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Abstract
Let X = G/�, where G is a Lie group and � is a lattice in G, and let U be a subset of
X whose complement is compact. We use the exponential mixing results for diagonalizable
flows on X to give upper estimates for the Hausdorff dimension of the set of points whose
trajectories miss U . This extends a recent result of Kadyrov et al. (Dyn Syst 30(2):149–157,
2015) and produces new applications to Diophantine approximation, such as an upper bound
for the Hausdorff dimension of the set of weighted uniformly badly approximable systems of
linear forms, generalizing an estimate due to Broderick and Kleinbock (Int J Number Theory
11(7):2037–2054, 2015).

Mathematics Subject Classification Primary 37A17 · 37A25; Secondary 11J13

1 Introduction

Throughout the paper, we let G be a Lie group and � a lattice in G, denote by X the
homogeneous space G/� and by μ the G-invariant probability measure on X . The notation

A � B (resp., A�
+

B),

where A and B are quantities depending on certain parameters, will mean A ≥ CB (resp.,
A ≥ CB + D), where C, D are constants dependent only on X and F . Let F+ :=(gt )t≥0 be
a one-parameter subsemigroup of G. Following [10], for any subset U of X define the set

E(F+,U ) := {x ∈ X : F+x ∩U = ∅} (1.1)
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of points in X whose F+-orbits stay away from U . If the flow (X , μ, gt ) is ergodic, then
the orbit {gt x}t≥0 is dense for μ-almost all x ∈ X ; hence μ(E(F+,U )) = 0 whenever U is
non-empty.

A natural question one can ask is: how large can this set of measure zero be? If the
semigroup F+ is quasiunipotemt, that is, all eigenvalues of Ad g1 have absolute value 1, then,
whenever the action is ergodic and U is non-empty, the set (1.1) is contained in a countable
union of proper submanifolds of X – this follows from Ratner’s Measure Classification
Theorem and the work of Dani and Margulis, see [21, Lemma 21.2] and [6, Proposition 2.1].
On the other hand, if F+ is not quasiunipotemt and U = {z} for some z ∈ X , it is shown in
[11] that the set (1.1) has full Hausdorff dimension.

Fix a right-invariant Riemannian structure on G, and denote by ‘dist’ the corresponding
Riemannian metric, using the same notation for the induced metric on X . Also denote by
B(r) the open ball of radius r centered at the identity element of G, and by B(z, r) the open
ball of radius r centered at z ∈ X . The aforementioned result of [11] can thus be stated as

dim E
(
F+, B(z, r)

) → dim X as r → 0. (1.2)

Here and hereafter dim E means the Hausdorff dimension of the set E , and codim E will
stand for its Hausdorff codimension, i.e. the difference between the dimension of the ambient
set and the Hausdorff dimension of E . Until recently a problem of estimating the left hand
side of (1.2), or more generally, the quantity dim E(F+,U ) where U is a non-empty open
subset of X , has not been addressed. In [2] Broderick and the first named author considered
the case

G = SLm+n(R), � = SLm+n(Z), X = G/�, (1.3)

with the action of F+ = (gt )t≥0 where

gt = diag(et/m, . . . , et/m, e−t/n, . . . , e−t/n) , (1.4)

This action is important because of its Diophantine applications. In particular, a system of
linear forms is badly approximable if and only if (see [5]) the gt -trajectory of a certain element
of X does not enter the set

U (ε) := {
g� ∈ X : δ(g�) < ε

}
(1.5)

for some ε > 0, where

δ(g�) := inf
v∈Zm+n�{0}

‖gv‖. (1.6)

It was essentially1 shown there that for all ε > 0 one has

codim E
(
F+,U (ε)

) � εm+n

log(1/ε)
. (1.7)

The main ingredient of the proof in [2] was the exponential mixing of the gt -action on X
(see Sect. 2 for the definition). This theme was continued by Kadyrov in [10], where an
estimate similar to (1.7) was proved for the Hausdorff dimension of E(F+, B(z, r)) under
the assumptions that X = G/� is compact and the F+-action on X is exponentially mixing.

1 [2, Theorem 1.3] is stated in a number-theoretic language; however it readily implies (1.7).in view of [2,
Lemma 3.1]. Note that recently a precise asymptotic formula for the left hand side of (1.7) was obtained by

Simmons [20]: namely, that as ε → 0, the ratio
codim E

(
F+,U (ε)

)

εm+n tends to a constant depending only onm, n.
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Namely, it is shown there that there exist r0 > 0 i such that for any r ∈ (0, r0) and any z ∈ X
one has

codim E
(
F+, B(z, r)

) � rdim X

log(1/r)
. (1.8)

In the present paperwe strengthenKadyrov’s result in twoways: by consideringmore general
open sets U in place of balls B(z, r), and by relaxing the assumption of compactness of X
to that of compactness of X �U . Our main theorem generalizes results from both [2,10] and
can be used to produce new applications to Diophantine approximation.

We need to introduce the following notation: for a subset U of X and r > 0 denote by
σrU the inner r-core of U , defined as

σrU := {x ∈ X : dist(x,Uc) > r},
and by ∂rU the r-neighborhood of U by

∂rU := {x ∈ X : dist(x,U ) < r}.
Also, for x ∈ X denote by πx the map G → X given by πx (g) := gx , and by r0(x) the
injectivity radius of x :

r0(x) := sup{r > 0 : πx is injective on B(r)}.
If K ⊂ X is bounded, let us denote by r0(K ) the injectivity radius of K :

r0(K ) := inf
x∈K r0(x) = sup{r > 0 : πx is injective on B(r) ∀ x ∈ K }.

Here is the main result of the paper:

Theorem 1.1 Let G be a Lie group, � a lattice in G, X = G/�, and let F+ be a one-
parameterAd-diagonalizable subsemigroup of G whose action on X is exponentially mixing.
Then there exists r ′ > 0 such that for any U ⊂ X such that Uc is compact and any
0 < r < min(r0(∂1Uc), r ′) one has

codim E(F+,U )� μ(σrU )

log(1/r) + log(1/μ(σrU ))
. (1.9)

We note that in the above inequality, as well as in similar statements below, the implicit
constant in � is independent of U and r and is only dependent on X and F . Also note that
the right hand side of (1.9) depends on r while the left hand side does not. Since the inequality
holds for all sufficiently small values of r , in applications one needs to choose an optimal r
to strengthen the result. In particular, it is not hard to see, by taking U to be an open ball of
radius r centered at z and assuming that X is compact, that Kadyrov’s result (1.8) is a special
case of (1.9). Moreover one has the following generalization:

Corollary 1.2 Let F+ be as in Theorem 1.1. Assume that X is compact. Then there exists
r ′ > 0 such that for any closed subset S of X and any 0 < r < r ′ one has

codim E(F+, ∂r S)� μ(∂r/2S)

log(1/r)
.

Consequently, if S ⊂ X is a k-dimensional compact embedded submanifold, then for some
C = C(S, F) and any 0 < r < r ′ one has

codim E(F+, ∂r S)≥ C
rdim X−k

log(1/r)
. (1.10)
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The case k = 0 and S = {z} of (1.10) coincides with (1.8): it is easy to show, by looking
at the proof, that C({z}, F) is independent on z ∈ X .

Similarly to the previous papers [2,10] on the subject, the main theorem is deduced from
a result that estimates

dim E(F+, σrU ) ∩ Hx,

where x ∈ X and H is the unstable horospherical subgroup with respect to F+, defined as

H := {g ∈ G : dist(gt gg−t , e) → 0 as t → −∞}. (1.11)

More generally, in the following theorem we estimate

dim E(F+, σrU ) ∩ Px

for x ∈ X and some proper subgroups P of H , namely those which have Effective Equidis-
tribution Property (EEP, see Sect. 2 for the definition) with respect to the flow (X , F+). Note
that for P = H this property follows from the exponential mixing of the action, as shown in
[14].

Theorem 1.3 Let G, � and X be as in Theorem 1.1, let F+ be a one-parameter Ad-
diagonalizable subsemigroup of G, and let P be a subgroup of H which has property (EEP)
with respect to the flow (X , F+). Then there exists r ′′ > 0 such that for any x ∈ X, any
U ⊂ X such that Uc is compact and any 0 < r < min(r0(∂1/2Uc), r ′′) one has

codim{g ∈ P : gx ∈ E(F+,U )}� μ(σrU )

log 1
r + log 1

μ(σrU )

. (1.12)

The general statement of Theorem 1.3 makes it possible to derive a corollary involving
simultaneous Diophantine approximation with weights. Take

i = (ik : k = 1, . . . ,m) and j = ( j� : � = 1, . . . , n)

with

ik, j� > 0 and
m∑

k=1

ik = 1 =
n∑

�=1

j�, (1.13)

and define the i-quasinorm of x ∈ R
m and the j-quasinorm of y ∈ R

n by

‖x‖i := max
1≤k≤m

|xk |1/ik and ‖y‖j := max
1≤�≤n

|y�|1/ j� .

