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Abstract

Let X = G/T', where G is a Lie group and I is a lattice in G, and let U be a subset of
X whose complement is compact. We use the exponential mixing results for diagonalizable
flows on X to give upper estimates for the Hausdorff dimension of the set of points whose
trajectories miss U. This extends a recent result of Kadyrov et al. (Dyn Syst 30(2):149-157,
2015) and produces new applications to Diophantine approximation, such as an upper bound
for the Hausdorff dimension of the set of weighted uniformly badly approximable systems of
linear forms, generalizing an estimate due to Broderick and Kleinbock (Int ] Number Theory
11(7):2037-2054, 2015).

Mathematics Subject Classification Primary 37A17 - 37A25; Secondary 11J13

1 Introduction

Throughout the paper, we let G be a Lie group and I' a lattice in G, denote by X the
homogeneous space G/ I" and by u the G-invariant probability measure on X. The notation

A > B (resp., A> B),
+

where A and B are quantities depending on certain parameters, will mean A > CB (resp.,
A > CB+ D), where C, D are constants dependent only on X and F. Let F* :=(g/);>0 be
a one-parameter subsemigroup of G. Following [10], for any subset U of X define the set

E(Ff,U):={xeX:FtxnU = @) (1.1
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of points in X whose FT-orbits stay away from U. If the flow (X, i, g;) is ergodic, then
the orbit {g;x};>0 is dense for p-almost all x € X; hence u(E(F*, U)) = 0 whenever U is
non-empty.

A natural question one can ask is: how large can this set of measure zero be? If the
semigroup F is quasiunipotemt, that s, all eigenvalues of Ad g; have absolute value 1, then,
whenever the action is ergodic and U is non-empty, the set (1.1) is contained in a countable
union of proper submanifolds of X — this follows from Ratner’s Measure Classification
Theorem and the work of Dani and Margulis, see [21, Lemma 21.2] and [6, Proposition 2.1].
On the other hand, if FT is not quasiunipotemt and U = {z} for some z € X, it is shown in
[11] that the set (1.1) has full Hausdorff dimension.

Fix a right-invariant Riemannian structure on G, and denote by ‘dist’ the corresponding
Riemannian metric, using the same notation for the induced metric on X. Also denote by
B(r) the open ball of radius r centered at the identity element of G, and by B(z, r) the open
ball of radius r centered at z € X. The aforementioned result of [11] can thus be stated as

dim E(F*, B(z,r)) - dim X asr — 0. (12)

Here and hereafter dim £ means the Hausdorff dimension of the set E, and codim E will
stand for its Hausdorff codimension, i.e. the difference between the dimension of the ambient
set and the Hausdorff dimension of E. Until recently a problem of estimating the left hand
side of (1.2), or more generally, the quantity dim E(FT, U) where U is a non-empty open
subset of X, has not been addressed. In [2] Broderick and the first named author considered
the case

G =SLy+n(R), I' =SLjy4n(Z), X =G/ T, (1.3)

with the action of F* = (g;);>0 where

t/m

g = diag(e'’™, ... e

i gtin | ety (1.4)

This action is important because of its Diophantine applications. In particular, a system of
linear forms is badly approximable if and only if (see [5]) the g;-trajectory of a certain element
of X does not enter the set

U(e) :=={gl' € X : 8(gT") < ¢} (1.5)
for some ¢ > 0, where

§(gT):= inf  [gvl. (1.6)
veZmtn < {0}

It was essentially! shown there that for all ¢ > 0 one has

m—+n

log(1/e)

The main ingredient of the proof in [2] was the exponential mixing of the g;-action on X
(see Sect. 2 for the definition). This theme was continued by Kadyrov in [10], where an
estimate similar to (1.7) was proved for the Hausdorff dimension of E(F™, B(z, r)) under
the assumptions that X = G/ T" is compact and the F*-action on X is exponentially mixing.

codim E(F*, U(e)) > (1.7)

112, Theorem 1.3] is stated in a number-theoretic language; however it readily implies (1.7).in view of [2,
Lemma 3.1]. Note that recently a precise asymptotic formula for the left hand side of (1.7) was obtained by

. . codim E(F*,U .
Simmons [20]: namely, that as ¢ — 0, the ratio w tends to a constant depending only on m, n.
&
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Namely, it is shown there that there exist ro > 01 such that for any r € (0, rg) and any z € X
one has
dim X

log(1/r) "
In the present paper we strengthen Kadyrov’s result in two ways: by considering more general
open sets U in place of balls B(z, r), and by relaxing the assumption of compactness of X
to that of compactness of X \ U. Our main theorem generalizes results from both [2,10] and
can be used to produce new applications to Diophantine approximation.

We need to introduce the following notation: for a subset U of X and r > 0 denote by
o, U the inner r-core of U, defined as

codim E(F*, B(z,r)) > (1.8)

o, U = {x € X : dist(x, U°) > r},
and by 0, U the r-neighborhood of U by
o,U :={x € X : dist(x, U) < r}.

Also, for x € X denote by 7, the map G — X given by m,(g) := gx, and by ro(x) the
injectivity radius of x:

ro(x) := sup{r > 0 : m, is injective on B(r)}.
If K C X is bounded, let us denote by ro(K) the injectivity radius of K :

ro(K) := xlreli ro(x) = sup{r > 0 : , is injective on B(r) Vx € K}.

Here is the main result of the paper:

Theorem 1.1 Let G be a Lie group, T a lattice in G, X = G/ T, and let F* be a one-
parameter Ad-diagonalizable subsemigroup of G whose action on X is exponentially mixing.
Then there exists ' > 0 such that for any U C X such that U is compact and any
0 < r < min(rg(d1U°), r') one has

n(orU)

log(1/r) + log(1/ (o, U)) °

We note that in the above inequality, as well as in similar statements below, the implicit
constant in >> is independent of U and r and is only dependent on X and F. Also note that
the right hand side of (1.9) depends on r while the left hand side does not. Since the inequality
holds for all sufficiently small values of r, in applications one needs to choose an optimal r
to strengthen the result. In particular, it is not hard to see, by taking U to be an open ball of
radius r centered at z and assuming that X is compact, that Kadyrov’s result (1.8) is a special
case of (1.9). Moreover one has the following generalization:

codim E(F*,U)>

(1.9)

Corollary 1.2 Let FT be as in Theorem 1.1. Assume that X is compact. Then there exists
r’ > 0 such that for any closed subset S of X and any 0 < r < r’ one has

w(r/28)

log(1/r)

Consequently, if S C X is a k-dimensional compact embedded submanifold, then for some
C=C(S,F)andany0 < r < r' one has

codim E(F*, 8,8) >

dim X —k

codimE(F*,9,8)>C——.
log(1/r)

(1.10)
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The case k = 0 and S = {z} of (1.10) coincides with (1.8): it is easy to show, by looking
at the proof, that C({z}, F) is independent on z € X.

Similarly to the previous papers [2,10] on the subject, the main theorem is deduced from
a result that estimates

dim E(F*,0,U) N Hx,
where x € X and H is the unstable horospherical subgroup with respect to FT, defined as
H :={g e G :dist(g;gg—s,e) > 0 as t - —oo}. (1.11)
More generally, in the following theorem we estimate
dim E(F*,0,U) N Px

for x € X and some proper subgroups P of H, namely those which have Effective Equidis-
tribution Property (EEP, see Sect. 2 for the definition) with respect to the flow (X, F). Note
that for P = H this property follows from the exponential mixing of the action, as shown in
[14].

