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Introduction

The gravitational form factors are related to very wide class of physics problems ranging
from the fundamental questions of General Relativity to the theory of hard exclusive processes and
physics of exotic charmonia. Although the direct access to these form factors with gravitational
forces (at least with those available in the Solar system) is out of reach, their first measurements in
hard QCD processes became available [1, 2, 3]. In recent paper [4] a detailed review of the theory
and the phenomenology of the gravitational form factors is provided, and a comprehensive list of
related literature is given.

The field is fastly developing, during last few months several important results were obtained:

o In Ref. [5] the definition of the force distributions inside hadrons in wide range of reference
frames is provided. Interesting connections between gravitational form factors and physics
of compact stars are discussed.

e New lattice measurements of the pressure and shear force distributions (for quarks and glu-
ons) in the pion and in the nucleon were reported in Refs. [6, 7]. We note however that the
results for the shear force distribution s(r) obtained in these papers seems violate the stability
constraint %s(r) + p(r) > 0. This needs a clarification.

e The comprehensive perturbative QCD analysis of the trace anomaly for quark EMT was
performed in Refs. [8, 9]. This analysis is very important for the discussion of the nucleon
mass decomposition in QCD.

In this short contribution we touch only several points (sometimes speculative) which are covered
neither in the review [4] nor in recent literature.

Fundamental mechanical properties of particles and gravity

Our intuitive perception of the mass is related to the gravity (weighing experiment). The
gravity itself is equivalent to a non-trivial space-time metric g,y (x) (we shall consider here the
Minkowski metric signature 1y, = diag(+ — ——)). The mass resulting from the weighing exper-
iment is related to the variation of the action in respect to the static goo(r). The corresponding
expression has the form:

M= | &r 1
/ 85800( ) M

Another basic mechanical property, the total angular momentum J' (particle spin), is obtained by
the variation of the action in respect to static go;(r):

. . 2 58S
J' = S’kl/d3r *
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The classical application of this equation is the measurement of the Earth rotation by the Foucault
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pendulum.
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The mass and the angular momentum (spin) of a particle are well known and frequently dis-
cussed fundamental characteristics of particles. There is another — not frequently discussed — fun-
damental characteristic of a particle, which is related to the variation of the action in respect to
the spatial metric g;(r). Such variation corresponds to the change of the 3D distances, i.e. to the
deformation of the particle and hence to its elasticity properties. Therefore, we can introduce the
quantity [10]:

2M . 1 . 2 oS
b B (o dop) 2B 3
5 g 3” —8 68k (1) lguv=nv ©)

called D-term *, it characterises the distribution of internal forces in the particle. The D-term
is an intrinsic characteristic of any particle, which is as fundamental as particle mass and spin.
The detailed discussion of the D-term for various systems can be found in recent review [4]. The
stability of the system requires that the D-term is negative [4], and indeed in all known examples
D < 0, even for the unstable particles.

The effective action for the nucleon (described by the spinor field N(x)) interacting with the
external gravitational field can be written as:

Se = [ /=5 (W) 01423~ MING) — g RO NGO+ ) @

where R(x) is the scalar curvature of the space-time, , = d, + g 4, V5] @,? is the covariant deriva-
tive written in terms of vierbeins and spin-connection (see e.g. [12]), and ellipsis stays for higher
order terms". Using this effective action and egs. (1,2,3) one obtains that the nucleon mass My = M,
its spin Ji, = %i and the nucleon D-term Dy = D.

From expression for the effective action (4) we see that the D-term enters multiplied by the
scalar curvature of the space-time, so it is very strongly suppressed in gravitational fields available
in Solar system. However, this term might play essential role in physics of hadrons in recently
observed violent events such as the neutron stars mergers [13].

Mechanical properties of non-spherical particles

Particles with spins J =0, % posses the spherical symmetry. The spherical symmetry allows to
express the static stress tensor:

. 2 58
O*(r)= — 5

in terms of pressure (p(r)) and shear forces (s(r)) distribution inside the particle:

Ok (r) = p(r) 8% +s(r) Yi*. (6)

*The name “D-term" is rather technical, it can be traced back to more or less accidental notations chosen in Ref. [11].
Nowadays, given more clear physics meaning of this quantity, we might call this term as “Druck-term" derived from
German word for “pressure”.

