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Abstract

Large-scale deep neural networks are both memory and
computation-intensive, thereby posing stringent requirements
on the computing platforms. Hardware accelerations of deep
neural networks have been extensively investigated. Spe-
cific forms of binary neural networks (BNNs) and stochastic
computing-based neural networks (SCNNs) are particularly
appealing to hardware implementations since they can be im-
plemented almost entirely with binary operations.
Despite the obvious advantages in hardware implementation,
these approximate computing techniques are questioned by
researchers in terms of accuracy and universal applicability.
Also it is important to understand the relative pros and cons
of SCNNs and BNNs in theory and in actual hardware im-
plementations. In order to address these concerns, in this pa-
per we prove that the ”ideal” SCNNs and BNNs satisfy the
universal approximation property with probability 1 (due to
the stochastic behavior), which is a new angle from the orig-
inal approximation property. The proof is conducted by first
proving the property for SCNNs from the strong law of large
numbers, and then using SCNNs as a “bridge” to prove for
BNNs. Besides the universal approximation property, we also
derive an appropriate bound for bit length M in order to pro-
vide insights for the actual neural network implementations.
Based on the universal approximation property, we further
prove that SCNNs and BNNs exhibit the same energy com-
plexity. In other words, they have the same asymptotic energy
consumption with the growth of network size. We also pro-
vide a detailed analysis of the pros and cons of SCNNs and
BNNs for hardware implementations and conclude that SC-
NNs are more suitable.

Introduction
Large-scale neural networks are both memory-intensive
and computation-intensive, thereby posing stringent require-
ments on the computing platforms when deploying those
large-scale neural network models on memory-constrained
and energy-constrained embedded devices. In order to over-
come these limitations, the hardware accelerations of deep
neural networks have been extensively investigated in both
industry and academia (Mahajan et al. 2016; Zhao et al.
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2017b; Umuroglu et al. 2017; Han et al. 2016; Chen et al.
2014; Moons et al. 2017). These hardware accelerations are
based on FPGA and ASIC devices and can achieve a sig-
nificant improvement on energy efficiency, along with small
form factor, compared with traditional CPU or GPU based
computing of deep neural networks. Both characteristics are
critical for the battery-powered embedded and autonomous
systems.

Hardware systems, including FPGAs and ASICs, have
much higher peak performance for binary operations com-
pared to floating point ones. Besides, it is also desirable to
reduce the model size of deep neural network such that the
whole model can be stored using on-chip memory, thereby
reducing the timing and energy overheads of off-chip stor-
age and communications. As a result, the Binary Neural
Networks (BNNs), proposed by (Courbariaux, Bengio, and
David 2015), are particularly appealing since they can be
implemented almost entirely with binary operations, with
the potential to attain performance in the tera-operations per
second (TOPS) range on FPGAs or ASICs.

Besides BNNs, reference work (Ren et al. 2017; Yu et
al. 2017; Kyounghoon Kim 2015; Merolla et al. 2014;
Li et al. 2018; Neftci 2016; Andreou and Chatzis 2016)
have also proposed to utilize the hardware-oriented Stochas-
tic Computing (SC) technique for developing (large-scale)
deep neural networks, i.e., SCNNs. The SC technique rep-
resents a number using the portion of 1’s in a bit sequence.
Many key operations in neural networks, such as multiplica-
tions and additions, can be implemented in a single gate in
SC. For example, multiplication of two stochastic numbers
can be implemented using a single AND gate or XNOR gate
(depending on unipolar or bipolar representations). It en-
ables the efficient implementation of deep neural networks
with extremely small hardware footprint.