A system of linear forms given by A ∈ Mm,n(R) is said to be (i, j)-badly approximable if

infp∈Zm , q∈Zn�{0} ‖Aq + p‖i ‖q‖j > 0

This generalizes the notion of (unweighted) badly approximable systems of linear forms,
which correspond to the choice of equal weights

i = m := (1/m, . . . , 1/m), j = n := (1/n, . . . , 1/n). (1.14)

Now for any c > 0 set

Badi,j(c) := {A ∈ Mm,n : inf
p∈Zm , q∈Zn�{0}

‖Aq + p‖i ‖q‖j ≥ c}. (1.15)

It is known, see [18, Theorem 2] and [17, Corollary 4.5], that for any i, j as in (1.13) the set
of (i, j)-badly approximable systems of linear forms, which is the union of the sets Badi,j(c)
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over c > 0, has Hausdorff dimension mn. One can ask for an estimate for the Hausdorff
dimension of Badi,j(c) for fixed i, j and c. Our goal in Sect. 8 is to deduce the following
theorem from Theorem 1.3:

Theorem 1.4 There exists c0 > 0 such that for any i, j as in (1.13) and any 0 < c < c0 one
has

codim Badi,j(c)� c

log 1
c

,

where the implicit constant in � is independent of c but depends on i, j.

This is a weighted generalization of [2, Theorem 1.3]. Note that in the paper [20], men-
tioned in the footnote before (1.7), it is shown that codim Badm,n(c) is asymptotic to a
constant times c as c → 0. However the methods of [20] do not seem to extend to the
weighted case.

The structure of the paper is as follows. In the next section we define exponential mixing
and property (EEP), and, following [14,16], show that the exponential mixing of the gt -
action on X implies (EEP) for the expanding horospherical subgroup relative to g1. In Sect.
3 we deduce Theorem 1.1 and Corollary 1.2 from Theorem 1.3. The next three sections are
devoted to proving Theorem 1.3. In Sect. 8 we prove Theorem 1.4 by reducing the problem
to dynamics on the space G/� with G and � as in (1.3) and

gt = gi,jt := diag(ei1t , . . . , eim t , e− j1t , . . . , e− jn t ). (1.16)

Theorem 1.3 is then applied to the subgroup

P =
{(

Im A
0 In

)
: A ∈ Mm,n(R)

}
(1.17)

of G, which, following [16], is shown in Sect. 7 to satisfy property (EEP) relative to the
gi,jt -action. We conclude the paper with a few remarks and open questions.

2 Exponential mixing implies (EEP) for H

We start with the definition of Sobolev spaces on Lie groups and their homogeneous spaces.
Let G be a Lie group and � a discrete subgroup of G. Denote by X the homogeneous space
G/� and by N the dimension of G. In what follows, ‖ · ‖p will stand for the L p norm, and
(·, ·) for the inner product in L2(X , μ), where μ is a (fixed) G-invariant measure on X . If �

is a lattice in G, we will always take μ to be the probability measure. Note though that much
of the set-up below applies to the case � = {e} and X = G.

Fix a basis {Y1, . . . , Yn} for the Lie algebra g of G, and, given a smooth function h ∈
C∞(X) and � ∈ Z+, define the “L p , order �” Sobolev norm ‖h‖�,p of h by

‖h‖�,p
def=

∑

|α|≤�

‖Dαh‖p,

where α = (α1, . . . , αn) is a multiindex, |α| = ∑n
i=1 αi , and Dα is a differential operator

of order |α| which is a monomial in Y1, . . . , Yn , namely Dα = Y α1
1 . . . Y αn

n . This definition
depends on the basis, however, a change of basis would only distort ‖h‖�,p by a bounded
factor. We also let

C∞
2 (X) = {h ∈ C∞(X) : ‖h‖�,2 < ∞ for any � = Z+}.
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Clearly smooth compactly supported functions belong to C∞
2 (X). We will also use the

operators Dα to define C� norms of smooth functions f on X :

‖ f ‖C� := sup
x∈X , |α|≤�

|Dα f (x)|.

Definition 2.1 Let F+ = {gt : t ≥ 0} be a one-parameter subsemigroup of G, and let
X = G/� where � is a lattice in G. We say that a flow (X , F+) is exponentially mixing if
there exist γ > 0 and � ∈ Z+ such that for any ϕ,ψ ∈ C∞

2 (X) and for any t ≥ 0 one has
∣
∣
∣
∣(gtϕ,ψ) −

∫

X
ϕ dμ

∫

X
ψ dμ

∣
∣
∣
∣ 
 e−γ t‖ϕ‖�,2‖ψ‖�,2. (2.1)

As is the case inmany applications, wewill use the exponential mixing to study expanding
translates of pieces of certain subgroups of G. If P ⊂ G is a subgroup with a fixed Haar
measure ν, ψ a function on X , f a function on P , x ∈ X and t ≥ 0, let us define

I f ,ψ (gt , x) :=
∫

P
f (h)ψ(gthx) dν(h) .

Definition 2.2 Say that a subgroup P of G has Effective Equidistribution Property (EEP)
with respect to the flow (X , F+) if P is normalized by F+, and there exists λ > 0 and � ∈ N

such that for any x ∈ X and t > 0 with

t �
+
log

1

r0(x)
, (2.2)

any f ∈ C∞
comp(P) with supp f ⊂ BP (1) and any ψ ∈ C∞

2 (X) it holds that
∣∣∣∣I f ,ψ (gt , x) −

∫

P
f dν

∫

X
ψ dμ

∣∣∣∣ 
 max(‖ψ‖C1 , ‖ψ‖�,2) · ‖ f ‖C� · e−λt . (2.3)

Here ν stands for a Haar measure on P . Note that the implicit constants in both (2.2) and
(2.3) are independent on f , ψ , t and x . This definition is quite involved but it is justified by
the fact that in many special cases (2.3) can be derived from exponential mixing, for example
when P = H , the unstable horospherical subgroup relative to F+. This was essentially
proved in [16], together with another important example of a proper subgroup of H with the
same property, namely with P as in (1.17). We are going to revisit the argument from that
paper and make the constants appearing there explicit.

Remark 2.3 Note that it suffices to establish (EEP) for functionsψ with
∫
X ψ dμ = 0: indeed,

if ψ0 := ψ − ∫
X ψ dμ, one clearly has

I f ,ψ0(gt , z) = I f ,ψ (gt , z) −
∫

H
f dν

∫

X
ψ dμ.

Let g be a Lie algebra ofG, gC its complexification, and forλ ∈ C, let Eλ be the eigenspace
of Ad g1 corresponding to λ. Let h, h0, h− be the subalgebras of g with complexifications:

hC = span(Eλ : |λ| > 1), h0
C

= span(Eλ : |λ| = 1), h−
C

= span(Eλ : |λ| < 1).

Let H , H0, H− be the corresponding subgroups of G. Note that H is precisely the unsta-
ble horospherical subgroup with respect to F+ [defined in (1.11)] and H− is the stable
horospherical subgroup defined by:

H− = {h ∈ G : gthg−t → e as t → +∞}.
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Since Ad g1 is assumed to be diagonalizable over C, g is the direct sum of h, h0 and h−.
Therefore G is locally (at a neighborhood of identity) a direct product of the subgroups H ,
H0 and H−. In what follows, if P is a subgroup of G, we will denote by BP (r) the open ball
of radius r centered at the identity element with respect to the metric on P corresponding to
the Riemannian structure induced from G.

Denote the group H−H0 by H̃ , and fix 0 < ρ < 1 with the following properties:

the multiplication map H̃ × H → G is one to one on BH̃ (ρ) × BH (ρ), (2.4)

and

gt B
H̃ (r)g−t ⊂ BH̃ (2r) for any 0 < r < ρ and t ≥ 0 (2.5)

(the latter can be done since F is Ad-diagonalizable and the restriction of the map g →
gt gg−t , t > 0, to the subgroup H̃ is non-expanding).

Let μG be the Haar measure on G which locally projects to μ, and let us choose Haar
measures ν−, ν0 and ν on H−, H0 and H respectively, normalized so thatμ is locally almost
the product of ν−, ν0 and ν. More precisely, see [4, Ch. VII, Sect. 9, Proposition 13], μ can
be expressed via ν−, ν0 and ν in the following way: for any ϕ ∈ L1(G, μG) supported on a
small neighborhood of identity,

∫

G
ϕ(g) dμ(g) =

∫

H−×H0×H
ϕ(h−h0h)�(h0) dν−(h−) dν0(h0) dν(h) , (2.6)

where � is the modular function of (the non-unimodular group) H̃ .
Now we are going to show, following [16], that H , the unstable horospherical subgroup

of G with respect to F+, satisfies property (EEP). We will start with an auxiliary statement,
essentially2 established in [16, Theorem 2.3]:

Theorem 2.4 Suppose that the flow (X , F+) is exponentially mixing, and let γ and � be as
in (2.1). Then for any f ∈ C∞

comp(H), 0 < r < ρ/2 and x ∈ X, if

(i) supp f ⊂ BH (r), and
(ii) πx is injective on BG(2r),

then for any ψ ∈ C∞
2 (X) with

∫
X ψ dμ = 0 and any t ≥ 0 one has

∣∣I f ,ψ (gt , x)
∣∣ 
 max

(‖ψ‖C1 , ‖ψ‖�,2
) (

r‖ f ‖1 + e−γ t r−(�+k̃/2)‖ f ‖�,2

)
,

where k̃ = dim H̃ .

Using this and again following [16], we can establish

Theorem 2.5 H satisfies property (EEP) with respect to the flow (X , F+).

