless, while
here it remains massive and is mass degenerate with the
p-meson. Second, soft pion theorems predict Do, = —1
[93-96], while in the bag model, one would obtain the same
value as in (44). Ways to construct light pion states have
been discussed [97]. The cloudy bag model [98] reconciles
the bag concept and chiral symmetry. Both approaches
are beyond the scope of this work. In any case, since it is
not a Goldstone boson, one may apply the bag model to
the description of the p-meson with fewer reservations.
It will be interesting to test the bag model prediction
D, meson * Drucieon = 49 in other models or lattice QCD.

Notice that a spin-1 hadron like the p-meson has six form
factors of the total EMT [24,76,77]. Our D, neson cOITE-
sponds to the form factor Dy(¢) in the notation of Ref. [76]
and to —G5(t) in [77]. Studies of other p-meson EMT form
factors will be left to future investigations.

C. A-resonance

Let us briefly also comment on the D-term of the
A-resonance. As discussed in the previous section, due
to the absence of spin-spin interactions, states differing by
the spin quantum numbers are degenerate. In particular,
also the A-resonance and the nucleon are degenerate, and
the D-term of the A is simply predicted to be

D presonance = Drucleon = — 1.145. (45)

Even though the absolute value might be underestimated,
the bag model result Da_csonance = Prucleon 18 COITECt 1N
large N, [23]. This is another consistency test of the
large-N,. description of baryons in the bag model.

D. Roper resonance

The state N(1440) known as Roper resonance has the
quantum numbers of the proton J* = %*, but a 50% larger
mass and its structure “has defied understanding” since its
discovery in the 1960s; see the review in Ref. [99]. In the
bag model, it is described by placing two quarks in the
ground state with @y = 2.04 and one quark in the first
excited state with w; = 5.40. If one would use the same bag
radius for the nucleon and the Roper, then the physical
value of the Roper mass would be reproduced. A more
consistent parameter treatment may be to use the same bag
constant B for the nucleon and Roper, which yields a Roper
mass of 1302 MeV and underestimates the physical value
by 10%. This is not unreasonable for such a simple model.
While the mass increases by about 50%, the pressure in the
center increases by a factor of 7.5 as one goes from the
ground state nucleon to the first excited state in the J© = %*
sector. The increase of the internal forces is reflected by an
increase of the D-term for which Eq. (41) yields the value

Droper = 5846 Dyyycjeon = —6.695. (46)
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It is interesting to observe how strongly the D-term is
varied as one goes from a ground state to an excited state
within a theory. This is mainly due to an increase of internal
forces, and in line with studies of excited states in Q-ball
systems [35]. It is not known how the D-term of the Roper
can be studied in experiment, but it would be interesting to
confront the prediction (46) with results from other models
or lattice QCD. We remark that Aw? defined in (33) is for
Roper Aw? = (.72 showing that this state is even more
diffuse than the nucleon, as intuitively expected.

E. Negative parity baryons

The lightest baryon with quantum numbers J© = %‘ is
N(1535). Negative parity solutions to the bag equations (10)
are given by the same expression as positive parity solutions
(11), but with upper and lower components exchanged and
with the w; obtained from (for massless quarks) the trans-
cendental equation @ = (1 4+ w) tan @ of which the lowest
energy solution is @ = 3.81. Keeping B fixed at the value
required for the nucleon yields 1498 MeV and reproduces
the mass of N(1535) within 3%. Also, here is the D-term
independent of parameter fixing, and we obtain

Dys3s) = 11.32 Dyygeon = —12.97, (47)

which confirms the trend that the D-terms grow for heavier
excited states in the spectrum of a theory. Also in this case,
we are not aware of a practical method to learn about the
D-term of the state N(1535) from experiment. However,
the interesting prediction D y(;535) = 11.32Dy¢1eon could be
compared to theoretical studies in other models. With
Aw? = 0.59, this state is somewhat less diffuse than
the Roper.

F. Highly excited states in baryonic spectrum

In this section, we consider higher excited states in the
bag model. While we do not expect a realistic description
of the hadronic spectrum, the bag model provides a
consistent theoretical framework, and it is instructive to
explore it. For simplicity, we consider massless quarks
and limit ourselves to the positive parity baryons sector.

As mentioned in the context of Eq. (41), we find D < 0
for all excited states. Another important observation is that
the D-terms grow quickly with the mass of the hadron.
To illustrate this point, we plot the D-terms vs masses for
JP = %* baryons made of massless u#- and d-quarks in
Fig. 5, which shows the first 4000 states: the first state is the
nucleon with (M, D) = (938 MeV, —1.145), and the last
state has (M, D) = (10.9 GeV, —-3068). All states above
2 GeV are hypothetical and practically in the continuum.
Each state has a twofold degeneracy due to isospin
quantum numbers. (In our large-N . treatment, the spectrum
of JP = %* baryons looks exactly the same with a fourfold

degeneracy due to isospin % of A-states.) While the baryon
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FIG. 5. (—D) vs mass for the first 4000 states in the positive
parity sector for states made of massless up- and down-quarks.
While the masses increase by 1 order of magnitude, the D-terms
grow by 4 orders of magnitude. The analytically derived
asymptotic result (50) for the D-term is shown as solid line.
The degeneracy pattern of the states is explained in the text.

masses increase by 1 order of magnitude in the range
considered in Fig. 5, the D-terms grow by 4 orders of
magnitude. This is in line with results from Q-balls [35].

