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A dynamical Borel–Cantelli lemma
via improvements to Dirichlet’s theorem

Dmitry Kleinbock and Shucheng Yu

Let X ⇠= SL2(R)/SL2(Z) be the space of unimodular lattices in R2, and for any r � 0 denote by Kr ⇢ X

the set of lattices such that all its nonzero vectors have supremum norm at least e�r. These are compact
nested subsets of X , with K0 =

T
r
Kr being the union of two closed horocycles. We use an explicit

second moment formula for the Siegel transform of the indicator functions of squares in R2 centered at
the origin to derive an asymptotic formula for the volume of sets Kr as r ! 0. Combined with a zero-one
law for the set of the  -Dirichlet numbers established by Kleinbock and Wadleigh (Proc. Amer. Math.

Soc. 146 (2018), 1833–1844), this gives a new dynamical Borel–Cantelli lemma for the geodesic flow
on X with respect to the family of shrinking targets {Kr }.

1. Introduction

Let (X, µ) be a probability space, and let {as}s2R be a one-parameter measure-preserving flow on X .
Given a family of measurable subsets {Bs}s>0 of X with µ(Bs) ! 0 as s ! 1 (called shrinking targets),
the shrinking targets problem asks for a dichotomy on whether generic orbits of {as}s>0 would hit the
shrinking targets indefinitely. That is, we are looking for a zero-one law for the measure of the limsup set

B1 := lim sup
s!1

a�s Bs = {x 2 X | asx 2 Bs for an unbounded set of s > 0}.

For any n 2 N let
eBn :=

[

0s<1

a�s Bn+s (1-1)

be the thickening of the shrinking targets {Bs}ns<n+1 along the flow {a�s}0s<1. Note that anx 2 eBn if
and only if there exists some s 2 [n, n+ 1) such that asx 2 Bs . We thus have

B1 = lim sup
n!1

a�n
eBn = {x 2 X | anx 2 eBn infinitely often}, (1-2)

and the classical Borel–Cantelli lemma implies
X

n

µ(eBn) < 1 H) µ(B1)= 0. (1-3)
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On the other hand, following the terminology of [Chernov and Kleinbock 2001] we say the family of
shrinking targets {Bs}s>0 is Borel–Cantelli (BC) for the flow {as}s>0 if µ(B1) = 1. Thus a necessary
condition for {Bs}s>0 to be BC for {as}s>0 is that the sequence of its thickenings has divergent sum of
measures, and we say {Bs}s>0 satisfies a dynamical Borel–Cantelli lemma for {as}s>0 if this is also a
sufficient condition.

The shrinking targets problem for continuous time flow in the context of homogeneous spaces was
first studied in [Sullivan 1982], where he established a logarithm law for the fastest rate of geodesic
cusp excursions in finite-volume hyperbolic manifolds. Later using the exponential mixing rate and a
smooth approximation argument, the first author and Margulis [Kleinbock and Margulis 1999] proved
that the family of cusp neighborhoods {8�1(r(s),1)}s>0 with divergent sum of measures is BC for
any diagonalizable flow on (G/0, µ), where G is a connected semisimple Lie group without compact
factors, 0 < G is an irreducible lattice, and µ is the probability measure on X = G/0 coming from
a Haar measure on G. Here 8 is a distance-like function on X [loc. cit., Definition 1.6] and r( · ) is a
quasi-increasing function [loc. cit., Section 2.4]. Later Maucourant [2006] obtained a similar dynamical
Borel–Cantelli lemma for geodesic flows making excursions into shrinking hyperbolic balls (with a fixed
center) on a finite-volume hyperbolic manifold. See [Athreya 2009] for a survey on shrinking targets
problems in dynamical systems.

One main reason that such dynamical Borel–Cantelli lemmas have gained much attention is due to their
connections to metric number theory, which were first explored in [Sullivan 1982]. Such connections
were made more apparent later in [Kleinbock and Margulis 1999]. Let m, l be two positive integers and
let Mm,l(R) be the space of m by l real matrices. Given  : [t0,1)! (0,1) a continuous nonincreasing
function, let us define W ( ) ⇢ Mm,l(R), the set of  -approximable m ⇥ l real matrices such that A 2
W ( ) if and only if there are infinitely many q 2 Zl satisfying

kAq � pkm <  (kqkl) for some p 2 Zm,

where k · k is the supremum norm on respective Euclidean spaces. The classical Khinchin–Groshev
theorem gives an exact criterion on when W ( ) has full or zero Lebesgue measure.

Theorem KG (Khinchin–Groshev). Given a continuous nonincreasing  , the set W ( ) has full (resp.
zero) Lebesgue measure if and only if the series

P
k
 (k) diverges (resp. converges).

See [Schmidt 1980] for more details. On the other hand, let X = SLm+l(R)/ SLm+l(Z) be the space
of unimodular lattices in Rm+l and let 1 : X ! [0,1) be the function on X given by

1(3) := sup
v23r{0}

log
✓

1
kvk

◆
. (1-4)

Note that 1(3) � 0 for any 3 2 X due to Minkowski’s convex body theorem, and for all r � 0 the sets

Kr := 1�1([0, r ]) (1-5)

(of lattices such that all its nonzero vectors have supremum norm at least e�r ) are compact due to
Mahler’s compactness criterion; see, e.g., [Cassels 1997]. Following ideas of [Dani 1985], it was shown
in [Kleinbock and Margulis 1999] that there exists a unique function r = r : [s0,1) ! R depending
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on  (this was referred to as the Dani correspondence) such that A 2 Mm,l(R) is  -approximable if and
only if the events as3A 2 1�1(r(s),1) happen for an unbounded set of s > s0, where

as = diag(es/m, . . . , es/m, e�s/ l, . . . , e�s/ l),

with m copies of es/m and l copies of e�s/ l , and

3A =

✓
Im A

0 Il

◆
Zm+l 2 X.

This way the first author and Margulis showed Theorem KG to be equivalent to a dynamical Borel–
Cantelli lemma for the as-orbits making excursions into the cusp neighborhoods 1�1(r(s),1)s>s0 , and
used this to give an alternative dynamical proof of Theorem KG based on mixing properties of the
as-action on X ; see [Kleinbock and Margulis 1999].

More recently, for a given  as above, the first author and Wadleigh [Kleinbock and Wadleigh 2018]
studied the finer problem of improvements to Dirichlet’s theorem. See [Davenport and Schmidt 1970a;
1970b] for the history of the problem of improving Dirichlet’s theorem. Following the definition in
[Kleinbock and Wadleigh 2018] an m by l real matrix A is called  -Dirichlet if the system of inequalities

kAq � pkm <  (t) and kqkl < t

has solutions in ( p, q) 2 Zm ⇥ (Zl r {0}) for all sufficiently large t . Following the general scheme
developed in [Kleinbock and Margulis 1999] they gave a dynamical interpretation of  -Dirichlet matrices.
Namely, they showed that A 2 Mm,l(R) is not  -Dirichlet if and only if the events

as3A 2 Kr(s)

happen for an unbounded set of s > s0, where as,3A and r = r are all as above. Hence in this case the
family of shrinking targets is given by {Kr(s)}s>s0 , and one is naturally interested in whether this family
of shrinking targets is BC for the flow {as}s>0.