For the proof and for later applications we will need the following lemma, which is a
modification of [14, Lemma 2.4.7(b)] and [16, Lemma 2.2(a)]:

Lemma 2.6 Let G be a Lie group of dimension N. Then for each � ∈ Z+ there exists M�

(depending only on G) with the following property: for any 0 < ε < 1 there exists a
nonnegative smooth function ϕε on G such that

2 The statement of [16, Theorem 2.3] featured a constant E(ψ) in place of max(‖ψ‖C1 , ‖ψ‖�,2), but it is
easy to see from the proof that E depends linearly on ‖ψ‖C1 and ‖ψ‖�,2.
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1362 D. Kleinbock, S. Mirzadeh

(1) the support of ϕε is inside the ball of radius ε centered at e;
(2) ‖ϕε‖1 = 1;
(3) ‖ϕε‖C� ≤ M� · ε−(�+N );

(4) ‖ϕε‖�,p ≤ M� · ε
−(�+ p−1

p N ).

Proof of Theorem 2.5 Suppose we are given f ∈ C∞
comp(H) with supp f ⊂ BH (1), ψ ∈

C∞
2 (X) with

∫
X ψ dμ = 0, and x ∈ X . Put r = e−βt , where β is to be specified later, and

take � as in (2.1). Then, using Lemma 2.6 with G replaced by H , take a non-negative smooth
function θ supported on BH (r) such that

∫

H
θ dν = 1 and ‖θ‖�,2 
 r−(�+k/2), (2.7)

where k = dim H = N − k̃. Since ν is translation-invariant, one can write

I f ,ψ (gt , x) =
∫

H
f (h)ψ(gthx) dν(h)

∫

H
θ(y) dν(y)

=
∫

H

∫

H
f
(
yh

)
θ(y)ψ

(
gt yhx

)
dν(y) dν(h)

=
∫

H

∫

H
f
(
yh

)
θ(y)ψ

(
gt yhx

)
dν(y) dν(h) .

Note that, as long as θ(y) �= 0, the supports of all functions of the form h �→ f (yh) are
contained in B̃ := BH (2). We would like to apply Theorem 2.4 with r = e−βt , hx in place
of x and

fh(y) := f
(
yh

)
θ(y)

in place of f . It is clear that supp fh ⊂ BH (r) for any h, i.e. condition (i) of Theorem 2.4
is satisfied. For other conditions we need to require e−βt ≤ min(r0(hx)/2, ρ/2). Since
r0(hx) � r0(x) as long as h ∈ B̃, it amounts to assuming

2e−βt ≤ a0 min
(
r0(x), ρ

)
(2.8)

for some uniform constant a0 > 0. Also, in view of [16, Lemma 2.2(b)] and (2.7), we have

‖ fh‖�,2 
 ‖ f ‖C�‖θ‖�,2 
 e(�+k/2)βt‖ f ‖C� .

Then from Theorem 2.4 one gets

∣∣I f ,ψ (gt , x)
∣∣ =

∣
∣∣
∣

∫

B̃

∫

H
f
(
yh

)
θ(y)ψ

(
gt yhx

)
dν(y) dν(h)

∣
∣∣
∣ ≤

∫

B̃

∣∣I fh ,ψ (gt , hx)
∣∣ dν(h)


 max
(‖ψ‖C1 , ‖ψ‖�,2

)
(
e−βt

∫

H
| fh | dν(h) + e(�+k̃/2)βt‖ fh‖�,2 · e−γ t

)
ν(B̃)


 max
(‖ψ‖C1 , ‖ψ‖�,2

) (
sup | f | · e−βt + ‖ f ‖C� · e−(γ−(2�+ N

2 )β)t
)

.

An elementary computation shows that choosing β equalizing the two exponents above will
produce

β = λ = γ

1 + 2� + N/2
,

and therefore (2.8) becomes equivalent to (2.2) with some uniform constants a, b. This shows
that (2.2) implies (2.3), and finishes the proof. ��
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3 Proving Theorem 1.1 and Corollary 1.2

We now assume Theorem 1.3 is true and give a proof of Theorem 1.1.

Proof of Theorem 1.1 assuming Theorem 1.3 Let r ′′ be as in Theorem 1.3, and define

r ′ := min
(
1/4, r ′′, ρ

)
(3.1)

where ρ is as in (2.4), (2.5). For any r ≤ ρ choose s such that B(s) is contained in the product
BH̃ (r/4)BH (r/4). Now take U ⊂ X such that Uc is compact, and for x ∈ X denote

Ex,s := {g ∈ B(s) : gx ∈ E(F+,U )}. (3.2)

In view of the countable stability of Hausdorff dimension, in order to prove the theorem it
suffices to prove that for any x ∈ X ,

dim Ex,s ≤ dim X − C
μ(σrU )

log 1
r + log 1

μ(σrU )

(3.3)

with the constant C > 0 only dependent on X and F . Indeed, E(F+,U ) can be covered by
countably many sets {gx : g ∈ Ex,s}, with the maps πx : Ex,s → X being Lipschitz and at
most finite-to-one.

Since every g ∈ B(s) can be written as g = h′h, where h′ ∈ BH̃ (r/4) and h ∈ BH (r/4),
for any y ∈ X we can write

dist(gt gx, y) ≤ dist(gth
′hx, gthx) + dist(gthx, y)

= dist
(
gth

′g−t gt hx, gthx
) + dist(gthx, y).

(3.4)

Hence in view of (2.5), g ∈ Ex,s implies that hx belongs to E(F+, σr/2U ), and by using
Wegmann’s Product Theorem [23] we conclude that:

dim Ex,s ≤ dim
(
{h ∈ BH (r/4) : hx ∈ E(F+, σr/2U )} × BH̃ (r/4)

)

≤ dim
({h ∈ BH (r/4) : hx ∈ E(F+, σr/2U )}) + dim H̃ .

(3.5)

Since ∂1/2(σr/2U )c is contained in ∂1Uc, we have:

r0(∂1U
c) ≤ r0

(
∂1/2(σr/2U )c

)
.

Therefore, by Theorems 2.5 and 1.3 applied to P = H andU replaced by σr/2U , there exists
a constant C > 0, only dependent on X and F , such that the set {h ∈ BH (r/4) : hx ∈
E(F+, σr/2U )} has Hausdorff dimension at most

dim H − C
μ(σr/4σr/2U )

log 4
r + log 1

μ(σrU )

≤ dim H − C
μ(σrU )

log 4
r + log 1

μ(σrU )

≤ dim H − C ′ μ(σrU )

log 1
r + log 1

μ(σrU )

,

(3.6)

where C ′ = 2C . (C ′ should be chosen so that we have

C ′ ≥ C · log
4
r + log 1

μ(σrU )

log 1
r + log 1

μ(σrU )

= C ·
(

1 + log 4

log 1
r + log 1

μ(σrU )

)

.
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Since r < 1/4, we can choose C ′ = 2C .) It follows from (3.5) and (3.6) that

dim Ex,s ≤ dim X − C ′ μ(σrU )

log 1
r + log 1

μ(σrU )

,

which finishes the proof. ��
Proof of Corollary 1.2 Take r ′ as in (3.1). If S = ∅ there is nothing to prove. Otherwise,
by Theorem 1.1 applied to U = ∂r S and with r/2 in place of r , there exists a constant
C > 0 independent of S such that for any 0 < r < min(r0(X), r ′), the set E(F+, ∂r S) has
Hausdorff codimension at most

C
μ

(
σr/2(∂r S)

)

log 2
r + log 1

μ(σr/2(∂r S))

≥ C
μ(∂r/2S)

log 2
r + log 1

μ(∂r/2S)

. (3.7)

Since S is non-empty, ∂r/2S contains a ball of radius r/2, so there exists a constant d0
independent of r such that for any 0 < r < r0(X) we have:

μ(∂r/2S) ≥ d0r
N . (3.8)

Since r ′ < 1/4, by combining (3.7) and (3.8) it is easy to see that the set E(F+, ∂r S) has
Hausdorff codimension at most

C
μ(∂r/2S)

(N + 1) log 1
r + log 2 + log 1

d0

≥ C log 4

(N + 1) log 4 + log 2 + log 1
d0

· μ(∂r/2S)

log 1
r

.

This proves the main part of the corollary.
For the “consequently” part, if S is a k-dimensional compact embedded submanifold in

X , then it is easy to see that for some constant d1 dependent on S and for all r < r0(X) one
has

μ(∂r/2S)≥ d1r
N−k . (3.9)

Therefore in this case, combining (3.7) and (3.9), it is easy to see that for any 0 < r <

min(r0(X), r ′) one has

codim E(F+, ∂r S) ≥ C log 4

(N − k + 1) log 4 + log 2 + log 1
d1

· r
N−k

log 1
r

.

��

4 Reduction to a covering result

In the next three sections our goal is to prove Theorem 1.3. Fix a subgroup P of H that
satisfies (EEP) relative to F+, and fix a Haar measure ν on P . Put L = dim P . Also take
0 < r ′′ < 1/8 such that the exponential map from p := Lie(P) to P is 2-bi-Lipischitz on the
ball of radius r ′′ centered at 0 ∈ p, The latter implies that there exist constants c1, c2, c3 > 0
such that for any 0 < r < r ′′ one nas

c1r
L ≤ ν

(
BP (r)

) ≤ c2r
L (4.1)

and

d

dr
ν
(
BP (r)

) ≤ c3r
L−1. (4.2)
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For x ∈ X , t > 0, k ∈ N and a subset S of X we define

AP (t, r , S, k, x) : = {
h ∈ BP (r) : g�t hx ∈ S ∀� ∈ {1, 2, · · · , k}}. (4.3)

Also, let us define

λmax := max{|λ| : λ is an eigenvalue of adg1 |p}.
One of our main goals in the next three sections will be to prove the following theorem:

Theorem 4.1 Let F+ be a one-parameter Ad-diagonalizable subsemigroup of G, and P a
subgroup of G with property (EEP). Then there exist positive constants a, b, K0, K1, K2 and
λ1 such that for any subset U of X whose complement is compact, any 0 < r < r0 where

r0 := min
(
r0(∂1/2U

c), r ′′), (4.4)

any x ∈ ∂rUc, k ∈ N and any

t > a + b log
1

r
, (4.5)

the set AP (t, r
16

√
L
,Uc, k, x) can be covered with at most

K0e
Lkλmaxt

(
1 − K1μ(σrU ) + K2e−λ1t

r L

)k

balls in P of radius re−kλmaxt .