Theorem 1.3 Let G, I and X be as in Theorem 1.1, let F* be a one-parameter Ad-
diagonalizable subsemigroup of G, and let P be a subgroup of H which has property (EEP)
with respect to the flow (X, F¥). Then there exists r"” > 0 such that for any x € X, any
U C X such that U€ is compact and any 0 < r < min(ro(d1,2U°), r”") one has

U
codim{g € P : gx € E(FT.U)) > wo:U)

—_— (1.12)
og; +log 1oy

The general statement of Theorem 1.3 makes it possible to derive a corollary involving
simultaneous Diophantine approximation with weights. Take

i=@r:k=1,....mandj=(je:€=1,...,n)

with
m n
ik, je>0 and Y ix=1=Y_ji, (1.13)
k=1 =1
and define the i-quasinorm of x € R™ and the j-quasinorm of y € R" by
Ix[; ;== max |x|"/% and [ly[j := max |ye|'"//".
1<k<m 1<t<n

A system of linear forms given by A € M,, , (R) is said to be (i, j)-badly approximable if
infpezm, qezr (0} 1AQ + Pl lIqll; > 0

This generalizes the notion of (unweighted) badly approximable systems of linear forms,
which correspond to the choice of equal weights

i=m:={/m,...,1/m), j=n:=(/n,...,1/n). (1.14)
Now for any ¢ > 0 set
Badjj(c) :={A € My :pezmyiqnefzn\{o} lAq +pll; lall; = c}. (1.15)

It is known, see [18, Theorem 2] and [17, Corollary 4.5], that for any i, j as in (1.13) the set
of (i, j)-badly approximable systems of linear forms, which is the union of the sets Bad j(c)
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over ¢ > 0, has Hausdorff dimension mn. One can ask for an estimate for the Hausdorff
dimension of Bad; j(c) for fixed i, j and c. Our goal in Sect. 8 is to deduce the following
theorem from Theorem 1.3:

Theorem 1.4 There exists co > 0 such that for any i, j as in (1.13) and any 0 < ¢ < cq one
has

codim Bad; j(c) >>L1,
log

where the implicit constant in > is independent of ¢ but depends on i, j.

This is a weighted generalization of [2, Theorem 1.3]. Note that in the paper [20], men-
tioned in the footnote before (1.7), it is shown that codim Bady n(c) is asymptotic to a
constant times ¢ as ¢ — 0. However the methods of [20] do not seem to extend to the
weighted case.

The structure of the paper is as follows. In the next section we define exponential mixing
and property (EEP), and, following [14,16], show that the exponential mixing of the g;-
action on X implies (EEP) for the expanding horospherical subgroup relative to g;. In Sect.
3 we deduce Theorem 1.1 and Corollary 1.2 from Theorem 1.3. The next three sections are
devoted to proving Theorem 1.3. In Sect. 8 we prove Theorem 1.4 by reducing the problem
to dynamics on the space G/I" with G and I" as in (1.3) and

& = gj’j =diag(e, ... e em N o7, (1.16)
Theorem 1.3 is then applied to the subgroup
P:{(Ig ?) :AeMm,,,(R)} (1.17)
n

of G, which, following [16], is shown in Sect. 7 to satisty property (EEP) relative to the
g;’-action. We conclude the paper with a few remarks and open questions.

2 Exponential mixing implies (EEP) for H

We start with the definition of Sobolev spaces on Lie groups and their homogeneous spaces.
Let G be a Lie group and I" a discrete subgroup of G. Denote by X the homogeneous space
G/T and by N the dimension of G. In what follows, || - ||, will stand for the L” norm, and
(-, -) for the inner product in L>(X, 1), where u is a (fixed) G-invariant measure on X. If T
is a lattice in G, we will always take p to be the probability measure. Note though that much
of the set-up below applies to the case I' = {¢} and X = G.

Fix a basis {Y1, ..., Y,} for the Lie algebra g of G, and, given a smooth function & €
C*(X) and £ € Z, define the “L?, order £” Sobolev norm ||k ||¢,, of h by

def
Ihlle., = > 1D%Alp,
| <€

where @« = (aq, ..., o) is a multiindeX, |«| = Z?:l a;, and D? is a differential operator
of order || which is a monomial in Y1, ..., Y,, namely D* = ¥;"' ... ¥,". This definition
depends on the basis, however, a change of basis would only distort ||z]|¢,, by a bounded
factor. We also let

C3°(X) ={h € C®°(X) : ||hll¢,2 < oo forany £ = Z,}.
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1360 D. Kleinbock, S. Mirzadeh

Clearly smooth compactly supported functions belong to C5°(X). We will also use the
operators D? to define C* norms of smooth functions f on X:

Ifllce == sup  [D*f(x)].

xeX, |a|<t

Definition 2.1 Let F* = {g, : t+ > 0} be a one-parameter subsemigroup of G, and let
X = G/T where I is a lattice in G. We say that a flow (X, F¥) is exponentially mixing if
there exist y > 0 and £ € Z such that for any ¢, ¥ € C3°(X) and for any ¢ > 0 one has

(g,w,w—/gaduf vdu
X X

As is the case in many applications, we will use the exponential mixing to study expanding
translates of pieces of certain subgroups of G. If P C G 1is a subgroup with a fixed Haar
measure v, i a function on X, f afunctionon P, x € X and ¢ > 0, let us define

< e eleal¥les. 2.1

Iy y (8, %) :=/;f(h)1/f(gth)dV(h)-

Definition 2.2 Say that a subgroup P of G has Effective Equidistribution Property (EEP)
with respect to the flow (X, FT) if P is normalized by F*, and there exists . > O and £ € N
such that for any x € X and ¢ > 0 with

t >log 2.2)
+

ro(x)’
any f € C55  (P) with supp f C B (1) and any ¥ € C5°(X) it holds that

comp

‘If,w(gr,x) - /P de/XIﬂdu‘ <max(|¥llcrs 1Wleo) - I fllce - e (2.3)

Here v stands for a Haar measure on P. Note that the implicit constants in both (2.2) and
(2.3) are independent on f, ¥, t and x. This definition is quite involved but it is justified by
the fact that in many special cases (2.3) can be derived from exponential mixing, for example
when P = H, the unstable horospherical subgroup relative to F*. This was essentially
proved in [16], together with another important example of a proper subgroup of H with the
same property, namely with P as in (1.17). We are going to revisit the argument from that
paper and make the constants appearing there explicit.

Remark 2.3 Note that it suffices to establish (EEP) for functions ¥ with f x ¥ dp = 0:indeed,
if Yo := ¥ — [ ¥ du, one clearly has

If,wo(gth)=1f,¢(g;,z)—/ fdv/ Yvdu.
H X

Let gbe aLie algebra of G, gc its complexification, and for A € C, let E; be the eigenspace
of Ad g; corresponding to 1. Let b, h°, h~ be the subalgebras of g with complexifications:

hc = span(Ey : |A| > 1), b?c =span(Ey @ |A| = 1), he = span(E; : [A] < 1).

Let H, H°, H™ be the corresponding subgroups of G. Note that H is precisely the unsta-
ble horospherical subgroup with respect to F+ [defined in (1.11)] and H~ is the stable
horospherical subgroup defined by:

H ={heG:ghg_;— e ast— +oo}.
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Since Ad g is assumed to be diagonalizable over C, g is the direct sum of b, h° and h~.
Therefore G is locally (at a neighborhood of identity) a direct product of the subgroups H,
H° and H ™. In what follows, if P is a subgroup of G, we will denote by B” (r) the open ball
of radius r centered at the identity element with respect to the metric on P corresponding to
the Riemannian structure induced from G.

Denote the group H~H® by H, and fix 0 < p < 1 with the following properties:

the multiplication map H x H — G is one to one on Bg(p) X BH(p), 2.4)
and
gtBﬁ(r)g_t C BFI(Zr) forany0 <r < pandr >0 2.5)

(the latter can be done since F is Ad-diagonalizable and the restriction of the map g —
8:88—:,t > 0, to the subgroup H is non-expanding).