The BNNs and SCNNs are essentially alike: Both rely on
binary operations and very simple calculations in hardware
such as AND, XNOR gates, multiplexers and counters. For
their distinctions, SCNNs ”stretch” in the temporal domain
and use a bit sequence (stochastic number) to approximate
a real number, whereas BNNs ”span” in the spatial domain
and require more input and hidden neurons to maintain the
desired accuracy.
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Despite the obvious advantages in hardware implemen-
tation, these approximate computing techniques are ques-
tioned by researchers in terms of accuracy. Will SCNNs and
BNNs be accurate for any types of neural networks and ap-
plications? More specifically, conventional neural networks
with at least one hidden layer satisfy the universal approxi-
mation property (Csáji 2001) in that they can approximate an
arbitrary continuous or measurable function given enough
number of neurons in the hidden layer. Will SCNNs and
BNNs satisfy such property as well? Finally, what are the
relative pros and cons of SCNNs and BNNs in theory, and at
the hardware level?

In this paper we aim to answer the above questions. We
consider the ”ideal” SCNNs and BNNs that are independent
of specific hardware implementations. As the key contribu-
tion of this paper, we prove that SCNNs and BNNs satisfy
the universal approximation property with probability 1 (due
to the stochastic behavior in these networks), which is a new
angle from the original approximation property. The proof
is conducted by first proving the property for SCNNs from
the strong law of large numbers, and then using SCNNs as
a “bridge” to prove for BNNs. This is because it is difficult
to directly prove the property for BNNs, as BNNs represent
functions with discrete (binary) input values instead of con-
tinuous ones. Besides the universal approximation property,
we also derive an appropriate bound for bit length M in or-
der to provide insights for the actual neural network imple-
mentations.

Based on the universal approximation property, we fur-
ther prove that SCNNs and BNNs exhibit the same energy
complexity. In other words, they have the same asymptotic
energy consumption with the growing of network size. We
also provide a detailed analysis of the pros and cons of SC-
NNs and BNNs for hardware implementations and conclude
that SCNNs are more suitable for hardware. It is also possi-
ble to strike a desirable balance between SCNNs and BNNs
to derive the best-suited implementation for a specified hard-
ware.

Background and Related Work
Stochastic Computing and SCNNs
Stochastic computing (SC) is a paradigm that represents a
number, named stochastic number, by counting the num-
ber of ones in a bit-stream. For example, the bit-stream
0100110100 contains four ones in a ten-bit stream, thus it
represents x = P (X = 1) = 4/10 = 0.4. In the bit-
stream, each bit is independent and identically distributed
(i.i.d.) which can be generated in hardware using stochas-
tic number generators (SNGs). Obviously, the length of the
bit-streams can significantly affect the calculation accuracy
in SC (Brown and Card 2001). In addition to this unipo-
lar encoding format, SC can also represent numbers in the
range of [−1, 1] using the bipolar encoding format. In this
scenario, a real number x is processed by P (X = 1) =
(x + 1)/2. Thus 0.4 can be represented by 1011011101, as
P (X = 1) = (0.4 + 1)/2 = 7/10. -0.5 can be represented
by 10010000, as it shown in figure 1(b), with P (X = 1) =
(−0.5 + 1)/2 = 2/8.
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Figure 1: (a) Unipolar encoding format and (b) bipolar en-
coding format. (c) AND gate for unipolar multiplication. (d)
XNOR gate for bipolar multiplication. (e) MUX gate for ad-
dition.

Compared to conventional computing, the major advan-
tage of stochastic computing is the significantly lower hard-
ware cost for a large category of arithmetic calculations. A
summary of the basic computing components in SC, such
as multiplication and addition, is shown in Figure 1. As an
illustrative example, a unipolar multiplication can be per-
formed by a single AND gate since P (A · B = 1) =
P (A = 1)P (B = 1) (assuming independence), and a bipo-
lar multiplication is performed by a single XNOR gate since
c = 2P (C = 1) − 1 = 2(P (A = 1)P (B = 1) + P (A =
0)P (B = 0))− 1 = (2P (A = 1)− 1)(2P (B = 1)− 1) =
ab.

Besides multiplications and additions, SC-based activa-
tion functions are also developed (Li et al. 2017a; 2017b).
As a result, SC has become an interesting and promising ap-
proach to implement large-scale neural networks (Yuan et
al. 2017; Yu et al. 2017; Li et al. 2017c; Kyounghoon Kim
2015) with high performance/energy efficiency and minor
accuracy degradation.

