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Active learning is broadly shown to improve student outcomes as compared with traditional lecture, but more
work must be done to distinguish outcomes between different types of active learning. We collected self-reported
student social network data at early and late-semester times in a Peer Instruction classroom. The subsequent
networks are modeled using exponential random graph models (ERGMs), which are a family of statistical
models used with relational data, like social networks. We discuss preliminary findings using this method for
a Peer Instruction class. The best-fit ERGM predicts long “chains” of student edges, such as might arise from
students talking along rows in the lecture hall. ERGMs appear to be a promising method for quantifying network
topology in active learning classrooms.



I. INTRODUCTION

The Discipline Based Education Research (DBER) com-
munity has an abundance of evidence that active learning
yields better outcomes than lecture [1]. However, there is still
much to learn about individual pedagogies that fall under the
active learning umbrella and how they impact students, par-
ticularly for physics. Previous studies have mostly compared
a given curriculum to standard lecture as a way to establish
impact, but we need to understand how these pedagogies pro-
mote the observed learning gains. By understanding these
mechanisms, we as a community can be more deliberate with
our planning and curriculum choices.

Active learning, at its core, promotes student interactions
in the learning process [1, 2]. Students are engaging with
each other, forming connections that can be translated into
a social network. It stands to reason that the structure of
the learning environment would manifest in the student so-
cial network structure, suggesting that social network analy-
sis can be a valuable tool for characterizing active learning
environments. In fact, when comparing the social network of
a lecture class with that of a Modeling Instruction class, there
were distinct differences [3]. Different pedagogies should ul-
timately give rise to different relationship patterns due to a
myriad of factors, such as class size, classroom layout, and
particularly how student activities are structured. This work
is part of a larger project that aims to characterize active learn-
ing pedagogies in physics using classroom observations and
network analysis. Here, we aim to use Exponential Random
Graph Models (ERGMs) to identify the salient topological
features of a social network of students in a Peer Instruction
class. The visualization of the chosen networks can be seen
in Fig. 1 and Fig. 2.

FIG. 1: Early-term social network for Peer Instruction. In this
network, we see chain-like structures.

FIG. 2: Late-term social network for Peer Instruction.

II. METHODOLOGY

We collected social network data from a Peer Instruc-
tion [4] class at two time points early in the term and late
in the term. Students were invited to take an electronic sur-
vey through Qualtrics during the first week of the term, and
again during the 10th week. In this survey, students were first
presented with a roster of the names of students in the class,
and then were asked to select their name from the list. They
were then provided with the class roster and asked to select
everyone with whom they had a meaningful interaction with
in physics class this week. Of the 113 students enrolled in
the course, 105 responded to the early-term survey and 93
responded to the late-term survey.

III. EXPONENTIAL RANDOM GRAPH MODELS

Networks are built on relational data—in this case, the
nodes in our network are students and the edges are self-
reported connections between students. Several metrics can
be used to describe the structure of a network, such as density
(the ratio of observed to possible edges), dyad-shared part-
ners, and number of triangles.

Dyad-shared partners is a metric that characterizes the
number of shared partners between nodes. A dyad is any pair
of nodes. These nodes can be connected or not connected. If
they have one partner in common, they are said to be a single
dyad-shared partner, or DSP-1. Two shared partners would
be DSP-2, three DSP-3 and so on. A triangle is a special
case of DSP-1 where the shared partners in question are also
connected, making a complete triangle of connections.

These metrics, however, are calculated from an observed
network, when there are a myriad of possible networks that
could have arisen from the same set of nodes, all of which



could have similar or dissimilar metrics to describe the net-
work structure.

The type of curriculum is hypothesized to drive the devel-
opment of the student network, forming unique structural fea-
tures. In order to be statistically rigorous in our investigation
into the processes that drive these structures to form, we need
to consider a set of possible networks and compare them to
the observed network.

Network data, however, is inherently relational, so standard
regression is not appropriate. Exponential Random Graph
Models (ERGMs) can be used to examine how the presence
of an edge fits with the parameters measured from an ob-
served network based on structural features, such as the den-
sity or number of single dyad-shared partners. The general
form of an ERGM tells us the probability of an observed net-
work as a function of the network features we expect to be
non-random. The ERGM can be written as:

P (Y = y) =
exp(θ′g(y))

k(θ)
, (1)

where P (Y = y) is the probability of one specific network
occurring, g(y) are the network metrics to fit (like density
or number of triangles), θ′ are the coefficients for said met-
rics that the ERGM calculates, and k(θ) is the quantity in the
numerator summed over all possible network configurations
[5].