Let 16 be the Haar measure on G which locally projects to 4, and let us choose Haar
measures v, v” and v on H~, H® and H respectively, normalized so that 1 is locally almost
the product of v, v9 and v. More precisely, see [4, Ch. VII, Sect. 9, Proposition 13], i« can
be expressed via v, 10 and v in the following way: for any ¢ € L'(G, 1) supported on a
small neighborhood of identity,

/ p(g)du(g) = / e~ AMRYdv™ () VO (W) dv(h),  (2.6)
G H-xHYxH

where A is the modular function of (the non-unimodular group) H.

Now we are going to show, following [16], that H, the unstable horospherical subgroup
of G with respect to FT, satisfies property (EEP). We will start with an auxiliary statement,
essentially2 established in [16, Theorem 2.3]:

Theorem 2.4 Suppose that the flow (X, F™T) is exponentially mixing, and let y and € be as
in (2.1). Then forany f € C55, (H),0 <r < p/2andx € X, if

comp

() supp f € B (r), and
(i) 7y is injective on BC (2r),

then for any ¥ € C5°(X) with fx Y dpu =0andany t > 0 one has
[y G 0)] < max (W ller W) (P + e F D) £l o),
where k = dim H.
Using this and again following [16], we can establish
Theorem 2.5 H satisfies property (EEP) with respect to the flow (X, F).

For the proof and for later applications we will need the following lemma, which is a
modification of [14, Lemma 2.4.7(b)] and [16, Lemma 2.2(a)]:

Lemma 2.6 Let G be a Lie group of dimension N. Then for each £ € 7 there exists M,
(depending only on G) with the following property: for any 0 < ¢ < 1 there exists a
nonnegative smooth function ¢; on G such that

2 The statement of [16, Theorem 2.3] featured a constant E(y) in place of max(||¥[|-1, [¥ll¢,2), but it is
easy to see from the proof that E' depends linearly on [|[ /[l -1 and [|¥/[l¢ 2.
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1362 D. Kleinbock, S. Mirzadeh

(1) the support of ¢ is inside the ball of radius € centered at e;

@) llgells = 1;
3) llgellce < Mg -e=EN;

—(t EN
@D Ngelle,p < Mg -¢ 5N

Proof of Theorem 2.5 Suppose we are given f € Cg,,,(H) with supp f C BA(1), v €

C5°(X) with fx Vdu =0,and x € X.Putr = ¢~ P, where 8 is to be specified later, and
take £ asin (2.1). Then, using Lemma 2.6 with G replaced by H, take a non-negative smooth
function 6 supported on B (r) such that

fH Odv=1and |0, < r /2, (2.7)
where k = dim H = N — k. Since v is translation-invariant, one can write
e = [ v tahn di [ 60)dv)
= /H /H F(yh)0 (¥ (giyhx) dv(y) dv(h)

- / / FOR)BOI (gryhx) dv(y) dv(h)

Note that, as long as 6(y) # 0, the supports of all functions of the form 2 — f(yh) are
contained in B := B* (2). We would like to apply Theorem 2.4 with r = ¢~#, hx in place
of x and

fu) == f(yh)6(y)

in place of f. It is clear that supp f;, C B (r) for any 7, i.e. condition (i) of Theorem 2.4
is satisfied. For other conditions we need to require e~ P < min(ro(hx)/2, p/2). Since
ro(hx) > ro(x) as long as h € B, it amounts to assuming

2¢7P" < agmin (ro(x), p) (2.8)
for some uniform constant ag > 0. Also, in view of [16, Lemma 2.2(b)] and (2.7), we have

I fulles < N flceliBllen < eCHR2PH £l e

Then from Theorem 2.4 one gets
\If,wg,,x)\:‘ / f f(yh)ﬂy)xp(gtyhx)dv(y)dv(h)‘s f |5y (s, )| dv()
BJH

< max ([¥ller, W lle2) ( ﬁ’/ il dv(h) + e CHFDB o e )u(é)

<max (1 ller. 1¥le2) (supl£1- €™ + [ fllce - = "CEDBY,

An elementary computation shows that choosing 8 equalizing the two exponents above will
produce

p=r=—iV
14+2¢+N)2
and therefore (2.8) becomes equivalent to (2.2) with some uniform constants a, b. This shows
that (2.2) implies (2.3), and finishes the proof. ]
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3 Proving Theorem 1.1 and Corollary 1.2

We now assume Theorem 1.3 is true and give a proof of Theorem 1.1.

Proof of Theorem 1.1 assuming Theorem 1.3 Let r” be as in Theorem 1.3, and define
r':=min (1/4,7", p) 3.1

wh~ere pisasin (2.4),(2.5). Forany r < p choose s such that B(s) is contained in the product
BH (r/4)BH (r /4). Now take U C X such that U¢ is compact, and for x € X denote

Ecs:={ge B(s):gx € E(Ft,U)}. (3.2)

In view of the countable stability of Hausdorff dimension, in order to prove the theorem it
suffices to prove that for any x € X,

wu(oyU)

dlm EX,S E dlmX - Cﬁ
log —Hogm

(3.3)

with the constant C > 0 only dependent on X and F. Indeed, E(F™, U) can be covered by
countably many sets {gx : g € E, s}, with the maps 7, : E, ; — X being Lipschitz and at
most finite-to-one. y

Since every g € B(s) can be written as g = h'h, where b’ € B (r/4) and h € BT (r /4),
for any y € X we can write

dist(g;gx, y) < dist(g;h'hx, g;hx) + dist(g;hx, y)

(3.4)
= dist(g/h'g—1grhx, gihx) + dist(g/hx, ).

Hence in view of (2.5), g € Ex  implies that hx belongs to E(FT, o,2U), and by using
Wegmann’s Product Theorem [23] we conclude that:

dim Ey ; < dim ({h € BH(r/8) thx € E(FT, 0,0U)} x Bﬁ(r/4)) s
< dim({h € BY(r/4) - hx € E(F*,0,o0))) + dim A. '

Since 91/2(0,2U)° is contained in 9, U, we have:
ro(01U°) < ro (01/2(072U)°) .

Therefore, by Theorems 2.5 and 1.3 applied to P = H and U replaced by o, , U, there exists
a constant C > 0, only dependent on X and F, such that the set {h € B (r/4) : hx €
E(Ft, o, ,2U)} has Hausdorff dimension at most

) oy a0y 2U) . u(orU)
08 T 08 Lo, ) O T 08 Lo, ) (3.6)
U .
<dim# - ¢'— oY)

log % + log ﬁ '
where C’ = 2C. (C’ should be chosen so that we have

log ¢ 4+ log —— log 4
C>c———Hel _ oo (14— 82 )
log -+ log RG] log -+ log RG]
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1364 D. Kleinbock, S. Mirzadeh

Since r < 1/4, we can choose C’ = 2C.) It follows from (3.5) and (3.6) that
U

dim £, , < dim X — ¢'— @D

log ’ + log m

which finishes the proof. O

Proof of Corollary 1.2 Take r’ as in (3.1). If S = & there is nothing to prove. Otherwise,
by Theorem 1.1 applied to U = 9,S and with r/2 in place of r, there exists a constant
C > 0 independent of S such that for any 0 < r < min(ro(X), 1), the set E(F™T, 3,5) has
Hausdorff codimension at most
1% (Gr/Z(al'S)) >C //L(ar/2S)
2 1 = 2 -
log 7 +log imhmsy  logF tlog g

3.7)

Since § is non-empty, d,/2S contains a ball of radius r/2, so there exists a constant do
independent of » such that for any 0 < r < ro(X) we have:

(3, 28) > dor™. (3.8)

Since ¥’ < 1/4, by combining (3.7) and (3.8) it is easy to see that the set E(F ™, 3,S) has
Hausdorff codimension at most
w(0r/28) - Clog4 1(3,28)
(N+Dlog!l +log2+log% T (N +1)log4+log2 +log le) logl ~

This proves the main part of the corollary.