TThese terms can contain contributions of the type RMY 9y NPDyN, ete. The detailed classification of all terms in the
effective action will be given elsewhere.
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Here we introduce the irreducible (symmetric and traceless) tensor of n-th rank:

iti...i (D" i gl B A "
i1in...iy __ i In — — r__ Ik __ _ 5t
Yzt — (2n_1)”r” 0.0 e Yo=1,Y = o= 35 , etc. (N

The pressure and shear forces in eq. (6) can be related to the Fourier transform of the EMT form

factor in the Breit frame (D(r) = [ (‘212?3 e ATD(—A?)) [10, 4]F

1 1d,d~

_ Y~
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These relations follow from the equilibrium equation d;®*(r) = 0 and they guarantee the general
stability condition [16]:

/ &r @ (r) =0, )
due to obvious relations:
1 ~ ;
/d3r p(r) = /d3r 9> D(r) =0, /dQ vik=o. (10)

For higher spin particles J > 1 more terms in expression for the static stress tensor ®*(r) are
allowed. The new terms can be classified in terms of multipole expansion. General expansion to
the quadrupole order has the form:

0(r) = po(r)8* +s0(r¥* + pa(r) Q¥ +252(r) [ Q7Y + Q¥ = 5*Qrv |+ (1)

Here ellipsis stays for the contribution of 2”- multipoles with n > 2 parametrised by p,(r),s,(r),
etc. The quadrupole operator is the (2/+ 1) x (2J + 1) matrix:

NP O ) .
Ok = 3 <J LR L A gJ(J+ 1)5”‘) , (12)

which is expressed in terms of the spin operator J /. The spin operator can be expressed in terms of
the SU(2) Clebsch-Gordan coefficients (in the spherical basis):

Jh = IT+1)cm,. (13)

The quadrupole pressure and shear forces distributions (p»(r),s2(r)) can be expressed through the
Fourier transform of additional EMT form factors for higher spin particles? :

1 1d ,d~

_ _Lyg =——r———
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This form of quadrupole pressure and shear forces is the consequence of the equilibrium equation
9x®*(r) = 0 which guaranties the stability condition (9). The form (14) of quadrupole pressure

tSee recent paper [5] for detailed discussion of the definition of pressure and shear forces in wide class of reference
frames.

$Generically, for an integer spin J particle, the EMT has 4J 42 form factors, plus 2J + 1 additional form factors for
individual quark and gluon EMTs [14] . The latter describe the non-conservation of individual EMTs.
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and shear forces also ensures that all relations for the force distributions discussed in the section
IX and Appendix of [4] are satisfied automatically.
For a particle of arbitrary spin we can introduce more general tensor quantities:

M — /d3r P YRk @00 (p) (15)

which correspond to 2"-multipoles of the energy distribution, obviously My = M. Note, that only
even n are allowed by the P-parity conservation. Eq. (15) can be reformulated as the multipole
expansion of the energy density :

OYr) = ) &(no -ty (16)
n=0,2,...

where QAﬁl"'k" is the 2"-pole spin operator and &,(r) is the corresponding 2"-pole energy density.
Analogously, for an arbitrary spin particle we can introduce a set of dimensionless tensors of
rank n+2:

. 4 d
Dilkklkz"'k" _ _M/d?ar (Mr)nYnklkz...kn G)’k(r). 17)

Again, only even n are allowed by the P-parity and Dg‘ = 0 due to the stability condition (9). For

particles with spin J =0, % only Dékk]kz is non-zero and can be expressed through the D-term (3):

D;kklkz — <5ik| 5kk2 + Skk] 5[1(2 o g’sikSklkz) D. (18)

The tensor observables (17) can be related to GPDs, see e.g. the discussion for spin-1 hadrons in
recent paper [15].

Gravitational form factors of Goldstone bosons

Goldstone bosons of a spontaneously broken symmetry in any theory play crucial role in dy-
namics of the theory. For example, the phenomenon of spontaneous breakdown of the chiral sym-
metry in the strong interaction is crucial for the description of the mass spectrum and dynamics in
QCD.

The Goldstone bosons of spontaneously broken chiral symmetry are (almost) massless spin-0
particles and therefore the D-term cannot be defined in terms of static stress tensor, see (3). For
Goldstone bosons we define the D-term in Lorentz covariant way, in terms of EMT form factors:

(9104 (0) ) = 2PHPYA ) + 3 (MAY — A DA(r) + 2200 ) (19)

Here P = (p'+ p)/2, A= p’ — p and f is the pion decay constant which has dimension of mass
and sets the mass scale in the effective theory. We introduced the form factors for individual quark
and gluon EMTs. The total EMT is conserved

90" =0, O =Y el +eL, (20)
q
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hence ¥, . (t) = 0. The quark form factor ¢2(r) = ¥, 4. ¢(t) = —8(t), describes the
non-conservation of EMT for individual quark and gluon pieces. This form factor is important
to determine the pressure forces distribution in a hadron individually for quarks and gluons, and
to study the forces between quark and gluon subsystems in hadrons¥ (see recent discussions in
[17, 18,8, 9]).