To get more insight, we discuss the EMT densities of a
(hypothetical) highly excited nucleon state. For Q-balls, it
was observed that To(r) of the Nth (radial) excitation
exhibits characteristic structures with N-shells surrounding
a “core” region, while p(r) exhibits (2N + 1)-nodes where
N =0 refers to the ground state [35]. Is this also the
case for excited states in the bag? The answer is no. For
illustration, we show in Fig. 6 the EMT densities for the
state with the level @5 triply occupied. This corresponds to
a hypothetical 3163th excited state above the nucleon
(ground) state with (M, D) = (10.2 GeV, —-2608). The
EMT densities exhibit characteristic “wiggles,” but p(r)
exhibits only one node. This is a general result; no matter
how highly excited a bag state is, p(r) crosses zero
only once. Clearly, the spectrum of excitations in the
bag model has a much different structure than the Q-ball
system [35]. One expects such highly excited states to be
very diffuse, and the result Aw? = 2.9 for this hypothetical
state confirms it.

The solutions to the transcendental equation (12) are
approximated by ®; — (j +3/4)x for massless quarks
to within an accuracy of better than 2% already for j > 1.
For @5, this asymptotic formula has an accuracy of
2 x 107*. Evaluating the expressions for Ty (r), p(r),
and s(r) in Egs. (24a), (24d) and (29) for asymptotically

large w; yields
asymp ijzj (1 + r_22> ®V,
4nR R
Z w; (1 r?
[rzp(r)]asymp = 47'[]sz g_ﬁ ®V’

2.9, .
[rzs(r)]asymp = ﬁRz]@V for w; = (.] + 3/4)7‘[, (48)

[P Too(r)]
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FIG. 6. Solid lines: EMT densities 2Ty (r), r>s(r), and r>p(r) for a (hypothetical) highly excited nucleon state with the triply
occupied bag level w5 = 49.47 ~ (j + 3/4)x with j = 15. For this state, the bag radius is R = 3.8 fm, mass M = 10.24 GeV, and
D-term D = —2607.7 to be compared with the nucleon ground state where wy = 2.04, R = 1.71 fm, M = 938 MeV, and D = —1.145.
Thin lines: asymptotic results for the bag model densities from Eq. (48) for ) @; = 3w;s and R as given by Eq. (40).

where R is defined in Eq. (40) and it is understood that all
quantities actually depend on a set of three (or two) values of
w; for a higher baryonic (or mesonic) excitation. Except for
the small-r region, the asymptotic expressions yield a good
description of the gross features of the exact densities as
shown in Fig. 6.

Remarkably, the asymptotic expression for Ty (r) inte-
grates to the exact expression for the baryon mass in
Eq. (40). The asymptotic expressions for pressure and
shear forces satisfy the differential equation (6), and
P(7)asymp complies with the von Laue condition albeit
not with its lower-dimensional analogs in (34) where
the exact small-r details are essential. The asymptotic
normal force r2[35(r)+ p(r)|uymp = (> j0;)(1 = 12/R?)/
(47R*)®y, >0 for r < R and vanishes at r = R. The two
equivalent expressions in Eq. (7) yield the same asymptotic
result for the D-term

16 2
Dasymp = —E <Zj:a)]> .

The energy mean square radius and mechanical radius
are <r%>asymp = %Rz and <ri1ech>asymp = %Rz- Finally, by
exploring Eq. (40), we may eliminate the sum ) ; w; in

(49) in favor of M which yields (for mesons and baryons)

(49)

Dasymp = —AM® (50)
with A =1(167v/3B)~%/3. This asymptotic expression
explains the strong rise of D with the mass observed in
Fig. 5 where Eq. (50) is depicted as solid line. Interestingly
the spectrum of radial Q-ball excitations exhibits the same
asymptotic relation: for the N excitation the Q-ball mass
grows like M « N3 and D-term as D « —N3, such that
D « —M?®3 [35] like in bag model. But the internal
structure of the excitations is much different: e.g., the
p(r) of the N™ excited Q-ball state exhibits (2N + 1) [35],

while the p(r) of excited bag states have always only
one node.

To end this section we comment on the near-degeneracies
visible in Fig. 5 where the first 4000 states in the J = %*
sector appear to be organized in a far smaller set of
near-degenerate multiplets. To understand these near-
degeneracies we notice that w;~ (j+3/4)z for jz 1
can be further simplified' as w;~ jr for large enough
Jj > 1.If always all three occupied levels j;, j,, j3 complied
with this condition then the mass would be determined by
three integers as M = const(j; + j, + j3)¥* and the n®
energy level would be 1n(n + 1)(n + 2)—fold degenerated
(like 3D harmonic oscillator formulated in Cartesian coor-
dinates). Since for lower bag levels j > 1 is of course not
valid, in practice a lesser degeneracy pattern is realized
in Fig. 5.