We note that the goal of SCNN in approximating using
stochastic computation is very different from dropout (or
other stochastic techniques). SCNN aims to facilitate hard-
ware implementations, and by transforming binary numbers
and weights to stochastic ones, it enables efficient imple-
mentation with extremely small hardware footprint. This is
different from dropout which aims to enhance the generality
and robustness.

Binary Neural Networks (BNNs)
BNNs use binary weights, i.e., weights that are constrained
to only two possible values (not necessarily 0 and 1) (Cour-
bariaux, Bengio, and David 2015). BNNs also have great po-
tential to facilitate consumer applications on low-power de-
vices and embedded systems. (Zhao et al. 2017b; Umuroglu
et al. 2017) have implemented BNNs in FPGAs with high
performance and modest power consumption.

BNNs constrain the weights to either +1 or −1 dur-
ing the forward propagation process. As a result, many
multiply-accumulate operations are replaced by simple ad-
ditions (and subtractions) using single gates. This results in
a huge gain in hardware resource efficiency, as fixed-point
adders/accumulators are much less expensive both in area
and energy than fixed-point multiply-accumulators (David,
Kalach, and Tittley 2007).
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The real-valued weights are transformed into the two pos-
sible values through the following stochastical binarization
operation:

wB =

{
+1 with probability p = σ(w)

−1 with probability 1− p (1)

where σ is the hard sigmoid function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (2)

A hard sigmoid rather than the soft version is used because
it is far less computationally expensive.

At training time, BNNs randomly pick one of two values
for each weight, for each minibatch, for both the forward and
backward propagation phases of backpropagation. However,
the stochastic gradient descent (SGD) update is accumulated
in a real-valued variable storing the parameter to average the
noise for keeping sufficient resolution. Moreover, binariza-
tion process adds some noise into the model, which provides
a form of generalization to address the over-fitting problem.

Universal Approximation Property
For feedforward neural networks with one hidden layer, (Cy-
benko 1989) and (Hornik, Stinchcombe, and White 1989)
have proved separately the universal approximation prop-
erty, which guarantees that for any given continuous func-
tion or measurable function and any error bound ε > 0, there
always exists a single-hidden layer neural network that ap-
proximates the function within ε integrated error. Besides
the approximation property itself, it is also desirable to cast
a limit on the maximum amount of neurons. In this direc-
tion, (Barron 1993) showed that feedforward networks with
one layer of sigmoidal nonlinearities achieve an integrated
squared error with order of O(1/n), where n is the number
of neurons.

More recently, several interesting results were published
on the approximation capabilities of deep neural networks
or neural networks using structured matrices. (Delalleau and
Bengio 2011) have shown that there exists certain functions
that can be approximated by three-layer neural networks
with a polynomial amount of neurons, while two-layer neu-
ral networks require exponentially larger amount to achieve
the same error. (Montufar et al. 2014) and (Telgarsky 2016)
have shown the exponential increase of linear regions as
neural networks grow deeper. (Liang and Srikant 2016)
proved that with log(1/ε) layers, the neural network can
achieve the error bound ε for any continuous function with
O(polylog(ε)) parameters in each layer. Recently, (Zhao et
al. 2017a) have proved that neural networks represented in
structured, low displacement rank matrices preserve the uni-
versal approximation property. These recent research have
sparked the research interests on the theoretical properties of
neural networks with simplifications/approximations which
are suitable for high-efficiency hardware implementations.