However this dynamical interpretation is not helpful when it comes to determining necessary and
sufficient conditions on  guaranteeing that almost every (almost no) A is  -Dirichlet. One of the
main difficulties is that the shrinking targets Kr(s) are far away from being SOm+l(R)-invariant, and thus
applying the mixing properties of the as-action will involve certain Sobolev norms which are hard to
control. Still, using a different method based on continued fractions the aforementioned conditions were
found in [Kleinbock and Wadleigh 2018] for the case m = l = 1. Namely, the following was proved:

Theorem KW (Kleinbock–Wadleigh). Let  : [t0,1)! (0,1) be a continuous, nonincreasing function
satisfying

the function t 7! t (t) is nondecreasing (1-6)
and

t (t) < 1 for all t � t0. (1-7)
Then if the series

X

n

�(1� n (n)) log(1� n (n))

n
(1-8)

diverges (resp. converges), then Lebesgue-a.e. x 2 R is not (resp. is)  -Dirichlet.



104 DMITRY KLEINBOCK AND SHUCHENG YU

In this paper we use the above theorem to derive a dynamical Borel–Cantelli lemma for the diagonal
flow as := diag(es, e�s) on X := SL2(R)/ SL2(Z). Let µ be the probability Haar measure on X , consider
the function 1 on X as in (1-4), and define the sets Kr as in (1-5).

We now state our dynamical Borel–Cantelli lemma.

Theorem 1.1. Let r : [s0,1) ! (0,1) be a continuous and nonincreasing function. Let Bs = Kr(s) and

let B1 = lim sup
t!1 a�s Bs. Then we have

X

n

r(n) log
✓

1
r(n)

◆
< 1 =) µ(B1)= 0.

If in addition we assume that the function s 7! s+ r(s) is nondecreasing, then we have
X

n

r(n) log
✓

1
r(n)

◆
= 1 =) µ(B1)= 1.

Comparing the statement of the above theorem with (1-3), one can guess that it can be approached by
studying the thickenings

eBn =
[

0s<1

a�s Bn+s =
[

0s<1

a�s Kr(n+s) (1-9)

as in (1-1). We do it in several steps. In the beginning of Section 3 we prove an asymptotic measure
formula for the sets Kr where r is small:

Theorem 1.2. For any 0< r < (log 2)/2 we have

µ(Kr )=
4r2 log(1/r)

⇣(2)
+ O(r2),

where ⇣(2)= ⇡2/6 is the value of the Riemann zeta function at 2.

Here and hereafter for two positive quantities A and B, we will use the notation A ⌧ B or A = O(B)

to mean that there is a constant c > 0 such that A  cB, and we will use subscripts to indicate the
dependence of the constant on parameters. We will write A ⇣ B for A ⌧ B ⌧ A.

The next step is to use Theorem 1.2 to estimate the measure of the thickening of Kr along the flow
{a�s}0s<1 by bounding it from above and below by a finite union of as-translates of Kr . This is also
done in Section 3 and yields the following result:

Theorem 1.3. For any 0< r < log 1.01 we have

µ

✓ [

0s<1

a�s Kr

◆
⇣ r log

✓
1
r

◆
.

The above asymptotic equality shows that the series appearing in Theorem 1.1 converges/diverges if
and only if so does the series

P
n
µ(eBn), where eBn is as in (1-9):

Corollary 1.4. Let r : [s0,1) ! (0,1) be a nonincreasing function, and let eBn be as in (1-9). Then we

have X

n

µ(eBn)= 1 ()
X

n

r(n) log
✓

1
r(n)

◆
= 1.



A DYNAMICAL BOREL–CANTELLI LEMMA VIA IMPROVEMENTS TO DIRICHLET’S THEOREM 105

Therefore, in view of (1-2) and (1-3), the convergence part of Theorem 1.1 is immediate from the
Borel–Cantelli lemma. The divergence part however is trickier. Instead of using a dynamical approach
as in [Kleinbock and Margulis 1999], our proof in Section 4 is non-dynamical and relies on Theorem KW
and the Dani correspondence.

It remains to comment on our proof of Theorem 1.2. Instead of trying to describe the sets Kr explicitly
in terms of coordinates and compute their measures directly, we adapt an indirect approach which relies
on an explicit second moment formula of the Siegel transform of certain indicator functions. Recall that
if f is a function on R2, its primitive Siegel transform is the function on X given by

f̂ (3) :=
X

v23pr

f (v),

where 3pr is the set of primitive vectors of 3. Clearly f̂ (3) = #(3pr \ S) when f is the indicator
function of a subset S of R2.

Let us briefly describe the history of the problem. The Siegel transform was originally defined by
Siegel [1945] as the sum over all nonzero lattice points for unimodular lattices of any rank. In the same pa-
per Siegel proved a mean value theorem for the Siegel transform, which in the primitive set-up amounts to

Z

X

f̂ (3) dµ(3)=
1

⇣(2)

Z

R2
f (x) dx (1-10)

for any bounded compactly supported f on R2. Since then there has been much work extending his
result to higher moments. For example, Rogers [1955] proved a series of higher moment formulas,
which in particular includes a second moment formula for the Siegel transform defined on the space of
unimodular lattices of rank greater than 2. However, his result did not give a second moment formula on
X as in our setting. For this setting, Schmidt [1960] proved an upper bound for the second moment of the
primitive Siegel transform of indicator functions on R2. His bound was later logarithmically improved by
Randol [1970] for discs centered at the origin and by Athreya and Margulis [2009] for general indicator
functions building on Randol’s bound. Athreya and Konstantoulas [2016] obtained similar bounds on
the space of general symplectic lattices for a certain family of indicator functions. Continuing [Athreya
and Konstantoulas 2016], Kelmer and the second author [Kelmer and Yu 2019] proved a second moment
formula on the space of symplectic lattices Yn := Sp(2n,R)/ Sp(2n,Z). In particular, when n = 1 we
have Y1 = X and their formula also applies to our setting.1 However, for our applications all these
formulas are not explicit enough.

We now state an explicit second moment formula which we use to derive Theorem 1.2.

