Moscow Journal of Combinatorics and Number Theory
Vol. 9, No. 2, 2020

dx.doi.org/10.2140/moscow.2020.9.101

A dynamical Borel-Cantelli lemma
via improvements to Dirichlet’s theorem

Dmitry Kleinbock and Shucheng Yu

Let X = SL,(R)/SL,(Z) be the space of unimodular lattices in R?, and for any r > 0 denote by K, C X
the set of lattices such that all its nonzero vectors have supremum norm at least e~". These are compact
nested subsets of X, with Ky = (1), K, being the union of two closed horocycles. We use an explicit
second moment formula for the Siegel transform of the indicator functions of squares in R? centered at
the origin to derive an asymptotic formula for the volume of sets K, as r — 0. Combined with a zero-one
law for the set of the y-Dirichlet numbers established by Kleinbock and Wadleigh (Proc. Amer. Math.
Soc. 146 (2018), 1833-1844), this gives a new dynamical Borel-Cantelli lemma for the geodesic flow
on X with respect to the family of shrinking targets {K,}.

1. Introduction

Let (X, i) be a probability space, and let {a,};cg be a one-parameter measure-preserving flow on X.
Given a family of measurable subsets { Bs};~0 of X with u(B;) — 0 as s — oo (called shrinking targets),
the shrinking targets problem asks for a dichotomy on whether generic orbits of {a,};~o would hit the
shrinking targets indefinitely. That is, we are looking for a zero-one law for the measure of the limsup set

By :=limsupa_;B; = {x € X | a;x € By for an unbounded set of s > 0}.
S—>00
For any n € N let
By:= ) a—sBuys (1-1)

0<s<l1

be the thickening of the shrinking targets {By},<s<n+1 along the flow {a_s}o<s<1. Note that a,x € I;n if
and only if there exists some s € [n, n + 1) such that a;x € B;. We thus have

By =limsupa_, En ={xeX|a,x e En infinitely often}, (1-2)

n—oo

and the classical Borel-Cantelli lemma implies

Y uB) <00 = u(Bx)=0. (1-3)

n
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On the other hand, following the terminology of [Chernov and Kleinbock 2001] we say the family of
shrinking targets {B;}s~0 is Borel-Cantelli (BC) for the flow {a,}s~¢ if £(Bx) = 1. Thus a necessary
condition for {B;}s~0 to be BC for {a}s~0 is that the sequence of its thickenings has divergent sum of
measures, and we say { By}~ satisfies a dynamical Borel-Cantelli lemma for {as},~ if this is also a
sufficient condition.

The shrinking targets problem for continuous time flow in the context of homogeneous spaces was
first studied in [Sullivan 1982], where he established a logarithm law for the fastest rate of geodesic
cusp excursions in finite-volume hyperbolic manifolds. Later using the exponential mixing rate and a
smooth approximation argument, the first author and Margulis [Kleinbock and Margulis 1999] proved
that the family of cusp neighborhoods {®~!(r(s), 00)}s~¢ With divergent sum of measures is BC for
any diagonalizable flow on (G/ T, i), where G is a connected semisimple Lie group without compact
factors, I' < G is an irreducible lattice, and p is the probability measure on X = G/I" coming from
a Haar measure on G. Here @ is a distance-like function on X [loc. cit., Definition 1.6] and r(-) is a
quasi-increasing function [loc. cit., Section 2.4]. Later Maucourant [2006] obtained a similar dynamical
Borel-Cantelli lemma for geodesic flows making excursions into shrinking hyperbolic balls (with a fixed
center) on a finite-volume hyperbolic manifold. See [Athreya 2009] for a survey on shrinking targets
problems in dynamical systems.

One main reason that such dynamical Borel-Cantelli lemmas have gained much attention is due to their
connections to metric number theory, which were first explored in [Sullivan 1982]. Such connections
were made more apparent later in [Kleinbock and Margulis 1999]. Let m, [ be two positive integers and
let M,, ;(R) be the space of m by [/ real matrices. Given ¥ : [tp, 00) — (0, 00) a continuous nonincreasing
function, let us define W () C M,, ;(R), the set of i{r-approximable m x [ real matrices such that A €
W () if and only if there are infinitely many g € Z' satisfying

IAq — pI™ < ¥ (lql') for some p € 7™,

where || - || is the supremum norm on respective Euclidean spaces. The classical Khinchin—Groshev
theorem gives an exact criterion on when W () has full or zero Lebesgue measure.

Theorem KG (Khinchin—Groshev). Given a continuous nonincreasing v, the set W () has full (resp.
zero) Lebesgue measure if and only if the series ), W (k) diverges (resp. converges).

See [Schmidt 1980] for more details. On the other hand, let X = SL,,,+;(R)/ SL,,+;(Z) be the space
of unimodular lattices in R”*/ and let A : X — [0, co) be the function on X given by

A(A) := sup log<i>. (1-4)

veA~{0} [|v]l

Note that A(A) > 0 for any A € X due to Minkowski’s convex body theorem, and for all » > 0 the sets
K, :=A7'([0,r]) (1-5)

(of lattices such that all its nonzero vectors have supremum norm at least e™") are compact due to
Mahler’s compactness criterion; see, e.g., [Cassels 1997]. Following ideas of [Dani 1985], it was shown
in [Kleinbock and Margulis 1999] that there exists a unique function r = ry, : [s9, 00) — R depending
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on Y (this was referred to as the Dani correspondence) such that A € M,, ;(R) is y-approximable if and
only if the events agA 4 € AN (s), 00) happen for an unbounded set of s > 59, where

aS et dlag(es/m, e es/m, e_s/l’ e e—S/l)’

with m copies of e*/™ and [ copies of e™/!, and

I, A
Ag=(" 7"t e X,
! (0 11) ©

This way the first author and Margulis showed Theorem KG to be equivalent to a dynamical Borel-
Cantelli lemma for the a;-orbits making excursions into the cusp neighborhoods A~ (r(s), 00)s= 50> and
used this to give an alternative dynamical proof of Theorem KG based on mixing properties of the
as-action on X; see [Kleinbock and Margulis 1999].

