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An inhomogeneous Dirichlet theorem
via shrinking targets

Dmitry Kleinbock and Nick Wadleigh

Abstract

We give an integrability criterion on a real-valued non-increasing function  

guaranteeing that for almost all (or almost no) pairs (A,b), where A is a real m ⇥ n

matrix and b 2 R
m, the system

kAq+ b� pkm <  (T ), kqkn < T,

is solvable in p 2 Z
m, q 2 Z

n for all su�ciently large T . The proof consists of a reduction
to a shrinking target problem on the space of grids in R

m+n. We also comment on the
homogeneous counterpart to this problem, whose m = n = 1 case was recently solved,
but whose general case remains open.

1. Introduction and motivation

1.1 Homogeneous Diophantine approximation

Fix positive integers m,n. Let Mm,n denote the space of real m⇥n matrices. The starting point
for the present paper is the following theorem, proved by Dirichlet in 1842.

Theorem 1.1 (Dirichlet’s theorem). For any A 2 Mm,n and T > 1, there exist p 2 Z
m,

q 2 Z
n
r {0} such that

kAq� pkm 6 1

T
and kqkn < T. (1.1)

Here and hereafter k · k stands for the supremum norm on R
k, k 2 N. Informally speaking, a

matrix A represents a vector-valued function q 7! Aq, and the above theorem asserts that one
can choose a not-so-large non-zero integer vector q so that the output of that function is close to
an integer vector. In the case m = n = 1 the theorem just asserts that for any real number ↵ and
T > 1, one of the first T multiples of ↵ lies within 1/T of an integer. Theorem 1.1 is the archetypal
uniform Diophantine approximation result, so called because it guarantees a non-trivial integer
solution for all T . A weaker form of approximation (sometimes called asymptotic approximation;
see, for example, [Wal12, KL18]) guarantees that such a system is solvable for an unbounded

set of T . For instance, Theorem 1.1 implies that (1.1) is solvable for an unbounded set of T ,
a fortiori. The following corollary, which follows trivially from this weaker statement, is the
archetypal asymptotic result.
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An inhomogeneous Dirichlet theorem

Corollary 1.2. For any A 2 Mm,n there exist infinitely many q 2 Z
n such that

kAq� pkm <
1

kqkn for some p 2 Z
m
. (1.2)

Together the aforementioned results initiate the metric theory of Diophantine approximation,
a field concerned with understanding sets of A 2Mm,n which admit improvements to Theorem 1.1
and Corollary 1.2. This paper has been motivated by an observation that the sensible ‘first
questions’ about the asymptotic set-up were settled long ago, while the analogous questions
about the uniform set-up remain open. Let us start by reviewing what is known in the asymptotic
set-up.

For a function  : R+ ! R+, let us define Wm,n( ), the set of  -approximable matrices, to
be the set of A 2 Mm,n for which there exist infinitely many q 2 Z

n such that1

kAq� pkm 6  (kqkn) for some p 2 Z
m
. (1.3)

Throughout the paper we use the notation  a(x) := x
�a. Thus Corollary 1.2 asserts that

Wm,n( 1) = Mm,n, and in the above definition we have simply replaced  1(kqkn) in (1.2) with
 (kqkn). Precise conditions for the Lebesgue measure of Wm,n( ) to be zero or full are given in
the following theorem.

Theorem 1.3 (Khintchine–Groshev theorem [Gro38]). Given a non-increasing2  , the set
Wm,n( ) has zero (respectively, full) measure if and only if the series

P
k  (k) converges

(respectively, diverges).

See [Spr79] or [BDV06] for details, and also [KM99] for an alternative proof using dynamics
on the space of lattices.