Theorem 1.5. For any r � 0 let Sr be the open square with vertices given by (±e
�r ,±e

�r ), and let fr

be the indicator function of Sr . Then we have

k f̂rk
2
2 =

8
⇣(2)

✓
e
�2r +

Z

Dr

✓
e
�r

x1
+

e
�r

x2
�

1
x1x2

◆
dx1 dx2

◆
, (1-11)

where

Dr := {x = (x1, x2) 2 Sr | x1 > 0, x2 > 0, x1+ x2 > e
r },

and k · k2 stands for the L2
-norm with respect to µ.

1See also [Fairchild 2019] for moment formulas of the Siegel–Veech transform recently obtained by Fairchild.
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Remark 1.6. When r � (log 2)/2 the region Dr is empty, and (1-11) simply reads as

k f̂rk
2
2 =

8e�2r

⇣(2)
.

We note that the latter equality in fact already follows from Siegel’s mean value theorem, since in this
case for any unimodular lattice there can only be at most one pair of primitive lattice points allowed
in Sr , which implies that f̂r/2 is an indicator function on X . When 0  r < (log 2)/2, the region Dr is
not empty, and it is not hard to compute the integral in (1-11) explicitly; see (3-5) below. In particular,
plugging r = 0 into (1-11) we have k f̂0k22 = (12/⇡)2 � 8 ⇡ 6.59.

In Section 2 we prove a much more general second moment formula, see Theorem 2.1, with an
arbitrary bounded measurable subset S of R2 in place of Sr . Theorem 1.5 is derived from Theorem 2.1
by taking S = Sr .

2. The second moment formula

In this section, we prove Theorem 1.5 by establishing the following second moment formula for quite
general subsets of R2.

Theorem 2.1. Let S be a measurable bounded subset of R2, and let f be the indicator function of S. Let
eS = {x 2 R2 | �x 2 S}. Then we have

k f̂ k22 =
1

⇣(2)

✓
area(S)+ area(S \ eS)+

X

n 6=0

'(|n|)

|n|

Z

S
|I n

x | dx
◆
,

where ' is the Euler’s totient function, I n

x ⇢ R is defined by

I n

x :=

⇢
t 2 R

���� n
✓

�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ t (x1, x2) 2 S

�
,

and |I n

x | is the length of I n

x with respect to the Lebesgue measure on R.

Before giving the proof let us make a few remarks about Theorem 2.1. First we note that for any
bounded S there exists a sufficiently large T > 0 depending on S such that for any |n|> T the set I n

x is
empty for all x 2 S. Thus the series on the right-hand side of (2-1) is a finite sum. Next we note that if
we further assume S is symmetric with respect to the origin, then by symmetry we have S \ eS = S and
|I n

x | = |I�n

x | for any n 6= 0. In particular, for such S we have the slightly simpler formula

k f̂ k22 =
2

⇣(2)

✓
area(S)+

1X

n=1

'(n)

n

Z

S
|I n

x | dx
◆
. (2-1)

Finally we note that for any 3 2 X and f as in Theorem 2.1 we have

( f̂ (3))2 = f̂ (3)+ �̂S\eS(3)+
X

v1,v223pr
lin. ind.

f (v1) f (v2).

Thus Theorem 2.1 together with (1-10) implies
Z

X

X

v1,v223pr
lin. ind.

f (v1) f (v2) dµ(3)=
1

⇣(2)

X

n 6=0

'(|n|)

|n|

Z

S
|I n

x | dx. (2-2)
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It is worth pointing out that the above formula can be compared to its higher-dimensional analogue: when
f is an indicator function of a bounded measurable subset S of Rk with k � 3, X = SLk(R)/ SLk(Z),
and µ is the Haar probability measure on X , according to Rogers’ second moment formula [1955] the
left-hand side of (2-2) equals (vol(S)/⇣(k))2. However, as we can see here the k = 2 case is much more
complicated, with the answer depending on both the shape and the position of S.

Coordinates and measures. We fix coordinates on G = SL2(R) via the Iwasawa decomposition G =
KAN with

K = {k✓ | 0  ✓ < 2⇡}, A = {as | s 2 R}, and N = {ut | t 2 R},

where

k✓ =

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆
, as =

✓
e
s 0
0 e

�s

◆
and ut =

✓
1 t

0 1

◆
.

Explicitly, under coordinates g = k✓asut , µ is given by

dµ(g)=
1

⇣(2)
e
2s
d✓ ds dt. (2-3)

There is a natural identification between the homogeneous space G/N and R2r {0} induced by the
map G ! R2r {0} sending g = k✓asut 2 G to

x(g)=
✓
x1
x2

◆
= g

✓
1
0

◆
=

✓
e
s cos ✓

e
s sin ✓

◆
, (2-4)

the left column of g. The Lebesgue measure, dx, on R2 r {0} ⇠= G/N can be expressed via the polar
coordinates (s, ✓) as

dx(k✓as)= e
2s
d✓ ds. (2-5)

The second moment formula. In this subsection we prove Theorem 2.1, and with some more analysis
we prove Theorem 1.5. As the first step of our computation we recall the following preliminary identity
which relies on a standard unfolding argument. We note that one can find it in [Lang 1975, Chapter VIII,
Section 1], and we include a short proof here to make the paper self-contained. See also [Kelmer and
Yu 2019, Proposition 2.3] for a generalization to the space of symplectic lattices.

Lemma 2.2. For any bounded and compactly supported function f on R2
and for any bounded F 2

L
2(X, µ) we have

h f̂ , Fi =
1

⇣(2)

Z 1

�1

Z 2⇡

0
f (x(k✓as))PF (x(k✓as))e

2s
d✓ ds,

where PF is defined by

PF (x(k✓as))=
Z 1

0
F(k✓asutZ

2) dt

with k✓ , as and ut as above, and h · , · i is the inner product on L
2(X, µ).
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Proof. Let 0 = SL2(Z) and let 01 = 0 \ N. Recall that there is an identification between 0/01 and
Z2
pr sending �01 to �

�1
0

�
. Using this identification, for any 3 = gZ2 with g 2 SL2(R) we can write

f̂ (3)=
X

v23pr

f (v)=
X

w2Z2
pr

f (gw)=
X

�20/01

f̃ (g� ), (2-6)

where f̃ (g) := f
�
g
�1
0

��
. We note that f̃ is a right N -invariant function on G. Let F0 be a fundamental

domain for X = G/0, and let F1 be a fundamental domain for G/01. Note that using the Iwasawa
decomposition G = KAN we can choose

F1 = {k✓asut | 0< ✓ < 2⇡, s 2 R, 0< t < 1}. (2-7)

Moreover, fix a set of coset representatives 61 ⇢ 0 for 0/01, and note that
S

�261
F0� is a disjoint

union and forms a fundamental domain for G/01. Now for any bounded F 2 L
2(X, µ), using (2-3),