More recently, for a given ¢ as above, the first author and Wadleigh [Kleinbock and Wadleigh 2018]
studied the finer problem of improvements to Dirichlet’s theorem. See [Davenport and Schmidt 1970a;
1970b] for the history of the problem of improving Dirichlet’s theorem. Following the definition in
[Kleinbock and Wadleigh 2018] an m by [ real matrix A is called v-Dirichlet if the system of inequalities

IAg — p|™ < v () and |q|' <t

has solutions in (p, g) € Z™ x (Z! ~. {0}) for all sufficiently large 7. Following the general scheme
developed in [Kleinbock and Margulis 1999] they gave a dynamical interpretation of y-Dirichlet matrices.
Namely, they showed that A € M,, ;(R) is not y-Dirichlet if and only if the events

as\y € Kr(s)

happen for an unbounded set of s > 5o, where a;, A4 and r =ry, are all as above. Hence in this case the
family of shrinking targets is given by {K,(s)}s>s,» and one is naturally interested in whether this family
of shrinking targets is BC for the flow {a;}s~0.

However this dynamical interpretation is not helpful when it comes to determining necessary and
sufficient conditions on Y guaranteeing that almost every (almost no) A is ¥-Dirichlet. One of the
main difficulties is that the shrinking targets K, () are far away from being SO,,;(R)-invariant, and thus
applying the mixing properties of the as-action will involve certain Sobolev norms which are hard to
control. Still, using a different method based on continued fractions the aforementioned conditions were
found in [Kleinbock and Wadleigh 2018] for the case m = = 1. Namely, the following was proved:

Theorem KW (Kleinbock—Wadleigh). Let i : [tg, 0c0) — (0, 00) be a continuous, nonincreasing function
satisfying
the function t — t/(t) is nondecreasing (1-6)
and
tY(t)y <1 forallt>t. (1-7)
Then if the series

2:-%1—H¢OQH%KI—HWMD

n

(1-8)

n

diverges (resp. converges), then Lebesgue-a.e. x € R is not (resp. is) y-Dirichlet.
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In this paper we use the above theorem to derive a dynamical Borel-Cantelli lemma for the diagonal
flow a; := diag(e’®, e™*) on X :=SL,(R)/ SL>(Z). Let u be the probability Haar measure on X, consider
the function A on X as in (1-4), and define the sets K, as in (1-5).

We now state our dynamical Borel-Cantelli lemma.

Theorem 1.1. Let r : [sg, 00) — (0, 00) be a continuous and nonincreasing function. Let By = K, (5 and
let B, =limsup,_, ., a_s Bs. Then we have

1
E:rOQRg(;65><um = u(Bs) =0.

n

If in addition we assume that the function s — s + r(s) is nondecreasing, then we have

1
Zr(n)log(rn))zoo =  u(Bxo) = 1.

n

Comparing the statement of the above theorem with (1-3), one can guess that it can be approached by
studying the thickenings

En: U a_sByys = U a—SKr(VH-S) (1-9)

0<s<l 0<s<l1

as in (1-1). We do it in several steps. In the beginning of Section 3 we prove an asymptotic measure
formula for the sets K, where r is small:

Theorem 1.2. For any 0 <r < (log2)/2 we have

4r2log(1/r)
K)=——~>"°/7:
w(K;) 0

where {(2) = % /6 is the value of the Riemann zeta function at 2.

+0(r?),

Here and hereafter for two positive quantities A and B, we will use the notation A < B or A = O(B)
to mean that there is a constant ¢ > 0 such that A < ¢B, and we will use subscripts to indicate the
dependence of the constant on parameters. We will write A < B for A < B < A.

The next step is to use Theorem 1.2 to estimate the measure of the thickening of K, along the flow
{a_s}o<s<1 by bounding it from above and below by a finite union of a,-translates of K,. This is also
done in Section 3 and yields the following result:

Theorem 1.3. For any 0 <r <log1.01 we have
1
,u< U a_SKr> = rlog(;).
0<s<l

The above asymptotic equality shows that the series appearing in Theorem 1.1 converges/diverges if
and only if so does the series ), u(B,), where B, is as in (1-9):

Corollary 1.4. Let r : [s9, 00) — (0, 00) be a nonincreasing function, and let En be as in (1-9). Then we

~ 1
Z,u(B,,):oo S Zr(n)log(%>:oo

have
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Therefore, in view of (1-2) and (1-3), the convergence part of Theorem 1.1 is immediate from the
Borel-Cantelli lemma. The divergence part however is trickier. Instead of using a dynamical approach
as in [Kleinbock and Margulis 1999], our proof in Section 4 is non-dynamical and relies on Theorem KW
and the Dani correspondence.

It remains to comment on our proof of Theorem 1.2. Instead of trying to describe the sets K, explicitly
in terms of coordinates and compute their measures directly, we adapt an indirect approach which relies
on an explicit second moment formula of the Siegel transform of certain indicator functions. Recall that
if f is a function on R?, its primitive Siegel transform is the function on X given by

f) =" f),
veA
where A, is the set of primitive vectors of A. Clearly f (A) =#(Apr N'S) when f is the indicator
function of a subset S of R?.
Let us briefly describe the history of the problem. The Siegel transform was originally defined by
Siegel [1945] as the sum over all nonzero lattice points for unimodular lattices of any rank. In the same pa-
per Siegel proved a mean value theorem for the Siegel transform, which in the primitive set-up amounts to

A 1
A)dp(A) = — d 1-10
/Xf( )dp(A) ;(Z)fsz(x) x (1-10)

for any bounded compactly supported f on R2. Since then there has been much work extending his
result to higher moments. For example, Rogers [1955] proved a series of higher moment formulas,
which in particular includes a second moment formula for the Siegel transform defined on the space of
unimodular lattices of rank greater than 2. However, his result did not give a second moment formula on
X as in our setting. For this setting, Schmidt [1960] proved an upper bound for the second moment of the
primitive Siegel transform of indicator functions on R?. His bound was later logarithmically improved by
Randol [1970] for discs centered at the origin and by Athreya and Margulis [2009] for general indicator
functions building on Randol’s bound. Athreya and Konstantoulas [2016] obtained similar bounds on
the space of general symplectic lattices for a certain family of indicator functions. Continuing [Athreya
and Konstantoulas 2016], Kelmer and the second author [Kelmer and Yu 2019] proved a second moment
formula on the space of symplectic lattices Y, := Sp(2n, R)/ Sp(2n, Z). In particular, when n = 1 we
have Y| = X and their formula also applies to our setting.! However, for our applications all these
formulas are not explicit enough.

