2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

A Deep Recurrent Neural Network Based Predictive
Control Framework for Reliable Distributed Stream
Data Processing

Jielong Xu, Jian Tang, Zhiyuan Xu, Chengxiang Yin, Kevin Kwiat and Charles Kamhoua

Abstract—In this paper, we present design, implementation
and evaluation of a novel predictive control framework to enable
reliable distributed stream data processing, which features a
Deep Recurrent Neural Network (DRNN) model for perfor-
mance prediction, and dynamic grouping for flexible control.
Specifically, we present a novel DRNN model, which makes
accurate performance prediction with careful consideration for
interference of co-located worker processes, according to multi-
level runtime statistics. Moreover, we design a new grouping
method, dynamic grouping, which can distribute/re-distribute
data tuples to downstream tasks according to any given split ratio
on the fly. So it can be used to re-direct data tuples to bypass
misbehaving workers. We implemented the proposed framework
based on a widely used Distributed Stream Data Processing
System (DSDPS), Storm. For validation and performance eval-
uation, we developed two representative stream data processing
applications: Windowed URL Count and Continuous Queries.
Extensive experimental results show: 1) The proposed DRNN
model outperforms widely used baseline solutions, ARIMA and
SVR, in terms of prediction accuracy; 2) dynamic grouping works
as expected; and 3) the proposed framework enhances reliability
by offering minor performance degradation with misbehaving
workers.

Index Terms—Deep Learning, Recurrent Neural Network,
Distributed Stream Data Processing, Storm, Prediction.

[. INTRODUCTION

A Distributed Steam Data Processing System (DSDPS) han-
dles unbounded streams of data tuples with many (physical or
virtual) machines and worker processes (simply called workers
in the following) in a distributed manner. Reliability and fault
tolerance are critical for Distributed Stream Data Processing
(DSDP). Currently, most DSDPSs (such as Storm [7]) handle
anomalies or failures in a reactive manner. Specifically, they
track acknowledgment of each tuple to detect failed tuples and
re-process the associated source tuples or recover processing
from the checkpoints to fulfill the at-least-once processing
guarantee; moreover, workload on misbehaving or failed work-
ers will be rescheduled and then related tuple failures will
be re-processed accordingly. However, this simple reactive
approach is not suitable for those Stream Data Processing
(SDP) applications that demand data tuples to be processed
in real or near real time due to the following reasons: 1) Data

Jielong Xu, Jian Tang, Zhiyuan Xu and Chengxiang Yin are with Depart-
ment of Electrical Engineering and Computer Science, Syracuse University,
Syracuse, NY, 13244. Email: {jxu2l, jtang02, zxulO5, cyin02}@syr.edu.
Kevin Kwiat is with US Air Force Research Lab (AFRL), Email:
kwiatk @gmail.com. Charles Kamhoua is with US Army Research Lab (ARL),
Email: kkcharlesa@yahoo.fr. This research was supported in part by AFOSR
grant FA9550-16-1-0077 and NSF grants 1525920 and 1704662. The paper
was Approved for Public Release; Distribution Unlimited: 88ABW-2016-
5163, Dated 17 Oct 2016. The information reported here does not reflect
the position or the policy of the federal government.

processing and worker problems are commonly detected by
a timeout mechanism (e.g., 30s for tuple failure detection in
Storm), which may significantly slow down data processing. 2)
As observed in the previous work [42], rescheduling at runtime
introduces a large number of failed tuples and longer tuple
processing time. Hence, we propose a predictive approach to
enhance reliability for DSDPSs by predicting performance of
workers and re-directing data tuples to bypass those whose
performance deviates from the expected, which we call misbe-
having workers in the following. In this way, after a failure, a
DSDPS only experiences very minor performance degradation,
specifically, a minor increase on average tuple processing
time and a small number of failed tuples, which have been
confirmed by our experimental results (Section IV).

Accurate performance prediction is obviously the key to the
success of a predictive approach. Here, we need to deal with
high-dimensional time series data, which are basically runtime
statistics of workers and machines. Time series prediction for
a target is usually done based only on its own historical data.
However, this may not work well in a DSDPS, in which a
worker may share a common machine with many other work-
ers, and those co-located workers may cause interference and
affect its performance due to resource competitions. To im-
prove prediction accuracy, such co-location interference needs
to be well addressed. Recurrent Neural Networks (RNN),
especially gated RNNs, have been reported to deliver the state
of the art performance on a few sequence learning tasks (such
as speech recognition [15] and text generation [16]). In this
paper, we, for the first time, leverage Deep Recurrent Neural
Networks (DRNNs) for performance modeling in DSDPSs,
with consideration for co-location interference.

In additions, quick and effective actions need to be taken
to minimize performance degradation that may be caused by
misbehaving workers. In case of a failure, most DSDPSs re-
schedule/re-assign tasks for recovery, which may lead to no-
ticeable or even serious performance degradation [42] because
it may take a few seconds to several minutes for a new task
assignment to be deployed and may cause tuple failures during
new deployment. This may counteract benefits brought by
accurate prediction. We aim to come up with a quick, effective
and smooth control mechanism that can prevent system perfor-
mance from being affected by misbehaving workers or failures.
We achieve this goal by using a quite different approach, i.e.,
designing a new grouping mechanism, to re-distribute and re-
route tuples if a failure is predicted to occur.

In this paper, we present a novel predictive control frame-
work to enable reliable DSDP. Specifically, we make the
following contributions:

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/1PDPS.2019.00036

262 IEEE
computer
® psoaety

o For prediction, we develop a novel DRNN-based
interference-aware model to accurately predict perfor-
mance of workers, which takes into account co-location
interference.

o For control, we design and implement a new group-
ing method, dynamic grouping, which can distribute/re-
distribute data tuples to downstream tasks according to
any given split ratio on the fly. So it can be used to re-
direct data tuples to bypass misbehaving workers.

o We implemented the proposed framework based on a
widely-used DSDPS, Apache Storm [7], and validated
and evaluated its performance with two representative
SDP applications: Windowed URL Count and Continuous
Queries.

o Extensive experimental results well justify accuracy of
the proposed prediction model, demonstrate that dynamic
grouping works as expected and show the proposed
framework enhances reliability by offering minor perfor-
mance degradation with misbehaving workers.

Note that we implemented and evaluated the proposed
framework based on Storm. However, our design, especially
the proposed DRNN model and dynamic grouping method,
are quite general, which can be applied to other DSDPSs
that has a similar programming model and architecture with
minor modifications. More importantly, the proposed DRNN
model can be used independently for time series analysis and
prediction; and the proposed dynamic grouping method can
also be used to serve other purposes, such as load balancing
and power-efficient resource allocation.