It is not hard to see a connection between the above theorem and Theorem 1.3: indeed, for
any x ∈ X the intersection of the set in the left hand side of (1.12)with BP ( r

16
√
L
) is contained

in AP (t, r
16

√
L
,Uc, k, x) for any t > 0 and any k ∈ N. Thus the covering constructed in

Theorem 4.1 can be used to estimate the Hausdorff dimension of the intersection of the set
π−1
x (E(F+,U )) with P from above.

Proof of Theorem 1.3 assuming Theorem 4.1 First note that the statement of Theorem 1.3
involves just the semigroup F+ as a whole and does not depend on its parametrization.
Thus, applying a linear time change to the flow gt , without loss of generality for the proof
of the theorem we can assume that λmax = 1.

Let 0 < r < r0. We are again going to use the notation Ex,s introduced in (3.2). In view
of the countable stability of Hausdorff dimension it suffices to find s > 0 such that for any
x ∈ X ,

dim
(
Ex,s ∩ P

) ≤ dim X − C ′ μ(σrU )

log 1
r + log 1

μ(σrU )

(4.6)

with the constant C ′ > 0 only dependent on X and F .
Note that Ex,r/2 ∩ P = ∅ for any x /∈ ∂rUc, so in this case (4.6) is clearly satisfied for

s = r/2. So, let x ∈ ∂rUc and take s = r
16

√
L
.

Let dimB denote the lower box dimension. Since for any t > 0 we have

Ex, r
16

√
L

∩ P ⊂
⋂

k∈N

AP
(
t,

r

16
√
L

,Uc, k, x
)
,
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from Theorem 4.1, in view of the assumption λmax = 1, it follows that

dimB

(
Ex, r

16
√
L

∩ P
)

≤ lim inf
k→∞

log

(
K0eLkt

(
1 − K1μ(σrU ) + K2e−λ1 t

r L

)k)

− log(re−kt )

= lim inf
k→∞

log K0 + Lkt + k log
(
1 − K1μ(σrU ) + K2e−λ1 t

r L

)

− log r + kt

= L +
log

(
1 − K1μ(σrU ) + K2e−λ1 t

r L

)

t

(4.7)

whenever t satisfies (4.5). It remains to choose an optimal t . Take q to be a natural number
which satisfies the following conditions:

( 1
8

)q
<

K1

2K2
,

q > λ1b − L,

(4.8)

and set

t = a + L + q

λ1
log

1

rμ(σrU )
.

It is easy to see that in view of (4.8), t as above satisfies (4.5), and we have

K2e−λ1t

r L
= K2r

−Le
−λ1(a+ L+q

λ1
log 1

rμ(σr U )
)

= e−λ1aK2r
−Lr L+qμ(σrU )L+q = e−λ1aK2 · rq · μ(σrU )L+q

< e−λ1aK2 · ( 18 )
q · μ(σrU ) < e−λ1aK2

K1

2K2
· μ(σrU ) ≤ K1

2
μ(σrU ).

(4.9)

Combining (4.7) and (4.9), we have:

dim
(
Ex, r

16
√
L

∩ P
)

≤ L +
log

(
1 − K1

2 μ(σrU )
)

t
≤ L −

K1
2 μ(σrU )

t

= L −
K1
2 · μ(σrU )

(L+q)
λ1

· log 1
rμ(σrU )

= L − C ′ · μ(σrU )

log 1
r + log 1

μ(σrU )

,

where C ′ = K1λ1
2(L+q)

. This finishes the proof. ��

5 Ameasure estimate

Our goal in this section is to prove the following proposition which gives a lower bound for
the measure of sets

AP
(
t,

r

16
√
L

, σr/2U , 1, x
)

=
{
h ∈ BP

( r

16
√
L

)
: gthx ∈ σr/2U

}
(5.1)

whenever t satisfies (4.5), and x belongs to ∂rUc.
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Proposition 5.1 Let F+ be a one-parameter Ad-diagonalizable subsemigroup of G, and P
a subgroup of G with property (EEP). Then there exist positive constants a, b, E ′, λ′ such
that for any U ⊂ X such that Uc is compact, any x ∈ ∂rUc, any 0 < r < r0 where r0 is as
in (4.4), and any t satisfying (4.5) one has

inf
x∈∂rUc

ν

(
AP

(
t,

r

16
√
L

, σr/2U , 1, x
))

≥ ν

(
BP

( r

16
√
L

))
μ(σrU ) − E ′e−λ′t . (5.2)

To prove (5.2) we will apply (EEP) to smooth approximations of 1BP ( r
16

√
L

) and 1σr/2U .

In order to extract useful information from (EEP) we will need to bound the norms of the
derivatives of those approximations. The next two lemmas will be used to approximate 1σr/2U

and 1BP ( r
16

√
L

) respectively.

Lemma 5.2 Let O be a nonempty open subset of X, and let 0 < ε0 < 1, δ < 1 be such that

δμ(O) ≤ μ(σε0O) < μ(O). (5.3)

Then for any 0 < ε ≤ ε0 one can find a nonnegative function ψε ∈ C∞
comp(X) such that:

(1) ψε ≤ 1O;
(2) δμ(O) ≤ ∫

X ψε dμ;
(3) ‖ψε‖�,2 ≤ 4�M�ε

−�;
(4) ‖ψε‖C� ≤ 4�M�ε

−�,

where M� is as in Lemma 2.6.

Proof Let O be a nonempty open subset of X , and let 0 < ε0 < 1 and δ < 1 be such that (5.3)
holds. Since O is open and the function x �→ dist(x, Oc) is continuous, for any 0 < ε < ε0
we have:

δμ(O) < μ(σεO) < μ(O).

By the inner regularity of μ we can find a compact subset Aε ⊂ σεO such that:

δμ(O) ≤ μ(Aε) ≤ μ(σεO) < μ(O).

Denote by A+
ε , A++

ε the closed ε
4 and ε

2 neighborhoods of Aε. Since Aε is compact, these
sets are compact as well. Now take ψε = ϕε/4 ∗ 1A+

ε
, where ϕε/4 is as in Lemma 2.6. Sincet

ϕε/4 is supported on BG(ε/4), the support of the function ψε is contained in A++
ε ⊂ O , so

property (1) holds. Furthermore, ψε = 1 on Aε, therefore:

μ(O) ≥
∫

X
ψε dμ ≥ μ(Aε) ≥ δμ(O),

which gives us property (2). Let α = (α1, . . . , αN ) be such that |α| ≤ �. For any x ∈ X we
have

∣∣Dαψε(x)
∣∣ =

∣∣∣Dα(ϕε/4 ∗ 1A+
ε
)(x)

∣∣∣ =
∣∣∣Dαϕε/4 ∗ 1A+

ε
(x)

∣∣∣

≤ ∥∥Dαϕε/4
∥∥
1 ≤ ∥∥ϕε/4

∥∥
�,1 ≤ M�(

ε
4 )

−�,

and likewise, by Young’s inequality,
∥∥Dαψε

∥∥
2 ≤ ‖Dαϕε/4 ∗ 1A+

ε
‖2 ≤ ∥∥Dαϕε/4

∥∥
1 ·

∥∥∥1A+
ε

∥∥∥
2

≤ ∥∥Dαϕε/4
∥∥
1 ≤ M�(

ε
4 )

−�,

which implies (3) and (4). ��
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Similarly to the proof of the above lemma, one can get the smooth estimations for char-
acteristic functions of small balls in P (we omit the proof for brevity):

Lemma 5.3 For any � ∈ Z+ there exist constants M ′
� > 0 (depending only on P) such that

the following holds: for any ε, r > 0 there exist functions fε : P → [0, 1] such that

(1) fε = 1 on BP (r);
(2) fε = 0 on

(
BP (r + ε)

)c
;

(3) ‖ fε‖�,2 ≤ M ′
�ε

−�;
(4) ‖ fε‖C� ≤ M ′

�ε
−�.

Proof of Proposition 5.1 Let � and λ be as in Definition 2.2, and let a, b, E1 be the implicit
constants in (2.2) and (2.3) such that t > a + b log 1

r0(x)
implies

∣
∣
∣
∣I f ,ψ (gt , x) −

∫

P
f dν

∫

X
ψ dμ

∣
∣
∣
∣ ≤ E1 max(‖ψ‖C1 , ‖ψ‖�,2) · ‖ f ‖C� · e−λt (5.4)

for any f and ψ as in Definition 2.2. Then choose λ′ > 0 such that

λ − 2�λ′ > λ′ and 1/λ′ > b. (5.5)

Now let U ⊂ X be such that Uc is compact, and take 0 < r < r0 and x ∈ ∂rUc. If
μ(σrU ) = 0, (5.2) is trivially satisfied; thus let us assume that μ(σrU ) > 0. Then put

O := σr/2U

and take

δ := μ(σrU )

μ(σr/2U )
.