We now state an explicit second moment formula which we use to derive Theorem 1.2.

Theorem 1.5. For any r > 0 let S, be the open square with vertices given by (£e™", e~ "), and let f,
be the indicator function of S,. Then we have

A2 == (‘2’+f (e_r+€_r ! )d d ) (1-11)
A = ——|\e ——— )dx1dxy ), -
272 D, \ X1 X2 X1X2 L

Dri={x=(x1,x2) €S [x1>0, x>0, x; +x2> ¢},

where

and || - ||2 stands for the L*-norm with respect to L.

I'See also [Fairchild 2019] for moment formulas of the Siegel—Veech transform recently obtained by Fairchild.
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Remark 1.6. When r > (log 2)/2 the region D, is empty, and (1-11) simply reads as

8 e—2r

£Q2)

We note that the latter equality in fact already follows from Siegel’s mean value theorem, since in this
case for any unimodular lattice there can only be at most one pair of primitive lattice points allowed
in §,, which implies that ﬁ/2 is an indicator function on X. When 0 <r < (log2)/2, the region D, is

not empty, and it is not hard to compute the integral in (1-11) explicitly; see (3-5) below. In particular,
plugging r = 0 into (1-11) we have ||f0||% = (12/7)> — 8~ 6.59.

In Section 2 we prove a much more general second moment formula, see Theorem 2.1, with an
arbitrary bounded measurable subset S of R? in place of S,. Theorem 1.5 is derived from Theorem 2.1
by taking S = S;.

A2
1frllz =

2. The second moment formula
In this section, we prove Theorem 1.5 by establishing the following second moment formula for quite
general subsets of R2.

Theorem 2.1. Let S be a measurable bounded subset of R?, and let f be the indicator function of S. Let
= {x € R? | —x € S}. Then we have

1F115 = (12) (area(S) +area(SNS)+ Y §0(| n|) / T dx )
n0

where ¢ is the Euler’s totient function, I! C R is defined by

—X2 X1
n( 3 5 3 2>+I(X1,X2)€S},
X{+x; xp+x;

and |L}| is the length of 1. with respect to the Lebesgue measure on R.

I;’::{teR

Before giving the proof let us make a few remarks about Theorem 2.1. First we note that for any
bounded S there exists a sufficiently large T > 0 depending on S such that for any |n| > T the set Z is
empty for all x € S. Thus the series on the right-hand side of (2-1) is a finite sum. Next we note that if
we further assume S is symmetric with respect to the origin, then by symmetry we have SN S=S8and
|Z;| = |Z,"| for any n # 0. In particular, for such S we have the slightly simpler formula

A 2 L o(n) .
||f||§=@(area(S)Jr;TLIledx)- @2-1)

Finally we note that for any A € X and f as in Theorem 2.1 we have

() = FN) +Rsnz5(M)+ ) FD)f ().

vl,vzeApr
lin. ind.
Thus Theorem 2.1 together with (1-10) implies
w(lnl) n
[ X rensendnm =5 00 [ s, 22)
X vy, v2€Apr ; 750 n

lin. ind.
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It is worth pointing out that the above formula can be compared to its higher-dimensional analogue: when
f 1is an indicator function of a bounded measurable subset S of RF with k > 3, X = SLy(R) / SLi(Z2),
and u is the Haar probability measure on X, according to Rogers’ second moment formula [1955] the
left-hand side of (2-2) equals (vol(S)/ ¢ (k))%. However, as we can see here the k = 2 case is much more
complicated, with the answer depending on both the shape and the position of S.

Coordinates and measures. We fix coordinates on G = SL,(R) via the Iwasawa decomposition G =
KAN with

K=1ko|0<0 <2}, A={as|secR}, and N ={u,|teR},

k_cos@—sin@ a_esO andu—lt
9= \sind cosf) “T\0 e —\o 1/

Explicitly, under coordinates g = kgasu;, 1 is given by

where

1
du(g) = @e% do ds dt. (2-3)

There is a natural identification between the homogeneous space G/N and R? . {0} induced by the
map G — R? ~ {0} sending g = kgasu; € G to

(x1) _ 1\ (e’ cost
o= () =¢(0)-(2520)

the left column of g. The Lebesgue measure, dx, on R? ~ {0} = G/N can be expressed via the polar
coordinates (s, 6) as

dx (kgay) = > do ds. (2-5)

The second moment formula. In this subsection we prove Theorem 2.1, and with some more analysis
we prove Theorem 1.5. As the first step of our computation we recall the following preliminary identity
which relies on a standard unfolding argument. We note that one can find it in [Lang 1975, Chapter VIII,
Section 1], and we include a short proof here to make the paper self-contained. See also [Kelmer and
Yu 2019, Proposition 2.3] for a generalization to the space of symplectic lattices.