Neural Network of Interests and SCNNs
Our problem statement follows the flow of reference work
(Zhao et al. 2017a) for investigating the universal approxi-
mation property. Let In denote the n-dimensional unit cube,

[0, 1]n. The space of continuous functions on In is denoted
by C(In). A feedforward neural network with N units of
neurons arranged in a single hidden layer is denoted by a
function G : Rn → R, satisfying the form

G(x) =
N∑
i=1

αiσ(wT
i x + bi) (3)

where wi, x ∈ Rn, αi, bi ∈ R, and σ is a nonlinear sig-
moidal activation function. The wi denotes weights associ-
ated with hidden neuron i and is applied to input x. αi de-
notes the i-th weight of output neuron, and is applied to the
output of i-th neuron in the hidden layer. bi is the bias of unit
i.
Definition 1. A sigmoidal activation function σ : R → R
satisfies

σ(t)→
{

1 as t→∞
0 as t→ −∞

Definition 2. Starting from the neural network of interests,
we define an SCNN satisfying the form:

GSC,M(xSC,M) =

N∑
i=1

αiσ(wT
SC,M,ixSC,M + bSC,M,i) (4)

where each element j in wT
SC,M,i is denoted by wjSC,M,i, and

each element in xSC,M is denoted by xjSC,M. wjSC,M,i, x
j
SC,M,

and bSC,M,i are stochastic numbers represented by M -bit
streams, as approximations of wji , xj , and bi, respectively.
These bit-streams are independent in each bit and wT

SC,M,i,
xSC,M, and bSC,M,i will converge to wT

i , x, and bi as M →
∞, respectively. The computation in wT

SC,M,ixSC,M + bSC,M,i
follows the SC rules described before.

In the above definitions we focus on an ”ideal” SCNN
that assumes accurate activation and output layer calcula-
tion (which is reasonable because the output layer size is
typically very small). The SCNN of interest, as illustrated in
Figure 2, does not depend on specific hardware implementa-
tions that may be different in practice. We also do not specify
any limitation on the weight and input ranges because they
can be effectively dealt with by pre-scaling techniques.

The Universal Approximation Property of
SCNNs and BNNs

In this section, we prove that SCNNs and BNNs satisfy the
universal approximation property with probability 1, which
is a new angle from the original universal approximation
property. More specifically, we first prove the property for
SCNNs and then use SCNNs as a ”bridge” to prove for
BNNs. This two-step proof is due to the fact that directly
proving the property for BNNs is difficult, as BNNs repre-
sent functions with binary input values.

The proof is on single hidden layer, as inherited from the
original universal approximation property. For multi-layer
networks, the universal approximation still holds as a natural
extension (because the previous layers can be considered as
mapping).
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Figure 2: The structure of SCNN of interest.

Universal Approximation Property of SCNN
In this section we will prove a lemma on the closeness of
stochastic approximation for the inputs of each neuron, a
lemma on the closeness of approximations for the outputs,
and finally extend the universal approximation theorem from
(Cybenko 1989) to SCNNs.
Lemma 1. As the bit-stream length M → ∞, the stochas-
tic number wT

SC,M,ixSC,M + bSC,M,i converges to wT
i x + bi

almost surely.

Proof. Let Ω be the sample space of all bit-streams gener-
ated to represent elements in wT

i , x, and bi. For each in-
stance ω ∈ Ω, use notations wT

SC,M,i(ω), xSC,M (ω), and
bSC,M,i(ω) to represent stochastic numbers (or vectors) cal-
culated from the corresponding M -bit streams associated
with ω. Moreover, define three constant random variables
representing the target real values, namely for each i ∈
{1, ..., N},  wT

i (ω) ≡ wT
i ,∀ω ∈ Ω,

x(ω) ≡ x, ∀ω ∈ Ω,
bi(ω) ≡ bi,∀ω ∈ Ω,

(5)

We shall prove that for every ω ∈ Ω:

lim
M→∞

wT
SC,M,i(ω) · xSC,M (ω) + bSC,M,i(ω) =

wT
i (ω) · x(ω) + bi(ω).

(6)

From the construction of the random variables, we have
that for each i and j

lim
M→∞

wjSC,M,i(ω) =wji ,

lim
M→∞

xjSC,M (ω) =xj ,

lim
M→∞

bSC,M,i(ω) =bi.