Note that (5.3) holds with ε0 = r/2. Also, since U is open, the function x �→ dist(x,Uc) is
continuous, which implies that δ < 1.

Now set f = 1BP ( r
16

√
L

) and take

t ≥ a + 1

λ′ log
2

r
> a + b log

2

r
> a + b log

1

r0(x)
(5.6)

(the last inequality holds since x ∈ ∂rUc). Also define

ε := e−λ′t .

Note that ε < r/2 in view of (5.6). So let us apply Lemma 5.2 with ε0 = r/2, and Lemma
5.3 with r

16
√
L
in place of r . Let ψε and fε be the corresponding functions. Then we have

max(‖ψε‖C1 , ‖ψε‖�,2) · ‖ fε‖C� · e−λt ≤ max(‖ψε‖C� , ‖ψε‖�,2) · ‖ fε‖C� · e−λt

≤ 4�M�ε
−�M ′

�ε
−�e−λt

= 4�M�M
′
�e

2�λ′−λt ≤ 4�M�M
′
�e

−λ′t .

(5.7)

Note also that supp fε ⊂ BP
(

r
16

√
L

+ r/2
)

⊂ BP (1). In viewof (5.6) and (5.7), the estimate

(5.4) can be applied to ψε , fε, x and t , and yields
∫

P
fε(h)ψε(gthx) dν(h) ≥

∫

P
fε dν

∫

X
ψε dμ − 4�M�M

′
�E1e

−λ′t .
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In view of (5.1) we have:

ν

(
AP

(
t,

r

16
√
L

, σr/2U , 1, x
))

=
∫

P
f (h)1σr/2U (gt hx) dν(h)

≥
∫

P
f (h)ψε(gt hx)dν(h) ≥

∫

P
fε(h)ψε(gt hx) dν(h) −

∫

P
| fε − f | dν

≥
∫

P
fε(h)ψε(gt hx) dν(h) − ν

(
BP

( r

16
√
L

+ e−λ′ t
)

� BP
( r

16
√
L

))
.

By the mean-value theorem and (4.2), for some r
16

√
L

< s < r
16

√
L

+ e−λ′t it holds that

ν

(
BP

( r

16
√
L

+ e−λ′t
)

� BP
( r

16
√
L

))
= ν

(
B

( r

16
√
L

+ e−λ′t
))

− ν

(
B

( r

16
√
L

))

≤ c3e
−λ′t sL−1 ≤ c3e

−λ′t
(

r

16
√
L

+ r

2

)L−1

≤ c3e
−λ′t .

Combining the above computations, we obtain

ν

(
AP

(
t,

r

16
√
L

, σr/2U , 1, x
))

≥
∫

P
fε(h)ψε(gthx) dν(h) − c3e

−λ′t

≥
∫

P
fε dν

∫

X
ψε dμ − 4�M�M

′
�E1e

−λ′t − c3e
−λ′t

≥ ν

(
BP

( r

16
√
L

))
μ(σrU )

μ(σr/2U )
· μ(σr/2U ) − (4�M�M

′
�E1 + c3)e

−λ′t

= ν

(
BP

( r

16
√
L

))
μ(σrU ) − E ′e−λ′t

where E ′:= 4�M�M ′
�E1 + c3. ��

6 Tessellations of P and Bowen boxes: proof of Theorem 4.1

In order to prove Theorem 4.1 it will be instrumental to use a technique of tessellations of
nilpotent Lie groups, as developed in [14]. It allows one to cover subsets of P with objects
that behave like non-overlapping cubes in a Euclidean space. In this aspect our method differs
from the one by Kadyrov [10]: using Bowen boxes defined below, as opposed to Bowen balls
considered in [10], turns out to be a more efficient way to cover P [see (6.8) below and the
subsequent footnote for explanation]. We are going to revisit the construction in [14] and
then use it to find efficient coverings of sets of the form AP (t, r

16
√
L
,Uc, k, x).

Let us say that an open subset V of P is a tessellation domain for P relative to a countable
subset � of P if

• ν(∂V ) = 0.
• V γ1 ∩ V γ2 = ∅ for different γ1, γ2 ∈ �.
• P = ⋃

γ∈� V γ .

Note that P is a connected simply connected nilpotent Lie group. Let IP ⊂ p = Lie(P)

be the cube centered at 0 with side length 1 with respect to a suitably chosen basis of p. For
any r > 0 let us define Vr := exp( r

4
√
L
IP ). Then, as shown in [14, Proposition 3.3], Vr is

a tessellation domain for P relative to some discrete subset �r of P . Since the exponential
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map is 2-bi-Lipschitz on r
4
√
L
IP for r < r ′′, we have

BP
( r

16
√
L

)
⊂ Vr ⊂ BP (r/4) (6.1)

Also it is easy to see that there exists K3 > 0 such that for any δ ≤ 1

ν
({h ∈ P : dist(h, ∂Vr ) < δ}) < K3δ. (6.2)

Define

λ0 := min{|λ| : λ is an eigenvalue of adg1 |p}. (6.3)

Again using the bi-Lipschitz property of exp, we can conclude that for any 0 < r < r ′′ and
any t > 0 one has

diam(g−t Vr gt ) < 2re−λ0t . (6.4)

Let us now define a Bowen (t, r)-box in P to be a set of the form g−t Vrγ gt for some
γ ∈ P and t > 0. Also define

Sr ,t := {γ ∈ �r : g−t Vrγ gt ∩ Vr �= ∅}.
Note that Vr can be covered with at most #Sr ,t Bowen (t, r)-boxes in P . The following
lemma gives an upper bound for #Sr ,t :

Lemma 6.1 For any 0 < r < r ′′ and any t > 0

#Sr ,t ≤ ν(Vr )

ν(g−t Vr gt )

(
1 + K3e−λ0t

ν(Vr )

)
.

Proof Let 0 < r < r ′′ and t > 0. One has:

#Sr ,t = #{γ ∈ �r : g−t Vrγ gt ⊂ Vr } + #{γ ∈ �r : g−t Vrγ gt ∩ ∂Vr �= ∅}.
Since Vr is a tessellation domain of P relative to �r , the first term in the above sum is not
greater than ν(Vr )

ν(g−t Vr gt )
, while in view of (6.2) and (6.4), the second term is not greater than:

ν({p ∈ P : dist(p, ∂Vr ) < diam(g−t Vr gt )})
ν(g−t Vr gt )

<
2r K3e−λ0t

ν(g−t Vr gt )
<

K3e−λ0t

ν(g−t Vr gt )
.

This finishes the proof. ��

Now let U be an arbitrary subset of X . The next lemma can be used to turn the measure
estimate from Sect. 5 into a covering result.

Lemma 6.2 For any x ∈ X, any U ⊂ X, any 0 < r < r ′′ and any t > 0 we have

AP
(
t,

r

16
√
L

, σr/2U , 1, x

)
⊂

⋃

γ∈Sr,t
Vrγ gt x⊂U

g−t Vrγ gt .
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Proof For any γ ∈ P and any p1, p2 ∈ Vr we have:

dist
(
p1γ gt x, p2γ gt x

) ≤ dist(p1, p2) ≤ diam(Vr ) < r/2. (6.5)

Hence, if

AP
(
t,

r

16
√
L

, σr/2U , 1, x
)

∩ g−t Vrγ gt �= ∅

for γ ∈ �r , then for some p ∈ BP ( r
16

√
L
) ⊂ Vr one has gt px ∈ σr/2U ∩ Vrγ gt x , and in

view of (6.5) and ∂r/2σr/2U ⊂ U , we can conclude that Vrγ gt x ⊂ U . ��
The next corollary follows immediately from Lemma 6.2:

Corollary 6.3 For any x ∈ X, U ⊂ X, 0 < r < r ′′ and t > 0 we have

#{γ ∈ Sr ,t : Vrγ gt x ⊂ U } ≥
ν

(
AP (t, r

16
√
L
, σr/2U , 1, x)

)

ν(g−t Vr gt )
.

For the proof of Theorem 4.1 we will also need to cover Bowen boxes by small balls. The
next lemma provides a bound for the number of balls of radius re−λmaxt needed to cover a
Bowen (t, r)-box.

Lemma 6.4 There exists K4 > 0 such that for any 0 < r < r ′′ and any t > 0, any Bowen
(t, r)-box in P can be covered with at most K4

ν(g−t Vr gt )
ν(BP (re−λmax t ))

balls in P of radius re−λmaxt .

Proof Let B = g−t Vrγ gt be aBowen (t, r)-box. In viewof theBesicovitch covering property
of P , any covering of B by balls in P of radius re−λmaxt has a subcovering of index uniformly
bounded from above by a fixed constant (the Besicovitch constant of P). The union of
those balls is contained in the re−λmaxt -neighborhood of B. But since B is a translate of the
exponential image of a box in p whose smallest sidelength is re−λmaxt , it follows that the
measure of the re−λmaxt -neighborhood of B is bounded by a uniform constant times ν(B),
and the lemma follows. ��

We are now ready to begin the

Proof of Theorem 4.1 Takea, b, E ′, λ′ be as in Proposition 5.1, K3 as in (6.2), K4 as inLemma
6.4 and λ0 as in (6.3). Fix U ⊂ X such that Uc is compact, and take 0 < r < r0, x ∈ ∂rUc,

and t > a + b log 1
r . Define for any k ∈ N

EVr (t, k, x) := {
p ∈ Vr : g�t px /∈ U ∀� ∈ {1, 2, · · · , k}}.