Lemma 2.2. For any bounded and compactly supported function f on R? and for any bounded F e
L*(X, ) we have

. 1 00 2
(f, F)= 2 /_oo ; [ (x(koa)Pr(x (koay))e™ do ds,
where Pr is defined by

1
Pr(x(koas)) = / Flkgasu,72) dt
0

with kg, ag and u, as above, and (-, - ) is the inner product on L*(X, 1).
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Proof. Let I' = SL»(Z) and let I'ooc = I' N N. Recall that there is an identification between I'/ ', and
Zgr sending y ' to y ( (1)) Using this identification, for any A = gZ> with g € SL,(R) we can write

fy=) fo=Y flewy= Y f(ey) (2-6)

UEApr WGZ%I. )/GF/ oo

where f(g):= f (g((l))) We note that f is a right N-invariant function on G. Let Fr be a fundamental
domain for X = G/ TI', and let F be a fundamental domain for G/ I'w. Note that using the Iwasawa
decomposition G = KAN we can choose

Foo = {kgasu, |0 <6 <2m, s eR, 0 <t <1} 22-7)

Moreover, fix a set of coset representatives X, C I' for I'/ ', and note that Uy e, Jry is adisjoint
union and forms a fundamental domain for G/ I',. Now for any bounded F € L%(X, W), using (2-3),
(2-6), (2-7) and the facts that F' is right I'-invariant and f is right N-invariant, we have

(fF):= | fGIHFZ»du@)= ) | fey)F@@Z»du(g)
Fr yel /T YT
= > | F@F@Z>du(g) = / F(QF (7% dpu(g)
€T Fry I_lygz;oo Fry

00 2 pl B
= f(@F(gZ¥du(g) = 1 f / f (kpasu,) F (kgasu; Z*)e> dt dO ds
Foo Q) J-xJo Jo

o] 2 .
N %/_m/o f(x(kgas))/o F (koasu,22) dt €* d6 ds.

Finally, we note that the above equalities can be justified since F is bounded and the defining series for
f 1s absolutely convergent; see [Veech 1998, Lemma 16.10]. 4

With this preliminary identity, we can now give:

Proof of Theorem 2.1. Using the relation (2-5) and Lemma 2.2 we have

A 1 1
1715 = - /R | f & oa))Py(x (ko)) dx = fs Pj(x (koay)) dx, (2-8)
where

1
Pf'(x(kQas)) :/ f(keasutzz) dt,
0

with kg, a; and u, as before. First, by the definition of the primitive Siegel transform we have

koasu, (m) € S}.
n
Thus for x (kgay) € S and 0 <t < 1 we have

f(keasutzz) = Z Xl(m‘n) (t),

X (k(~) as)

fkoagu, 7%) = #{(m, n)eZ;,

(m,n)eZl%r
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where
(m,n) PO m

Ix(kgax) = {O <t <1|kpasu; (n) € S},

implying
_ (m,n) | __ 7(1,0) (—1,0) (m,n)
Prxkoas) = > LG = x| g+ D -
(m.n)eZ2, (m,n)eZy,
n#0

Next, by direct computation we have for x (kgay) = (x1, x2) = (e’ cos 0, e’ sinf) € S

m —e ¥sinb e’ cosf —)cz/(xl2 + x%) X1
s = . = . (2-
koasu (n) " ( e’ cos 9) +0m+ni) (es sm@) " ( xl/(xl2 —i—x%) +0m +ni) X2 (2-9)

When (m, n) = (1, 0) we have for x(kga;) € S

1 X
war (g) = (12)

is contained in S for any 0 <t < 1. Thus A [0, 1) and |I(1’0) | =1 for any x (kga,) € S. Similarly,
y (koaty) Y y

x x (koas)
when (m, n) = (—1, 0) we have for x(kgas) € S

—1 —X
o () =(22)
is contained in § if and only if x € SN S with S as in the theorem, implying

xeSNS.
When n # 0 by (2-9) we have for any integer m coprime to n

JCLO

(kpary = [0, 1) whenever

|1,§’”’">|=Ho§t<1

—X2 X1
n( 2>+(m+nt)(x1,x2)eSH

2 20 2
Xy+Xx, xXp+x;

—X2 X1
n( 3 2>—|—nt(x1,x2)€SH.

2, .20
X{+x; xp+x;

m m
:H—§t<1+—
n n

We note that as m runs through all the integers in each congruence class in (Z/|n|Z)*, the intervals
[m/n, 14+ m/n) cover R exactly once. Thus for n # 0

an.n —X2 1 ¢(In))
Z |I.!E'(k;)tl)s)|:¢(|n|) {IGR n( 5 2>+nt(x1,x2)€SH: |Z} |,

2, 2’
mez XXy Xp+x; |n|
where ¢ is the Euler’s totient function and Z}! is as in Theorem 2.1. We thus have forx € S

(m,n)=1

o(|nl)
|n|

Pp(x) =1+ x5n5(®x) + 2.
n#0

We conclude the proof by plugging the above equation into (2-8). U
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We can now give:
Proof of Theorem 1.5. To simplify notation for any x € R% ¢ € R, and n > 1 let

—X2 X1

v(x,t,n) ::n( 2>+Z(X1,x2)~

2 2° 2
X{+Xx, xXp+x;
First we note that )

n
+t2(x2+x2) > =,
2 1 2 2 2
AT X Xy +x;

2
lv(x, 2, W)l =

where || - ||» stands for the standard Euclidean norm on R?. Thus for x € S, and n > 2 we have

2 2 _
loGe. 2. Ml = —=llv(x. 7, n)llz_— >e >e,

implying that Z" is empty for any x € S, and any n > 2. Here || - || stands for the supremum norm on R?,
and for the third inequality we used the fact that || x|, < V2e7", which follows from x being an element
of §,. Since S, is symmetric with respect to the origin, applying (2-1) to f = f, we get

I £113 = |I,1| dx, (2-10)

/ |I | dx

(2) 0] (2) C 30))
where Stis the intersection of S, with the first quadrant, and for the second equality we used the fact that
| X1, x2)| |Z! (1. 4x )| which follows from the invariance of S, under reflections around the coordinate
axes. We note that for x € S;"

—X2 X1
Xy Xy xp+x;

if and only if
e " X2 e " X2
- T << T
X1 xl(x1 +x2) X1 xi(X1 +x2)
and
e’ X1 e’ X1
- T o << T2 2y
X2 xo(xy+x3) X2 xo(xy+x3)

By direct computation if 7 > (log2)/2 then there is no ¢ € R satisfying above inequalities. Thus Z| is
empty, and the integral in the right-hand side of (2-10) is zero. If 0 <r < (log2)/2, we define for any
xeSt