(2-6), (2-7) and the facts that F is right 0-invariant and f̃ is right N -invariant, we have

h f̂ , Fi :=
Z

F0

f̂ (gZ2)F(gZ2) dµ(g)=
X

�20/01

Z

F0

f̃ (g� )F(gZ2) dµ(g)

=
X

�261

Z

F0�

f̃ (g)F(gZ2) dµ(g)=
Z

F
�261 F0�

f̃ (g)F(gZ2) dµ(g)

=
Z

F1

f̃ (g)F(gZ2) dµ(g)=
1

⇣(2)

Z 1

�1

Z 2⇡

0

Z 1

0
f̃ (k✓asut)F(k✓asutZ2)e2s dt d✓ ds

=
1

⇣(2)

Z 1

�1

Z 2⇡

0
f (x(k✓as))

Z 1

0
F(k✓asutZ2) dt e2s d✓ ds.

Finally, we note that the above equalities can be justified since F is bounded and the defining series for
f̂ is absolutely convergent; see [Veech 1998, Lemma 16.10]. ⇤
With this preliminary identity, we can now give:

Proof of Theorem 2.1. Using the relation (2-5) and Lemma 2.2 we have

k f̂ k22 =
1

⇣(2)

Z

R2
f (x(k✓as))P f̂

(x(k✓as)) dx =
1

⇣(2)

Z

S
P
f̂
(x(k✓as)) dx, (2-8)

where

P
f̂
(x(k✓as))=

Z 1

0
f̂ (k✓asutZ

2) dt,

with k✓ , as and ut as before. First, by the definition of the primitive Siegel transform we have

f̂ (k✓asutZ
2)= #

⇢
(m, n) 2 Z2

pr

���� k✓asut

✓
m

n

◆
2 S

�
.

Thus for x(k✓as) 2 S and 0  t < 1 we have

f̂ (k✓asutZ
2)=

X

(m,n)2Z2
pr

�
I
(m,n)
x(k✓ as )

(t),
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where

I
(m,n)
x(k✓as)

:=

⇢
0  t < 1

���� k✓asut

✓
m

n

◆
2 S

�
,

implying

P
f̂
(x(k✓as))=

X

(m,n)2Z2
pr

|I (m,n)
x(k✓as)

| = |I (1,0)x(k✓as)
| + |I (�1,0)

x(k✓as)
| +

X

(m,n)2Z2
pr

n 6=0

|I (m,n)
x(k✓as)

|.

Next, by direct computation we have for x(k✓as)= (x1, x2)= (es cos ✓, es sin ✓) 2 S

k✓asut

✓
m

n

◆
= n

✓
�e

�s sin ✓

e
�s cos ✓

◆
+ (m+ nt)

✓
e
s cos ✓

e
s sin ✓

◆
= n

✓
�x2/(x

2
1 + x

2
2)

x1/(x
2
1 + x

2
2)

◆
+ (m+ nt)

✓
x1
x2

◆
. (2-9)

When (m, n)= (1, 0) we have for x(k✓as) 2 S

k✓asut

✓
1
0

◆
=

✓
x1
x2

◆

is contained in S for any 0 t < 1. Thus I (1,0)x(k✓as)
= [0, 1) and |I (1,0)x(k✓as)

| = 1 for any x(k✓as)2 S. Similarly,
when (m, n)= (�1, 0) we have for x(k✓as) 2 S

k✓asut

✓
�1
0

◆
=

✓
�x1
�x2

◆

is contained in S if and only if x 2 S \ eS with eS as in the theorem, implying I
(�1,0)
x(k✓as)

= [0, 1) whenever
x 2 S \ eS.

When n 6= 0 by (2-9) we have for any integer m coprime to n

|I (m,n)
x | =

����

⇢
0  t < 1

���� n
✓

�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ (m+ nt)(x1, x2) 2 S

�����

=

����

⇢
m

n
 t < 1+

m

n

���� n
✓

�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ nt (x1, x2) 2 S

�����.

We note that as m runs through all the integers in each congruence class in (Z/|n|Z)⇥, the intervals
[m/n, 1+m/n) cover R exactly once. Thus for n 6= 0

X

m2Z
(m,n)=1

|I (m,n)
x(k✓as)

| = '(|n|)

����

⇢
t 2 R

���� n
✓

�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ nt(x1, x2) 2 S

�����=
'(|n|)

|n|
|I n

x |,

where ' is the Euler’s totient function and I n

x is as in Theorem 2.1. We thus have for x 2 S

P
f̂
(x)= 1+�S\eS(x)+

X

n 6=0

'(|n|)

|n|
|I n

x |.

We conclude the proof by plugging the above equation into (2-8). ⇤
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We can now give:

Proof of Theorem 1.5. To simplify notation for any x 2 R2, t 2 R, and n � 1 let

v(x, t, n) := n

✓
�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ t (x1, x2).

First we note that

kv(x, t, n)k22 =
n
2

x
2
1 + x

2
2
+ t

2(x21 + x
2
2) �

n
2

x
2
1 + x

2
2
,

where k · k2 stands for the standard Euclidean norm on R2. Thus for x 2 Sr and n � 2 we have

kv(x, t, n)k �

p
2
2

kv(x, t, n)k2 �

p
2

kxk2
> e

r � e
�r ,

implying that I n

x is empty for any x 2 Sr and any n � 2. Here k · k stands for the supremum norm on R2,
and for the third inequality we used the fact that kxk2 <

p
2e�r , which follows from x being an element

of Sr . Since Sr is symmetric with respect to the origin, applying (2-1) to f = fr we get

k f̂rk
2
2 =

8e�2r

⇣(2)
+

2
⇣(2)

Z

Sr

|I1
x | dx =

8e�2r

⇣(2)
+

8
⇣(2)

Z

S+
r

|I1
x | dx, (2-10)

where S+
r
is the intersection of Sr with the first quadrant, and for the second equality we used the fact that

|I1
(x1,x2)

| = |I1
(±x1,±x2)

| which follows from the invariance of Sr under reflections around the coordinate
axes. We note that for x 2 S+

r

✓
�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ t (x1, x2) 2 Sr

if and only if

�
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)

< t <
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)

and

�
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)

< t <
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)
.

By direct computation if r � (log 2)/2 then there is no t 2 R satisfying above inequalities. Thus I1
x is

empty, and the integral in the right-hand side of (2-10) is zero. If 0  r < (log 2)/2, we define for any
x 2 S+

r

L(x) :=max
⇢
�
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)
,�

e
�r

x2
�

x1

x2(x
2
1 + x

2
2)

�
,

U (x) :=min
⇢
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)
,
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)

�
.

It is not hard to verify that as long as 0  r < (log 2)/2, for x 2 S+
r
we have

L(x)= �
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)

and U (x)=
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)
.
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Thus I1
x is nonempty if and only if L(x) <U (x) and whenever it is nonempty we have

I1
x =

✓
�
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)
,
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)

◆
.