II. DISTRIBUTED STREAM DATA PROCESSING AND STORM

In a DSDPS, a stream is basically an unbounded sequence
of tuples. A data source (known as spout in Storm) reads
data from external source(s) and emits streams. A Processing
Unit (PU, known as bolt in Storm) consumes tuples from data
sources or other PUs, and processes them using code provided
by a user. It can either store data to a database, or pass it to
other PUs for further processing. An application is usually
modeled as a directed graph (known as topology in Storm), in
which each vertex corresponds to a data source or a PU, and
direct edges indicate how data streams are routed. A task is an
instance of a data source or PU, and each data source or PU
can be executed as many parallel tasks on multiple machines.

A DSDPS usually uses two levels of abstractions (logical
and physical) to express parallelism. In the physical layer,
it usually includes a master (known as Nimbus in Storm)
that serves as the central control responsible for distributing
user code around the cluster, scheduling tasks, and monitoring
them for failures, and a set of virtual or physical machines
that actually process incoming data. An application graph
(topology) is executed on multiple worker processes (called
workers in Storm) running on one or multiple machines. Slots
are configured on each machine. The number of slots indicates
the number of workers that can be run on this machine, and
is usually pre-configured by the cluster operator based on
hardware constraints such as the number of CPU cores. Each
worker uses multiple threads (known as executors in Storm)

263

to actually process data using user code. Each machine runs
a daemon called supervisor that listens for any work assigned
to it by the master.

A DSDPS usually supports 5 ways for grouping, which
define how to distribute tuples among tasks: 1) Shuffle group-
ing: Tuples are randomly distributed across the downstream
PU’s tasks and each task is guaranteed to receive an equal
number of tuples. 2) Fields grouping: A field of a tuple is
used as the key to partition the stream. Tuples with the same
key will be mapped to the same task. 3) All grouping: Each
tuple is broadcasted to all tasks of the downstream PU. 4)
Global grouping: The entire stream is distributed to one of
the downstream PU’s tasks, usually the task with the lowest
ID. 5) Direct grouping: The producer of the stream decides
which task of the downstream PU will receive each tuple.

Apache Storm [7] is an open-source DSDPS, which has
a architecture and programming model very similar to what
described above. Storm uses ZooKeeper [9] as a coordination
service to maintain it’s own mutable configuration (such as
task schedule), naming, and distributed synchronization among
machines. Note that all configurations stored in ZooKeeper are
organized in a tree structure. Nimbus (i.e., master) provides
interfaces to fetch or update Storm’s mutable configurations.
Nimbus, or each supervisor/worker in Storm is a Java Virtual
Machine(JVM). A Storm topology contains a topology specific
configuration, which is loaded before the topology starts and
does not change during runtime. Each Storm executor has a
grouper, which distributes tuples according to the installed
grouping configuration.

To ensure reliability, when the message ID of a tuple
coming out of a data source successfully traverses the whole
topology, a special acker is called to inform the originating
data source that message processing is complete. If a message
ID is marked failure due to acknowledgment timeout, data
processing will be recovered by replaying the corresponding
data source tuple. Nimbus monitors heartbeat signals from
all workers. It reschedules workers only when it discovers a
failure.

III. DESIGN AND IMPLEMENTATION OF THE PROPOSED
FRAMEWORK

A. Overview

We illustrate the proposed framework in Figure 1, which can
be viewed to have three planes: SDP with Dynamic Grouping,
Data Collection and Predictive Control. It consists of the
following components, whose functionalities are summarized
as follows:

1) Dynamic Grouping (Section III-C): It allows an appli-
cation to change how data tuples are distributed among
tasks on the fly according to a given grouping configura-
tion. This is implemented and embedded in the original
DSDPS.

2) Monitor (Section III-D): It collects runtime statistics of
workers and machines (such as CPU usages, workload,
etc), and reports them to the controller.

Hook (Section III-D): It collects DSDP-specific runtime
statistics (such as tuple execution time, tuple queueing
time, etc), and send them to the co-located monitor.

3)

Master
Machine 1 Machine N

Worker

Worker

Stream Data Processing

Collection | with Dynamic Grouping

L]
-
m s
o Monitor
...... i
|
.g S Controller |
|
55 ‘
T S : : !
o O Trainer Predictor ——
E o

Fig. 1: The proposed predictive control framework

Controller: It obtains runtime data from all the monitors
and coordinates activities of the trainer, predictor and
group manager.

Trainer: It pre-processes collected data and trains the
proposed DRNN model (Section III-B).

Predictor: It makes performance prediction based on
runtime data using the trained DRNN model (Section
11I-B).

Grouping Manager: It calculates a grouping configuration
(Section III-C) based on prediction results and sends it
to the master.

4)

5)

0)

7)

The workflow of the proposed framework is described in
the following:

1) The hooks and monitors periodically collect runtime
statistics of workers and machines, and send them to the
controller.

The controller stores runtime data from monitors to the
SQLite [36] database, calls the predictor for prediction,
and invokes trainer to update the DRNN model periodi-
cally.

The predictor makes performance prediction based on
runtime data using the trained DRNN model and reports
the results to the controller.

The controller calls the grouping manager to calculate
a grouping configuration based on prediction results and
send it to the master.

The master then uses the new grouping configuration
along with dynamic grouping to re-direct data tuples to
bypass misbehaving workers and/or machines.

2)

3)

4)

5)

Note that the proposed framework is general and flexible
enough such that any control policy can be applied here. For
example, a simple and conservative control policy could be:
If the prediction error of a target feature of a worker exceeds
a given threshold, stop sending tuples to the machine hosting

264

that worker for a certain amount of time. How to find the best
control policy and how to determine the best split ratio are
application dependent and are out of scope of this paper since
we aim to design a general predictive control framework here.
But we will show that how the proposed framework along with
the simple policy described above can improve reliability using
experimental results in Section IV-C.

In summary, the proposed framework has the following
desirable features:

1) Interference-aware Performance Prediction with a novel
DRNN Model (Section III-B): It makes accurate per-
formance prediction with careful consideration for co-
location interference using a two-tiered DRNN model.
Flexible Control with Dynamic Grouping for Enhanced
Reliability (Section III-C): It employs a new group-
ing method, dynamic grouping, which can distribute/re-
distribute data tuples to downstream tasks according to
any given split ratio and can re-direct data tuples to
bypass misbehaving workers and/or machines according
to prediction.

Multi-level Data Collection (Section III-D): It collects
both process and machine level runtime statistics with
over 70 features to enable accurate prediction.