VII. LIMITING CASES

In this section, we assume that mR # 0. The lowest
solution w, of the transcendental equation (12) depends on
the product mR. We will be especially interested in the limit
€ =1/(mR) — 0 where we have w, — 7. For our calcu-
lation the e-corrections to @, are essential. These correc-
tions can be determined analytically, and are given by

» £+7r3 K Tt 84+7r3 1 2 o5
=T — — _— —_—— _— _———
0 2° "6 48 2\16 5

1097°
480

1
®+0(), fore=—<1. 51
+ e+ O(e), fore = (51)

'When deriving the asymptotic expressions for EMT
densities (48), it is necessary to use the asymptotic solutions
w; = (j+3/4)x of Eq. (12). Once we deal with the integrated
quantities like M and D in (40) and (49), one may go one step
further and approximate w; — jz for j > 1. But we stress that
this further simplification could not be used in the derivation of

the asymptotic EMT densities (48).
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After exploring the virial theorem for m # 0 in Eq. (A6) of Appendix, the bag constant becomes

N
B=—% 2
e k(e + O(&%)),

T T

K=k 0T o

z. (52)

where we also define a constant ¢, which will be used in the subsequent equations. For the EMT densities, we obtain in the

region 0 < r < R for € < 1 the results
Too(r) = Nemceojo(kr)? + -,

1 : .
py(r) = gcoK”JO(W)Jl(K”) + -,

5(6) =y (=) er) = ook r) + k) er)) -+
) =R (=it or) + 2 er () + oo o)) = (53)

where the dots indicate subleading terms. For r > R, the
densities are zero due to the ®y, not shown here for brevity.
Notice that Ty (r) = O(e™!) and the dots indicate terms of
O(&%) and p,(r) = O(") and the dots indicate terms of
O(e), while p(r) and s(r) are both of O(¢) with dots
indicating terms of O(¢?).

Integrating Too(r) in (53) over the volume yields

N5 2
MN—R<8 +67r8+(9(£)

5
:Ncm(1—|—67r2€2~|—...>. (54)

The term of O(&°) contributing to Ty (r) in (53) integrates
exactly to zero, and the limit My = N.m is approached
from above, i.e., with positive O(e) corrections. Integrating
py(r) in (53) over the volume yields the nucleon spin
J &p;(r) = 3 up to the order at which the expansion (51) of
@, 1s truncated [if one does not expand, the exact
expression for p,(r) integrates of course to § “to all
orders”]. The pressure and shear forces in (53) comply
with the von Laue condition and the lower dimensional
conditions in (34) also up to the order at which the
expansion of @, in (51) is truncated (and are of course
also valid to all orders if we do not expand).

Notice that the virial theorem is always valid as long
as € # 0. In the expansions in (53), the connection to the
virial theorem is not visible. The leading term in My =
N_.m + - - - is irrelevant for the virial theorem and drops out
from M/, (R). Stability, pressure, and the von Laue con-
dition are all encoded in the subsubleading terms of O(¢) in
Too(r) in (53). This explains why the energy density is of
O(e7!) but the pressure and shear forces are of O(e).

Using the expansion for p(r) and s(r) in (53), we obtain
from (7) the result

47> —15 27
D= —N? <”45—1’;e+c9(52)>. (55)

The limit of the D-term in Eq. (55) applies to three different
situations,

(i) R = fixed, m — oo,
(ii) m = fixed, R — o,
1
(iii) m > =My, R—co, My=fixed. (56)

to be discussed below. The limits (i) and (ii) are briefly
discussed in Ref. [80]. Figure. 7(a)-7(c) show how m, R,
My are correlated in those limits. Figures 7(d)-7(f) show
the behavior of the D-term.

The case (i) in (56) corresponds to the “heavy quark
limit” where the nucleon mass My — N_.m becomes large;
see Fig. 7(a). For m 2 1 GeV, we have My ~ N.m with a
10% or better accuracy. The asymptotics My = N.m is
shown as dashed line in Fig. 7(a). This is intuitively
expected; in the heavy quark limit, one expects that
hadron masses are largely due to the heavy quark mass.
In this limit, the quarks become “nonrelativistic”; it is
a, = O(¢°), while a_ = O(e) such that the upper com-
ponent of the spinor (11) dominates and the lower compo-
nent goes to zero. Interestingly, the D-term is proportional
to a,a_, see Eq. (37), but does not vanish because
My « 7! also enters its definition; see Eq. (7). Thus, D o
Mya a_ has a nonzero limit; see (55). In Fig. 7(d), we
show how the D-term changes as one varies the quark mass
from m = 0 up to 1 TeV, with the asymptotic result (55)
shown as a dashed line.

In the limit (ii) in (56), the boundary is moved to infinity
for fixed m chosen to be 5 MeV in Fig. 7(b). Intuitively, one
would expect to recover “free quarks” as the boundary is
moved farther and farther away and the system becomes
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FIG. 7.