By direct computation we have L(x) <U (x) if and only if x 2Dr = {(x1, x2)2 S+
r
| x1+x2 > e

r }. Hence

k f̂rk
2
2 =

8e�2r

⇣(2)
+

8
⇣(2)

Z

Dr

✓✓
e
�r

x2
�

x1

x2(x
2
1 + x

2
2)

◆
�

✓
�
e
�r

x1
+

x2

x1(x
2
1 + x

2
2)

◆◆
dx1 dx2

=
8e�2r

⇣(2)
+

8
⇣(2)

Z

Dr

✓
e
�r

x1
+

e
�r

x2
�

1
x1x2

◆
dx1 dx2. ⇤

Besides the sets Sr , another natural candidate to test formula (2-1) is the family of indicator functions
of balls. For any R > 0 let BR be the open ball of radius R centered at the origin, and let hR be the
indicator function of BR . We note that [Randol 1970] established an asymptotic formula for kĥ Rk22 for
large R, and here we prove the following formula for kĥ Rk22:

Corollary 2.3. For any R > 0 let hR be as above. Then we have

kĥ Rk22 =
12R2

⇡
+

48
⇡

bR2cX

n=1

'(n)

✓p
R4 � n2

n
+ arcsin

✓
n

R2

◆
�

⇡

2

◆
.

Proof. Since BR is symmetric with respect to the origin, we can apply (2-1) to kĥ Rk22, and use ⇣(2)=⇡2/6
to get

kĥ Rk22 =
12R2

⇡
+

12
⇡2

1X

n=1

'(n)

n

Z

BR

|I n

x | dx,

where

I n

x :=

⇢
t 2 R

����

����n
✓

�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ t (x1, x2)

����
2
< R

�
.

Using the polar coordinates, for any (x2, x2)= (r cos ✓, r sin ✓) 2 BR and n � Rr we can write
����n

✓
�x2

x
2
1 + x

2
2
,

x1

x
2
1 + x

2
2

◆
+ t (x1, x2)

����
2

2
=

n
2

r2
+ t

2
r
2 � R

2,

implying that I n

x is empty whenever n � Rr = Rkxk2. In particular, I n

x is empty for any x 2 BR if
n � R

2. Similarly, for any 1  n  bR2c the set I n

x is empty if kxk2  n/R, and

I n

x =

✓
�

p
R2r2 � n2

r2
,

p
R2r2 � n2

r2

◆

if n/R < kxk2 < R. Hence

kĥ Rk22 =
12R2

⇡
+

12
⇡2

bR2cX

n=1

'(n)

n

Z 2⇡

0

Z
R

n/R

2
p
R2r2 � n2

r2
r dr d✓
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=
12R2

⇡
+

48
⇡

bR2cX

n=1

'(n)

Z
R
2/n

1

p
1� r�2 dr

=
12R2

⇡
+

48
⇡

bR2cX

n=1

'(n)

✓p
R4 � n2

n
+ arcsin

✓
n

R2

◆
�

⇡

2

◆
,

where for the second equality we applied a change of variable (R/n)r 7! r , and for the last equality we
used the fact that

R p
1� r�2 dr =

p
r2 � 1+ arcsin(1/r)+C for r � 1. ⇤

3. Measure estimates of the shrinking targets

In this section, using the methods developed in the previous section, we prove Theorem 1.2 and then use
it to derive Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.2. For any r > 0, let fr be the indicator function of Sr as before. For any integer
k � 0, let Bk

r
⇢ X be the set of unimodular lattices having 2k nonzero primitive points in Sr . First, we

note that Kr = B
0
r
consists of lattices with no nonzero points in Sr . Moreover, for any 3 2 X , there are

at most two linearly independent primitive points of 3 inside Sr . We thus have for any r > 0
2X

k=0

µ(Bk

r
)= 1, (3-1)

and
f̂r = 2�B1

r
+ 4�B2

r
.

Thus we can take the first moment and apply (1-10) to get

µ(B1
r
)+ 2µ(B2

r
)= 1

2

Z

X

f̂r (3) dµ(3)=
2e�2r

⇣(2)
. (3-2)

Taking the second moment of f̂r we get

4µ(B1
r
)+ 16µ(B2

r
)= k f̂rk

2
2. (3-3)

Solving (3-1), (3-2) and (3-3) and applying Theorem 1.5 to (3-3), we get

µ(Kr )= µ(B0
r
)= 1�

2e�2r

⇣(2)
+

1
⇣(2)

Z

Dr

✓
e
�r

x1
+

e
�r

x2
�

1
x1x2

◆
dx1 dx2.

By direct computation we have for 0< r < 1
2 log 2

Z

Dr

✓
e
�r

x1
+
e
�r

x2
�

1
x1x2

◆
dx1 dx2

= 2(1�r)(2e�2r�1+r)+(2�2e�2r�2r) log(1�e
�2r )�2r2+

Z
e
�2r

1�e�2r

log t
1�t

dt

= 2(1�r)(2e�2r�1+r)+(2�2e�2r�2r) log(1�e
�2r )�2r2+Li2(1�e

�2r )�Li2(e�2r ), (3-4)
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where Lis(z) =
P1

k=1 z
k/ks is the polylogarithm function. Now for the term log(1� e

�2r ), using the
Taylor expansion e

�2r = 1� 2r + 2r2+ O(r3), we get

log(1� e
�2r )= log(2r)+ log(1� r + O(r2))= log(2r)� r + O(r2).

Using the series representation Li2(z)=
P1

k=1 z
k/k2, we get Li2(1� e

�2r )= 2r +O(r2). Finally for the
term Li2(e�2r ) we have the expansion, see [Wood 1992, Equation (9.7)],

Li2(e�2r )= �2r(1� log(2r))+ ⇣(2)+ O(r2).

Plugging these into (3-4) and using the expansion e
�2r = 1� 2r + 2r2+ O(r3), we get

Z

Dr

✓
e
�r

x1
+

e
�r

x2
�

1
x1x2

◆
dx1 dx2 = 2� ⇣(2)� 4r � 4r2 log r + O(r2), (3-5)

implying

µ(Kr )= 1�
2e�2r

⇣(2)
+

1
⇣(2)

(2� ⇣(2)� 4r � 4r2 log r + O(r2))= �
4r2 log r

⇣(2)
+ O(r2),

finishing the proof. ⇤

To estimate the measure of the thickening, we will need the following two preliminary lemmas. We
note that by the Hajós–Minkowski theorem, see [Cassels 1997, IX.1.3], we have

K0 = 1�1{0} =
[

x2[0,1)

✓
1 x

0 1

◆
Z2

[ ✓
1 0
x 1

◆
Z2.