We can use this fit to simulate a large quantity of similar
networks, controlling for similar structures, to see how well
the model captures the observed network structure. By com-
paring an observed network to a subset of possible networks
with similar metrics, we are able to establish whether certain
structures are a random occurrence or a byproduct of some
external factor, such as an interaction typical of the curricu-
lum. For example, presumably, working in groups of three
would have an effect on the number of triangles in a network.

ERGMs take multiple inputs for network metrics to fit
models to the observed network: metrics such as the number
of edges, triangles, dyad shared partners, and more. ERGMs
can also include node attributes like gender, age, or major
in the fitting of network models (for future work). ERGMs
are generative, which means that once a model is fit to an
observed network, the model can be used to simulate large
numbers of networks. This allows us to determine if an ob-
served network parameter is typical or extreme.

IV. ANALYSIS

For the Peer Instruction network, we observe chain-like
structures seen in Fig. 1 and Fig. 2. In this network, a chain
of three students forms a non-connected DSP-1, where the
central student is the shared partner to the outer student dyad.
Since we observe chain-like structures in our networks, which
in turn suggests a dependence on DSP-1, we chose to use this
as a fit parameter in the ERGMs. We also observe zero tri-
angles in both the early and late-term networks, so we also

include a model to fit the number of triangles in our prelim-
inary exploration. From these observations, we chose to test
three ERGMs:

• Edges only model. This fit assumes no structure, each
edge is equally likely. This is the null hypothesis.

• Edges + triangles. Fits number of edges and also tries
to match zero triangles condition of the observed net-
works.

• Edges + DSP-1. Fits number of edges and also tries
to match 227 or 289 DSP-1 condition of the observed
networks.

We compare numerical metrics of each model, including
the fit coefficients, the standard error, the AIC, the BIC, and
the probability of an edge in Table I. The coefficients in an
ERGM represent the change in the log-odds likelihood of an
edge for a unit change in a predictor variable. So, for the
edges-only model, a unit change would be ±1 edge. For the
DSP-1 model, the unit change would be ±1 DSP-1.

We can calculate the probability of edge formation via

P =
exp (log-odds)

1 + exp (log-odds)
, (2)

where the log-odds is calculated from the coefficients via

log-odds = edge coefficient
+ other coefficient × # new metric

(3)

where the other coefficient and new metric refer to either tri-
angles or DSP-1 [6].

The edges + triangles model is not able to establish a fit for
either observed network, due to the existence of zero trian-
gles in the observed networks, as seen with the NaN AIC and
BIC and the infinite fit coefficients. Due to the lack of con-
vergence with the edges + triangle models, we restrict further
discussion to the edges only and edges + DSP-1 models.

For the edges only model, the probability of an edge corre-
lates directly with the density of the network. This assumes
that each new edge is equally likely. However, with the edges
+ DSP-1 model, if a new edge will create a new DSP-1, it
has a higher probability of occurring than a random connec-
tion. This probability is even higher in the late-term network
than in the early-term network. This leads us to believe that
DSP-1 will be a significant feature of these Peer Instruction
networks.

Once the models were created, we simulated 100 networks
for each model for early/late-term networks. In Fig. 3, we
plot the number of DSP-1 for each simulated network gen-
erated from the edges only models for both early and late-
term networks. The red line indicates the observed values of
DSP-1. By inspection, the observed networks both have a
lower count of DSP-1 than expected by random distribution
of edges. The early-term network has 227 DSP-1, and the
late-term network has 289 DSP-1.



TABLE I: ERGM fit coefficients.