(a) My as function of quark mass m for fixed R = 1.7 fm. (b) My as function of bag radius R for fixed m = 5 MeV. (¢c) R vs m

(in units of%MN) for fixed My = 938 MeV. (d) The D-term vs M for fixed R = 1.7 fm. (e) The D-term vs R for a fixed m = 5 MeV.
(f) The D-term vs m (in units of %MN) for fixed My = 938 MeV. The “physical point” with My = 938 MeV, R = 1.7 fm is marked
[this point corresponds to m =5 MeV in (b) and (d) and zero elsewhere].

more and more loosely bound. Indeed, also here My —
N.m [though in contrast to limit (i) the quarks may still be
relativistic since m does not need to be large as long as it is
nonzero]. This limit is approached from above according to
Eq. (54) as shown in Fig. 7(b) where R is varied from
1.7 fm up to 1 A with the asymptotic result My = N.m
shown as a dashed line. Also in this limit, the D-term
approaches the asymptotic value (55) as shown in Fig. 7(e).
Remarkably, the D-term of a free fermion is zero [80], but
here we do not recover this result, even though we deal with
a more and more loosely bound system. The reason is as
follows. As R becomes large, the “confinement” of the
fermions inside an increasingly large cavity becomes less
and less important, and the mass of the bound state
approaches My — N.m. But no matter how small the
“residual interactions” in an increasingly large cavity are,
they remain nonzero, enter the description of the internal
shear and pressure forces, and generate a nonzero D-term.
How this happens can be traced back on the technical level
through, for instance, the virial theorem; see Appendix. To
recover a free theory, one has to take the limit R — co much
earlier, on the Lagrangian level in Eq. (8) [80].

The limit (iii) in (56) is also very interesting. Here, we
assume throughout a system with the fixed (physical) value
of the nucleon mass, but we allow the model parameters 1,
R to vary such that the internal model dynamics interpolates

all the way from highly relativistic (m = 0) to highly
nonrelativistic (m — %M ~)- In the bag model, the physical
situation is of course more realistically reproduced for
highly relativistic quarks rather than for nonrelativistic
ones. But it is insightful to investigate such a transition
from a highly to nonrelativistic system within a quark
model. A convenient measure for this transition is m
expressed in units of %MN, i.e., the variable 3m/My of
which the range is 0 < 3m/My < 1. When 3m/My — 0,
we deal with highly relativistic (massless) quarks in a
relatively small system of radius R = 1.7 fm which cor-
responds to the “physical situation” in this model. When
3m/My — 1, we deal with a truly nonrelativistic model of
the nucleon: in this limit, the nucleon mass is 100% due to
the “constituent quark mass.” In order to maintain in this
limit the fixed (physical) value of the nucleon mass (in a
system where the mass of the bound state is nearly entirely
due to the mass of its constituents), it is necessary that the
system becomes more loosely bound, which implies that
the size of the system must increase. In the strict limit
m — %M ~» the bag radius diverges. The connection of m
(in units of £ M y) and R for fixed My = 938 MeV is shown
in Fig. 7(c). For instance, if we wanted 99.999% of nucleon
mass to be due to the constituent quark masses, then R =
0.57 um would be required. It should be stressed that, while
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the system becomes more loosely bound in the sense that the
binding energy decreases, we nevertheless still have confine-
ment (in the specific way it is modeled in the bag model; it
should be kept in mind that the binding energy is positive in
a confining system). Since in the limit (iii) it is m — %M N
while R — oo, the D-term is again given by the limit mR —
oo quoted in Eq. (55). How the D-term behaves during the
transition from a highly relativistic (3m/My =0) to a
highly nonrelativistic (3m/M, — 1) system with fixed
My is shown in Fig. 7(f). For the last point included in
this figure, itis My — 3m = 10 eV and R = 4 A, which are
numbers natural for systems in atomic physics.

The way the limiting value (55) of the D-term is
approached in Figs. 7(d)-7(f) is characteristic for the three
different limits in (56). When we plot D as function mR,
the results from Figs. 7(d)-7(f) are in all three cases on a
single universal curve shown in Fig. 8. Since D is
dimensionless. it can only depend on the bag model
parameters m and R in terms of the dimensionless variable
mR. It is shown in Fig. 8§ how the D-term depends on this
dimensionless variable mR. The “physical situation” for the
proton corresponds to the limit mR — 0 (fixed R = 1.7 fm
and light or massless up- and down-quarks). The limit
mR — oo can refer to the three different limiting cases in
(56) discussed above.

One limiting case remains to be mentioned: fixed m
and R — 0. In this limit, one obtains a “pointlike” particle
of which the mass diverges as My o . This divergence is
analogous to the difficulties associated with the description
of pointlike particles or pointlike electric charges in
classical physics. The description of the “internal structure”
in a “pointlike particle” is of no immediate interest. We
therefore refrain from discussing this limit further. The
result for the D-term in this peculiar limit is, however, also
shown in Fig. 8 in the direction mR — 0.

A1t 0 < mR limit

limit mR — o

10 102 103 10
mR

104 103 102 10! 1

FIG. 8. The D-term vs mR in the bag model. As a dimensionless
quantity, the D-term only depends on the bag model parameters
m and R through the dimensionless variable mR.

VIII. COUNTEREXAMPLE BOGOLIUBOV MODEL

In all theoretical approaches so far, the D-terms of
particles were found negative, except for free fermion
fields where D =0 [80]. It is an interesting question
whether positive D-terms can be realized at all in a physical
system.