2)

3)

B. Interference-aware DRNN Model for Prediction

In most DSDPSs, multiple workers may run on a common
virtual or physical machine, and multiple tasks are assigned to
these workers. Runtime statistics collected from these tasks,
workers and machines are basically time series data. We
consider a computer cluster (hosting the DSDPS) with N
machines, and on each machine, there are at most X workers.
The values of the M, features (See Section III-D) of machine
j at timeslot ¢t is given by a vector VE'; and the values of
the M, features of worker ¢ on machine j at timeslot ¢
is given by a vector xﬁj. Note that these feature values are
min-max normalized. Specifically, DSDPS specific features
(Section III-D) are normalized based on all samples from each
worker, while others are normalized based on all samples from
each machine. In addition, we denote the prediction result of
worker 7 on machine j at timeslot ¢ as yﬁj, which may include
multiple features.

Our problem here is to make one step ahead prediction for
values of a set of important features (such as CPU usage) of
every worker ¢ on machine j, given runtime data at worker
and machine levels from machine j in the past 7' time slots.

There are a few approaches for modeling and prediction
with time series data. We choose an RNN, particularly a
gated RNN, as the starting point for our design due to the
following reasons: 1) As regular feedforward neural networks,
RNNs can be used to accommodate high-dimensional data
and can be stacked together to form a deep model to handle
complicated non-linear cases. 2) Gated RNNSs, such as Long
Short-Term Memory (LSTM) [18] and Gated Recurrent Unit
(GRU) [13], use gates to control how to update hidden states,
which have been shown to be effective on modeling long-term
dependencies. 3) Gated RNNs have been successfully applied

in time series modeling and have been shown to offer record-
setting performance for complicated problems such as speech
recognition [15] and text generation [16].

As mentioned above, time series prediction for a target is
usually done based only on its own historical data. However,
this may not work well in a complicated DSDPS since the
performance of a worker may be affected by co-located
workers due to resource competitions. To tackle this time
series prediction problem with consideration for co-location
interference, we can feed runtime data of all co-located work-
ers and the corresponding machine to an RNN when predicting
performance of a worker.

As shown in Figure 2, we start with a gated DRNN
constructed by stacking 2 layers of GRUs [31] and a sigmoid
output layer, and feed all data related to co-located workers
and the corresponding machine to it.

[y ¥ = ¥]
(o2
T T T T LT T = 1 =l
T ho? H— hy ! ||
R R LA
Layer 2 : + zzj'z : : + zz}‘l :
| 02}72 | | CZJH |
L_t____GBl_“ L_t____GB‘ll
i_ ______ z_l i_ ______]_I
I hjj* hy' |1
poleimymicd
|
Layer 1 : 4 flj‘_i : : v j;g :
| o | | o |
L_T_____Glul' L_T_____GBI_”
X2 X!

Fig. 2: A DRNN model with GRUs for machine j(unfold
through time)

GRU is one of the most widely used RNN extensions. It
uses gates to control the flow of past information and current
input and specify how much past information should be let
through. GRU (in layer 1) works according to the following
equations (GRU in layer 2 works very similarly):

v, = o(W,X! +U,hiY); M
CL‘ = tanh(WlCXE-, + Upe(r: © htgl))é)
2, = o(Wi.XY +ULhY); 3)
hﬁj = (1- Zfij) ® h’i;l + Zﬁj ® cfij. 4)

In these equations, o(-) is the sigmoid function, tanh(-)
is the hyperbolic tangent function, and © is element-wise
multiplication. Generally, W and U are the weight matrices,

265

e.g. Wi, is the weight matrix for the reset gate. X§
[vixt; - xb;] is a row vector including the input feature
values of both machine j and its workers. The GRU keeps
track of temporal dependencies by removing and adding
information to the previous value using the reset gate and
update gate. Every box in Figure 2 represents a GRU. In this
model, for the [th layer GRU, the output h{ ; given data from
time ¢ on machine j (i.e. Xé) is calculated as follows:

1) Calculate the reset gate r} j (Equation (1)) given all input
from the lower layer and previous output htgl. This
controls how much previous information will be forgotten
while calculating the new input candidate ¢ e

Calculate c} ; (Equation (2)) using the hyperbolic tangent
function with new input and the previous output gated by
ri .

Cémpute the update gate z! j (Equation (3)) similar as the
reset gate. This gate controls the information flow from
previous time step to the final output and helps the GRU
memorize long-term information.

Compute the output h! ; With previous unit output h'i;-l
and new output candidate c}; weighted by z}; (Equa-
tion (4)).

The above flat DRNN model captures co-location interfer-
ence by weighting data from co-located workers equally, i.e.,
X; without differentiating their impacts to the prediction,
which may not be effective. When we try to predict perfor-
mance of a worker ¢ on machine j, its own target feature
data should play a big role on the prediction result. In order
to address co-location interference, and in the meanwhile,
emphasize the impact of historical data related to the target
worker and the target feature, we come up with a novel two-
tiered Interference-aware DRNN (I-DRNN) model, which is
shown in Figure 3.

In this model, we harness the power of representation
learning [11] to address co-location interference. Specifically,
the DRNN in tier 2 uses the output of the DRNN in tier 1
as input for performance prediction, which corresponds to a
representation of co-location interference. It is trained with
data of all co-located workers and the corresponding machine.
So the input of the DRNN in tier 2 consists of two parts: 1)
The above representation of co-location interference; and 2)
the target feature (such as CPU usage) of the target worker.
This model well reflects the importance of the target worker’s
own data on the target feature.

In addition, we introduce weight sharing among multiple (up
to K) tier-2 networks. Weight sharing has been successfully
applied to convolutional neural networks and image process-
ing [24]. We use it in our model due to following reasons:
1) With weight sharing, more data (i.e., data from up to K
workers) can be used to train the DRNN in tier 2, compared
to the case without weight sharing. This usually leads to a
better model. 2) Weight sharing reduces the total number of
parameters and the training time.

Due to the parameter sharing and relatively shallow (4 layers
in total) network structure, online inference can be done in
real time (only about 5ms). Intuitively, the deeper the model,
the more the amount of the RNN memorization, the higher

2)

3)

4)

—_—,_———_— ——

_______ A
Target :
// < feature
only |
GRU \ I
I
Tier 1)
t-T t-T t-T
Vi Xy Xy
t-2 t-2 t-2
Vjt 1 1jt 1 ijt 1
Vj le ij

Fig. 3: The proposed Interference-aware DRNN (I-DRNN) for
2 co-located workers

the prediction accuracy, but the longer the inference delay.
During our tests, we found that further increasing the number
of layers increased the inference delay but brought very minor
or even no gain on prediction accuracy. This may because the
spatial and temporal correlations hidden in this scenarios are
not as complicated or strong as those in video data, thus a very
deep model is not necessary. We made similar observations
and conclusions in our recent work on user interest data
analysis [26]. Therefore, we used a 2-layer GRU network for
each tier of the proposed model. Another important hyper-
parameter is the number of neurons of the output of Tier 1.
We set it to three to make it consistent with the dimension of
the output of Tier 2 (even they do not have to be the same)
in our implementation. We tired different settings in our tests
but found it insensitive to prediction accuracy.