For the “consequently” part, if S is a k-dimensional compact embedded submanifold in
X, then it is easy to see that for some constant d; dependent on S and for all » < ro(X) one
has

13 28) = dirNH. (3.9)

Therefore in this case, combining (3.7) and (3.9), it is easy to see that for any 0 < r <
min(ro(X), r’) one has

Clog4 rN—k
(N —k+1log4+log2+log g logy

codim E(F T, 9,8) >

4 Reduction to a covering result

In the next three sections our goal is to prove Theorem 1.3. Fix a subgroup P of H that
satisfies (EEP) relative to F+, and fix a Haar measure v on P. Put L = dim P. Also take
0 < r” < 1/8 such that the exponential map from p := Lie(P) to P is 2-bi-Lipischitz on the
ball of radius r” centered at 0 € p, The latter implies that there exist constants ¢y, ¢z, ¢3 > 0
such that for any 0 < r < r”” one nas

arl < v(BP(r)) < cort “4.1)
and

4 (BP () < exrt! 4.2)

dr = ’ :
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Forx € X,t > 0, k € N and a subset S of X we define
AP, r, S k,x):={he B (r): guhx € S Ve e (1,2, k}}. 4.3)
Also, let us define
Amax := max{|A| : A is an eigenvalue of adg, [p}.

One of our main goals in the next three sections will be to prove the following theorem:

Theorem 4.1 Let FT be a one-parameter Ad-diagonalizable subsemigroup of G, and P a
subgroup of G with property (EEP). Then there exist positive constants a, b, Ko, K1, K7 and
A1 such that for any subset U of X whose complement is compact, any 0 < r < ro where

ro := min (I’()(81/2UC), r”), (4.4)

any x € 9,U°, k € N and any
1
t>a-+blog—, 4.5)
r

the set AT (t,

r C :
TN U¢€, k, x) can be covered with at most

k
Kze_)”lt
KOeLk)Lmaxt (] — K]/L(UrU) + T

balls in P of radius re " max’,

It is not hard to see a connection between the above theorem and Theorem 1.3: indeed, for
any x € X the intersection of the set in the left hand side of (1.12) with BP( :/Z) is contained

16

in AP(t, 16:FL’ U€, k,x) for any t > 0 and any k € N. Thus the covering constructed in
Theorem 4.1 can be used to estimate the Hausdorff dimension of the intersection of the set

n (E(F*,U)) with P from above.

Proof of Theorem 1.3 assuming Theorem 4.1 First note that the statement of Theorem 1.3
involves just the semigroup F+ as a whole and does not depend on its parametrization.
Thus, applying a linear time change to the flow g;, without loss of generality for the proof
of the theorem we can assume that Apax = 1.

Let 0 < r < ro. We are again going to use the notation E,  introduced in (3.2). In view
of the countable stability of Hausdorff dimension it suffices to find s > 0 such that for any
x € X,

u(o-U)

dim (Ex s N P) <dimX — €' ——————
log - + log CAn)

(4.6)

with the constant C’ > 0 only dependent on X and F.
Note that Ey ,/» N P = @ for any x ¢ 9,U°, so in this case (4.6) is clearly satisfied for

_ ” — r
s =r/2.So,letx € 9,U° and take s = T/

Let dimp denote the lower box dimension. Since for any # > 0 we have

r

E. + NPC AP(t, ,U",k,x),
T T6VT Q\, 16+/L
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1366 D. Kleinbock, S. Mirzadeh

from Theorem 4.1, in view of the assumption Apax = 1, it follows that

- k
log <K0€th (1 — Kip(orU) + I(ZfiLw) )

diimB(Ex,# n P) < liminf
164/ L

k— 00 —log(re=kn)
. log Ko+ Lkt + klog (1= Kip(o:U) + S5 4 9)
- hkrilcgf —logr + kt
tog (1 - K1(0,U) + £2¢)
— L+ .

whenever ¢ satisfies (4.5). It remains to choose an optimal 7. Take ¢ to be a natural number
which satisfies the following conditions:

ne _ Ki
(g) < S5
2K> 4.8)
q>Mb—1L,
and set
L+gqg 1

t=a-+

log .
A ri(o-U)

It is easy to see that in view of (4.8), # as above satisfies (4.5), and we have

it
Kye ™1 _ Kzr_Le—)\l(a+%log m)
— =
,
= e MUKy Ll (0, UYE T = e MYKG . (o, U)ET 4.9)

K K
<MKy (T wlorU) < e MUKy T uloU) < Sl U).
2

Combining (4.7) and (4.9), we have:

tog (1 - & (0, 1) Ko, U
dim(Ex rme>§L+ )<L—2“(’)
T 16VL

t - t
7 % (o, U) —L_C u(orU)
) [ "log L L
o log e log 7 +log 35,77
where C' = 25“ 111) . This finishes the proof. O

5 A measure estimate

Our goal in this section is to prove the following proposition which gives a lower bound for
the measure of sets

P, " _ _ P(_T Y.
AP(r, l6ﬁ,a,/zu,1,x)_{he3 (16ﬁ>.g,hxear/2U} .1)

whenever ¢ satisfies (4.5), and x belongs to 9, U*.

@ Springer



Dimension estimates for the set of points with non-dense... 1367

Proposition 5.1 Let FT be a one-parameter Ad-diagonalizable subsemigroup of G, and P
a subgroup of G with property (EEP). Then there exist positive constants a, b, E', X' such
that for any U C X such that U€ is compact, any x € 3,U€, any 0 < r < ro where rq is as
in (4.4), and any t satisfying (4.5) one has

r r /
inf v(A"(t,— = 07U, 1,x>> > (BP(7>) (0U) — Ele™". (5.2)
xed,Ue ( 16vL " 16y )
To prove (5.2) we will apply (EEP) to smooth approximations of 1z# L) and 1o, ,u.

In order to extract useful information from (EEP) we will need to bound the norms of the
derivatives of those approximations. The next two lemmas will be used to approximate 14, ,
and 1 respectively.

Bp(ﬁ ) Tesp: Yy

Lemma 5.2 Let O be a nonempty open subset of X, and let 0 < g9 < 1, § < 1 be such that
§u(0) = u(og, 0) < pn(0). (5.3)
Then for any 0 < ¢ < &g one can find a nonnegative function Y. € C>, (X) such that:

comp
(1) Ye <1o;

(2) 8u(0) < [x Yedp;

3) Wellgn < 4¢Mpe~t;

@) Wellee < 4Mpe™,

where My is as in Lemma 2.6.

Proof Let O be anonempty open subset of X, andlet0 < g9 < 1 and§ < 1 be such that (5.3)
holds. Since O is open and the function x > dist(x, O°) is continuous, for any 0 < ¢ < &g
we have:

$u(0) < pu(o: 0) < u(0).
By the inner regularity of 1 we can find a compact subset A, C o, O such that:
3u(0) = u(Ag) < pu(o:0) < n(0).