A simple observation is that any 3 2 K0 contains either the point (1, 0) or the point (0, 1). Thus intuitively
one shall expect that when r is small, lattices in Kr contain points close to either (1, 0) or (0, 1). For
any r > 0, let Ar ⇢ R2 be the closed rectangle with vertices (±

p
e2r � 1, er ) and (±

p
e2r � 1, e�r ) and

let Cr be the closed rectangle with vertices (er ,±
p
e2r � 1) and (e�r ,±

p
e2r � 1); see Figure 1. The

following lemma asserts that when r is small, then any 3 2 Kr contains points either in Ar or in Cr
(noting that Ar is a small rectangle containing (0, 1) and Cr is a small rectangle containing (1, 0)).

Lemma 3.1. Let Ar and Cr be as above. For any 0 < r < log 1.01 and for any 3 2 Kr , we have

3pr \ (Ar [ Cr ) 6=?.

Figure 1. The square Sr (red), the rectangles Ar (green) and Cr (blue).



114 DMITRY KLEINBOCK AND SHUCHENG YU

Figure 2. The square Sr (red), the rectangles Ur (green) and Rr (blue).

Proof. Let Ur be the closed rectangle with vertices (±e
�r , e�r ) and (±e

�r , er ), and let Rr be the closed
rectangle with vertices (e�r ,±e

�r ) and (er ,±e
�r ); see Figure 2. Let

eUr := {x 2 R2 | � x 2 Ur }.

Consider the rectangle Ur tSr teUr and note that it has area 4. For any " > 0 let Ur," be the open rectangle
with vertices (±e

�r ,±(er + ")). Applying the Minkowski’s convex body theorem to Ur," and letting "

approach zero, we see that for any 3 2 X , 3pr intersects Ur tSr teUr nontrivially. Now let 3 2 Kr ; since
3 has no nonzero point in Sr and 3pr is invariant under inversion, we have 3pr \Ur 6=?. Similarly we
also have 3pr \Rr 6=?. Moreover, we note that for 0< r < log 1.01, we have 3 \Ur = 3pr \Ur and
3\Rr =3pr \Rr . This is because otherwise there would be some nonzero point v 2 3\ (Ur [Rr ) and
some integer k � 2 such that v/k 2 3pr, but v 2 Ur [Rr and k � 2 imply that v/k 2 Sr , contradicting
the assumption that 3pr \Sr =?. Let v1 = (t1, 1+ v1) be a point in 3pr \Ur that is closest to the y-axis
and let v2 = (1+ v2, t2) be a point in 3pr \Rr that is closest to the x-axis. We thus have |ti |  e

�r and
e
�r  1+ vi  e

r for i = 1, 2.
Let Pv1,v2 be the parallelogram spanned by v1 and v2. Then we have for 0< r < log 1.01

|Pv1,v2 | = |(1+ v1)(1+ v2)� t1t2| = (1+ v1)(1+ v2)� t1t2  e
2r + e

�2r < 3,

where |Pv1,v2 | denotes the area of Pv1,v2 , and for the second equality we used that

(1+ v1)(1+ v2) � e
�2r � |t1t2|.

Thus |Pv1,v2 | equals 1 or 2. We claim that |Pv1,v2 | = 1. Suppose not; then |Pv1,v2 | = 2 and we have for
0< r < log 1.01

t1t2 = v1+ v2+ v1v2 � 1  2(er � 1)+ (er � 1)2 � 1< 0

and

|t1t2| = 1� v1 � v2 � v1v2 � 1� 2(er � 1)� (er � 1)2 = 2� e
2r > 0.9.

This implies min{|t1|, |t2|}> 0.9/e�r > 0.9. Since t1t2 < 0, without loss of generality we may assume
that t2 < 0. Then we have �e

�r  t2 < �0.9. On one hand, since |Pv1,v2 | = 2 and v1, v2 2 3pr, we have

w :=
v1+ v2

2
=

✓
t1+ 1+ v2

2
,
t2+ 1+ v1

2

◆
2 3.
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On the other hand, we have

0<
t1+ 1+ v2

2


e
�r + e

r

2
< e

r , 0<
t2+ 1+ v1

2
<

1+ v1

2


e
r

2
< e

�r ,

and w /2 Sr implying w 2 Rr . Thus w 2 3 \Rr = 3pr \Rr is also a primitive vector of 3. Moreover,
since �e

�r  t2 < �0.9, we have

0<
t2+ 1+ v1

2
<

e
r � 0.9
2

<
1.01� 0.9

2
= 0.055< |t2|,

contradicting the assumption that v2 is the closest point in 3pr \Rr to the x-axis. We thus have proved
the claim, and it implies

|t1t2| = |v1+ v2+ v1v2|  2(er � 1)+ (er � 1)2 = e
2r � 1.

Hence we have
min{|t1|, |t2|} 

p
|t1t2| 

p
e2r � 1,

which implies 3pr \ (Ar [ Cr ) 6=? finishing the proof. ⇤

The following lemma states that for r > 0 small, the orbits asKr will completely leave the set Kr very
shortly, and will remain separated for quite a long time.

Lemma 3.2. For any 0< r < log 1.01 and any 6r  |s|  log 1.9, we have

asKr \ Kr =?.

Proof. Suppose not, then there exists some 3 2 asKr \ Kr , and by definition the intersection of 3pr
with Sr [ asSr is empty. Without loss of generality we may assume that s > 0. By Lemma 3.1 we
have 3pr \ (Ar [ Cr ) 6= ? and similarly, 3pr \ (asAr [ asCr ) 6= ?. We note that asAr is the rectangle
with vertices (±e

s
p
e2r � 1, er�s) and (±e

s
p
e2r � 1, e�r�s). Since e6r  e

s  1.9 we have asAr ✓ Sr
implying 3pr \ asCr 6=?. Similarly, we have Cr ✓ asSr and this implies 3pr \Ar 6=? (see Figure 4).
Let v1 2 3pr \Ar and v2 2 3pr \ asCr , and let Pv1,v2 be the parallelogram spanned by v1 and v2. Then
for 0< r < log 1.01 and 6r  s  log 1.9 we have

1< e
s�2r � (e2r � 1)e�s  |Pv1,v2 |  e

s+2r + (e2r � 1)e�s < 2

contradicting the fact that |Pv1,v2 | is a positive integer. ⇤

We can now give:

Proof of Theorem 1.3. We prove the upper and lower bounds separately. For the upper bound, we first
note that for any v 2 R2 we have e�|s|kvk  kasvk  e

|s|kvk. Hence for any 3 2 X we have

|1(as3)� 1(3)|  |s|.

This implies that for any s 2 R and any r > 0

asKr ⇢ Kr+|s|. (3-6)
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Figure 3. Figure 1 under the flow as : the rectangles asSr (orange), asAr (brown), and
asCr (purple).