In fact, positive D-terms were found for unphysical
states with spin and isospin § =1 > % in the rigid rotator
approach in the Skyrme model [23]. Hadronic states with
such (“exotic”) quantum numbers are artifacts of the rigid
rotator approach and not realized in nature. When comput-
ing masses and other properties of such states, one notices
nothing unusual. But a more careful investigation of the
EMT densities reveals why these states are unphysical: they
do not obey the basic mechanical stability criterion, namely
the positivity of normal forces $s(r) + p(r) > 0. So, the
rigid rotator states with S = I > 3 have positive D-terms,
but they are also unphysical [23].

Despite its simplicity and drawbacks, the bag model is
from the point of view of mechanical stability a perfectly
reasonable and theoretically consistent framework with a
negative D-term. However, a model which in some sense
may be viewed as a predecessor of the bag model [78],
the model of Bogoliubov [79], is insightful in this respect.
In a certain limit, the Bogoliubov model basically corre-
sponds to the bag model except that the bag constant B
is absent. The nucleon mass is given by My goe, = 3%,
and for R = 1.29 fm, the physical value of the nucleon
mass is reproduced. An interesting parameter-free predic-
tion of the Bogoliubov model is that for massless quarks the
ratio of Roper and nucleon masses Myqper/My = (20 +
1)/ (3wg) = 1.55 is close to the experimental value 1.53,
although in retrospect, this has to be considered a “happy
coincidence” [78], because the model is actually ill defined.

One way to understand this is to notice that the nucleon
mass My pogo = 3% is determined by fixing the bag radius
by hand and not by a dynamical calculation [78], unlike the
minimization procedure in the bag model underlying the
virial theorem; see Sec. VA and Appendix. (In the bag
model, we have two free parameters, B and R, one of which
is dynamically determined by the virial theorem, and the
other can then be fixed to reproduce a chosen hadron mass.)
In fact, it is not possible to minimize My pogo = 3% of
which the minimum occurs for R — oo [78].

The EMT densities shown in Fig. 9 illustrate what goes
wrong in this model. The results for Ty (r), p,;(r), and s(r)
in Figs. 9(a)-9(c) look very similar to the bag model
results in Figs. 2(a)-2(c) and do not hint at anything
unusual. They could in principle describe a consistent
system: e.g., [ d*rTg(r) yields the physical nucleon mass,
and [ d*rp,(r) yields the nucleon spin % The inconsistency
of the Bogoliubov model becomes apparent when we
inspect the pressure distribution in Fig. 9(d): p(r) exhibits
no node, and hence cannot comply with the von Laue
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FIG. 9. EMT densities as functions of r in the Bogoliubov model: (a) energy density T (), (b) angular momentum density p,(r),
(c) shear forces s(r), and (d) pressure p(r). This version of the Bogoliubov model corresponds to the bag model with the bag constant B
absent. The EMT densities are similar to the bag model except for the pressure which exhibits no node and does not comply with the von
Laue condition, which means this is an inconsistent, unphysical solution.

condition in Eq. (34). Clearly, [§° drr’p(r) > 0 means that
the internal forces are not compensated, and this solution
actually “explodes.” This is a consequence of fixing in this
model the bag radius by hand [78]. In other words, there are
no attractive forces in this model that would stabilize the
solution at some finite radius (as it occurs in the bag
model). Since the positive (repulsive) forces in the center of
the nucleon are not compensated, the solution explodes;
matter is dispersed all over the space. This corresponds to
the observation that the “minimum” of My g, Occurs only
for R — oo [78].

From the pressure distribution in Fig. 9(d), we would
obtain a positive D-term by means of Eq. (7). It is interesting
to remark that using the shear forces in Fig. 9(c) we,
however, would obtain a negative D-term from Eq. (7).
This mismatch persists even in the limit R — oo and reflects
the fact that the EMT is not conserved in this model. This
is not surprising; the “by-hand fixing” of the bag radius
corresponds to “external forces” which are imposed on the
system but are not present in the Lagrangian. As a
consequence, the dynamics is incomplete, and the EMT is
not conserved. Equivalently, one may notice that, due to the
absence of the bag constant, there is no form factor ¢ (¢) and
the constraint >, ¢(¢) = 0 is not satisfied.

To conclude this section, we notice that so far no con-
sistent physical system has been found where the D-term
would be positive. The excursion to the Bogoliubov model,
which is nicely presented in the historical context in
Ref. [78], has only revealed an example where a positive
D-term is encountered due to an incomplete dynamical
description of a system. One way to cure the inconsistencies
of this model consists in introducing a bag constant. We have
seen in the previous sections how, from the point of view of
mechanical stability, this yields a consistent description.

IX. CONCLUSIONS

In this work, we have explored the bag model to study
the EMT form factors A“(¢), J%(t), D“(t), and ¢“(¢) and the
EMT densities. The quark contributions (a = u, d) to the

EMT form factors are defined in terms of the single-quark
wave functions and the SU(4) spin-flavor factors needed
to construct the nucleon wave functions. The form fac-
tors A“(t), J*(t), and D“(r) receive only quark contribu-
tions; i.e., in these cases, the total form factors are given
by A(t) = A“(t) + A%(¢) and analogously for J(¢) and
D(t). In principle, also the bag makes contributions to
form factors which can be interpreted as gluonic contri-
butions. Only the form factor ¢“(¢) receives such a gluonic
contribution.