C. Dynamic Grouping

To enable predictive control in a DSDPS, a method is
needed to dynamically re-distribute tuples according to predic-
tion on the fly to bypass those misbehaving workers/machines.
In this section, we present design and implementation of
a new grouping method, dynamic grouping, to fulfill this
need. Note that our design is general, which may be used
in any DSDPS that allows custom grouping methods; while
our implementation is based on Storm.

1) Design: Shuffle grouping introduced above can be seen
as a way of randomly assigning tuples to downstream tasks,

266

7 1
Identifier .~
6 Circle ¢~ 2 TaskA: {3,7}
AN
N Task B: {0, 4, 6}
) 3 Task C: {5}

Fig. 4: Consistent hashing for dynamic grouping

which achieves an even distribution of tuples. In the proposed
framework, we design a new grouping method, dynamic
grouping, based on consistent hashing. With dynamic group-
ing, tuples can be dispatched to downstream tasks with any
given split ratio, which enables flexible control on workload
distribution in a DSDPS.

Consistent hashing [22] is a technique that can provide
flexible tuple-task assignments. To use consistent hashing here,
we first assign each downstream task one or more identifiers
selected from an identifier circle with a modulo of 2™. Each
tuple d has its own ID k; and a modulo operation will be
performed to obtain a new ID if it is larger than 2™ — 1. The
tuple will be sent to the task corresponding to the first assigned
identifier on the circle (starting from its own ID and going
clockwise). In this way, the tuple distribution over downstream
tasks can be controlled by changing the assignment of task
identifiers.

In the example shown by Figure 4, we have an identifier
circle with m = 3, i.e., a total of 8 possible identifiers; and
3 downstream tasks. We assign identifiers 3, 7 to task A; O,
4, 6 to task B and 5 to task C. In the following, we call such
an identifier-task assignment a grouping configuration. When
a tuple (with an ID of 1) arrives, it will be dispatched to task
A. Because identifiers 1 and 2 are unassigned, and the first
assigned identifier it meets is then 3. As mentioned above,
identifer 3 is assigned to task A. Here, we can achieve a split
ratio of 4:3:1 because identifiers 1 and 2 are unassigned, and
tuples with an ID of 1 or 2 (after the modulo operation if
needed) will be dispatched to task A too.

Note that consistent hashing may not be a unique solution
to this problem. We made this design choice also because
it is easy to implement and change the configuration. For
example, to disable a downstream task, we can simply assign
the identifier range corresponding to this task to other tasks,
and then a tuple that goes to any remaining task previously will
still be sent to the same task as before. Moreover, consistent
hashing can be easily used to realize shuffle grouping by
assigning identifiers to downstream tasks randomly with an
equal probability.

2) Implementation in Storm: It is not trivial to implement
dynamic grouping in Storm because unlike other grouping
methods, it needs to be updated at runtime to enable predic-
tive control. As mentioned above, Storm’s topology specific
configuration is loaded before a topology starts and does not
change during runtime. However, to enable dynamic grouping

in Storm, we come up with a mutable configuration, Topol-
ogy Specific Dynamic Configuration (TSDC), which can be
changed during runtime. Each topology has a TSDC, which
specifies the identifier-task assignment (described in the last
section) for every bolt-bolt or spout-bolt pair.

We implement dynamic grouping as a custom grouping
policy in Storm. We store all TSDCs in ZooKeeper and
monitors if there is any change with the ZooKeeper watcher.
It is natural to store and manage all TSDCs in ZooKeeper
because Storm stores all its configurations in ZooKeeper, and
doing so can ensure Storm’s deployment procedure remains
untouched. Specifically, to manage TSDCs in ZooKeeper, we
made following modifications to Storm:

e Add a TSDC map to the topology class.

o Add an interface DynamicConfigurable, which contains a
callback method void processUpdate(String) for handling
the notification of a TSDC update, a method
void initDynamicConfig(String) for initialization, and a
method String getConfigPath() for obtaining configura-
tion ID, which is used to differentiate multiple TSDCs.

o Create a subtree for storing TSDCs in ZooKeeper.

Set up ZooKeeper watchers for notifications of TSDC up-
dates in getConfigPath(). processUpdate(String) is called
when a watcher is triggered.

¢ Add an interface on Nimbus to manage TSDCs.

Next, we give an example to demonstrate how a Storm
user can use dynamic grouping for his/her topology. In this
example, we show how to define an identity bolt with 3
tasks, which receive tuples from source component using
dynamic grouping, and how to initialize a dynamic grouping
configuration using a TSDC. Here, we assign 20 identifiers
for each of three tasks of the identity bolt.

builder.setBolt(”identity”, identityBolt, 3)
.customGrouping (”source”,
new DynamicGrouping (” __identity”));

builder.setDynamicConfig(” __identity”,
DynamicGrouping . initShards (3, 20));

At runtime, Storm stores the initial configuration as a TSDC
in ZooKeeper when a topology using dynamic grouping is sub-
mitted. All the corresponding groupers fetch the TSDC from
ZooKeeper. Once Nimbus receives a new grouping configura-
tion, it updates the corresponding TSDC in ZooKeeper, which
triggers ZooKeeper watchers in the corresponding workers.
ZooKeeper watchers notify groupers to use the new configu-
ration, which will re-distribute data tuples to downstream tasks
accordingly.

D. Multi-level Data Collection

A multi-level data collector is designed to collect runtime
statics at both worker and machine levels.

We embed a hook (that runs as a thread) in each worker to
collect information related to DSDPS specific features. In our
implementation, the hook collects readings of the features in
Table I from each worker every 5s. In Storm, when a tuple
arrivals at a worker, it is first queued based on the downstream
executor, so we monitor the queuing time for inbound tuples.

267

Group Features(Unit)
Average tuple execution time(ms), number of inbound tu-
DSDPS ples per second, average inbound tuple queuing time(ms),
average outbound tuple batch sending time(ms), number
of outbound tuple batches per second
JVM Heap/non-heap memory usage(KB), process ID

TABLE I: Features collected by a hook

Then each executor executes user code to process tuples from
its own queue one by one. We collect the execution time for
each tuple. For emitted outbound tuples, those tuples with the
same downstream worker are batched first, and then batches
are sent out. So we also collect the sending time for each
outbound tuple batch. In addition, we collect memory usage
information using Java Management Extensions [21].