Figure 4. Figures 1 and 3 in one picture: the rectangle asAr (brown) is contained in
Sr (red), the rectangle Cr (blue) is contained in asSr (orange).

Let N = d1/re. Using (3-6) and the fact that 1/N  r we can estimate
[

0s<1

a�s Kr =
[

0i<N

[

0t<1/N

a�i/Na�t Kr ⇢
[

0i<N

a�i/N K2r .

Hence by Theorem 1.2 and since N ⇣ 1/r we have

µ

✓ [

0s<1

a�s Kr

◆


N�1X

i=0

µ(a�i/N K2r ) ⇣ r log
✓
1
r

◆
.

For the lower bound, for 0< r < log 1.01 let N = b1/(6r)c. First we have
[

0i<bN log 1.9c

a�i/N Kr ✓
[

0s<1

a�s Kr .

Moreover, for each 0 i < j < bN log 1.9c, we have 6r  1/N  ( j�i)/N < log 1.9; thus by Lemma 3.2
we have

a�i/N Kr \ a� j/N Kr = a� j/N (a( j�i)/N Kr \ Kr )=?.

Thus the union
S

0i<bN log 1.9c a�i/N Kr is disjoint and, again applying Theorem 1.2 and noting that
N ⇣ 1/r we can estimate

µ

✓ [

0s<1

a�s Kr

◆
�

bN log 1.9c�1X

i=0

µ(a�i/N Kr ) ⇣ r log
✓
1
r

◆
,

finishing the proof. ⇤
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Proof of Corollary 1.4. First we note that we can assume lims!1 r(s)= 0 since otherwise both series
would diverge. It follows that there exists N > 0 such that for any n > N, 0 < r(n) < log 1.01. Next,
since r( · ) is nonincreasing, for any n > N we have

[

0s<1

a�s Kr(n+1) ⇢ eBn ⇢
[

0s<1

a�s Kr(n).

Moreover, since n > N we have 0< r(n+ 1)  r(n) < log 1.01. Applying Theorem 1.3 to the left- and
right-hand sides of the above inclusion relations we get

r(n+ 1) log
✓

1
r(n+ 1)

◆
⌧ µ(eBn) ⌧ r(n) log

✓
1

r(n)

◆
,

which finishes the proof. ⇤

4. The dynamical Borel–Cantelli lemma

In this section we give the proof of Theorem 1.1 based on Theorem KW. Recall that for a given function
 : [t0,1) ! (0,1) with t0 � 1 fixed, we say a real number x 2 R is  -Dirichlet if the system of
inequalities

|qx � p|<  (t) and |q|< t

has a solution in (p, q) 2 Z ⇥ (Zr {0}) for all sufficiently large t . Let us denote by D( ) the set of all
 -Dirichlet numbers. Theorem KW gives a zero-one law for the Lebesgue measure of D( ) as follows:
if  : [t0,1) ! (0,1) is a continuous, nonincreasing function satisfying (1-6) and (1-7), then the series
(1-8) diverges (resp. converges) if and only if the Lebesgue measure of D( ) (resp. of D( )c) is zero.

For our purpose, we prove the following slightly modified version of Dani correspondence.

Lemma 4.1. Let  : [t0,1) ! (0,1) be a continuous, nonincreasing function satisfying (1-6) and
(1-7). Then there exists a unique continuous, nonincreasing function

r = r : [s0,1) ! (0,1), where s0 =
log t0
2

�
log (t0)

2
such that

the function s 7! s+ r(s) is nondecreasing, (4-1)
and

 (es�r(s))= e
�s�r(s)

for all s � s0. (4-2)

Conversely, given a continuous, nonincreasing function r : [s0,1) ! (0,1) satisfying (4-1), then there
exists a unique continuous, nonincreasing function  = r : [t0,1)! (0,1) with t0= e

s0�r(s0) satisfying

(1-6), (1-7) and (4-2). Furthermore, if we assume limt!1 t (t)= 1 (or equivalently, lims!1 r(s)= 0),
then the series in (1-8) diverges if and only if the series

X

n

r(n) log
✓

1
r(n)

◆
(4-3)

diverges.

Proof. The correspondence between  =  r and r = r follows from the exact same construction
as in [Kleinbock and Margulis 1999, Lemma 8.3], where  ( · ) and r( · ) determine each other with
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the relations
e
s (t)= e

�r(s) = e
�s
t,

with s and t satisfying s = (log t)/2� (log (t))/2. The only difference is that here we require the two
extra assumptions (1-6) and (1-7) on  which are respectively equivalent to the assumptions that r( · ) is
nonincreasing and r( · ) is positive. We refer the reader to [Kleinbock and Margulis 1999, Lemma 8.3]
for more details about this correspondence.

For the furthermore part, first we claim that the series in (1-8) diverges if and only if the integral
Z 1

t0

�(1� t (t)) log(1� t (t))

t
dt (4-4)

diverges. It suffices to show the function G(t) := � log(1� t (t))(1� t (t)) is eventually nonincreas-
ing in t . Note that the function T 7! �T log T is strictly increasing on the interval (0, e�1). Since
limt!1 t (t) = 1 and t (t) < 1 for all t � t0, there exists some T0 > t0 such that for all t > T0,
0 < 1� t (t) < e

�1. Moreover, together with the assumption (1-6) we get that G(t) is nonincreasing
in t for any T > T0, finishing the proof the claim. Next, since r( · ) is positive and nonincreasing, we
have 0< r(s)  r(s0). Thus there exist constants 0< c1 < c2 such that for all s � s0 and all t � t0 with
s = (log t)/2� (log (t))/2 we have

c1r(s)  1� t (t)= 1� e
�2r(s)  c2r(s).

This also implies

� log(1� t (t))= � log(r(s))+ Oc1,c2(1) ⇣c1,c2 � log(r(s)),

where for the second estimate we used that lims!1 r(s)= 0. Moreover, since r( · ) is nonincreasing and
continuous, it is differentiable at Lebesgue almost every s 2 R, and we denote by r

0(s) its derivative at
s2 R whenever it exists. Using the relation t = e

s�r(s) we get dt/t = (1� r
0(s)) ds for Lebesgue almost

every s 2 R. We thus have
Z 1

t0

�(1� t (t)) log(1� t (t))

t
dt ⇣c1,c2

Z 1

s0

�r(s) log(r(s))(1�r
0(s)) ds⇣

Z 1

s0

�r(s) log(r(s)) ds,

where for the second estimate we used that 1  1� r
0(s)  2 for Lebesgue almost every s 2 R which

comes from the assumption (4-1) and that r( · ) is nonincreasing. Finally, we conclude the proof by noting
that the integral

R 1
s0

�r(s) log(r(s)) ds diverges if and only if the series
P

n
�r(n) log(r(n)) diverges

since lims!1 r(s)= 0 and r( · ) is nonincreasing, which imply that the function s 7! �r(s) log(r(s)) is
eventually nonincreasing in s. ⇤

As mentioned in the Introduction, we have the following dynamical interpretation of  -Dirichlet
numbers.