Therefore, these exists Mmin(ω) such that for all M ≥
Mmin(ω) and all ε > 0, we have∣∣wjSC,M,i(ω)xjSC,M (ω)− wjix

j
∣∣ <ε′∣∣bSC,M,i(ω)− bi
∣∣ <ε′,

where ε′ = 1
n+1ε. Use an argument of triangle inequality to

show∣∣∣wT
SC,M,i(ω) ·xSC,M (ω)+bSC,M,i(ω)−wT

i x−bi
∣∣∣ < ε (7)

Since ε can be arbitrarily small, it implies

lim
M→∞

wT
SC,M,i(ω) · xSC,M (ω) + bSC,M,i(ω) = wT

i x + bi.

(8)
Since this is true for every ω ∈ Ω, we conclude that

P
({
ω ∈ Ω : lim

M→∞
wT

SC,M,i(ω) · xSC,M (ω) + bSC,M,i(ω) =

wT
i x + bi

})
= 1.

(9)
In other words, we proved that as M → ∞, the stochastic
number wT

SC,M,i(ω) · xSC,M (ω) + bSC,M,i(ω) almost surely
converges to wT

i x + bi.

Lemma 2. If the sigmodial function σ(t) has bounded
derivative, then the stochastic number σ(wT

SC,M,ixSC,M +

bSC,M,i) almost surely converge to the real value σ(wT
i x +

bi) as the bit-stream length M →∞, .

Proof. We have the following inequalities:∣∣σ(wT
SC,M,ixSC,M + bSC,M,i)− σ(wT

i x + bi)
∣∣

≤ max
t

∣∣σ′(t) · |wT
SC,M,ixSC,M + bSC,M,i −wT

i x− bi|
∣∣

≤
(

max
t

∣∣σ′(t)
∣∣) · ∣∣wT

SC,M,ixSC,M + bSC,M,i −wT
i x− bi

∣∣
(10)

For the currently utilized activation functions, including sig-
moid, tanh (hyperbolic tangent), ReLU functions, there is
an upper bound on the derivatives. The maximum abso-
lute value of the derivatives is often 1. Then, from the
above Lemma 1 about the almost sure convergence of
wT

SC,M,ixSC,M+bSC,M,i to wT
i x+bi, we arrive at the almost

sure convergence of σ(wT
SC,M,ixSC,M + bSC,M,i).

Based on the above lemmas and the original universal ap-
proximation theorem, we arrive at the following universal
approximation theorem for SCNNs.
Theorem 1. (Universal Approximation Theorem for SC-
NNs). For any continuous function f(x) defined on In and
any ε > 0, we define an event that there exists an SCNN
function GSC,M (xSC,M ) in the form of Eqn. (4) that satisfies

lim
M→∞

|GSC,M (xSC,M )− f(x)| < ε. (11)

This event is satisfied almost surely (with probability 1).

Proof. From the universal approximation theorem stated
in (Cybenko 1989), we know that there exists a function
G(x) representing a deterministic neural network such that
|G(x)− f(x)| < ε/2 for all x ∈ In. For each positive inte-
ger M define GSC,M (x) as the SCNN function obtained by
replacing each parameter of G(x) with its M -bit stochastic
representation. Then we have
|GSC,M (xSC,M )− f(x)|
= |GSC,M (xSC,M )−G(x) +G(x)− f(x)|
≤ |GSC,M (xSC,M )−G(x)|+ |G(x)− f(x)|

(12)
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Applying Lemma 1 and 2, we can bound the first term as

|GSC,M (xSC,M )−G(x)| =∣∣∣∣ N∑
i=1

αiσ(wT
SC,M,ixSC,M + bSC,M,i)−

N∑
i=1

αiσ(wT
i x + bi)

∣∣∣∣
≤

N∑
i=1

∣∣∣∣αi[σ(wT
SC,M,ixSC,M + bSC,M,i)− σ(wT

i x + bi)
]∣∣∣∣

≤
N∑
i=1

∣∣αi∣∣∣∣σ(wT
SC,M,ixSC,M + bSC,M,i)− σ(wT

i x + bi)
∣∣

(13)

whereN is the size of the hidden layer in the neural network
represented by G(x), and αi is the i-th weight in the output
layer.