Denote by A}, A" the closed § and § neighborhoods of A,. Since A, is compact, these
sets are compact as well. Now take v, = ¢4 * 1 A where ¢;/4 is as in Lemma 2.6. Sincet

@e/4 1s supported on BC(g/4), the support of the function v, is contained in At co, so
property (1) holds. Furthermore, ¥, = 1 on A,, therefore:

n(0) = /Xlﬁs dp = pn(Ag) = 86u(0),

which gives us property (2). Let @ = («q, ..., ay) be such that |o| < £. For any x € X we
have

DY (0] = | D (e #1400 @) = [ D 0ea w145 ()|
= [D%0esally = leesaly = M

and likewise, by Young’s inequality,

[D“Welly < 1D 0ea % g2 < [ D%0esally - [1ar |, < [D%0eall, = e ™,

which implies (3) and (4). ]
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1368 D. Kleinbock, S. Mirzadeh

Similarly to the proof of the above lemma, one can get the smooth estimations for char-
acteristic functions of small balls in P (we omit the proof for brevity):

Lemma 5.3 Forany £ € Z there exist constants M, > 0 (depending only on P) such that
the following holds: for any e, r > 0 there exist functions f, : P — [0, 1] such that

(1) fe=1o0n BP(r);

2) fe=00n (BP(r+9)%;

) M fellop < Myje™";

@ | fellee < M=

Proof of Proposition 5.1 Let £ and A be as in Definition 2.2, and let a, b, E| be the implicit
constants in (2.2) and (2.3) such that t > a + blog implies

’If,w(gt,x)—/ de/ vdu
P X

for any f and ¥ as in Definition 2.2. Then choose A" > 0 such that

_1
ro(x)

< Eymax([¥ller, 19 lleo) - Ifllce - e (5.4)

A—2¢x > and 1/) > b. (5.5)

Now let U C X be such that U is compact, and take 0 < r < rp and x € 9, U°. If
w(orU) =0, (5.2) is trivially satisfied; thus let us assume that @ (o U) > 0. Then put

0 :=o0,pU
and take

— wu(oU)

© ol

Note that (5.3) holds with g9 = r/2. Also, since U is open, the function x +— dist(x, U°) is
continuous, which implies that § < 1.

Now set f = 13P(#) and take
16/ L

1 2 2
12a+ﬁlog7>a+blog7>a+blog (5.6)
r r

1
ro(x)
(the last inequality holds since x € 3,U¢). Also define

Note that ¢ < r/2 in view of (5.6). So let us apply Lemma 5.2 with &9 = r/2, and Lemma
5.3 with 16:/2 in place of r. Let ¥, and f; be the corresponding functions. Then we have
max (et 1Welleo) - | fellce - e < max([Wellce. 1¥ellen) - I fellee - e
< d"Mpe*Myete™ (5.7)

’ ’
— 4KM[M262[)\‘ —At < 4@M5Mée—)n T.

Note also thatsupp f, C BP (161@ + r/2> C BP(1).Inview of (5.6) and (5.7), the estimate

(5.4) can be applied to ¥, f., x and ¢, and yields

/ o) e(gehx) dv(h) = / fodv / Ve dp — 4 MM Eye ™",
P P X
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In view of (5.1) we have:

v(AP<t,ﬁ,or/2U, 1,x)> :/Pf(h)lm/zu(g,hx)dv(h)

Z/Pf(h)ilfe(gth)dV(h) Z/Pfa(h)llfe(g;hX)dV(h)—/Plfe—fldv

. P r Y p r
Z/Pfg(h)l//s(gth)dV(h)*V<B (m +e ’)\B (16\/Z>>‘

By the mean-value theorem and (4.2), for some —= < s < —L~ + e~ it holds that

16J/L 16VL
r / r r ' :
v BP (L g BF ):v(Bi—i—e*M)—V(B )
(5" ez v )~ (%) ez ™) (o)
L-1
, , r r '
< cze Vsl < ez (7 + *) <ce
16vV/L 2

Combining the above computations, we obtain

u(A”(r,L,ar/zu,l,xD > f Fo(WWe(gihx) dv(h) — cze™"
16+/L P

%

/fsdv/ 1//861'[1,—4€M3M2E16_)"/l—C3€_A/t
P X

U ’
>U<BP( r )) w(oyU) W(onU) — A MMLE, + c3)e"

- 168/L7 ) n(oroU)
e
where E':= 4lMgMéE1 + c3. O

6 Tessellations of P and Bowen boxes: proof of Theorem 4.1

In order to prove Theorem 4.1 it will be instrumental to use a technique of tessellations of
nilpotent Lie groups, as developed in [14]. It allows one to cover subsets of P with objects
that behave like non-overlapping cubes in a Euclidean space. In this aspect our method differs
from the one by Kadyrov [10]: using Bowen boxes defined below, as opposed to Bowen balls
considered in [10], turns out to be a more efficient way to cover P [see (6.8) below and the
subsequent footnote for explanation]. We are going to revisit the construction in [14] and
then use it to find efficient coverings of sets of the form AP (s, . 6:FL’ U€, k, x).

Let us say that an open subset V of P is a tessellation domain for P relative to a countable
subset A of P if

e v(0V)=0.
o Vy1 N Vy, = & fordifferent y1, y2 € A.
o P = UyEA Vy.

Note that P is a connected simply connected nilpotent Lie group. Let Ip C p = Lie(P)
be the cube centered at 0 with side length 1 with respect to a suitably chosen basis of p. For
any r > 0 let us define V, = exp(4\r/Z Ip). Then, as shown in [14, Proposition 3.3], V; is
a tessellation domain for P relative to some discrete subset A, of P. Since the exponential
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1370 D. Kleinbock, S. Mirzadeh

_r_

map is 2-bi-Lipschitz on Ip for r < r”, we have

4L
,
BP(—=) c v, c BT (/4 6.1
6T f (r/4) (6.1)
Also it is easy to see that there exists K3 > 0 such that for any § < 1
v({h € P :dist(h, dV,) < 8}) < K38. (6.2)
Define
Ao :=min{|A| : A is an eigenvalue of adg, [p}. (6.3)

Again using the bi-Lipschitz property of exp, we can conclude that for any 0 < r < r” and
any ¢ > 0 one has

diam(g_,V, g;) < 2re o' (6.4)

Let us now define a Bowen (t, r)-box in P to be a set of the form g_;V,yg; for some
y € Pandt > 0. Also define

Srii={yelA g Viyg NV, £ 2}

Note that V, can be covered with at most #S, ; Bowen (¢, r)-boxes in P. The following
lemma gives an upper bound for #S, ;:

Lemma6.1 Forany0O <r <r”" andanyt > 0

v(Vy) Kze™!
#S,, < 1+ )
v(g—rVrgt) v(Vr)

Proof Let0 < r < r” and t > 0. One has:
#S, =#lyeAr g Viyer C Vi +#y e Ay i g Viyg NIV, # O}

Since V, is a tessellation domain of P relative to A,, the first term in the above sum is not

greater than %, while in view of (6.2) and (6.4), the second term is not greater than:

v({p € P :dist(p, 3V,) < diam(g_;V,g,)})  2rKze ™’ Kze 0!
< < .
v(g—+Vrgr) vig—Vrg) v(g-1Vrgr)

This finishes the proof. O

Now let U be an arbitrary subset of X. The next lemma can be used to turn the measure
estimate from Sect. 5 into a covering result.

Lemma6.2 Foranyx € X,anyU C X, any 0 < r < r” and any t > 0 we have

r
AP <[, m,o}/zl}, l,.x) C U g_tV,)/gt.

VES 1
ViygixCU
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Proof For any y € P and any pi, p» € V, we have:

dist(p1y gix, paygix) < dist(py, p2) < diam(V,) < r/2. (6.5)

Hence, if

’
AP<t, m o U, l,x) Ng_Viyg: #9
for y € A, then for some p € BP(16:FL
view of (6.5) and 0, 20, 2U C U, we can conclude that V,y g,.x C U. ]

) C V, one has g;px € 0,20U N V,yg;x, and in

The next corollary follows immediately from Lemma 6.2:

Corollary 6.3 Foranyx € X, U C X,0 <r <r" andt > 0 we have

v (AP(ts ﬁ,ar/zU, l,x))

v(g—1Vrgr)
For the proof of Theorem 4.1 we will also need to cover Bowen boxes by small balls. The
next lemma provides a bound for the number of balls of radius re *ma! needed to cover a
Bowen (¢, r)-box.

#y eSS Vivgix CcU} >

Lemma 6.4 There exists K4 > 0 such that for any 0 < r < r"” and any t > 0, any Bowen

_ . . v(g—rVrgr) H i —Amax!
(t, r)-box in P can be covered with at most K4 S(BP (e ima)) balls in P of radius re .