It is crucial to check that all relations derived from
GMT”’“ = 0 are valid, and to demonstrate the mechanical
stability of the model. The theoretical consistency is
reflected in various ways. We have shown that the bag
model description of the EMT form factors is consistent in
the large-N,. limit. The constraints A(0) = 1 and J(0) = 3
are satisfied, and ), ¢?(¢) = 0 holds for all 7. Since the bag
contribution is not described in terms of a wave function, it
was necessary to determine the gluonic form factor ¢%(z)
using a different method by resorting to the EMT density
formalism. The large-N, formulation of the bag model
correctly reproduces the general large-N,. counting rules
for the EMT form factors [6]. The usage of the large-N,
limit has moreover the advantage of resolving technical
problems associated with form factor calculations in
independent-particle models like the bag model. When
considering the large-N,. limit, our expressions for the
EMT form factors agree with those from Ref. [10]. We
have shown that the 1/N, corrections associated with our
large-N . treatment of the EMT form factors are relatively
small for |7] < My.

The large-N, limit automatically provides a rigorous
justification for the concept of 3D densities. We studied
the energy density 7%(r), the angular momentum density
Ji(F) = €7* /T (¥), and the distributions of shear forces
and pressure related to the stress tensor 7% (7). We have
shown that the bag model EMT densities comply with all
general requirements including the von Laue condition,
which is a necessary condition for stability. The bag model
also complies with analogous lower-dimensional stability
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conditions. Another important result is that the angular
momentum density J/(7) in the bag model can be decom-
posed in monopole and quadrupole terms which are model-
independently related to each other.

We presented an extensive study of the D-term in the bag
model, not only for the nucleon but also for other hadrons
including N*-resonances, vector mesons, A-resonances,
and hypothetical highly excited bag model states. We
have shown that in all cases the D-term is negative. We
made the interesting observation that asymptotically the
D-terms grow as D = —const x M®/3 with the mass M of
the excitation. Interestingly, the same asymptotic depend-
ence was found for high excitations in the Q-ball system [35]
even though the internal structure of the excited states in the
two systems is much different; for instance, the pressure in
the Nth excited state exhibits (2N + 1)-nodes in the Q-ball
system but one and only one node in the bag model. We are
not aware of whether the growth D = —const x M®/3 of the
D-term with the mass M of the excitation is a general result
or a common peculiarity of these two (very different)
systems. It will be interesting to investigate this result in
other theoretical systems. At this point, it is not known how
to access information on the EMT form factors of N* states,
but information on transition form factors can in principle be
deduced from studies of hard exclusive reactions. This field
has a lot of potential.

The study of excited states has brought very interesting
insights. For instance, while the mass increases by about
50% as one goes from the ground state (nucleon) to the first
excited state (Roper), the internal pressure in the center and
the D-term increase by factor 7. This finding supports the
observations made in other systems that the D-term is a
quantity which most strongly reflects the internal dynamics
of the system and exhibits the strongest variations as one
for instance considers higher excited states. The ground
state and all excited states correspond to mininima of the
action, and comply therefore with the necessary stability
condition provided by the von Laue relation, and the
D-terms are always negative. However, only the ground
state is the global minimum of the action, and hence
absolutely stable. The excited states correspond to local
minima and can decay into the ground state.

We studied the D-term in three different limits: the
heavy quark limit, large bag-radius limit, and nonrela-
tivistic limit. The D-term assumes the same well-defined
finite value in these three limits, which can be computed
analytically. This shows that the D-term is a property of
all systems including nonrelativistic systems. Since D =
0 for a free fermion [80], this also provides an illustration
how e.g., even very small interactions in the bag model
(in the limit of a very large bag radius) generate a
nonzero D-term.

The bag model is at variance with chiral symmetry,
and its oversimplified description cannot be expected to
give accurate predictions. But one main goal of this work

was to shed light on the interpretation of EMT form
factors in terms of 3D densities. For this, it is crucial to
use a consistent theoretical framework, and the bag
model provides this. The simplicity of this model is a
crucial advantage when elucidating the concepts. For
instance, it was observed in several models that the von
Laue condition [§° drr’p(r) =0 is related to the virial
theorem. This is also the case in the bag model, and we
were able to show that not only this but also the lower-
dimensional analogs of the von Laue condition are satis-
fied provided one works with a solution satisfying the
virial theorem. Another interesting observation is related to
the mechanical stability requirement that the normal force
per unit area 2s(r) + p(r) > 0. This quantity is positive
inside the bag, and the point where it drops to zero marks
the “edge of the system,” i.e., the bag boundary in our
case. Such an observation can only be obtained in a finite
size system.

Finally, we studied the EMT densities in the Bogoliubov
model [79], a predecessor of the bag model in which the
bag contribution is absent and the bag radius needs to be
fixed by hand. This model provides a counterexample for a
framework where the nucleon is not consistently described.
Fixing the bag radius by hand (rather than by means of a
dynamical equation) corresponds to external forces which
are not included in the Lagrangian. This implies an
unphysical situation in which the EMT is not conserved
and where the pressure has no node and the von Laue
condition is not satisfied. From such a positive pressure,
one would obtain an unphysical positive D-term. This
problem is solved in the bag model by introducing a
nonzero bag constant B in the Lagrangian.