Model Early/Late Coefficient Std. Error AIC BIC Prob. of an Edge
Edges Only (Null) Early -4.1000 0.08431 1463 1470 1.63%

Late -4.0871 0.07734 1734 1742 1.65%
Edges + DSP-1 Early -2.6452 0.30650 1441 1455 4.48%

-0.4153 0.09000
Late -2.3433 0.27914 1698 1712 5.70%

-0.4625 0.07824
Edges + Triangles Early -4.0631 0.08798 NaN NaN 0, No ∆’s

- Inf 0.00000
Late -4.0470 0.08000 NaN NaN 0, No ∆’s

- Inf 0.00000

TABLE II: Fit coefficients from ERGM models. For multi-line models, the first value is the edge coefficient and the second
value is the additional fit parameter coefficient. The reduction in AIC/BIC of > 10 points is strong evidence that the edges +

DSP-1 model is a better fit than the edges-only model [7].
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(a) Edges only model, early-term network fit
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(b) Edges only model, later-term network fit

FIG. 3: We simulated 100 networks using the edges only
ERGM models and plotted the number of DSP-1. The red
line is the number of DSP-1 in the observed Peer Instruction
networks.

Edges + Dyad Shared− 1 Partner Model

Number of DSP1

N
u

m
b

e
r 

o
f 

s
im

u
la

ti
o

n
s

100 150 200 250 300 350 400

0
1

0
2

0
3

0
4

0
5

0

(a) Edges + DSP-1 model, early-term network fit

Edges + Dyad Shared− 1 Partner Model
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(b) Edges + DSP-1 model, later-term network fit

FIG. 4: We simulated 100 networks using the edges + DSP-1
models and plotted the number of DSP-1. The red line is the
number of DSP-1 in the observed Peer Instruction networks.



Using the edges + DSP-1 ERGM models, we also plot
number of DSP-1 of the simulated networks in Fig. 4. By in-
cluding DSP-1 as a fit parameter, the model more accurately
predicts the observed values of DSP-1, suggesting that DSP-
1 is a significant feature of the observed Peer Instruction net-
works. This visual inspection corroborates the lower AIC and
BIC as shown in Table I.

We can also see how each model converges with respect to
number of observed triangles. As stated previously, both the
early and late-term networks had zero observed triangles. For
a completely random distribution of edges, the zero triangle
condition is less likely than 1 or 2 triangles, as seen in Fig.
5a. The edges + DSP-1 model increases the likelihood of the
zero-triangle condition, seen in Fig. 5b. Again, this corrobo-
rates the lower AIC and BIC for the edges + DSP-1 model in
Table I.
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(a) Edges only (null) model

Edges + Dyad Shared− 1 Partner Model
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(b) Edges + 1 dyad shared partner model

FIG. 5: Number of triangles formed with 100 simulations
of edges-only ERGM model compared to edges + DSP-1
ERGM model—Late term network

V. DISCUSSION

We have used three ERGM models to fit early and late-term
Peer Instruction networks and showed that the edges + DSP-1

model more accurately represents the observed networks than
the edges-only or edges + triangle models. This leads us to
believe that ERGMs are a promising tool for characterizing
different active learning pedagogies.

For the data shown here, the dependence on DSP-1 is a
good example of how pedagogy can possibly manifest in a
network. In the class that gave rise to these particular net-
works, students sit in rows in a large lecture hall, so they
are constrained to interacting with people in their immediate
vicinity. While we cannot definitively say that the chain-like
structures seen in Figs. 1 and 2 are due to the pedagogy, the
emergence of such structures is consistent with the geography
of the classroom and the instructions for interaction typical
of a Peer Instruction curriculum, such as “discuss with your
neighbor.”

Of the three ERGM models tested, we determined that
DSP-1 was the best predictor for these Peer Instruction net-
works compared to the other two predictors, edges and trian-
gles. As such, we are hopeful that ERGMs will also be able
to identify the significant predictors for networks using differ-
ent pedagogies. From there, we can begin comparing ERGM
coefficients within pedagogies and across pedagogies to see
if these values are unique to a specific curriculum. We are
hopeful that ERGMs will be a successful tool to characterize
pedagogical differences.

VI. CONTINUING WORK

Network data has been collected for six active learning cur-
ricula. Continuing work will include the analysis of each of
these curricula using ERGMs. We would like to test each
ERGM model with different data sets within the same cur-
riculum to see how well they describe an individual network,
and then we would like to compare ERGM models across
different curricula to see if they are distinguishable between
pedagogies.

Is there a set of coefficients that is more likely to arise
for a Peer Instruction network over a Modeling Instruction
network? Do these coefficients remain somewhat constant
across different observations of a Peer Instruction network?
Do these coefficients correlate to the amount of time spent
lecturing in the classroom? Future work will unpack these
questions and hopefully allow us to quantitatively character-
ize our selected active learning pedagogies.
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