Deriving from Lemma 2, we know that for
ε

2
∑N
i=1 αi

>

0, with probability 1 there exists Mmin such that∣∣σ(wT
SC,M,ixSC,M +bSC,M,i)−σ(wT

i x+bi)
∣∣ < ε

2
∑N
i=1 αi

(14)
for M ≥ Mmin. Incorporating into Eqn. (13) we have
|GSC,M (xSC,M )−G(x)| < ε

2
. Further incorporating into

Eqn. (12) we have |GSC,M (xSC,M )− f(x)| < ε for M ≥
Mmin. Thereby we have formally proved that universal
approximation theorem holds with probability 1 for SC-
NNs.

Besides the universal approximation property, it is also
critical to derive an appropriate bound for bit length M in
order to provide insights for the actual neural network im-
plementations. The next theorem gives an explicit bound on
the bit length for close approximation with high probability.
Theorem 2. For the SCNN function GSC,M in Theorem 1,
let M be any integer that satisfies

M >
(n+ 1)2 ·N2

ε2δ
. (15)

Then with probability at least 1 − δ,
|GSC,M (xSC,M )− f(x)| < ε holds for all x ∈ In.

Proof. Different from the above proof based on the strong
law of large numbers (almost sure convergence), deriving
bounds is more related to the weak law (convergence in
probability). As the former case will naturally ensure the lat-
ter, we have the following convergence in probability prop-
erty: For any ε, δ > 0, there exists Mδ

min, such that for any
M ≥Mδ

min, we have

Pr
{
|GSC,M (xSC,M )− f(x)| < ε

}
> 1− δ (16)

Based on a reverse order of the above proof of univer-
sal approximation, the above inequality is satisfied when we

have

Pr
{
|GSC,M (xSC,M )−G(x)| < ε

2

}
> 1− δ (17)

Furthermore, the above inequality is satisfied when we have

Pr

{ ∣∣∣wjSC,M,ix
j
SC,M − w

j
ix
j
∣∣∣ < ε

2(n+ 1) ·
∑
i αi

}
> 1− δ

(18)
As each bit in stochastic number wjSC,M,ix

j
SC,M satisfies

a binary distribution with expectation wjix
j , the maximum

variance is
1

4
. Due to i.i.d. property, the maximum variance

(σ2) ofwjSC,M,ix
j
SC,M is

1

4M
. According to the Chebyshev’s

inequality Pr
(
‖X − µ‖ ≥ kσ

)
≤ 1

k2
, we let

1

k2
= δ and

obtain
1

2
√
δM

=
ε

2(n+ 1) ·
∑
i αi

(19)

Then we derive an upper bound of Mδ
min as

Mδ
min ≤

(n+ 1)2 ·
(∑

i αi
)2

ε2δ
≤ (n+ 1)2 ·N2

ε2δ
(20)

As indicated in the universal approximation theory, any
continuous or measurable function in the domain [0, 1]n can
be approximated, and this domain matches the input domain
of stochastic computing. As a result this bound is a general
bound with broad applicability. We conducted multiple ex-
periments and all have validated this statement. We demon-
strate two experiments shown in (a), (b) in Figure 3. It shows
the bound vs. Monte Carlo experiments results, on the bit-
sequence length M as a function of neuron number N in the
hidden layer. (a) is result on linear function and (b) on sinu-
soidal function. The other parameters ε = 0.2 and δ = 0.1.

Figure 3: Illustration of the effect of bound on two types of
functions.