Note that Storm comes with APIs for monitoring, but we
find it not very efficient for data collection. Specifically, Storm
provides ITaskHook interface and a BaseTaskHook class for
user to create a monitor on each task and record runtime
statistics for each tuple. Using such APIs introduces an inter-
process connection for each task thread to pass out data,
which leads to higher overhead compared to using inter-thread
communications to collect data with an embedded hook, and
possibly blocks the execution of task threads. Moreover, there
is no existing API for collecting queuing and sending time.
Therefore we implement our own hook for Storm-specific data
collection. In order to collect tuple-level statistics efficiently
without blocking data processing, we use a high performance
inter-thread messaging library, LMAX Disruptor [27], to ef-
ficiently queue all collected data. Queued data will then be
averaged and transmitted periodically by a single consumer
thread.

A monitor runs in the background on each machine for
gathering data from hooks and collecting runtime machine
and worker related statistics using the Sysstat [38] tool set.
In the monitor, the pidstat program in the tool set is used to
collect statistics of a large number of process (worker) level
features related to CPU, memory, disk and context, such as
CPU usage, physical memory usage, number of minor/major
faults per second, size of data read from/written to disk per
second, number of voluntary/involuntary context switch per
second, etc, for all hosted workers every 15s. It also uses
the sar program to collect machine level features related
to CPU, context, memory page, data transfer, workload and
networks, every 30 seconds. Due to space limitation, we omit
the complete list of these process and machine level features.
Each monitor sends averaged runtime statistics for each worker
and for each machine to the controller every 30s. To efficiently
transmit data among hooks, monitors and the controller, we
utilize Apache Thrift [8] to define data structures and remote
process calls.

Even though we collect statistics data with over 70 features
at runtime, the overhead is negligible. This is because all
these features take numerical values in the 32-bit floating
point format and transmitting them from all VMs to Nimbus
only take several microseconds in a 1Gbps network, which
is much shorter than our collection periods mentioned above,
i.e., 5s/15s/30s.

x107!

EEE ARIMA
N SVR
B -DRNN

Rooted Mean Square Error
Rooted Mean Square Error

40 ~ 45 min 40 ~ 60 min

40 ~ 45 min

(a) CPU usage
Fig. 5:

x107!

(b) Outbound sending time
Prediction RMSE of Windowed URL Count

EEE ARIMA
N SVR
== LDRNN |

S

Rooted Mean Square Error

40 ~ 60 min

40 ~ 45 min

40 ~ 60 min

(c) Inbound queuing time

5| [M ARIMA
20| sVR
BN DRNN

I SVR

‘ EEE ARIMA
BN -DRNN

EEE ARIMA
N SVR
B 1-DRNN

Rooted Mean Square Error
Rooted Mean Square Error

40 ~ 45 min 40 ~ 60 min

40 ~ 45 min

(a) CPU usage

(b) Outbound sending time

Rooted Mean Square Error

-

40 ~ 60 min 40 ~ 45 min 40 ~ 60 min

(c) Inbound queuing time

Fig. 6: Prediction RMSE of Continuous Queries

IV. PERFORMANCE EVALUATION

We implemented the proposed I-DRNN model using
Lasagne 0.2 [23] and Theano 0.7 [39]. We implemented the
dynamic grouping based on Storm 0.10.0 [7], and installed
Storm on top of Ubuntu Linux 14.04. We performed real
experiments on a virtualized cluster with 6 blade servers (each
with dual Quad-core Xeon E5506 CPUs and 18GB RAM)
connected by a 1Gbps network. The cluster has 11 Virtual
Machines(VMs) (each with 2 vCPUs and 2GB Memory) for
data processing. One of them was used to run Nimbus, while
the other 10 were used to run workers with supervisors and
our monitors. In addition, we also ran the Zookeeper and
Apache Kafka [3] with 3 and 2 separate VMs respectively.
The controller was run on a VM with 8 vCPUs and 12GB
memory.

We conducted our experiments using two representative
SDP applications (topologies): Windowed URL Count [37] and
Continuous Queries [10], [12].

Windowed URL Count: Windowed word count is a well-
known SDP application, which counts words from a data
stream within a given time window. We modified this topology
to count the number of accesses per URL in the past 2 minutes
from web server request traces using dynamic grouping. It has
a chain-like topology with one spout and three bolts. We used
Wikipedia request traces in September 2007 [40] as the input
data stream and loaded all the traces to Apache Kafka first for
data fetching before experiments.

The spout is a reader which reads a batch of request traces
at a time from Kafka, and feeds every single line separately to
the ExtractURL bolt using dynamic grouping. The ExtractURL

268

bolt extracts the timestamp and URL from each request trace
line and feeds them to the PartialCount bolt using dynamic
grouping. The PartialCount bolt performs a windowed count
and sends its counts to MergeCount bolt every 500ms using
global grouping. The last stage of the topology, MergeCount,
aggregates latest partial counts from all tasks of PartialCount
to obtain the windowed URL count results.

Continuous Queries: It consists of a spout and two bolts.
The spout continuously emits randomly generated queries,
each with a vehicle plate number and its speed, to the
Query bolt using dynamic grouping. The Query bolt randomly
generates a table with vehicle plates and information (such as
names and driver license IDs) of their owners in the beginning,
and takes a query from the spout and then iterates over the
table to find if there is a matching entry when a given vehicle
is speeding. If there is a match, the Query bolt emits the
corresponding tuple using global grouping to the Logger bolt
which simply writes what it receives to a file.

We tested the Windowed URL Count topology on 10
VMs with 14 workers, 2 spout executors, 5 and 6 executors
for ExtractURL and PartialCount bolt respectively, and 1
executor for the MergeCount bolt in all experiments. We ran
the Continuous Queries topology using 5 workers, with 1
spout executors, 3 Query bolt executors and 1 Logger bolt
executors for the experiments related to dynamic grouping
validation, and used 15 workers with 4 spout executors, 10
Query bolt executors and 1 Logger bolt executors in the other
experiments.

A. Performance Prediction

We used the proposed I-DRNN model as well as
the widely used AutoRegressive Integrated Moving Aver-
age(ARIMA) [29] and Support Vector Regression (SVR) [35]
for one-step-ahead prediction of CPU usage, inbound tuple
queuing time and outbound tuple sending time of every
worker; and compared their prediction accuracies in terms of
Root Mean Squared Error (RMSE) [19].