Recall that our goal is to construct a covering of the set AP (t, r
16

√
L
,Uc, k, x) for any k ∈ N,

which is a subset of EVr (t, k, x) in view of (6.1). Note that for γ ∈ P , the Bowen (t, r)-box
g−t Vrγ gt does not intersect EVr (t, 1, x) if and only if Vrγ gt x ⊂ U . Combining Lemma
6.1 with Corollary 6.3 and then with Proposition 5.1, we conclude that EVr (t, 1, x) can be
covered with at most

#Sr ,t − #{γ ∈ Sr ,t : Vrγ gt x ⊂ U }

≤ ν(Vr )

ν(g−t Vr gt )

(
1 + K3e−λ0t

ν(Vr )

)
−

ν
(
AP (t, r

16
√
L
, σr/2U , 1, x)

)

ν(g−t Vr gt )

≤ ν(Vr )

ν(g−t Vr gt )
·
⎛

⎝1 +
K3e−λ0t − ν

(
BP

( r
16

√
L

))
μ(σrU ) + E ′e−λ′t

ν(Vr )

⎞

⎠

=: N (r , t)

(6.6)
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1372 D. Kleinbock, S. Mirzadeh

Bowen (t, r)-boxes in P .
Now let g−t Vrγ gt be one of the Bowen (t, r)-boxes in the above cover which has

non-empty intersection with EVr (t, 1, x). Take any q = g−t hγ gt ∈ g−t Vrγ gt ; then
gtqx = hγ gt x , hence {gtqx : q ∈ g−t Vrγ gt } = {hγ gt x : h ∈ Vr } . Consequently,

{q ∈ g−t Vrγ gt : g2t qx /∈ U } = g−t EVr (t, 1, x)γ gt . (6.7)

Note that since diam(Vr ) < r and g−t Vrγ gt ∩ EVr (t, 1, x) �= ∅, we have γ gt x ∈ ∂rUc.
Hence, by going through the same procedure, this time using γ gt x in place of x , we can
cover the set in the left hand side of (6.7) with at most N (r , t) Bowen (2t, r)-boxes in P .
Therefore, we conclude that the set EVr (t, 2, x) can be covered with at most N (r , t)2 Bowen
(2t, r)-boxes in P . By doing this procedure inductively, we can see that for any k ∈ N, the
set EVr (t, k, x) can be covered with at most N (r , t)k Bowen (tk, r)-boxes in P . Thus, in
view of Lemma 6.4, the set EVr (t, k, x) can be covered with at most

K4
ν(g−tkVr gtk)

ν
(
BP (re−kλmaxt )

)N (r , t)k

balls of radius re−kλmaxk in P .
Now observe that for any r > 0 and any k ∈ N one has

(
ν(Vr )

ν(g−t Vr gt )

)k

= ν(Vr )

ν(g−kt Vr gtk)
. (6.8)

Here it is crucially important3 that the translates of Vr form a tessellation of P . Using (4.1)
and (6.8) we get

ν(g−tkVr gtk)

ν
(
BP (re−kλmaxt )

)
(

ν(Vr )

ν(g−t Vr gt )

)k

= ν(Vr )

ν
(
BP (re−kλmaxt )

)

≤ c2(r/4)L

c1r Le−Lkλmaxt
= c2

4Lc1
eLkλmaxt ,

which, in view of (6.1), (4.1) and the definition (6.6) of N (r , t), implies that

AP(
t,

r

16
√
L

,Uc, k, x
) ⊂ EVr (t, k, x)

can be covered with at most

K4c2
4Lc1

eLkλmaxt ·
⎛

⎝1 +
K3e−λ0t − ν

(
BP

( r
16

√
L

))
μ(σrU ) + E ′e−λ′t

ν(Vr )

⎞

⎠

k

≤ K4c2
4Lc1

eLkλmaxt

(

1 + K3(16
√
L)Le−λ0t

c1r L
− c1

c2(4
√
L)L

μ(σrU ) + 4L E ′e−λ′t

c2r L

)k

≤ K0e
Lkλmaxt

(
1 − K1μ(σrU ) + K2e−λ1t

r L

)k

3 We note that a similar step in the proof of [10, Theorem 3.1] uses balls instead of boxes, and the boundary
effects make it difficult to justify the corresponding equality.

123



Dimension estimates for the set of points with non-dense… 1373

balls in P of radius re−kλmaxt , where

K0 = K4c2
4Lc1

, K1 = c1

c2(4
√
L)L

, K2 = K3(16
√
L)L

c1
+ 4L E ′

c2
,

and λ1 = min(λ0, λ′). ��

7 (EEP) for the group P as in (1.17)

In the last two sections of the paper we prove Theorem 1.4. Namely we fix two positive
integers m, n, take X = G/� as in (1.3) and consider F = {gt } = gi,jt as in (1.16), where i
and j are as in (1.13). We also define

α = min{i1, . . . , im, j1, . . . , jn}. (7.1)

Let us denote m + n by d . In what follows, constants C1,C2, . . . will only depend on m and
n.

Our goal in this section is to prove that P as in (1.17) satisfies (EEP) with respect to the
F+-action on X . Note that, unless i = m and j = n, P is a proper subgroup of the expanding
horospherical subgroup relative to g1, hence Theorem 2.5 is not applicable. In [16], the proof
of effective equidistribution of gt -translates of orbits of P used the observation that P is an
expanding horospherical subgroup relative to another element of G. We are going to work
out an explicit estimate for the constant in [16, Theorem 1.3]; namely, establish

Theorem 7.1 Let P be as in (1.17), F = {gt } as in (1.16), and X as in (1.3). Then P satisfies
(EEP) relative to the F+-action on X.

Recall that X can be identified with the space of unimodular lattices inR
d via g� �→ gZ

d .
It will be useful to relate the injectivity radius r0(x) of an element x = g� ∈ X with the
function

δ(g�) := inf
v∈Zd�{0}

‖gv‖. (7.2)

Here ‖ · ‖ stands for some norm on R
d ; the implicit constants in the statements below will

depend on the choice of the norm.

Lemma 7.2 There exist C1,C2 > 0 such that for any x ∈ X one has

C1δ(x)
d ≤ r0(x) ≤ C2δ(x)

d
d−1 .

Proof The lower estimate can be found in [16, Proposition 3.5] or [2, Lemma 3.6]. To prove
the upper estimate, take ‖ · ‖ to be the Euclidean norm, suppose δ(x) = ε, and let λ1, . . . , λd
be the successive minima of the lattice x . Let v1, . . . , vd be vectors realizing the first and the
last minimum of x respectively, and take g to be an element of G which fixes v1, . . . , vd−1

and sends vd to vd + v1. Then gx = x , and, since ‖v1‖ = ε and ‖vd‖ ≥ ε− 1
d−1 , it follows

that

dist(g, e) 
 ‖g − I‖op 
 ε1+
1

d−1 = δ(x)
d

d−1 ,

(here and hereafter ‖ · ‖op refers to the operator norm as a linear transformation of R
d ),

finishing the proof. ��
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1374 D. Kleinbock, S. Mirzadeh

The next ingredient of the proof is quantitative nondivergence of translates of P-orbits.
Let us denote by a+ the set of d-tuples t = (t1, . . . , td) ∈ R

d such that

t1, . . . , td > 0 and
m∑

i=1

ti =
n∑

j=1

tm+ j ,

and for t ∈ a+ define

gt := diag(et1 , . . . , etm , e−tm+1 , . . . , e−td ) ∈ G

and

�t� := min
i=1,...,d

ti .

The following statement about quantitative non-divergence of gt-translates of P orbits in X
was proved in [16, Corollary 3.4]: for any compact L ⊂ X and any ball B ⊂ P centered at
e there exist constants T = T (B, L) and C = C(B, L) such that for every 0 < ε < 1, any
x ∈ L and any t ∈ a+ with �t� ≥ T one has

ν
({
h ∈ B : δ(gthx) < ε

}) ≤ Cε
1

mn(d−1) ν(B) .

For our purposes we need an effective version:

Proposition 7.3 There exist constants C3,C4,C5 such that for every 0 < ε < 1, any x ∈ X
and any t ∈ a+ with �t� ≥ C3 + C4 log 1

r0(x)
it holds that

ν
({h ∈ BP (2) : δ(gthx) < ε}) ≤ C5ε

1
mn(d−1) . (7.3)

Proof According to [16, Theorem 3.1], which is a special case of general quantitative non-
divergence result [3, Theorem 6.2], there exists an explicit constant C6 > 0, depending only
onm and n, such that for every ball B ⊂ P , any x = gZ

d ∈ X , any t ∈ a+ and any 0 < ε < 1
not greater than

c := inf
w∈∧k (Zd )�{0}
k=1,...,d−1

sup
h∈B

‖gthgw‖, (7.4)

it holds that

ν
({h ∈ B : δ(gthx) < ε}) ≤ C6(ε/c)

1
mn(d−1) ν(B).

On the other hand, [16, Lemma 3.2] asserts the existence ofC7 > 0 and, for each ball B ⊂ P ,
a constant CB such that for any t ∈ a+ and any w ∈ ∧k

(Rd), k = 1, . . . , d − 1, one has

sup
h∈B

∥∥gthw
∥∥ ≥ CBe

C7�t�‖w‖.

Also, by Minkowski’s Lemma there exists C8 > 0 such that

inf
w∈∧k (Zd )�{0}

‖gw‖ ≥ C8δ(x)
k .