We can show that (i) the bound is the same for different
functions and is a general bound; (ii) the bound is indeed an
effective upper bound on both types of functions (and also
in the other types of functions in our experiments); (iii) the
bound is tighter with smaller number of hidden neurons and
when the approximation function has higher degree of non-
linearity.
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Universal Approximation of BNNs and
Equivalence between SCNNs and BNNs
In this section we start from the formal definition of BNNs
of interests and then state the universal approximation prop-
erty. Similar to the definition of SCNNs, here we focus on
an ”ideal” BNN that is independent of actual BNN imple-
mentations. An illustration is shown in Figure 4.

x1
B

x2
B

xm
B

wB,1

wB,2

GB(xB)

wB,N

B
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ar
y 

va
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Figure 4: The structure of BNN of interest.

Definition 3. A BNN of interest is defined as a function
GB(xB), satisfying:

GB(xB) =

N∑
i=1

αiσ(wT
B,ixB + bB,i) (21)

where the input vector xB and weight vector wB,i for each i
represent vectors of binary values. Let m denote the dimen-
sionality in these two vectors (dimension of inputs). bB,i is a
binary bias value. The computation in wT

B,ixB + bB,i follows
the BNN rules as described before. Similar to SCNNs, we
also consider here accurate activation and output layer cal-
culation. This is reasonable and also applied in BNN deploy-
ments because the output layer size is typically very small.

The Equivalence of SCNNs and BNNs: The BNNs can
be transformed into SCNNs, and vice versa. We illustrate
the former case as an example. Let M denote the length
of stochastic number and the number of inputs in SCNN
becomes n =

m

M
. Then the first input stochastic number

x1SC = xB[1 : M ] (i.e., the first M bits in xB), the second
input stochastic number x2SC = xB[M + 1 : 2M ], and so
on. This also applies to the weight stochastic numbers. The
bias stochastic number bSC,i can be a sign extension of bB,i.
In this way the BNN is transformed into SCNN described
in Definition 2. The transformation from SCNN to BNN is
similar.

Because of the universal approximation property of SC-
NNs and the equivalence of BNNs, we arrive at the universal
approximation for BNNs as well.

Theorem 3. (Universal Approximation Theorem for BNNs).
For any continuous function f(x) defined on In, ε > 0, we

define an event that there exists an BNN function GB(xB) in
the form of Eqn. (21) that satisfies

lim
m→∞

|GB(xB)− f(x)| < ε. (22)

This event is satisfied almost surely (with probability 1).

Proof. Apply Theorem 1 to obtain a close approximation of
f(x) with SCNN functions, then build a BNN function that
closely approximations the SCNN function.

The equivalence in SCNNs and BNNs also leads to the
same bound, defined as the total number of input bits m =
n ·M required to achieve universal approximation. The rea-
soning is using proof by contradiction. Suppose that SCNNs
have a lower bound, i.e., n · Mmin < mmin. Then there
exists an SCNN with n inputs each with Mmin bits satis-
fying the universal approximation property. From the above
equivalance analysis we can construct a BNN withMmin ·n
input bits that also achieves such property, which is smaller
and thus in contradiction with the bound mmin. And vice
versa.

Energy Complexity and Hardware Design
Implications

Energy Complexity Analysis
The energy complexity, as defined and described in (Mar-
tin 2001; Khude, Kumar, and Karnik 2005), specifies the
asymptotic energy consumption with the growth of neural
network size. It can be perceived as a multiplication of the
time complexity and parallelism degree, and therefore is im-
portant for hardware implementations and evaluations. As
an example, when the input size (number of bits) is n, a rip-
ple carry adder has an energy complexity of O(n) whereas
a multiplier has energy complexity of O(n2). On the other
hand, both of their time complexity is O(n). The reason is
because the ripple carry adder is a sequential computation
whereas the multiplier is a parallel computation.