1) Training: We ran each of two applications 5 times in
Storm for one hour and collected the datasets for training.
From each of 10 datasets, we used all data from 10 to 40min
for training, and then used the trained model to predict the
CPU usage, the outbound sending time (tuple batch) and the
inbound queuing time (tuple) for each worker between 40
and 60min. We examined the prediction performance in two
time periods: 1) between 40 and 45min, and 2) between 40
and 60min. For each time period, we computed RMSE for
every target feature of each worker first, and calculated the
average for each feature. Note that we didn’t use data collected
from first 10min since it has been shown [42] that Storm
usually stabilizes after 10min. Each of the worker and machine
runtime statistics is a sequence of 24- and 57-dimensional real
vector respectively. Each data point is normalized to a value
between [0, 1] using the min-max normalization as mentioned
above. We trained univariate time series models for each of
the three target features of each worker, using the forecast
package in R [20] for ARIMA and scikit-learn [32] for SVR
respectively.

We trained the proposed I-DRNN model for each of the
three target features using 20 different seeds to randomly
generate initial weights for each training dataset. We used 10%
data randomly selected from the collected data for validation
and the rest 90% for training, trained each model for 1000
epochs, and selected the model with the lowest validation error
for performance prediction.

2) Results and Analysis: We list all results from our exper-
iments in Figures 5, 6 and 7.

From Figure 5, we can see that for Windowed URL Count,
the average RMSE of prediction of the proposed I-DRNN
model between 40 and 45min are as low as 0.8169, 0.0028
and 0.0823 for three features, CPU usage, outbound sending
time and inbound queuing time, respectively, which are clearly
lower than those given by ARIMA and SVR. On average, I-
DRNN’s RMSE is 8.31% lower than ARIMA’s, and 19.30%
lower than SVR’s for prediction between 40 and 45min;
and the improvements become more significant, specifically,
29.08% and 17.69%, for prediction between 40 and 60min.
It is also interesting to see SVR maintains relatively stable
RMSEs when the end of the prediction period changes from
45min to 60min, while ARIMA’s RMSEs go much higher.

From Fig. 6, we can observe that for Continuous Queries,
I-DRNN model offers noticeable improvement over ARIMA
and SVR. For ARIMA, the I-DRNN gives 15.50% and 56.46%
lower RMSE for the two prediction periods respectively.
Compared to SVR, the improvements become 10.50% and
10.81% respectively. The results in these two figures show
that the proposed [-DRNN model outperforms both ARIMA
and SVR in terms of prediction accuracy.

269

Fig. 7 shows prediction details of CPU usage for both SDP
applications. These two figures show that 1) The proposed
I-DRNN model can well catch the changes of the target
feature in trend, even for a long prediction range. 2) The SVR
delivers less accurate results, compared with the proposed
model. 3) ARIMA fails to provide accurate prediction when
the prediction range is long.

— True value
— ARIMA
181 — SVR
- - I-DRNN
16
g
&
g 14} A
g AW, L’\ / '
-]l '
° A A AR it
L 2 7 .
VAN VW Y
(V-
10 1
20 25 30 35 40 45 50 55 60
Time (min)
(a) Windowed URL Count
— True value
— ARIMA
— SVR
351 - - IDRNN
S
o 30- A l
=]
]
5
=} A
5 " 5
257\1 \[:V \/\/“\/ o /\f‘f.“
20}
20 25 30 35 40 45 50 55 60
Time (min)

(b) Continuous Queries

Fig. 7: Prediction for CPU usage

B. Dynamic Grouping

We validated our design and implementation of dynamic
grouping with experiments using a Continuous Queries topol-
ogy with 3 Query bolt executors. There were 3 tasks of Query
bolt, which were assigned to 3 workers on different VMs.
The corresponding results are presented in Fig. 8, which show
how the tuple processing rate (i.e., the number of processed
tuple per second) changes over time. We ran the Continuous
Queries topology for 900s and evenly split queries to all Query
bolt executors in the beginning. From time 150s to 330s (the
first and second red vertical lines from the left respectively),
we changed the split ratio to 7 : 3 : 2. We can see that the
tuple processing rate of these bolts change accordingly. Note
that the figures shows that the new configuration starts to take
effect with a very little delay. This experiment shows that our
dynamic grouping method can be used to control workload
distribution according to any given split ratio.

4.0 X10°

©
o
T

@»
o

It
o
T

o
T

= L]
\
' 1
v i

' 1
' 1

Tuple Processing Rate
N
(=]

-
=3

— Worker-1
— Worker-2
- - Worker-3

I n

o
wn

\ 1
1]
¥ 1
1]
1]
1 1
\ i
' 1
' 1
N 1
1 1
\ 1
' 1

o
=)

400 500 600 800

Time (second)

300

o

100 200 700

Fig. 8: Validation for dynamic grouping

We also show that dynamic grouping can be used to bypass
a worker temporarily. From 500 to 690s, we set up a configura-
tion which moves workload of worker 3 completely to worker
1. As shown in this figure (last two vertical red lines), worker
3’s tuple processing rate quickly drops to 0 while worker 1’s
rate is doubled. These experiments validate the design and
implementation of the proposed dynamic grouping method.

C. Reliable Distributed Stream Data Processing

We justify effectiveness of the proposed control framework
on enhancing reliability by showing how well it can deal
with misbehaving workers/machines at runtime. We compared
Storm with the proposed predictive control framework (labeled
as “Predictive”) against the original Storm (labeled as “Orig-
inal”) in terms of the average tuple processing time (over a
topology) and failed tuple rate (the number of failed tuples
per second) on affected workers.

In the corresponding experiment, we injected additional
workload on a VM to make the corresponding workers mis-
behave. Specifically, we ran four CPU hogger threads, each of
which kept calculating square roots of random numbers, for
every running worker on the VM for 5 minutes.

Because of high CPU consumption caused by these CPU
hogger threads, the processing speed on the affected VM
was unable to catch up with the tuple arrival rate, which led
to slow workers and significantly increase on tuple failures.
It then resulted in much longer tuple processing time. In
Figure 9a, in the original Storm, the average tuple processing
time skyrockets from approximately 11ms to over 34000ms
due to misbehaving workers, and starts to have failed tuples.
The failed tuple rate goes all the way up to 1739 tuples/second.
However, with the proposed framework (in which the [-DRNN
model and dymanic grouping works together), the average
tuple processing time reaches its peak at 177ms at about 60sec
after the workload injection starts, and then quickly drops to
13ms (normal) with no failed tuples. Similarly, for Continuous
Queries, after the workload injection, we observe that the
average tuple processing time rises from 90ms to more than
214ms and the failed tuple rate goes all the way up to 157
tuples/second when the original Storm is used, compared with

270

the peak average processing time at 102ms and no failed tuples
when the proposed framework is applied.

These results justify our claim that the proposed control
framework can achieve minor performance degradation in
terms of average tuple processing time and failed tuples.