Proof Let B = g_;V,yg; beaBowen (z, r)-box. In view of the Besicovitch covering property
of P, any covering of B by balls in P of radius re~*m has a subcovering of index uniformly
bounded from above by a fixed constant (the Besicovitch constant of P). The union of
those balls is contained in the re~*m/-neighborhood of B. But since B is a translate of the
exponential image of a box in p whose smallest sidelength is re ==/ it follows that the
measure of the re~*mx’_neighborhood of B is bounded by a uniform constant times v(B),
and the lemma follows. O

We are now ready to begin the

Proof of Theorem 4.1 Takea, b, E’, A be asin Proposition 5.1, K3 asin (6.2), K4 as in Lemma
6.4 and X as in (6.3). Fix U C X such that U€ is compact, and take 0 < r < rg, x € 9,U¢,
andt > a+ blog % Define for any k € N

Ev,(t,k,x):={p eV, :gupx ¢ UVLe(1,2,-- k}}.

Recall that our goal is to construct a covering of the set AP (¢, 161/2’ U€, k,x)forany k € N,
which is a subset of Ev, (¢, k, x) in view of (6.1). Note that for y € P, the Bowen (¢, r)-box
8&—+V,y & does not intersect Ey, (¢, 1, x) if and only if V,yg,x C U. Combining Lemma
6.1 with Corollary 6.3 and then with Proposition 5.1, we conclude that Ev, (¢, 1, x) can be

covered with at most
#Srs —#ly € S Vivgrx CUJ

P
U(Vr) (1 N K?’ekot) B v (A ([, ﬁ, O’r/zU, 1,X))

" verVeg) v(Vr) v(g—1Vrgr) (6.6)
T PO Gl 73) LA R T

“v(g—Virgr) v(Vy)

=: N(r,t)

@ Springer



1372 D. Kleinbock, S. Mirzadeh

Bowen (¢, r)-boxes in P.

Now let g_,V,yg; be one of the Bowen (#, r)-boxes in the above cover which has
non-empty intersection with Ey, (¢, 1, x). Take any ¢ = g_hyg: € g—V,vg: then
81qx = hygix,hence {g;qx :q € g_+V,yg: } = {hygx : h € V,.}. Consequently,

lgegVive :guqx ¢ Uy =g Ev,(t,1,X)yg&. (6.7)

Note that since diam(V,) < r and g_;V,yg; N Ey, (t,1,x) # &, we have yg;x € 0,U°".
Hence, by going through the same procedure, this time using y g;x in place of x, we can
cover the set in the left hand side of (6.7) with at most N (r, t) Bowen (2¢, r)-boxes in P.
Therefore, we conclude that the set Ey, (¢, 2, x) can be covered with at most N (r, )2 Bowen
(2t, r)-boxes in P. By doing this procedure inductively, we can see that for any k € N, the
set Ey (t, k, x) can be covered with at most N (r, t)k Bowen (tk, r)-boxes in P. Thus, in
view of Lemma 6.4, the set Ev, (¢, k, x) can be covered with at most

v(g—1k Vr&ik)

Kjy———— — —
“V(BP (re~Frnant))

N(r, )k

balls of radius re **maxk in p.
Now observe that for any r > 0 and any k € N one has

k
( v(V;) ) __ v ' 6.8)
v(g—1Vrgr) v(g—kt Vi &tk)

Here it is crucially important? that the translates of V, form a tessellation of P. Using (4.1)
and (6.8) we get

v(g—1k Vrgik) ( (V) )"_ v(Vy)
V(BE (reFmaxt)) \v(g_1V,81) ) v(BF (re~khmat))

L
ca(r/4) o o LRt
— ClrLe—LkAmﬂxz 4Lcl ’

which, in view of (6.1), (4.1) and the definition (6.6) of N(r, t), implies that

AP (t, LU k,x) C Ev,(t,k, x)

p
16VL

can be covered with at most

Kze 0! —y (BP( r )) (o U) 4 E'e 1

Kscr eLk)»maxt 1+ 16+/L
4L ¢y v(V,)
o\ k
K K3(163/L)Le 0! 4LE e
- :czemmax, . 3( fz S B eL
4k cir IR cor

K 67)\1[ k
Koeltmat (1 — Kip(o,U) + %L )

IA

3 We note that a similar step in the proof of [10, Theorem 3.1] uses balls instead of boxes, and the boundary
effects make it difficult to justify the corresponding equality.

@ Springer



Dimension estimates for the set of points with non-dense... 1373

balls in P of radius re **ma! where
X Kaco 61 K3(16+/L)E N ALE
0o=—F" Ki=—F——, K2 = ,
4lc cr(4/ L)L 1 €
and A1 = min(Xg, A'). O

7 (EEP) for the group P asin (1.17)

In the last two sections of the paper we prove Theorem 1.4. Namely we fix two positive
integers m, n, take X = G /T asin (1.3) and consider F = {g;} = g;’J as in (1.16), where i
and j are as in (1.13). We also define

a=min{iy, ..., im, j1,---, Ju}- (7.1)

Let us denote m + n by d. In what follows, constants C, Cy, ... will only depend on m and
n.

Our goal in this section is to prove that P as in (1.17) satisfies (EEP) with respect to the
FT-action on X. Note that, unless i = m and j = n, P is a proper subgroup of the expanding
horospherical subgroup relative to g1, hence Theorem 2.5 is not applicable. In [16], the proof
of effective equidistribution of g;-translates of orbits of P used the observation that P is an
expanding horospherical subgroup relative to another element of G. We are going to work
out an explicit estimate for the constant in [16, Theorem 1.3]; namely, establish

Theorem 7.1 Let P beasin (1.17), F = {g;} asin (1.16), and X as in (1.3). Then P satisfies
(EEP) relative to the FT-action on X.

Recall that X can be identified with the space of unimodular lattices in R via gI" +> gZ¢.
It will be useful to relate the injectivity radius ro(x) of an element x = gI' € X with the
function

8(gl) := inf | gv]. (7.2)
veZd {0}
Here || - || stands for some norm on R?; the implicit constants in the statements below will
depend on the choice of the norm.

Lemma 7.2 There exist C1, C2 > O such that for any x € X one has
Ci8@? < ro(x) < C28(x)7T.

Proof The lower estimate can be found in [16, Proposition 3.5] or [2, Lemma 3.6]. To prove

the upper estimate, take || - || to be the Euclidean norm, suppose 6 (x) = ¢, and let Ay, ..., Ag

be the successive minima of the lattice x. Let vy, ..., v4 be vectors realizing the first and the

last minimum of x respectively, and take g to be an element of G which fixes vy, ..., vs_|
1

and sends vy to vg + vi. Then gx = x, and, since ||v{|| = ¢ and ||vy4|| > &~ 7T, it follows

that

1 d
dist(g. €) K g = Illop K &'F7T = §(x) 7T,
(here and hereafter || - ||, refers to the operator norm as a linear transformation of R%),

finishing the proof. O
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The next ingredient of the proof is quantitative nondivergence of translates of P-orbits.
Let us denote by a™ the set of d-tuplest = (11, ...,13) € R4 such that

m n
fHooooitg>0 and Y =Y tuyj.
i=1 =1

and for t € ay define
gt = diag(e”,...,em e e e G
and

[t] ;= min
i=1

ti.
..... a’
The following statement about quantitative non-divergence of g¢-translates of P orbits in X
was proved in [16, Corollary 3.4]: for any compact L C X and any ball B C P centered at
e there exist constants 7 = T (B, L) and C = C(B, L) such that for every 0 < ¢ < 1, any

x € Landany t € a* with [t] > T one has

v({h € B:8(ghx) <)) < Cem@Ty(B).