- X2 e’ X1
L(x) :=maxj — L R N e R N
xp xp(y+x3) X2 x(q+x3)
e X2 e " X1
U(x)::min +ﬁ’__ﬁ .
X1 xp(xp+x3) X2 xo(xp+x3)

It is not hard to verify that as long as 0 < r < (log2)/2, for x € S;" we have

—r —r

2 and U(x) = ¢ il

Lx)=—— 4 ——> —
X1 xl(xlz+x%) X2 xz(xlz—l—x%)
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Thus I; is nonempty if and only if L(x) < U (x) and whenever it is nonempty we have

| e’ X7 e’ X1
Iy =\~ Tt o T )
X1 xl(x1 +x3) X2 x(xy +x3)

By direct computation we have L(x) < U (x) if and only if x € D, = {(x1, x2) € S,+ | x1+x2 > e }. Hence

v . o, )
r IS S — +————))dxd
/15 = ;(2) ;(2) (( X X2(x1 +x§)) ( Xt x(xf+x3) x1dx;

—2r
f ( ! ) dX1 dXQ. U
5(2) é‘(z) X1 X2 X1X2

Besides the sets S, another natural candidate to test formula (2-1) is the family of indicator functions
of balls. For any R > 0 let Bz be the open ball of radius R centered at the origin, and let 4z be the
indicator function of Bg. We note that [Randol 1970] established an asymptotic formula for ||fz R ||% for
large R, and here we prove the following formula for ||ﬁ R ||%:

Corollary 2.3. For any R > 0 let hg be as above. Then we have

R 12R2 LR ] /—2
lhgll3 = Z <P(n)< + arcsin(%) — %)

Proof. Since By is symmetric with respect to the origin, we can apply (2-1) to ||ft R ||%, and use ¢(2) =72/6
to get

. 12R? 12 X ¢(n)
lhgll3 = +—= > — [ IZ}ldx,
T T n Br

n=1

where

I;::{IGIR

—X2 X1
n( )—l—t(x],xz) <R}.
x1+x2 x1+ 2

Using the polar coordinates, for any (x2, x2) = (r cos 6, r sinf)) € Bg and n > Rr we can write

—X2 X1
Hn< )-H(xl,xz)
x1 +x2 x1 +x

implying that 7! is empty whenever n > Rr = R||x||>. In particular, Z;! is empty for any x € B if
n> R2. Similarly, for any 1 <n < | R?] the set 7} is empty if || x| <n/R, and

( VR =2 JR2 _nz)

2 : 2

2 nz
= — +1%r? > R,
}’2

I =

p

if n/R < ||x||» < R. Hence

Ilhgll3 = L A

12R2+ 2 &) ()/2”/ 2«/R2 2—n
T

7.[2
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LRJ

2 R%/n
12R Z @(n) f V1—r=2dr
12R2 LR ) v R*—n? [ n big
Z(p(n) ——— +tarcsin =) 3)

where for the second equality we applied a change of variable (R/n)r — r, and for the last equality we
used the fact that [ /1 —r=2dr =+/r? —1+arcsin(1/r) + C forr > 1. O

3. Measure estimates of the shrinking targets

In this section, using the methods developed in the previous section, we prove Theorem 1.2 and then use
it to derive Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.2. For any r > 0, let f, be the indicator function of S, as before. For any integer
k >0, let B¥ C X be the set of unimodular lattices having 2k nonzero primitive points in S,. First, we
note that K, = B? consists of lattices with no nonzero points in S,. Moreover, for any A € X, there are
at most two linearly independent primitive points of A inside S,. We thus have for any r > 0

2
> uBhH=1, (3-1)

and
fr= 2XBr1 +4XBr2'

Thus we can take the first moment and apply (1-10) to get

—2r
1 A
W(BY) +2u(BY) = 5 / (M) dp(A) = ——. (3-2)
2 Jx / £(2)
Taking the second moment of f, we get
4B +161(BY) = || fr113. (3-3)

Solving (3-1), (3-2) and (3-3) and applying Theorem 1.5 to (3-3), we get

(K ) (BO) 1 26_2r + 1 (e_r + e_r 1 )d d
w(Ky) =u(B,)=1- — — —— ) dx1 dxs.
£ Q) X1 oxy xixm) 07

By direct computation we have for 0 < r < % log?2

e" e " 1
f ( + ——) dxld)CQ
D, \ X1 X2 X1X2
—2r

e
=2(1—r)(2e™ ¥ —14r)+(2—2e ¥ —2r) log(1—e ") —2r*+ /
l—e=2r

logt
1—1
=2(1—-r)2e " —14r)+(2—2¢" 2 =2r) log(1—e 2 )=2r>+Lis(1—e~ > )—Liz(e™>"), (3-4)

dt
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where Lig(z) = Y 1o, ZF/k* is the polylogarithm function. Now for the term log(1 — e~%"), using the
Taylor expansion e 2" =1 — 2r +2r2 4+ O(r?), we get

log(1 —e™2") =1og(2r) +log(l —r + O (r?)) =log(2r) —r + O(r?).

Using the series representation Liz(z) = Y oo, 2¥/k?, we get Lio(1 —e™2") = 2r + O(r?). Finally for the
term Lis(e~2") we have the expansion, see [Wood 1992, Equation (9.7)],

Lir(e ") = —2r(1 —log(2r)) + £ (2) + O (r?).

Plugging these into (3-4) and using the expansion e =1 —2r 4+ 2r2 + O (r?), we get

—r —r 1
f (e T ——) dxydxs =2 —¢(2) —4r —4r2logr + O (), (3-5)
D\ Xl X2 XX
implying
Ky=1-2"1 1, £Q2) —4r —4rlog r + 0 (r2)) arilogr 602
m =1- — —4r —4rlogr re)y)=———— ro),
' t2 ¢ 2(2)

finishing the proof. 0

To estimate the measure of the thickening, we will need the following two preliminary lemmas. We
note that by the Haj6s—Minkowski theorem, see [Cassels 1997, IX.1.3], we have

Ko=A"'0)= | J (é ’{) ZzUC (1)) 7>

x€[0,1)

A simple observation is that any A € K contains either the point (1, 0) or the point (0, 1). Thus intuitively
one shall expect that when r is small, lattices in K, contain points close to either (1, 0) or (0, 1). For
any r > 0, let A, C R? be the closed rectangle with vertices (/e — 1, ¢”) and (£+/e? —1,¢7") and
let C, be the closed rectangle with vertices (e”, £+/€2" — 1) and (e, £+/€%" — 1); see Figure 1. The
following lemma asserts that when r is small, then any A € K, contains points either in 4, or in C,
(noting that 4, is a small rectangle containing (0, 1) and C, is a small rectangle containing (1, 0)).