Questions related to similarly improving Theorem 1.1 were first addressed in two seminal
papers [DS70, DS69] by Davenport and Schmidt. However no zero–one law analogous to
Theorem 1.3 has yet been proved in the set-up of uniform approximation for general m,n 2 N.
Let us introduce the following definition: for a non-increasing function  : [T0,1) ! R+, where
T0 > 1 is fixed, say that A 2 Mm,n is  -Dirichlet, or A 2 Dm,n( ), if the system

kAq� pkm <  (T ) and kqkn < T (1.4)

has a non-trivial integer solution for all large enough T . In other words, we have replaced  1(T )
in (1.1) with  (T ), demanded the existence of non-trivial integer solutions for all T except those
belonging to a bounded set, and sharpened one of the inequalities in (1.1). The latter change,
in particular, implies the following observation: for non-increasing  , membership in Dm,n( )
depends only on the solvability of the system (1.4) at integer values of T . (To show this it su�ces
to replace T with dT e and use the monotonicity of  .)

It is not di�cult to see that D1,1( 1) = R, and that for general m,n, almost every matrix is
 1-Dirichlet. In contrast, it was proved in [DS69] for min(m,n) = 1, and in [KW08] for the general
case, that for any c < 1, the set Dm,n(c 1) of c 1-Dirichlet matrices has Lebesgue measure zero.
This naturally motivates the following question.

1
This definition essentially coincides with the one given in [KM99] but di↵ers slightly from other sources, such as

[BDV06, § 13], where the inequality kAq� pk < kqk (kqk) is used instead of (1.3).

2
The monotonicity condition can be removed unless m = n = 1.
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D. Kleinbock and N. Wadleigh

Question 1.4. What is a necessary and su�cient condition on a non-increasing function  

(presumably expressed in the form of convergence/divergence of a certain series) guaranteeing
that the set Dm,n( ) has zero or full measure?

In [KW18] we give an answer to this question for m = n = 1, but in general Question 1.4
seems to be much harder than its counterpart for the sets Wm,n( ), answered by Theorem 1.3.
We comment later in the paper on the reason for this di�culty, but the main subject of this
paper is di↵erent: we take up an analogous inhomogeneous approximation problem, describe
the analogues of the statements and concepts discussed in this section, and then show how an
inhomogeneous analogue of Question 1.4 admits a complete solution based on a correspondence
between Diophantine approximation and dynamics on homogeneous spaces.

1.2 Inhomogeneous approximation: the main result

The theory of inhomogeneous Diophantine approximation starts when one replaces the values of
a system of linear forms Aq by those of a system of a�ne forms q 7! Aq+ b, where A 2 Mm,n

and b 2 R
m. Consider a non-increasing function  : [T0,1) ! R+ and, following the definition

of the set Dm,n( ), let us say that a pair (A,b) 2Mm,n⇥R
m is  -Dirichlet if there exist p 2 Z

m,
q 2 Z

n such that
kAq+ b� pkm <  (T ), kqkn < T, (1.5)

whenever T is large enough. (Note that in this set-up there is no need to single out the case
q = 0.) Denote the set of  -Dirichlet pairs by bDm,n( ). Note that, as is the case with Dm,n( ),

membership in bDm,n( ) depends only on the solubility of these inequalities at integer values
of T , provided  is non-increasing. Hence without loss of generality one can assume  to be
continuous.

Let us start with the simplest case:  ⌘ c is a constant function, or  = c 0 in our notation.
It is a trivial consequence of Dirichlet’s theorem that whenever c > 0,

kAq� pkm < c, kqkn < T,

is solvable in p 2 Z
m, q 2 Z

n
r {0} whenever T > c

�1. By contrast, it is clear that one cannot
always solve

kAq+ b� pkm < c, kqkn < T,

for c 6 1/2m; for example, take A to be an integer matrix and take b with coordinates in Z+ 1
2 .

However, it follows from Kronecker’s theorem [Cas57, § 3.5] that, for a given A 2 Mm,n, there

exist b 2 R
m and c > 0 such that (A,b) /2 bDm,n(c 0), which amounts to saying that AZ

n is not
dense in R

m
/Z

m, only if At(Zm
r{0}) contains an integer vector. The set of such A has measure

zero since it is the union over q 2 Z
n, p 2 Z

m
r {0} of the sets {A : At

p = q}. Thus for every
c > 0, bDm,n(c 0) has full measure.

Once  is allowed to decay to zero, the sets bDm,n( ) become smaller. In particular, using
dynamics on the space of grids in R

m+n, one can easily prove (see Proposition 2.3 below) that
bDm,n(C 1) is null for any C > 0. Thus one can naturally ask the following inhomogeneous
analogue of Question 1.4.