Therefore c as in (7.4) is not less than

CBe
C7�t�C8δ(x)

d−1 ≥ C8CBe
C7�t�

(
r0(x)

C2

) (d−1)2
d

(7.5)
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(the last inequality holds in view of Lemma 7.2). Now take B = BP (2) and choose t so that
the right hand side of (7.5) is not less than 1; equivalently, such that

�t� ≥ 1

C7
log

C
(d−1)2

d
2

C8CBP (2)
+ (d − 1)2

dC7
log

1

r0(x)
.

Then (7.3) will hold for any 0 < ε < 1 with C5 = C6 · ν
(
BP (2)

)
. ��

Proof of Theorem 7.1 Write gt = atbt , where

at = diag(e(i1− α
2m )t , . . . , e(im− α

2m t , e(− j1+ α
2n )t , . . . , e(− jn+ α

2n )t )

and

bt = diag(eαt/2m, . . . , eαt/2m, e−αt/2n, . . . , e−αt/2n),

where α is as in (7.1). Suppose we are given f ∈ C∞
comp(P) with supp f ⊂ BP (1), ψ ∈

C∞
2 (X) with

∫
X ψ dμ = 0, and x ∈ X . Put r = e− βα

2 t , where β is to be specified later, and,
again using [16, Lemma 2.2(a)], take a non-negative function θ supported on BP (r) such
that (2.7) holds. Since ν is translation-invariant, one can write

I f ,ψ (gt , x) =
∫

P
f (h)ψ(gthx) dν(h)

∫

P
θ(y) dν(y)

=
∫

P

∫

P
f
(
a−t yat h

)
θ(y)ψ

(
atbta−t yat hx

)
dν(y) dν(h)

=
∫

P

∫

P
f
(
a−t yat h

)
θ(y)ψ

(
bt yat hx

)
dν(y) dν(h) .

Note that

min
(
i1 − α

2m
, . . . , im − α

2m
, j1 − α

2n
, . . . , jn − α

2n

)
≥ α/2, (7.6)

therefore

dist
(
e, a−t hat

) ≤ e−αt dist(e, h)

for any h ∈ P . Also, as long as θ(y) �= 0, the supports of all functions of the form h �→
f (a−t yat h) are contained in

BP
(
1 + e−(α+ βα

2 )t
)

⊂ B̃ := BP (2) .

Define

ε :=
(

2
C1

e− βα
2 t

)1/d
, (7.7)

where C1 is as in Lemma 7.2, and let

A(x, t) := {
h ∈ B̃ | δ(athx) < ε

}
.

So, in view of (7.6) and Proposition 7.3, for any x ∈ X and any

t ≥ 2

α

(
C3 + C4 log

1

r0(x)

)
(7.8)
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1376 D. Kleinbock, S. Mirzadeh

one has

ν
(
A(x, t)

) ≤ C5ε
1

mn(d−1) .

Hence, assuming (7.8), the absolute value of
∫

A(x,t)

∫

P
f
(
a−t yat h

)
θ(y)ψ

(
bt yat hx

)
dν(y) dν(h)

is


 ε
1

mn(d−1) ν(B̃) sup | f | sup |ψ |
∫

P
θ dν 
 sup | f | sup |ψ | · e− βα

2mnd(d−1)
t
.

Next, let us assume that h ∈ B̃ � A(x, t). We are going to apply Theorem 2.4 with bt in

place of gt , r = e− βα
2 t , athx in place of x and

fh(y) := f
(
a−t yat h

)
θ(y)

in place of f . It is clear that supp fh ⊂ BP (r) for any h, i.e. condition (i) of Theorem 2.4
is satisfied. Since δ(athx) < ε whenever h /∈ A(x, t), condition (ii) is satisfied in view of

Lemma 7.2 and (7.7). So we only need to require that e− βα
2 t is less than ρ/2. Also, in view

of [16, Lemma 2.2(b)] and (2.7), for any � ∈ Z+ we have

‖ fh‖�,2 
 ‖ f ‖C�‖θ‖�,2 
 e(�+
mn
2 ) βα

2 t‖ f ‖C� .

This way, by using Theorem 2.4 we get, for some γ > 0 and � ∈ Z+,
∣∣∣∣

∫

B̃�A(x,t)

∫

P
f
(
a−t yat h

)
θ(y)ψ

(
bt yat hx

)
dν(y) dν(h)

∣∣∣∣

≤
∫

B̃�A(x,t)

∣∣I fh ,ψ (bt , athx)
∣∣ dν(h)


 max
(‖ψ‖C1 , ‖ψ‖�,2

) (
e− βα

2 t‖ fh‖1 + e

(
�+ d2−1−mn

2

)
βα
2 t‖ fh‖�,2 e

−γ tν(B̃)

)


 max
(‖ψ‖C1 , ‖ψ‖�,2

) (
sup | f | · e− βα

2 t + ‖ f ‖C� · e(2�+ d2−1
2 )

βα
2 t−γ t

)
.

By combining the two estimates above, we get that, as long as t �
+

log 1
r0(x)

,

∣∣I f ,ψ (gt , x)
∣∣ 
 sup | f | sup |ψ |e− βα

2mnd(d−1) t

+ max
(‖ψ‖C1 , ‖ψ‖�,2

) (
sup | f | · e− βα

2 t + ‖ f ‖C� · e(2�+ d2−1
2 )

βα
2 t−γ t

)


 max
(‖ψ‖C1 , ‖ψ‖�,2

) ‖ f ‖C� · max

(
e− βα

2mnd(d−1) t , e
−

(
γ−(2�+ d2−1

2 )
βα
2

)
t
)

.

Choosing β equalizing the two exponents above, that is

β = 2γ /α

1
mnd(d−1) + 2� + d2−1

2

,
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will satisfy (2.3) with

λ = βα

2mnd(d − 1)
= γ

1 + mnd(d − 1)(2� + d2−1
2 )

,

which finishes the proof. ��

8 Weighted badly approximable matrices

Now let us recall a connection between Diophantine approximation with weights and the
action of F = {gt } as in (1.16) on the space X . It is shown in [12, Theorem 6.2] that
A ∈ Mm,n(R) is (i, j)-badly approximable iff the orbit {gtuAZ

k : t > 0} is bounded in

X , where uA =
(
Im A
0 In

)
. We want to make this equivalence quantitative. Recall that for

p = (p1, . . . , pm) and q = (q1, . . . , qn) we defined

‖p‖i = max
(
|p1|1/i1 , . . . , |pm |1/im

)
and ‖q‖j = max

(
|q1|1/ j1 , . . . , |qn |1/ jn

)
.

Now, for p ∈ R
m and q ∈ R

n , if v = (p,q) let us define the (i, j)-quasinorm ‖v‖i,j of v by

‖v‖i,j := max(‖p‖1/mi , ‖q‖1/nj ).

Then for x ∈ X let

δi,j(x) : = inf
v∈x�{0} ‖v‖i,j,

and for ε > 0 let us consider

Ui,j(ε) := {
x ∈ X : δi,j(x) < ε

}
. (8.1)

Mahler’s Compactness Criterion implies that a subset K of X is relatively compact if and
only if the restriction of δi,j to K is bounded away from zero (that is, K is contained in the
complement of Ui,j(ε) for some ε > 0).

Note that in the case i = m and j = n, the (m,n)-quasinorm is simply the sup norm on
R
d , δm,n(x)= δ(x), andUm,n(ε) is the same asU (ε) defined in (1.5). Also it is easy to check

that for arbitrary i, j and any x ∈ X one has

δ(x) ≥ δi,j(x)
max(m,n). (8.2)

Now we can state a quantitative form of [12, Theorem 6.2], which is also a weighted version
of [2, Lemma 3.1]:

Lemma 8.1 For any 0 < c < 1, A ∈ Badi,j(c) if and only if

{gtuAZ
d : t ≥ 0} ∩Ui,j(ε) = ∅, (8.3)

where ε = c1/d .
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1378 D. Kleinbock, S. Mirzadeh

Proof First note that gtuAZ
d consists of vectors of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ei1t (p1 + A1q)
...

eimt (pm + Amq)

e− j1t q1
...

e− jn t qn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where A1, . . . , Am are the rows of A. Suppose that

‖Aq + p‖i‖q‖j ≥ c (8.4)

for all p ∈ Z
m and q ∈ Z

n
� {0}. Take an arbitrary t ≥ 0. If

∣
∣e− j�t q j

∣
∣1/ jk ≥ εn for some

1 ≤ k ≤ n, it follows that
∥
∥
∥
∥gt

(
Aq + p

q

)∥
∥
∥
∥
i,j

≥ ε,

and we are done. So suppose that
∣∣e− jk t qk

∣∣1/ jk = e−t
∣∣q j

∣∣1/ jk < εn for all k. Then we have
‖q‖j < εnet . In view of (8.4), there exists 1 ≤ k ≤ m such that

|Akq + pk |1/ik ≥ c

‖q‖s
>

ce−t

εn
,

hence
∣∣∣eik t (Akq + pk)

∣∣∣
1/ik = et |Akq + pk |1/ik ≥ c

εn
= εm .

This proves that if q �= 0, then gtuAZ
d /∈ Ui,j(ε). And if q = 0 and p �= 0, then

∥∥∥∥gt

(
Aq + p

q

)∥∥∥∥
i,j

=
∥∥∥∥gt

(
p
0

)∥∥∥∥
i,j

≥ et/m‖p‖i,j ≥ 1 ≥ ε.

So gtuAZ
d /∈ Ui,j(ε) holds in this case as well, and we are done.