Lemma 3.1. Let A, and C, be as above. For any 0 < r < log1.01 and for any A € K,, we have
Apr N (A UC) # @.

Figure 1. The square S, (red), the rectangles A, (green) and C, (blue).
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Figure 2. The square S, (red), the rectangles U, (green) and R, (blue).

Proof. Let U, be the closed rectangle with vertices (e, e™") and (e ", "), and let R, be the closed
rectangle with vertices (e™", e™") and (e", e~ "); see Figure 2. Let

U, = (xeR?| —x el4,}.

Consider the rectangle U, IS, Ui, and note that it has area 4. For any & > 0 let U, . be the open rectangle
with vertices (£e™", £(e" 4+ ¢)). Applying the Minkowski’s convex body theorem to U, . and letting &
approach zero, we see that for any A € X, A, intersects U, US, uﬁr nontrivially. Now let A € K, ; since
A has no nonzero point in S, and A, is invariant under inversion, we have A, NU, # <. Similarly we
also have Ap, MR, # &. Moreover, we note that for 0 < r <log1.01, we have A NU, = Ay NU, and
ANTR, = Ap N'R,. This is because otherwise there would be some nonzero point v € A N (U, UR,) and
some integer k > 2 such that v/k € A, but v € U, UR, and k > 2 imply that v/k € S,, contradicting
the assumption that A, NS, = &. Let v; = (#1, 1 +vy) be a point in A, N, that is closest to the y-axis
and let v, = (1 4+ vy, 1p) be a point in A, MR, that is closest to the x-axis. We thus have |;| <e™" and
e <1+4v <e fori=1,2.
Let Py, », be the parallelogram spanned by v; and v,. Then we have for 0 <r <log1.01

Powl = 11+ 00 +v2) —tiia] = (L +v) (1 +v2) —hip < € e <3,
where | Py, v,| denotes the area of Py, »,, and for the second equality we used that
(I+vD(I+v) = e > |nnl.

Thus |Py, »,| equals 1 or 2. We claim that |P,, 4,| = 1. Suppose not; then |P,, »,| =2 and we have for
0<r<logl.0l
tib=vi+v+vv—1<2e =D+ —1)*-1<0
and
t=1—vi—vr—viva>1=2(" —1)— (" = 1)>=2—¢* > 0.9.

This implies min{|#;[, |2]} > 0.9/e™" > 0.9. Since #,1, < 0, without loss of generality we may assume
that #, < 0. Then we have —e™" <1, < —0.9. On one hand, since |Py, y,| =2 and vy, v € Ap;, we have

v+ H+1l4+v nb+14v
w: = = , e A.
2 2 2
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On the other hand, we have

—r r r
t1+12+v2§e 2+€ <o 0<t2+1+v1<1+v1§%<e_r’

2 2

and w ¢ S, implying w € R,. Thus w € ANR, = Ay N'R, is also a primitive vector of A. Moreover,
since —e~" <t < —0.9, we have
Hh+14v "—0.9 1.01-09
chhidu e < = 0.055 < |,
2 2 2
contradicting the assumption that v, is the closest point in A, MR, to the x-axis. We thus have proved
the claim, and it implies

0<

0

Itity] = |v] +va +vjva] <2 — 1)+ (" — 1) =¥ — 1.

Hence we have

min{|#], |]} < V/Itia| < Ve — 1,
which implies A, N (A, UC,) # & finishing the proof. 0

The following lemma states that for r > 0 small, the orbits a; K, will completely leave the set K, very
shortly, and will remain separated for quite a long time.

Lemma 3.2. Forany 0 <r <log1.01 and any 6r < |s| <log 1.9, we have
a K, NK, =2.

Proof. Suppose not, then there exists some A € a;K, N K, and by definition the intersection of A,
with S, U a;S, is empty. Without loss of generality we may assume that s > 0. By Lemma 3.1 we
have Ay N (A, UC,) # & and similarly, A, N (as Ay Ua,Cr) # . We note that ag A, is the rectangle
with vertices (e*ve2 — 1, ¢" ) and (£e*ve2 — 1, e 7). Since ¢ < ¢® < 1.9 we have a,.A4, C S,
implying Ap; N a,Cr # &. Similarly, we have C, C a,S, and this implies A, N A, # & (see Figure 4).
Let vy € Ap; N A, and v, € Ap NagCy, and let Py, ,, be the parallelogram spanned by v and v;. Then
for0 <r <log1.01 and 6r <s <log1.9 we have

l<e™ — (e —1)e™ <[Py <+ (2 —1)e™* <2
contradicting the fact that |P,, ,| 1S a positive integer. U
We can now give:

Proof of Theorem 1.3. We prove the upper and lower bounds separately. For the upper bound, we first
note that for any v € R? we have e Fl||v|| < ||asv|| < e”!||v]|. Hence for any A € X we have

|AasA) — A(N)] =< |s].
This implies that for any s € R and any r > 0

as K, C Ky . (3-6)
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Figure 3. Figure 1 under the flow ay: the rectangles a,S, (orange), as.A, (brown), and
a,C, (purple).

Figure 4. Figures 1 and 3 in one picture: the rectangle a;.A, (brown) is contained in
S, (red), the rectangle C, (blue) is contained in a;S, (orange).