Lemma 4.2 [Kleinbock and Wadleigh 2018, Proposition 4.5]. Let  : [t0,1) ! (0,1) be a continuous

and nonincreasing function satisfying (1-6) and (1-7). Let r = r be as in Lemma 4.1. Then x 2 D( )c

if and only if

as3x 2 Kr(s) for an unbounded set of s, (4-5)
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where as = diag(es, e�s) and

3x =

✓
1 x

0 1

◆
Z2 2 X

are as before.

Combining Theorem KW with Lemmas 4.1 and 4.2, we immediately have the following zero-one law.

Proposition 4.3. Let r : [s0,1) ! (0,1) be continuous, nonincreasing, satisfying (4-1) and such that
lims!1 r(s)= 0. Then (4-5) holds for Lebesgue almost every (resp. almost no) x 2 R provided that the

series (4-3) diverges (resp. converges).

To connect the above proposition with the corresponding property of almost every 3 2 X , we need an
auxiliary lemma, which borrows some ideas from the work [Kleinbock and Rao 2019] of the first author
with Anurag Rao.

Lemma 4.4. Let r( · ) be as in Proposition 4.3. For any c 2 R and � > 0 let

rc,�(s) := r(s+ c)� �e�2(s+c)

and define

Dc,� := {x 2 R | as3x 2 Krc,�(s) for an unbounded set of s}.

If the series (4-3) diverges, then the set

D :=
\

c2R

\

�>0

Dc,�

has full Lebesgue measure.

Remark 4.5. We note that by our assumption rc,�( · ) is not necessarily always positive, and the set
Krc,�(s) is empty whenever rc,�(s) is negative.

Proof of Lemma 4.4. For any function f : [s f ,1) ! (0,1) with s f � 1 we define

A1, f := {x 2 R | as3x 2 K f (s) for an unbounded set of s > s f }

and
N f :=

X

n�s f

f (n) log
✓

1
f (n)

◆
.

First we note that the divergence of the series Nr is equivalent to the divergence of the series Nrc/2 for
any c 2 R, where rc(s) := r(s+ c)= rc,0(s). Moreover, it is clear that (rc/2)( · ) satisfies the assumptions
in Proposition 4.3. Thus, by Proposition 4.3, if the series Nr diverges, then the set A1,rc/2 is of full
Lebesgue measure for any c 2 R. On the other hand, for any c 2 R and � > 0 let fc,�(s)= �e�2(s+c). It
is easy to check that fc,�|[sc,�,1) satisfies the assumptions in Proposition 4.3 with

sc,� :=max
⇢
log(2�)

2
� c, 1

�
,

and the series N fc,� converges for any c 2 R and � > 0. Thus by Proposition 4.3 the set A1, fc,� is of zero
Lebesgue measure for any c 2 R and � > 0. Define

A :=
\

c2R

A1,rc/2 and A :=
[

c2R

[

�>0

A1, fc,� .
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We note that since r( · ) is nonincreasing, for any c1 < c2 we have rc1/2 � rc2/2 implying A1,c2/2 ⇢
A1,rc1/2. Hence the family of sets {A1,rc/2}c2R is nested and A = limc!1 A1,rc/2 is of full Lebesgue
measure. Similarly, the family of sets {A1, fc,�}c2R,�>0 is also nested and the set

A = lim
c!�1

lim
�!1

A1, fc,�

is of zero Lebesgue measure. Thus the set Ar A is of full Lebesgue measure and it suffices to show that
Ar A ⇢ D. That is, for any x 2 Ar A we want to show that for any c 2 R and any � > 0 the events
as3x 2 Krc,�(s) happen for an unbounded set of s. First we note that x 2 A means that for any c 2 R

there exists an unbounded subset Sc ⇢ R such that as3x 2 Krc(s)/2 for any s 2 Sc. Secondly, we note that
x /2 A means that for any c 2 R and � > 0 there exists some constant Tc,� > 0 such that for any s � Tc,�

we have as3x 2 1�1( fc,�(s),1). In particular, for any s 2 Sc \ (Tc,�,1) we have

fc,�(s) < 1(as3x) 
rc(s)

2
.

This implies

0< 1(as3x) 
rc(s)

2
<

rc(s)

2
+

rc(s)

2
� fc,�(s)= rc,�(s)

for any s 2 Sc \ (Tc,�,1). Finally, we finish the proof by noting that since Sc is unbounded, the set
Sc \ (Tc,�,1) is also unbounded. ⇤

We can now give:

Proof of Theorem 1.1. The convergent case follows directly from Corollary 1.4 and the classical Borel–
Cantelli lemma, and we thus only need to prove the divergent case. Let r : [s0,1) ! (0,1) be
continuous, nonincreasing, satisfying (4-1) and such that the series (4-3) diverges; we want to show
that µ(B1)= 1. First we note that we can assume lims!1 r(s)= 0, since otherwise the result would
follow from the ergodicity of the flow {as}s>0 on X . Let D :=

T
c2R

T
�>0 Dc,� be as in Lemma 4.4 and

define B ⇢ X such that

B =

⇢✓
a 0
b a

�1

◆
3x 2 X

���� b 2 R, a > 0, x 2 D

�
.

We note that by Lemma 4.4 the set D has full Lebesgue measure. Thus the set B ⇢ X is also of full
measure (with respect to µ) and it suffices to show that B ⇢ B1. First, by direct computation for

3 =

✓
a 0
b a

�1

◆
3x 2 B

we have

as3 =

✓
1 0

e
�2s

a
�1
b 1

◆
as+log a3x . (4-6)

Next, for any y 2 R let

u
�
y
=

✓
1 0
y 1

◆
.
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Note that for any v 2 R2, we have ku�
y
vk  (|y| + 1)kvk. This implies that for any 3 2 X

|1(u�
y
3)� 1(3)|  log(1+ |y|).

Using the above inequality, the relation (4-6), and the inequality log(1+ x) < 2x for all x > 0, we get

|1(as3)� 1(as+log a3x)|  2a�1|b|e�2s .

Since x 2 D for any c 2 R and any �> 0 we have as3x 2 Krc,�(s) for an unbounded set of s. In particular,
taking c = � log a, � = 2a�1|b| we get

0  1(as3)  1(as�c3x)+ �e�2s  rc,�(s � c)+ �e�2s = r(s)

for an unbounded set of s, finishing the proof. ⇤
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