— Original
- - Predictive

10°

Log-scale Avg. Tuple Processing Time (ms)

300
Time (Second)

(a) Average tuple processing time

x10°

— Original
r| == Predictive

-
o

o

4
2

Failed Tuple Rate

=4
o

100 200 300

Time (second)

500

(b) Failed tuple rate
Fig. 9: Windowed URL Count

250

[[— Original
- - Predictive

200

Avg. Tuple Processing Time (ms)

300 400 500

Time (Second)

(a) Average tuple processing time

140H - - Predictive |

120

100
80
60
40
20

Failed Tuple Rate

200 300

Time (second)
(b) Failed tuple rate

Fig. 10: Continuous Queries

V. RELATED WORK

Distributed/Parallel Stream Data Processing and Relia-
bility: As introduced above, Storm [7] is a distributed system
that is designed particularly for reliable processing of un-
bounded stream data. It uses a grouping policy to route tuples

between different tasks. Other similar DSDPS include: Apache
S4 [4], Apache Flink [2], Microsoft’s Time-Stream [33] and
Google’s Millwheel [1]. Currently, Apache Spark [5] may be
the most popular distributed data processing platform, which
has an stream extension called Spark Streaming [6]. It is
an implementation of Discretized Streams (D-Streams) [43],
which slices streams into small batches of time intervals before
processing. In [28], Loesing et al. designed a DSDPS called
Stormy. Unlike Storm where the user can supply their own
bolts, Stormy only allows predefined processes. It provides
reliability by duplicating, enforcing strong order guarantee
and acknowledging events (similar to tuples in Storm). Me-
teor Shower [41] is a DSDPS proposed by Wang et al
for handling large-scale failures. Its reliability is based on
parallel, asynchronous and application-aware checkpointing.
In [30], the authors implemented a partial key grouping
policy which provides load balancing for fields grouping using
key splitting and local load estimation. This policy enables
automatic tuple route adjustment by sending tuple to one of
two destination tasks based on load estimation. In [17], Gu et
al. proposed a predictive failure management approach that
employs online failure prediction to achieve more efficient
failure management in DSDPSs. They tested the proposed
approach over IBM System S. In a recent work [25], Li et
al. proposed a predictive scheduling framework for DSDPSs,
which leverages SVR to predict the average tuple processing
time for a given scheduling solution.

Unlike most of above works that use either a reactive
or proactive method for supporting reliability, the proposed
control framework uses a predictive approach, which can
achieve minor performance degradation without any reserved
resources (needed by a proactive approach). Our prediction
model here is different from those presented in closely related
works [17], [25]. Moreover, our objective is to design a
general and flexible control framework based on performance
prediction, which may be used for various purposes; so this
work is different from [17] targeting particularly at failure
management or [25] aiming particularly at minimizing average
tuple processing time.

Time Series Modeling and Prediction: ARIMA [29] is one
of the most popular linear model for time series prediction. In
[44], Zhang et al. employed ARIMA to predict resource usages
of VMs in a cloud computing environment and dynamically
provision resources based on the prediction. Zhang [45] used
a hybrid model of ARIMA and Artificial Neural Network
(ANN) to improve prediction accuracy on complex problems
with both linear and nonlinear correlation structures. SVR is
a non-parametric regression algorithm with good scalability
for high-dimensional data. In [34], Sapankevych and Sankar
provided a survey of SVR on time series modeling and
prediction. Connor et al. proposed a class of RNNs, namely
NARMA in [14], which show robustness towards outlier
detection with time series data. Different RNNs, especially
gated RNNs, have been proposed to solve a large variety
of complicated problems related to time series data such as
machine translation [13], speech recognition [15] and text
generation [16]. A comprehensive introduction to methods
proposed for time series analysis in the literature can be found

271

in the textbook [29].

Memory Modeling and Management for Co-location
Interference: Methods have been proposed to model and
manage memory with co-location interference in the literature.
In [48], Eklov et al. presented a low-overhead method for
accurately measuring application performance (CPI) and off-
chip bandwidth (GBps) as a function of available shared cache
capacity. In a later work [49], they proposed the bandwidth
bandit, a general, quantitative and profiling method for ana-
lyzing the performance impact of contention for memory band-
width on multicore machines. In [46], Casas et al. proposed
a method for measuring and modeling the performance of
hierarchical memories in terms of the application’s utilization
of the key memory resources: capacity of a given memory
level and bandwidth between two levels. They also presented
a performance measurement and analysis method for network
behavior based on empirical measurements in a concurrent
work [46]. Recently, Xu et al. [50] proposed DR-BW, a
new tool based on supervised learning to identify band-
width contention in Non-Uniform Memory Access (NUMA)
architectures and provided optimization guidance. In [51],
Zasadzinski et al. leveraged a neural network to predict job
evolution based on power time series of nodes and used it to
guide job termination policies.

We target at modeling co-location interference in a DSDPS,
whose workload and traffic load patterns are different from
those in a general distributed computing environment or in
a specific environment (such as NUMA) considered in these
related works. Hence, methods described above cannot be
applied here. Moreover, we leverage the emerging DRNN
model for our prediction task, which has not been used or
considered in these related works.

VI. CONCLUSIONS

In this paper, we presented design, implementation and eval-
uation of a novel predictive control framework to enable reli-
able DSDP. It has the following desirable features: 1) It makes
accurate performance prediction with careful consideration for
co-location interference using a two-tiered DRNN model. 2)
It employs a new grouping method, dynamic grouping, which
can distribute/re-distribute data tuples to downstream tasks
according to any given split ratio and can re-direct data tuples
to bypass misbehaving workers and/or machines according
to prediction. 3) It collects both process and machine level
runtime statistics with over 70 features to enable accurate
prediction. We implemented the proposed framework based on
Storm. We built two representative SDP applications for per-
formance evaluation: Windowed URL Count and Continuous
Queries. Extensive experimental results show 1) the proposed
DRNN model outperforms ARIMA and SVR in terms of
prediction accuracy; 2) dynamic grouping works as expected;
and 3) the proposed framework enhances reliability by offering
minor performance degradation with misbehaving workers.

REFERENCES

[1] T. Akidau, et al. , MillWheel: fault-tolerant stream processing at internet
scale. Proc. of VLDB Endowment, Vol. 6, No. 11, pp. 1033-1044, 2013.
[2] Apache Flink, https://flink.apache.org/.

[3]
[4]
[5]
[6]
[7]
[8]
[9]
(10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]
(22]

(23]
(24]

[25]

[26]

(27]
(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

Apache Kafka, http://kafka.apache.org/.

Apache S4, http://incubator.apache.org/s4/.

Apache Spark, http://spark.apache.org/.

Apache Spark Streaming, http://spark.apache.org/streaming/.

Apache Storm, http://storm.apache.org/.

Apache Thrift, https://thrift.apache.org/.