The form factors in eq. (19) at zero momentum transfer can be fixed by the soft pion theorem:

lim (p'|@f," (x)|p) =0. 1)

pH—=0
This theorem leads to the relation among form factors:

1
0=2p"p" (4%(0) +D%(0)) +2 f2 n*Vé2(0). (22)
This equation is satisfied if the EMT form factors of massless Goldstone boson are related to each

other by:
D2(0) = —A2(0), &2(0)=0. (23)

From the first equality we obtain immediately the value of the D-term of the pion in the chiral
limit D = —1 [19]. Our result that ¢2(0) = 0 for Goldstone bosons is valid for arbitrary QCD
normalisation point.

Nucleon’s seismology?

Up to now we consider the energy density ®°(r) and distribution of forces encoded in the
stress tensor @ (r) separately. It would be interesting to establish connection between these quan-
tities, this would be a step towards an understanding of the equation of state inside a hadron. If
we treat the interior of a hadron as an elastic medium and boldly identify elastic moduli K and u
(see §4 of [16]) with the pressure and shear forces distributions as K = p(r) and 2 = s(r), we can

9 The stability equation for the quark part of the stress tensor has the form:

dOk(r)
agk +fi(r)=o0.

This equation can be interpreted (see e.g §2 of [16]) as the equilibrium equation for quark internal stress and external
force (per unit of the volume) f(r) acting on quark subsystem from the side of the gluons. This gluon force can be
computed in terms of EMT form factor &2 (¢) as [18]:

iy g0 [ D a0 o
f(r)fMW/(zﬂ)s eI S0 A2,

The total squeezing (stretching) gluon force acting on quarks in the nucleon is equal to [18]:

2M [0 dr
Ftolal:7 8 \/thQ(t)'

Estimates in the instanton model of the QCD vacuum in Ref. [18] show that this force is squeezing and have rather small
size of Fog) ~ 6- 1072 GeV/fm.
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obtain the longitudinal (¢; ) and transverse (c;) speeds of elastic wavell (see §22 of [16]):

=4/ 5 @00 (24)

These relations demonstrate once again that 2s(r) + p(r) > 0 and s(r) > 0, which corresponds to

the stability conditions. Using the chiral perturbation theory one obtains for the nucleon that at

r)—>\/§7 Ct(r)%\/zy (25)
1 1
C[(V) ~ Mgt — 07 Ct(r) — \/;7 (26)

for my # 0. Imposing the conditions that the speeds of elastic waves are less than the speed of light

large distances r — oo:

in the chiral limit, and

we obtain the following inequalities:

0%"(r) — [is(r) + p(r)} >0, 0%(r)—=s(r)>0. (27)

From these inequalities we can obtain the low bound (upper bound for the absolute value) for the
allowed value of the D-term:

RV (28)

8
0>D>——M*(y* D| <
> D2 = M (r)e, or D] < 3

where (r?)g is the mean square radius of the energy density defined by:
1
(e = / d’r r* ©(r) (29)

It is very interesting that the inequalities (27) are satisfied in various models. For example, in the
Skyrme model we have for radially symmetric solutions

SlI'l2 mn 2m2
0(1) - 350+ = S (2 SN S (1 o) 20, 0

2 er? 2

r2 8 e2r? 2e2 2

0% (r) _ L() = S0 (F () <3f” L SFE@) 1F’(r)2> I cos(F () > 0,

where the profile function F(r) satisfies F (0) = Bx (B =winding number) and vanishes for r — oo.
Both expressions are explicitly positive and hence the general inequalities (27) are satisfied au-
tomatically. Numerical studies of Skyrmions, show that for winding number B = 1 Skyrmion
¢ < 4/1/3 and ¢, < /1/2 whereas for radially symmetric Skyrmions with higher winding num-
bers both velocities reach from below speed of light at (B — 1) points inside the Skyrmion. Note

I The seismic waves are well known examples of this phenomenon.
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that radially symmetric Skyrmions with B > 2 are unstable. Therefore, we come to the conjecture

1 1
a<yfh a<yfh G

might be considered as the criteria for the stability of the light baryons and the nuclei**. Recently

that the inequalities:

similar inequalities were discussed in Ref. [5]. In that paper they were related to the energy con-
ditions which reflect the principles of relativity and play an important role in General Relativity.
Would be interesting to find the connection with consideration here.

Our conjecture is still very speculative, but if it is true, it leads to the following bound on the
absolute value of the D-term:

ID| < % M* (). (32)

Numerical studies of the Q-balls (see discussion of EMT for Q-balls in [20, 21]) shows that
the inequalities (27) as well as the bound (32) are always satisfied, but the conjectured inequalities
(31) are violated even for the stable Q-balls. This violation happens only in the small region close
to the centre of the soliton. It would be important to identify the class of systems for which our
conjecture (31) is valid. At least for the nucleon as a Skyrmion it is true.
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