Let N = [1/r]. Using (3-6) and the fact that 1/N <r we can estimate
U a_sK, = U U a—i/Na—tKr C U a—i/NK2r-
0<s<l 0<i<N 0<t<1/N 0<i<N

Hence by Theorem 1.2 and since N =< 1/r we have
N—1

1
,u( U a_sKr) < Z ula—i/nKar) < rlog<;>.
i=0

0<s<l1

For the lower bound, for 0 <r <log1.01 let N = [1/(6r)]. First we have

U a—i/NKrg U a—sK;.

0<i<|Nlog1.9] 0<s<l
Moreover, foreach0 <i < j < |Nlog1.9], wehave 6r <1/N < (j—i)/N <log1.9; thus by Lemma 3.2
we have
aiynK,Na_jnK, =a_j/n(ai-in/NKrNK;) =2.

Thus the union U0§i<LN log 1.9] @—i/n K 1s disjoint and, again applying Theorem 1.2 and noting that
N =< 1/r we can estimate
[Nlog1.9]—1 1
M( U a—sKr) > Z ula—inKy) < rlog(;),
0<s<l1 i=0

finishing the proof. 0
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Proof of Corollary 1.4. First we note that we can assume lim;_, o, 7 (s) = 0 since otherwise both series
would diverge. It follows that there exists N > O such that for any n > N, 0 < r(n) <log1.01. Next,
since r( -) is nonincreasing, for any n > N we have

U a—sKr(n—i-l) CB, C U a—sKr(n)~
0<s<l1 0<s<l1

Moreover, since n > N we have 0 <r(n+1) <r(n) <log1.01. Applying Theorem 1.3 to the left- and
right-hand sides of the above inclusion relations we get

r(n—i—l)log( ><< w(B,) <<r(n)1og(L),

r(n+1) r(n)
which finishes the proof. U

4. The dynamical Borel-Cantelli lemma

In this section we give the proof of Theorem 1.1 based on Theorem KW. Recall that for a given function
¥ 1 [tg, 00) = (0, 00) with 79 > 1 fixed, we say a real number x € R is yr-Dirichlet if the system of
inequalities
lgx —pl < ¢ (1) and |gq| <t

has a solution in (p, g) € Z x (Z ~ {0}) for all sufficiently large z. Let us denote by D(v/) the set of all
Y-Dirichlet numbers. Theorem KW gives a zero-one law for the Lebesgue measure of D () as follows:
if ¥ : [tp, 00) — (0, 00) is a continuous, nonincreasing function satistying (1-6) and (1-7), then the series
(1-8) diverges (resp. converges) if and only if the Lebesgue measure of D(v) (resp. of D(1/)°) is zero.

For our purpose, we prove the following slightly modified version of Dani correspondence.

Lemma 4.1. Let ¢ : [tg, 00) — (0, 00) be a continuous, nonincreasing function satisfying (1-6) and
(1-7). Then there exists a unique continuous, nonincreasing function

logty log r(t)

r=ry :[s0,00) = (0,00), wheresy=

2 2
such that
the function s — s +r(s) is nondecreasing, 4-1)
and
V("N =570 foralls > . 4-2)

Conversely, given a continuous, nonincreasing function r : [sg, oo) — (0, 00) satisfying (4-1), then there
exists a unique continuous, nonincreasing function Y =, : [ty, 00) — (0, 00) with tg = e*0~"0) satisfying
(1-6), (1-7) and (4-2). Furthermore, if we assume lim;_, oo t Y (t) = 1 (or equivalently, lim;_, oo 7 (s) = 0),
then the series in (1-8) diverges if and only if the series

1
> rmog( o) (4-3)

n
diverges.

Proof. The correspondence between ¢ = ¥, and r = ry, follows from the exact same construction
as in [Kleinbock and Margulis 1999, Lemma 8.3], where ¥/(-) and r(-) determine each other with
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the relations
EY@)=e "™ =1,

with s and 7 satisfying s = (log#)/2 — (log ¥ (¢))/2. The only difference is that here we require the two
extra assumptions (1-6) and (1-7) on ¥ which are respectively equivalent to the assumptions that r(-) is
nonincreasing and r( - ) is positive. We refer the reader to [Kleinbock and Margulis 1999, Lemma 8.3]
for more details about this correspondence.

For the furthermore part, first we claim that the series in (1-8) diverges if and only if the integral

© —(1 —tyr(t)) log(l —tyr(t
/ (L= 1y 1) log(1 —19@)) )
to t
diverges. It suffices to show the function G (¢) := — log(1 — ¢ty (¢))(1 — ¢t (¢)) is eventually nonincreas-

ing in 7. Note that the function T — —T log T is strictly increasing on the interval (0, e~!). Since
lim; oot (t) = 1 and 1t (¢) < 1 for all ¢+ > 1y, there exists some Ty > ty such that for all r > Ty,
0 <1 —ty(t) < e~ !. Moreover, together with the assumption (1-6) we get that G(¢) is nonincreasing
in t for any T > Ty, finishing the proof the claim. Next, since r( - ) is positive and nonincreasing, we
have 0 < r(s) < r(sg). Thus there exist constants O < ¢; < ¢» such that for all s > sy and all ¢ > 7y with
s = (logt)/2 — (logy(t))/2 we have

crs) <1—ty (@) =1—e"29 <cor(s).

This also implies

—log(I =ty (1)) = —log(r(s)) + Oc, ¢, (1) ¢, ,c, —log(r(s)),

where for the second estimate we used that lim,_, o, 7(s) = 0. Moreover, since r( - ) is nonincreasing and
continuous, it is differentiable at Lebesgue almost every s € R, and we denote by r'(s) its derivative at
se R whenever it exists. Using the relation t = ") we get dt/t = (1 —r'(s)) ds for Lebesgue almost
every s € R. We thus have

/oo —(1 =ty (1)) log(1 — (1))
o !

(0.¢]

dt <¢, ¢ /Oo —r(s) log(r(s))(1—r'(s)) dsx/ —r(s)log(r(s))ds,

S0 S0

where for the second estimate we used that 1 < 1 —r/(s) < 2 for Lebesgue almost every s € R which
comes from the assumption (4-1) and that (- ) is nonincreasing. Finally, we conclude the proof by noting
that the integral f :;o —r(s)log(r(s)) ds diverges if and only if the series ) , —r(n)log(r(n)) diverges
since limg_, oo 7(s) = 0 and r(-) is nonincreasing, which imply that the function s — —r(s) log(r(s)) is
eventually nonincreasing in s. U

As mentioned in the Introduction, we have the following dynamical interpretation of y-Dirichlet
numbers.