For our purposes we need an effective version:

Proposition 7.3 There exist constants C3, Cq, Cs such that for every 0 < e < 1, anyx € X
and any t € a¥ with [t] > C3 + C4log ﬁ it holds that

v({h € B (2) : §(gthx) < €}) < ngim,,&_n . (7.3)

Proof According to [16, Theorem 3.1], which is a special case of general quantitative non-
divergence result [3, Theorem 6.2], there exists an explicit constant C¢ > 0, depending only
onm and n, such that forevery ball B C P,any x = gZd € X,anyt € aandany0 < ¢ < 1
not greater than

c:= inf sup |lgthgwl|, (7.4)
we X (Z4)~{0} heB
k=1,...,d—1

it holds that
1
v({h € B : 8(gthx) < &}) < Ce(e/c) ™D v(B).

On the other hand, [16, Lemma 3.2] asserts the existence of C7 > 0 and, foreachball B C P,
a constant Cp such that for any t € a® and any w € /\k(Rd), k=1,...,d —1, one has

sup || gehw| = CpeC7H|w].
heB

Also, by Minkowski’s Lemma there exists Cg > 0 such that

inf  Jlgwll = Cs3(0)".
we A\K(z4)~{0}
Therefore ¢ as in (7.4) is not less than
@-1?

d
CpeCT g8 (x)? > CyCpeCTltl <mc(—x)> (1.5)
2
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(the last inequality holds in view of Lemma 7.2). Now take B = B*(2) and choose t so that
the right hand side of (7.5) is not less than 1; equivalently, such that

(d—dl)2 5
C d—1 1

2 + ¢ ) log .
C8CBP(2) dC7 VO(X)

1
t] > —1
LJ_C7 og

Then (7.3) will hold for any 0 < & < 1 with Cs = Cg - v(B(2)). u]
Proof of Theorem 7.1 Write g; = a;b;, where
a; = diag(e =27, .., eln=dal (IHI (it iy
and
al/2m7”.’eozt/2m’e—at/2n,_..7e—<xt/2n)7

b; = diag(e

where & is as in (7.1). Suppose we are given f € Cg,,(P) with supp f C BP (), ¢ €

C3°(X) with fX Ydu=0,andx € X.Putr =e™ 2 5 >, where B is to be specified later, and,
again using [16, Lemma 2.2(a)], take a non-negative function 6 supported on B®(r) such
that (2.7) holds. Since v is translation-invariant, one can write

Iy (g x) = / F (gehx) dvh) /P 6(y) dv(y)
/ / a—yyash)O )Y (asbya— varhx) dv(y) dv(i)

/ / a_ryaih)B ) (byyarhx) dv(y) dv(h) .
Note that
o . o . o . o —_— (7.6)
mln(n—Zm,-..,lm—Zm,Jl—zn,...,Jn—Zn)_a/, .
therefore

dist (e, a,,ha,) < e ¥ dist(e, h)

for any i € P. Also, as long as 6(y) # 0, the supports of all functions of the form & +—
f(a—;yash) are contained in

P (1 +e*(“+’37“)’> c B:=B" ).
Define
ga N\ 1/d
£ = (C%e_T’> s (7.7)
where Cj is as in Lemma 7.2, and let
A(x,1) == {h € B|8(ahx) <¢}.

So, in view of (7.6) and Proposition 7.3, for any x € X and any

2 1
t>— (C3 + C4log > (7.8)
o ro(x)
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one has
1
v(A(x, t)) < Csgmn@d-1) |

Hence, assuming (7.8), the absolute value of
/ / a0 (b vaghs) dv(y) dv(h)
A(x,1)
is
1 - __ Be
K em@Dy(B)sup | f] SUPIWI/ Odv L sup|flsup|y|-e 2mnmdd=D
P

Next, let us assume that & € B ~. A(x, 1). We are going to apply Theorem 2.4 with b; in
pa .
place of g;, r = e~ 2, a;hx in place of x and

fn() = f(a—ryah)6(y)

in place of f. It is clear that supp f;, C BY (r) for any #, i.e. condition (i) of Theorem 2.4
is satisfied. Since §(a;hx) < & whenever h ¢ A(x, t), condition (ii) is satisfied in view of

Lemma 7.2 and (7.7). So we only need to require that e~ 7! is less than p/2. Also, in view
of [16, Lemma 2.2(b)] and (2.7), for any £ € Z, we have

mny pa
I fille2 < I flcelfllen < e TV £l e

This way, by using Theorem 2.4 we get, for some y > Oand £ € Z,,

/ f —1yarh)0 () (b yashx) dv(y) dv(h)'
B~ A(x,t)
/ |15,y (by, ashx)| dv(h)
B~ A(x,1)
_ e g dP=1=mn) po B B
«max(Ivler, ¥ lez) (e Tl +e( sk Nalleae V’v(B)>
_pa 2
<max (¥l 1V le.2) (sup|f| e e T w)

By combining the two estimates above, we get that, as long as ¢ > log %,
+

__ pa
[17.4(g1, 0)| < sup| f]sup|y|e” 2maan'
_ B
+max ([¥ e, 1 le2) (sup|f|~e T I fllce e G+ - V’)
__ Ba _(y— (24421 B2
< max ([¥llers 1¥ o) Il fllce - max (e ndd' | ¢ (r-ce+t5 ’2>’).

Choosing B equalizing the two exponents above, that is

2y /a

B =
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will satisfy (2.3) with

A=t = ’
2mnd(d —1) 1+ mnd(d — 1)(2¢ + %)’

which finishes the proof. O

8 Weighted badly approximable matrices

Now let us recall a connection between Diophantine approximation with weights and the
action of F = {g;} as in (1.16) on the space X. It is shown in [12, Theorem 6.2] that
A € My, ,(R) is (i, j)-badly approximable iff the orbit {gtuAZk : t > 0} is bounded in

I, A . . o
X, where uy = 6" 1) We want to make this equivalence quantitative. Recall that for
n
p=i,..., pm)andq = (q1, ..., qy) we defined
ol = max (11" 1ol ) and gl = max (11777 lgal V).

Now, for p € R" and q € R", if v = (p, q) let us define the (i, j)-quasinorm ||v||; j of v by

1 1
Il 5 = max(lpl;"", Iqll;™).
Then for x € X let
S = inf IVl
and for € > 0 let us consider
Uij(e) == {x € X : §j(x) < e}. 8.1)

Mabhler’s Compactness Criterion implies that a subset K of X is relatively compact if and
only if the restriction of §; j to K is bounded away from zero (that is, K is contained in the
complement of Uj j(¢) for some & > 0).

Note that in the case i = m and j = n, the (m, n)-quasinorm is simply the sup norm on
RY, Om,n(x)=8(x), and Up n(e) is the same as U (¢) defined in (1.5). Also it is easy to check
that for arbitrary i, j and any x € X one has

8(x) > 8 j(x)maxtmm), (8.2)

Now we can state a quantitative form of [12, Theorem 6.2], which is also a weighted version
of [2, Lemma 3.1]:

Lemma8.1 Forany 0 < c < 1, A € Bad; j(c) if and only if
{guaZd 1 1= 0N Uij(e) = 2, (8.3)

where ¢ = c1/4,
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Proof First note that g,u A4Z4 consists of vectors of the form
e'(p1 + A1q)
ei'"t(Pm + Anq)
e*jltql
e_jntqn
where A1, ..., A, are the rows of A. Suppose that
lAq +plillall; = ¢ 8.4

forall p € Z™ and q € Z" ~ {0}. Take an arbitrary ¢ > 0. If |e"/¢'q; |l/jk

1 < k < n, it follows that
Aq + p)
Hg’ ( q

|1/jk

> ¢" for some

> &

o}

ij

and we are done. So suppose that |e /' g, =e"'|g; |1/jk < ¢&" for all k. Then we have
||q||j < g"e'. In view of (8.4), there exists 1 < k < m such that

ce™!