It will be interesting to study the EMT form factors
and the associated densities in other models of which the
nature is classical, quantum mechanical, or field theoretical.
Such studies deepen our understanding of the hadron
structure.
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APPENDIX: TECHNICAL DETAILS
AND PROOFS

This Appendix contains technical details. Let us quote
first the expressions for the first three spherical Bessel
functions

. sin x . sinx cosx

Jo(x) = P ji(x) = 2 P

. sin x cosx sinx

JZ(X) =3 3 3 2 (Al)
X X X
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Below, we shall also make use of the expansion of a plane
wave e¢®” in terms of spherical Bessel functions and
Legendre polynomials P;(x) as well as the orthogonality

relation of the latter,

Z (214 1)j,(gr)P(cos B),
=0

S (A2)

P P =
/_ldcose ;(cos )Py (cos ) T

In order to abbreviate the expressions below, let us define
the integrals over the combinations of spherical Bessel
functions entering respectively the expressions for p(r) and
s(r), namely

12(0)= [ @ ()3 = 200 0) + 2521 0 )

@)= [ dw (jo (304 ()= () (9) = o)y <x>) -
(A3)

1. Virial theorem in general case

Let us generalize the virial theorem (26) to general
(including excited) states with m # 0. In the general
case, the mass of a hadron is obtained by occupying
Neonst €nergy levels ¢; = Q;/R and adding the energy
due to the bag,

1 dr 4
M(R) = EZQ" + BR. (A4)

where the sum goes over the occupied levels i=
1, ..., Neonst and N qne denotes the number of constituents
with N o = 2 for mesons and N, = N, for baryons.

The Q; = \/w? + m?R? depend on R explicitly and the
; implicitly through the transcendental equation (12). The
derivative of w; with respect to R is determined by
differentiating Eq. (12) with respect to R, which, upon
exploring (12) to eliminate trigonometric functions, yields

a(l)i o ma),-
OR  2Q,(Q;—1)+mR’

(A5)

Using the result (A5), we obtain the virial theorem valid for
m # 0 and excited states, which is given by

+47R2B =0

- R2zzg - +lmR

(Qi - 1)601
20;(Q; = 1) + mR’

©4zR‘B = (A6)

If one takes m — 0, the derivative (A5) vanishes, and the
virial theorem (A6) reduces to Eq. (26) for the nucleon.

2. Proof of von Laue condition

For notational convenience, we present the proof for
the nucleon case. The generalization to other bag states is
straightforward. Integrating p(r) in Eq. (29) over d*r and
using the substitution » - x = wr/R yields

2

R 47
/d3rp( ) =NA*a,a_—15 (a)o)——BR3 (A7)
303 3

0

The integral over the Bessel functions 15 (@) is defined in
Eq. (A3) and yields

@? — sin?w,
B(wg) = 21—, (A8)
W
Inserting (A8) into Eq. (A7), we find
R? @? —sinw, 4z
a3 N_.A2 = TP TP pR3Lo.
/ rp( ) a+a 3&)% CO() 3
(A9)

That Eq. (A9) is zero becomes apparent after inserting
the expressions for A and a. defined in the context of
Eq. (11), exploring the transcendental equation (12) to
eliminate trigonometric functions and some tedious alge-
bra, which yields

205(Qp— 1) Ar

N
& ¢ ~ T BR3
/ ) = 3 Raan@ = T mR 3
1 ,
= — 3 RMj(R) =0, (A10)

where in the second step we made use of the virial theorem
(A6) for the nucleon case.

To prove the 2D analog of the von Laue condition, we
consider

7 arr(=55004 00

A? R ! 1
=N aia — (=1 (w) + I{ (@0)] — EBRQ
1 !
= =5, Mn(R) =0, (Al1)

where in the last step we used Egs. (A6) and (A9). Similarly
for the 1D version of the von Laue condition, we find
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[T ar(=35004 00

A? 1
= No - aa 3 [=4l3{wo) + If (on)] - BR
1 |
= M. (R)=0. Al2
~ o Mu(R) (A12)

Notice that the integrals I (wy), I (@), I (@), 1} (w) are
well defined but contain sine- and cosine-integral terms
which cancel out in the linear combinations in the square
brackets in (A11) and (A12). The results (A10), (A11),
and (A12) show that the von Laue condition and its lower-
dimensional analogs are all satisfied if the virial theorem is
satisfied.

3. Equivalence of D-term expressions

In this section, let us distinguish the expressions D, and
D, for the D-term in terms of pressure and shear forces as
defined in Eq. (7). For D, we have

D, —MN/d3rr2p(r)
R* 47
= MN (NCAZG+G_WI£(G)0) —?BR5>, (A13)
0

where the integral over Bessel functions yields

3

Ip o 0)0 -2 .
4 (wy) = ==+ wy — wsin®w, — sin @y cos wy.