Vice versa, assume (8.3); that is, suppose that for any nonzero (p,q) ∈ Z
m+n and t ≥ 0

we have
∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ei1t (p1 + A1q)
...

eimt (pm + Amq)

e− j1t q1
...

e− jn t qn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
i,j

≥ ε (8.5)

Fix such p and q, take an arbitrary 0 < ε1 < ε, and choose t ≥ 0 so that
∥∥∥∥∥∥∥

⎛

⎜
⎝

e− j1t q1
...

e− jn t qn

⎞

⎟
⎠

∥∥∥∥∥∥∥
j

= e−t‖q‖j = εn1 .
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Then by (8.5) for some 1 ≤ k ≤ m we must have
∣
∣
∣eik t (Akq + pk)

∣
∣
∣
1/ik = et |Akq + pk |1/ik ≥ εm .

Consequently ‖Aq + p‖i‖q‖j ≥ εmεn1 , which, since ε1 < ε was arbitrary, implies that
‖Aq + p‖i‖q‖j ≥ c. Since p and q were arbitrary, A ∈ Badi,j(c), which finishes the proof
of the lemma. ��

We will also need a lower bound for the Haar measure of the inner r -core of the set
Ui,j(ε), where 0 < ε < 1 and r is small enough. The first step is a weighted version of [15,
Proposition 7.1]:

Proposition 8.2 There exist C9,C10 > 0 depending only on d such that for all 0 < ε < 1
one has

C9ε
d ≥ μ

(
Ui,j(ε)

) ≥ C9ε
d − C10ε

2d . (8.6)

Proof For x ∈ X and 1 ≤ k ≤ d , denote by Pk(x) the set of all primitive (i.e. extendable to
a basis of x) ordered k-tuples (v1, . . . , vk) of vectors in x . Then, given a function ϕ on R

d ,

for any k = 1, . . . , d − 1 define a function
∧k
ϕ on X by

∧k
ϕ (x) :=

∑

(v1,...,vk )∈Pk (x)
ϕ(v1, . . . , vk).

According to a generalized Siegel’s summation formula [15, Theorem7.3], for any 1 ≤ k ≤ d
there exists a constant ck dependent on k and d such that for any ϕ ∈ L1(Rkd),

∫

X

∧k
ϕ (v1, . . . vk) dx = ck

∫

(Rd)
k

ϕ dv1 . . . dvk . (8.7)

The case k = 1 corresponds to the classical Siegel transform,

ϕ̂(x) := ∧1
ϕ (x) =

∑

v∈P1(x)
ϕ(v),

and Siegel’s summation formula [19],
∫
X ϕ̂ dμ = c1

∫
Rd ϕ(v) dv.

Take 0 < ε < 1, denote by D the region in R
d defined by the following system of

inequalities:

|x�| < εmi� 1 ≤ � ≤ m,

|xm+�| < εnj� 1 ≤ � ≤ n,

and by ϕ the characteristic function of D. Note that the volume of D is equal to εd , and that

x ∈ Ui,j(ε) ⇔ x ∩ D �= {0}.
The latter condition clearly implies that D contains at least two primitive vectors in x .
Therefore in view of Siegel’s formula we have

μ
(
Ui,j(ε)

) ≤ 1

2

∫

X
ϕ̂ dμ = 1

2
c1

∫

Rd
ϕ dv = 1

2
c1ε

d .

For getting the lower bound, note that if two linearly independent primitive vectors v1 and v2
in x ∩ D do not form a primitive pair, then the line segment between v1 and v2 must contain
another lattice point; and since D is convex, this lattice point must be in D. So one can easily
see that whenever there exist at least two linearly independent vectors in x ∩ D, for any
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v1 ∈ P1(x) ∩ D one can find v2 ∈ x ∩ D such that (v1, v2), as well as (v1,−v2), belong to
P2(x). Therefore, if ϕ̂(x) > 2, one has

ϕ̂(x) = #(P1(x) ∩ D) ≤ 1

2
#
(
P2(x) ∩ (D × D)

) = 1

2

∧2
ψ (x),

where ψ is the characteristic function of D × D in R
2k . Hence,

∫
X ϕ̂ dμ =

∫

{x :ϕ̂(x)≤2}
ϕ̂ dμ +

∫

{x :ϕ̂(x)>2}
ϕ̂ dμ

≤ 2μ({x : ϕ̂(x) = 2}) + 1
2

∫
{x :ϕ̂(x)>2}

∧2
ψ dμ ≤ 2μ

(
Ui,j(ε)

) + 1
2

∫
X

∧2
ψ dμ,

which implies that

2μ
(
Ui,j(ε)

) ≥
∫

X
ϕ̂ dμ − 1

2

∫

X

∧2
ψ dμ = c1ε

d − 1

2

∫

X

∧2
ψ dμ.

Using the k = 2 case of (8.7) yields
∫
X

∧2
ψ dμ = c2ε2d . Hence (8.6) holds with C9 = 1

2c1
and C10 = 1

4c2. ��
Finally let us choose C11 > 0 such that for any 0 < r < 1,

max
(‖g − Id‖op, ‖g−1 − Id‖op‖

)
< C11r whenever g ∈ BG(r).

Lemma 8.3 Let 0 < ε < 1 and

0 < r <
2α − 1

dC11
εmax(m,n). (8.8)

Then

Ui,j(ε/2) ⊂ σr
(
Ui,j(ε)

)
.

Proof Take x ∈ Ui,j(ε/2) and g ∈ BG(r). We know that there exists v ∈ x � {0} such that
one of the following two conditions holds:

(1) |vk | < (ε/2)mik for some 1 ≤ k ≤ m;
(2) |vm+k | < (ε/2)njk for some 1 ≤ k ≤ n.

Assuming (1) and writing g = (ak�)k,�=1,...,d , one has

|(gv)k | =
∣∣∣akkvk +

∑

��=k

ak�v�

∣∣∣ ≤ (1 + C11r)(ε/2)
mik + (d − 1)C11r(ε/2)

mα

≤ (ε/2)mik + dC11r(ε/2)
mα ≤ εmik

2mα

(
1 + dC11rε

−m)
,

which is smaller than εmik in view of (8.8); hence gx ∈ Ui,j(ε). The argument in case of (2)
is similar. ��

Now we can finish the

Proof of Theorem 1.4 In view of Theorem 7.1 and Lemma 8.1, one can apply
Theorem 1.3 to P as in (1.17) and conclude that for any c > 0 and any
0 < r < min

(
r0

(
∂1/2(X � Ui,j(ε)

)
, r ′′), it holds that
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codim Badi,j(c) � μ
(
σrUi,j(ε)

)

log 1
r + log 1

μ(σrUi,j(ε))

(8.9)

where ε = c1/d and the implicit constant in (8.9) is independent of c but depends on i, j.
Note that in view of (8.2) we have X � Ui,j(ε) ⊂ X � U (εmax(m,n)), thus

r0
(
∂1/2

(
X � Ui,j(ε)

)) ≥ r0
(
∂1/2(X � U (εmax(m,n))

)

� r0

(
X � U

( 1

1 + C11/2
εmax(m,n)

))
≥ C1

1 + C11/2
εd·max(m,n),

the last inequality being a consequence of Lemma 7.2. It follows that (8.9) holds whenever

r <
C1

1 + C11/2
εd·max(m,n) ≤ r ′′. (8.10)

Now define

c0 := min

((1 + C11/2

C1
r ′′)1/max(m,n)

,C9/2C10

)
,

take ε < c1/d0 and consider

r = 1

2
min

(
2α − 1

dC11
,

C1

1 + C11/2

)
εd·max(m,n).

Then both (8.8) and (8.10) will hold, and thus the right hand side of (8.9) is not less than

μ
(
Ui,j(ε/2)

)

log 1
r + log 1

μ(Ui,j(ε/2))

≥
1
2C9(ε/2)d

log 1
r + log 1

1
2C9(ε/2)d

� εd

log 1
ε

,

which finishes the proof. ��

9 Concluding remarks

9.1 Precise estimates for the Hausdorff dimension

Note that in view of the aforementioned result of Simmons [20] and similar results for other
dynamical systems (see e.g, [8]), it is natural to expect that whenU is either a small ball or the
complement of a large compact subset of X , the codimension of E(F+,U ) is, asU shrinks,
asymptotic to a constant times the measure ofU . That is, conjecturally there should not be a
logarithmic term in the right hand side of (1.9). However it is not clear how to improve our
upper bound, as well as how to establish a complimentary lower estimate for dim E(F+,U ),
using the exponential mixing of the action. Such questions can be asked in other contexts,
such as for expanding maps on manifolds, see e.g. [1] for a lower estimate improving on
[22].

9.2 A dimension drop problem

Another interesting question is whether the conclusion of Theorem 1.1 holds without the
assumption of compactness ofUc. It fact, it is not even known in general that the dimension
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of E(F+,U ) is strictly smaller than the dimension of X as long as U is non-empty. In [7]
it was established in the case when G is a connected semisimple Lie group of real rank 1.
One possible approach to this problem for non-compact homogeneous spaces of higher rank
is to combine the methods of the present paper with estimates on the escape of mass for
translates of measures on horospherical subgroups, as developed in [13]. This is a work in
progress. Recenly in [9], by generalizing the methods used in [13] to arbitrary homogeneous
spaces, it was shown that for any one parameter subgroup action on a homogeneous space,
the Hausdorff dimension of the set of points with divergent trajectories is not full.
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