Lemma 4.2 [Kleinbock and Wadleigh 2018, Proposition 4.5]. Let ¢ : [ty, o0) — (0, 00) be a continuous

and nonincreasing function satisfying (1-6) and (1-7). Let r =ry, be as in Lemma 4.1. Then x € D(Y)¢
if and only if
asAy € K,y for an unbounded set of s, 4-5)
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. 1 x 2
Ax_<0 1)2 eX

Combining Theorem KW with Lemmas 4.1 and 4.2, we immediately have the following zero-one law.

where ag = diag(e®, e™*) and

are as before.

Proposition 4.3. Let r : [sg, 00) — (0, 00) be continuous, nonincreasing, satisfying (4-1) and such that
limg_, « 7(s) = 0. Then (4-5) holds for Lebesgue almost every (resp. almost no) x € R provided that the
series (4-3) diverges (resp. converges).

To connect the above proposition with the corresponding property of almost every A € X, we need an
auxiliary lemma, which borrows some ideas from the work [Kleinbock and Rao 2019] of the first author
with Anurag Rao.

Lemma 4.4. Let r(-) be as in Proposition 4.3. For any c € R and A > 0 let
Fea(s) :=r(s +¢) — re 26T

and define
D. ) :={x eR|asA, € K,_, ) for an unbounded set of s}.

If the series (4-3) diverges, then the set

has full Lebesgue measure.

Remark 4.5. We note that by our assumption 7., (-) is not necessarily always positive, and the set
K, (s) 1s empty whenever r. ;. (s) is negative.

Proof of Lemma 4.4. For any function f : [ss, 00) — (0, 00) with sy > 1 we define

Ao, r:={x e RlasA, € Ky for an unbounded set of s > 54}

1
Np=Y_ f(n)log(m)

nzsyg

and

First we note that the divergence of the series N, is equivalent to the divergence of the series N, » for
any ¢ € R, where r.(s) :=r(s+c) =r.o(s). Moreover, it is clear that (r./2)( - ) satisfies the assumptions
in Proposition 4.3. Thus, by Proposition 4.3, if the series N, diverges, then the set A ;. /2 is of full
Lebesgue measure for any ¢ € R. On the other hand, for any ¢ € R and A > 0 let f, ;(s) = Ae 206+, It
is easy to check that fe ; s, 00) satisfies the assumptions in Proposition 4.3 with

log(21) }
—c, 1,

Sep = max{

and the series Ny, , converges for any ¢ € R and A > 0. Thus by Proposition 4.3 the set A, 1, , is of zero
Lebesgue measure for any ¢ € R and A > 0. Define

A= ﬂ A2 and A= U U Ao, f. -

ceR ceRA>0
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We note that since r(-) is nonincreasing, for any c; < ¢ we have r¢, /2 > r, /2 implying Ao ¢,/2 C
Aoo,rc1 ,2- Hence the family of sets {A ;. /2}cer 18 nested and A =limg_ o Aco,r. 2 18 of full Lebesgue
measure. Similarly, the family of sets {A f., Jcer,1>0 1 also nested and the set

A= lim Iim Ay,

c—>—00 A— 00 ’

is of zero Lebesgue measure. Thus the set A \. A is of full Lebesgue measure and it suffices to show that
A~ A C D. Thatis, for any x € A~ A we want to show that for any ¢ € R and any A > 0 the events
as Ay € K, _, (5, happen for an unbounded set of s. First we note that x € A means that for any c € R
there exists an unbounded subset S, C R such that a; A, € K, (5)/2 for any s € S.. Secondly, we note that
x ¢ A means that for any ¢ € R and A > 0 there exists some constant 7, ; > 0 such that for any s > 7. »
we have a; A, € A‘l(fc,,\(s), 00). In particular, for any s € S, N (T¢,,, 00) we have

For(s) < AlasAy) < rc;”.

This implies

re(s) < re(s)  re(s)

0 < A(asAy) < > > > — Jfea(s) =re(s)

for any s € S. N (T¢ , 00). Finally, we finish the proof by noting that since S, is unbounded, the set
Se N (T¢.5, 00) is also unbounded. ]

We can now give:

Proof of Theorem 1.1. The convergent case follows directly from Corollary 1.4 and the classical Borel-
Cantelli lemma, and we thus only need to prove the divergent case. Let r : [sg, 00) — (0, c0) be
continuous, nonincreasing, satisfying (4-1) and such that the series (4-3) diverges; we want to show
that w(By) = 1. First we note that we can assume lim;_, o, 7(s) = 0, since otherwise the result would
follow from the ergodicity of the flow {a,}s~0 on X. Let D :=().cg[ ;=0 Dc,x be as in Lemma 4.4 and
define B C X such that

B:{(Z agl)AxeX‘beR,a>0,xeD}.

We note that by Lemma 4.4 the set D has full Lebesgue measure. Thus the set B C X is also of full
measure (with respect to @) and it suffices to show that B C B First, by direct computation for

a O

1 0
aSA = (e_zsa_lb 1) as+10gan' (4-6)

_ (10
I/ty—yl.

we have

Next, for any y € R let
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Note that for any v € R2, we have ||uy_v|| < (ly|+ DJlv]|. This implies that for any A € X
|[A(uy, A) — A(A)] < Tog(1+y.
Using the above inequality, the relation (4-6), and the inequality log(1 4 x) < 2x for all x > 0, we get
|A(asA) = Alassiogada)| < 2a7 ' ble™.

Since x € D for any ¢ € R and any A > 0 we have a; A, € K, (5) for an unbounded set of s. In particular,
taking c = —loga, A = 2a~'|b| we get

0=<A(asA) < Aas—cAx) + re <reils—c)+ re X = r(s)

for an unbounded set of s, finishing the proof. U
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