: (A14)

Exploring the expression (A9) for the von Laue condition
to eliminate B yields

R* 4
D, = MyN.A’a a_ % 4 15w0+a)0

-5 wysin’w, — sin w, cos a)0> (A15)

and corresponds to the expression quoted in Eq. (37).
To show that the expression in terms of shear forces
yields the same result, we consider

4
—EMN/d3rr2s(r)
4M N A? R I ()
= -y AT a Ly (W
5 3wg

D, =
(A16)

with the integral over Bessel functions given by

0 5 5 1 )

Ii(a)()) = ?0 - ZG)O —+ Zsina)o COS g —+ Ea)osin .

(A17)

The difference of the two expressions for the D-term is

R4
D,—-D;=MyN, Ao a_
30t

+ (o) + 530

0

4 1 !
- g7;M,VBR5 = —§R3MNM;V(R) =0, (A18)

where in the last step we once more made use of Egs. (A6)
and (A9). This proves that the expressions for the D-term in
terms of p(r) and s(r) are equivalent.

4. Proof that ¢ (¢) +cC(¢) =0

In the main text, it was shown that at r =0 it is
¢2(0) + 9(0) = 0. We now wish to generalize this proof
to ¢t # 0. The proof is elementary but tedious such that it
is worth showing it in some more detail. The stamng pomt
is ¢2(f) in (23c). We recall that k' =k + A with A =
(0,0, A3) in our kinematics. The right-hand side of (23c) is
an even function of A®. To show this, we replace A3 —
(=A%) and subsequently substitute k* — (—k*), which
restores the starting expression. This proves that ¢<(z)
can be understood as a function of # = —A” as it must
for a form factor. In the next step, we explore this to
simplify the expression for ¢2(¢) as follows. In the first
term in the square brackets of (23c), we substitute
k* - k> — A3, and subsequently we explore that the
function is even under A® — (—A?), which restores the
original expression but with k and ¥ exchanged. This
allows us to write Eq. (23c) as

3
&0(1) = — (gﬁwuwmmmmw]
4JTA2R6NC
b :TNQ+Q_, (A19)

where ¢; = I;/ k. Tt is convenient to work in coordinate
space. In the formulas below, Bessel functions j; with no
argument will denote j,(w;r/R) for notational simplicity,
and the primes will denote derivatives with respect to r. In
order to avoid total derivatives (which in general do not
vanish in the finite volume integrals in the bag model and
cause a proliferation of terms), we proceed by introducing a
o-function as follows:

c2(t)=—b [/%m(k)p/(g&tlm)eg

+/é37]§3t°(k)/(§3 E h(q )q3e§,} /d3rei7(’?—t7)_

(A20)

In the next step, we invert the Fourier transforms, where
©, = O(R — r) is used for brevity and we use identities
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d3q ey d3q ~ _ .0,
— L 10(q)el = jo—=, t Fq = g, j, —L A21
/(277)3 O(q)e ]047TR3 (2 ) e 1(Q)e le .]1 47TR3 ( )

where (as before) j; = j;(wr/R) for brevity. This yields

_ b i JoJ1 JoJ1
(1) —m/(PW A[( 2 <JoJ1 = JoJy =) = |Ov (A22)

Finally, we explore that e; = €, - €, = cos 6 such that (¢;)? = 3 P(cos 6) + § Py(cos 6). Making use of the expansion of
¢"2 and the orthogonality of Legendre polynomials in (A2), we obtain

c0) = s [ | (<3080 + Lian ) i = o) + (=3280 = Lioan ) 222 a2y

L Jj1(Ar)
AJ](Ar) = IA,.

where the underbraces indicate useful identities. Another helpful identity is 2j,j; = — % (2 (jojr — joj;)]. After integrating
over the solid angle, we find that the r-integrand is a total derivative,

_ 4nb R 0 .. g J1(AR)
) = s | bRt - o)l = a7 (A24
In the massless case, the prefactor ¢ is given by
b o . 3
¢o = 55 Uo(@0) i (@0) = o(eo) i (@0)) =7 (A25)

which follows from using the transcendental equation (12). In the massive case, the result is a different fraction, and the last
step is lengthier, and one has to use the expression for B from the massive virial theorem to show that the constraint _; ¢/(¢)
holds also here.

5. EMT form factor of the antisymmetric EMT

For completeness, we discuss the form factors of the canonical EMT defined by Thy! = 2z//q( iy# 3” + iy# gb)y/q
The canonical EMT can be decomposed in two parts: a symmetric part of which the form factors A4(¢), J4(t), D4(t), and
¢4(r) were discussed in the main text and an antisymmetric part which is characterized by a single form factor [100]

i(Pho* — o)A,

(r'l —(Té’in"(o) - T4:(0)|p) = Fla(D)a(p') 1, u(p), (A26)
which in the bag model is given by
q 2p6 P’k / K NS (k) tl(k/)
Fcan(t) = 47A“R (27[)3 2(I+(l A3 to(k )tl (k) ? - to(k)tl (k) k’ -+ k X k’ . (A27)

The expression (A27) agrees up to the sign with the bag model results for the axial form factor G4 (). Thus, we recover
Féin (1) = =G4(1), which is a model-independent result [100]. This shows that also the canonical EMT is consistently
described within the bag model.
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