’

|Akq + pi|'/ > >
llqlls gn

hence

i 1/ik . ¢
et (vt po| " = lAkg + el Vi = S =,

eh

This proves that if q # 0, then g;usZ¢ ¢ Uij(e). Andif ¢ = 0 and p # 0, then

o (37, =] )

So g,uAZd ¢ Uj j(e) holds in this case as well, and we are done.
Vice versa, assume (8.3); that is, suppose that for any nonzero (p, q) € Z"*" and t > 0
we have

> /" plij=1>e.
ij

ij

e(p1 + A1q)

eimt (pm + Am q)

e=iitg, >e¢ (8.5)

_jnl
N ij

Fix such p and q, take an arbitrary 0 < & < ¢, and choose ¢ > 0 so that
e Mgy
— 7' qll; = .
e_jntqn

i
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Then by (8.5) for some 1 < k < m we must have

ixt Vi _ 1/ix m
e (Arq + pr) = |Axq + prl "t = "

Consequently ||Aq + plillqll; = g™el, which, since &1 < & was arbitrary, implies that
|Aq + p||i||q||j > c. Since p and q were arbitrary, A € Bad; j(c), which finishes the proof
of the lemma. O

We will also need a lower bound for the Haar measure of the inner r-core of the set
Ui j(e), where 0 < & < 1 and r is small enough. The first step is a weighted version of [15,
Proposition 7.1]:

Proposition 8.2 There exist Cy, C1o > 0 depending only on d such that for all 0 < ¢ < 1
one has

Coe? = 11(Uij()) = Coe? — Cios™. (8.6)
Proof Forx € X and |1 < k < d, denote by Pk (x) the set of all primitive (i.e. extendable to

a basis of x) ordered k-tuples (v, ..., vi) of vectors in x. Then, given a function ¢ on R,

forany k = 1,...,d — 1 define a function <2k on X by

.....

According to a generalized Siegel’s summation formula [15, Theorem 7.3], forany 1 < k <d
there exists a constant c; dependent on k and d such that for any ¢ € L' (R¥?),

/(,gk(vl,..‘vk)dx:ck/ @dvi ...dvy. (8.7)
X (R4)*

The case k = 1 corresponds to the classical Siegel transform,

= m=) o),

vePl(x)

and Siegel’s summation formula [19], [, @du = ¢ [pa @(v)dv.
Take 0 < ¢ < 1, denote by D the region in R? defined by the following system of
inequalities:

lxp| < e™ie 1 <4¢<m,
[Xmiel < €™ 1<4€<n,

and by ¢ the characteristic function of D. Note that the volume of D is equal to &, and that
x € Ujj(e) & x N D # {0},

The latter condition clearly implies that D contains at least two primitive vectors in x.
Therefore in view of Siegel’s formula we have

1 [ 1 I
n(Uije) < ifxwdu = el /Rd pdv=zcist.

For getting the lower bound, note that if two linearly independent primitive vectors v and v,
in x N D do not form a primitive pair, then the line segment between v and v, must contain
another lattice point; and since D is convex, this lattice point must be in D. So one can easily
see that whenever there exist at least two linearly independent vectors in x N D, for any
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vi € P1(x) N D one can find vo € x N D such that (v{, v2), as well as (vi, —v2), belong to
P2(x). Therefore, if $(x) > 2, one has

1 1 7
P(x) =#(P'(x)N D) < 5#(P2(x) ND x D))=y (x),

where  is the characteristic function of D x D in Rk Hence,

fxadu=/ R @dwrf ~ gdu
(P =2) (P00 >2)

A

. 1 2 1 >
<2p(fx t@x) =2hH + 2 f{x:’(ﬁ(x)>2} Ydu < 2M(Ui,j(8)) + 2 fX Y dp,
which implies that

- 1 ~2 4 | ~2
2u(Uije)) = | @du—= | v du=cie® —< | ¥ du.
X 2 X 2 X

Using the k = 2 case of (8.7) yields fX wz du = 262 Hence (8.6) holds with Cy = %cl
and Ci9 = %CQ. ]

Finally let us choose C1; > O such that forany 0 < r < 1,

max (|lg — Iallop. 187" = Lallopll) < C11r whenever g € BE(r).

Lemma8.3 Let0 < e < 1 and
2% — 1
0<r< Tﬂgm(’“). (8.8)

Then
Uij(e/2) C 0r(Uij(e)).

Proof Take x € Ujj(¢/2) and g € BY(r). We know that there exists v € x ~. {0} such that
one of the following two conditions holds:

(1) |vx| < (g/2)™* for some 1 < k < m;
() |vmak| < (g/2)%% for some 1 < k < n.

Assuming (1) and writing g = (ak¢)k,¢=1,....d, one has

,,,,,

@Vl = [awive + Y axeve| = (14 Crir)(e/2™ + (@ = DCuir(e/2)™
Uk

miy

< (e/2)™% +dCyyr(e/2)™ < &

2m0(

(1+dCyre™™),

which is smaller than £™* in view of (8.8); hence gx € U j(¢). The argument in case of (2)
is similar. o

Now we can finish the

Proof of Theorem 1.4 In view of Theorem 7.1 and Lemma 8.1, one can apply
Theorem 1.3 to P as in (1.17) and conclude that for any ¢ > 0 and any
0 < r < min (ro (31/2(X \ Uij(¢)) , r”), it holds that

@ Springer



Dimension estimates for the set of points with non-dense... 1381

w(orUij(e))

8.9
log% + log (5:2)

codim Bad j(c) > 1
w(orUije))

where ¢ = ¢!/¢ and the implicit constant in (8.9) is independent of ¢ but depends on i, j.
Note that in view of (8.2) we have X \ Ujj(e) C X ~ U(e™>("m) thus
ro<31/2(X ~ Ui,j(S))) > 1o (31/2(X ~ U(Smax(m’"))>

1 Ci d-
>rol X U(igmax(m,n))) > 1 max(m,n)7
0( 1+Ci/2 1+Cy1/2

the last inequality being a consequence of Lemma 7.2. It follows that (8.9) holds whenever

Ci

r < 8d~max(m,n) < r//' (8.10)
1+ Cy1/2
Now define
1 Ci1/2 1/ max(m,n)
¢o := min <(+711/r”> , C9/2C10> ,
Cy
take ¢ < c(l)/ d and consider

r= lmin 2 - 1, ¢ gdmax(m.n),
2 dCyp 1+4Cp1/2

Then both (8.8) and (8.10) will hold, and thus the right hand side of (8.9) is not less than

1(Uij(e/2)) _ 3Co(e/2)? S g4
1 1 = 1 1 I’
log  + log M) log - + log TG/ log <
which finishes the proof. o

9 Concluding remarks

9.1 Precise estimates for the Hausdorff dimension

Note that in view of the aforementioned result of Simmons [20] and similar results for other
dynamical systems (see e.g, [8]), it is natural to expect that when U is either a small ball or the
complement of a large compact subset of X, the codimension of E(F*, U) is, as U shrinks,
asymptotic to a constant times the measure of U. That is, conjecturally there should not be a
logarithmic term in the right hand side of (1.9). However it is not clear how to improve our
upper bound, as well as how to establish a complimentary lower estimate for dim E(F ™', U),
using the exponential mixing of the action. Such questions can be asked in other contexts,
such as for expanding maps on manifolds, see e.g. [1] for a lower estimate improving on
[22].

9.2 A dimension drop problem

Another interesting question is whether the conclusion of Theorem 1.1 holds without the
assumption of compactness of U°. It fact, it is not even known in general that the dimension
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of E(FT, U) is strictly smaller than the dimension of X as long as U is non-empty. In [7]
it was established in the case when G is a connected semisimple Lie group of real rank 1.
One possible approach to this problem for non-compact homogeneous spaces of higher rank
is to combine the methods of the present paper with estimates on the escape of mass for
translates of measures on horospherical subgroups, as developed in [13]. This is a work in
progress. Recenly in [9], by generalizing the methods used in [13] to arbitrary homogeneous
spaces, it was shown that for any one parameter subgroup action on a homogeneous space,
the Hausdorff dimension of the set of points with divergent trajectories is not full.
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