Apache Zookeeper, https://zookeeper.apache.org/.

P. Bakkum and K. Skadron. Accelerating SQL database operations on a
GPU with CUDA. Proc. of ACM GPGPU Workshop, pp. 94-103, 2010.
Y. Bengio, A. Courville and P. Vincent. Representation learning: A
review and new perspectives. [EEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 35, No. 8, pp. 1798-1828, 2013.

Z. Chen, J. Xu, J. Tang, K. Kwiat and C. Kamhoua. G-Storm: GPU-
enabled high-throughput online data processing in Storm. Proc. of IEEE
BigData’2015, pp. 307-312, 2015.

K. Cho, B. Van Merrinboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk and Y. Bengio. Learning phrase representations using

RNN encoder-decoder for statistical machine translation. Proc. of

EMNLP’2014, pp. 1724-1734, 2014.

J. T. Connor, R. D. Martin and L. E. Atlas. Recurrent neural networks
and robust time series prediction. IEEE Transactions on Neural Net-
works, Vol. 5, No. 2, pp. 240-254, 1994.

A. Graves, A. R. Mohamed and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proc. of IEEE ICASSP’2013, pp. 6645-
6649, 2013.

A. Graves, Generating sequences with recurrent neural networks,
arXiv:1308.0850, 2013.

X. Gu, S. Papadimitriou, P. S. Yu, S-P. Chang. Toward predictive failure
management for distributed stream processing systems, Proc. of IEEE
ICDCS 2008, pp. 825-832, 2008.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, Vol. 9, No. 8, pp. 1735-1780, 1997.

R. J. Hyndman and A. B. Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, Vol. 22, No. 4, pp. 679-
688, 2006.

R.J. Hyndman and Y. Khandakar. Automatic time series for forecasting:
the forecast package for R. Journal of Statistical Software, Vol. 27,
No. 1, pp. 1-22, 2008.

Java Management Extensions, http://openjdk.java.net/groups/jmx/.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. Proc. of ACM
STOC’1997, pp. 654-663, 1997.

Lasagne, https://github.com/Lasagne/Lasagne.

Y. LeCun and Bengio, Y. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks,
Vol. 3361, No. 10, 1995.

T. Li, J. Tang and J. Xu. A predictive scheduling framework for fast
and distributed stream data processing. Proc. of IEEE BigData’2015,
pp. 333-338, 2015.

C. H. Liu, J. Xu, J. Tang and J. Crowcroft, Social-aware sequential
modeling of user interests: a deep learning approach, IEEE Transactions
on Knowledge and Data Engineering, In press.

LMAX disruptor, https://lmax-exchange.github.io/disruptor/.

S. Loesing, M. Hentschel, T. Kraska and D. Kossmann. Stormy: an
elastic and highly available streaming service in the cloud. Proc. of the
2012 ACM Joint EDBT/ICDT Workshops, pp. 55-60, 2012.

D. C. Montgomery, C. L. Jennings and M. Kulahci. Introduction to time
series analysis and forecasting. John Wiley & Sons, 2015.

M. A. U. Nasir, G. De Francisci Morales, D. Garca-Soriano, N. Kourtel-
lis and M. Serafini, The power of both choices: practical load balancing
for distributed stream processing engines, Proc. of IEEE ICDE’2015,
pp. 137-148, 2015.

R. Pascanu, C. Gulcehre, K. Cho and Y. Bengio. How to construct deep
recurrent neural networks, arXiv:1312.6026, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, ... J. Vanderplas. Scikit-learn: machine learning in Python.
Journal of Machine Learning Research, Vol. 12, No. 10, pp. 2825-2830,
2011.

Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang and Z. Zhang.
Timestream: reliable stream computation in the cloud. Proc. of ACM
EuroSys’2013, pp. 1-14, 2013.

N. L. Sapankevych and R. Sankar. Time series prediction using support
vector machines: a survey. [EEE Computational Intelligence Magazine,
Vol. 4, No. 2, pp. 24-38, 2009.

A. J. Smola and B. Schlkopf. A tutorial on support vector regression.
Statistics and computing, Vol. 14, No. 3, pp. 199-222, 2004.

272

[36
[37

[38
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

SQLite, https://www.sqlite.org/.

Streaming windowed word count, https://cloud.google.com/dataflow/
examples/wordcount-example.

Sysstat, http://sebastien.godard.pagesperso-orange.fr/.

T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,
D. Bahdanau, ... A. Belopolsky. Theano: A Python framework for fast
computation of mathematical expressions, arXiv:1605.02688, 2016.

G. Urdaneta, G. Pierre and M. Van Steen. Wikipedia workload analysis
for decentralized hosting. Computer Networks, Vol. 53, No. 11, pp. 1830-
1845, 2009.

H. Wang, L. S. Peh, E. Koukoumidis, S. Tao and M. C. Chan. Meteor
shower: a reliable stream processing system for commodity data centers.
Proc. of IEEE IPDPS’2012, pp. 1180-1191, 2012.

J. Xu, Z. Chen, J. Tang and S Su. T-Storm: traffic-aware online
scheduling in storm. Proc. of IEEE ICDCS’2014, pp. 535-544, 2014.
M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: fault-tolerant streaming computation at scale. Proc.
of ACM SOSP’2013, pp. 423-438, 2013.

Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba and J. L.
Hellerstein. Dynamic energy-aware capacity provisioning for cloud
computing environments. Proc. of ACM ICAC’2012, pp. 145-154, 2012.
G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural
network model. Neurocomputing, Vol. 50, pp. 159-175, 2003.

M. Casas and G. Bronevetsky, Active measurement of memory resource
consumption, Proc. of IEEE IPDPS’2014, pp. 995-1004.

M. Casas and G. Bronevetsky, Active measurement of the impact of
network switch utilization on application performance, Proc. of IEEE
IPDPS’2014, pp. 165-174.

D. Eklov, N. Nikoleris, D. Black-Schaffer and E. Hagersten, Cache
pirating: measuring the curse of the shared cache, Proc. of ICPP’2011,
pp. 165-175.

D. Eklov, N. Nikoleris, D. Black-Schaffer and E. Hagersten, Bandwidth
bandit: quantitative characterization of memory contention, Proc. of
IEEE/ACM CGO’2013.

H. Xu, S. Wen, A. Gimenez, T. Gamblin, X. Liu, DR-BW: identifying
bandwidth contention in NUMA architectures with supervised learning,
Proc. of IEEE IPDPS’2017, pp. 367-376.

Michal Zasadzinski, Victor Munts-Mulero, Marc Sol, David Carrera,
Thomas Ludwig, Early termination of failed HPC jobs through machine
and deep learning, Proc. of Euro-Par’2018.