Next we provide an analysis on the energy complexity
of the key calculation in wT

SC,M,ixSC,M + bSC,M,i in SC-
NNs and wT

B,ixB + bB,i in BNNs. From the above equiv-
alence analysis, we have m = n · M and M ≥ Mmin

for satisfying the universal approximation property. Accord-
ing to the hardware implementation details in SCNN and
BNN, the multiplication of two bits has energy complex-
ity of O(1), then the multiplication of two stochastic num-
bers has energy complexity of O(M ). The addition of a set
of n stochastic numbers has energy complexity of O(nM )
using simple calculation units like multiplexers or energy
complexity O(n log n ·M ) using more accurate accumula-
tion units like the approximate parallel counter (APC) (Ky-
ounghoon Kim 2015). As a result, the overall energy com-
plexity in wT

SC,M,ixSC,M + bSC,M,i is O(nM ) (for less ac-
curate results) or O(n log n ·M ) (for more accurate results).
For the whole layer withN neurons, the overall energy com-
plexity is n ·M ·N or n log n ·M ·N . The energy complexity
for BNNs with m = n ·M is the same due to the equiva-
lence.
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In fact, one of the key of this work is to show that SCNN
and BNN are equivalent, in both functionality and energy
complexity. This will shed some light on the neural network
implementation because many related work think them not
equivalent. As a result this work will draw the attention and
provide some guideline about actual implementations.

Hardware Design Implications
Despite the same energy complexity, the actual hardware im-
plementations of SCNNs and BNNs are different. As dis-
cussed before, SCNNs ”stretch” in the temporal domain
whereas BNNs span in the spatial domain. This is in fact the
most important advantage of SCNNs. For BNN actual im-
plementations, there is often an imbalance between the input
I/O size and the computation requirement. The total com-
putation requirement (please refer to the energy complexity
discussion) is low, but the input requirement is huge even
compared with conventional neural networks. This makes
actual BNN implementations I/O bound systems, as in ac-
tual hardware tapeouts the I/O clock frequency is much
lower compared with the computation clock frequency. In
other words, the advantage of low and simple computation
in BNNs is often not fully exploited in actual deployments
(Zhao et al. 2017b; Umuroglu et al. 2017). This limitation
can be effectively mitigated by SCNNs, because the spatial
requirement is effectively traded-off with the temporal re-
quirement. In this aspect SCNNs can use lower I/O account
and thereby more effective usage of hardware computation
and memory storage resources compared with BNN coun-
terparts, thereby becoming more suitable for hardware im-
plementations. Of course, the most desirable hardware de-
sign is platform-dependent, and will be an effective tradeoff
between SCNN and BNN.

On the other hand, BNNs are more heavily optimized
in literature compared with SCNNs. Especially, many re-
search work (Courbariaux, Bengio, and David 2015; Hubara
et al. 2016) are dedicated for effective training methods for
BNNs making efficient usage of randomization techniques.
On the other hand, the research on SCNNs are mainly
from the hardware aspect (Ren et al. 2017; Yu et al. 2017;
Li et al. 2017c). For training these work use a straightfor-
ward way of transforming directly (every input and weight)
from conventional neural networks to stochastic numbers.
As a result, it will be effective to take advantage of the train-
ing methods for BNNs, transform into SCNNs that are more
suitable for hardware implementations using the method de-
scribed in the equivalence analysis. In this way, we can ef-
fectively exploit the advantage while hiding weakness in
both SCNNs and BNNs.

Conclusion
SCNNs and BNNs are low-complexity variants of deep neu-
ral networks that are particularly suitable for hardware im-
plementations. In this paper, we conduct theoretical analysis
and comparison between SCNNs and BNNs in terms of uni-
versal approximation property, energy complexity, and suit-
ability for hardware implementations. More specifically, we
prove that the ”ideal” SCNNs and BNNs satisfy the univer-
sal approximation property with probability 1. The proof is

conducted by first proving the property for SCNNs from
the strong law of large numbers, and then using SCNNs
as a “bridge” to prove for BNNs. Besides the universal ap-
proximation property, we also derived an appropriate bound
for bit length M in order to provide insights for the ac-
tual neural network implementations. Based on the universal
approximation property, we further prove that SCNNs and
BNNs exhibit the same energy complexity. In other words,
they have the same asymptotic energy consumption with the
growing of network size. We also provide a detailed analy-
sis of the pros and cons of SCNNs and BNNs for hardware
implementations and present a way of effectively exploiting
the advantage of each type while hiding the weakness.
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