Question 1.5. What is a necessary and su�cient condition on a non-increasing function  

(presumably expressed in the form of convergence/divergence of a certain series) guaranteeing
that the set bDm,n( ) has zero or full measure?
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An inhomogeneous Dirichlet theorem

The remainder of this work will be given to a proof of the following answer.

Theorem 1.6. Given a non-increasing  , the set bDm,n( ) has zero (respectively, full) measure
if and only if the series X

j

1

 (j)j2
(1.6)

diverges (respectively, converges).

Note that this immediately gives results such as:
• bDm,n(C a) has zero (respectively, full) measure if a > 1 (respectively, a < 1);

• for  (T ) = C(log T )b 1(T ), bDm,n( ) has zero (respectively, full) measure if b 6 1
(respectively, b > 1).

Our argument is based on a correspondence between Diophantine approximation and
homogeneous dynamics. In the next section we introduce the space of grids in R

m+n and reduce
the aforementioned inhomogeneous approximation problem to a shrinking target phenomenon
for a flow on that space. We present a warm-up problem, Proposition 2.3, that demonstrates
the usefulness of the reduction to dynamics and introduces several key ideas to be used later.
This is followed by the statement of the main dynamical result, Theorem 3.6, which we prove in
the two subsequent sections. The last section contains some concluding remarks, in particular a
discussion of Question 1.4 and other open questions.

2. Dynamics on the space of grids: a warm-up

Fix k 2 N and let
Gk := SLk(R) and bGk := ASLk(R) = Gk o R

k;

the latter is the group of volume-preserving a�ne transformations of Rk. Also put

�k := SLk(Z) and b�k := ASLk(Z) = �k o Z
k
.

Elements of bGk will be denoted by hg,wi where g 2 Gk and w 2 R
k; that is, hg,wi is the a�ne

transformation x 7! gx+w. Denote by bXk the space of translates of unimodular lattices in R
k;

elements of bXk will be referred to as unimodular grids. Clearly bXk is canonically identified with
bGk/

b�k via
hg,wib�k 2 bGk/

b�k  ! gZ
k +w 2 bXk.

Similarly, Xk := Gk/�k is identified with the space of unimodular lattices in R
k (i.e. unimodular

grids containing the zero vector). Note that b�k (respectively, �k) is a lattice in bGk (respectively,
Gk). We will denote by bµ (respectively µ) the normalized Haar measures on bXk and Xk,
respectively.

Now fix m,n 2 N with m+ n = k, and for t 2 R let

gt := diag(et/m, . . . , e
t/m

, e
�t/n

, . . . , e
�t/n), (2.1)

where there are m copies of et/m and n copies of e�t/n. The so-called expanding horospherical

subgroup of bGk with respect to {gt : t > 0} is given by

H := {uA,b : A 2 Mm,n,b 2 R
m}, where uA,b :=

⌧✓
Im A

0 In

◆
,

✓
b

0

◆�
. (2.2)
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On the other hand,

H̃ :=

⇢⌧✓
P 0
R Q

◆
,

✓
0
d

◆� ����
P 2 Mm,m, Q 2 Mn,n, det(P ) det(Q) = 1

R 2 Mn,m,d 2 R
n

�
(2.3)

is a subgroup of bGk complementary to H which is non-expanding with respect to conjugation
by gt, t > 0: it is easy to see that

gt

⌧✓
P 0
R Q

◆
,

✓
0
d

◆�
g�t =

⌧✓
P 0

e
�((m+n)/mn)t

R Q

◆
,

✓
0

e
�t/n

d

◆�
. (2.4)

Let us also denote

⇤A,b := uA,bZ
k =

⇢✓
Aq+ b� p

q

◆
: p 2 Z

m
, q 2 Z

n

�
. (2.5)

The reduction of Diophantine properties of (A,b) to the behavior of the gt-trajectory of
⇤A,b described below mimics the classical Dani correspondence for homogeneous Diophantine
approximation [Dan85, KM99] and dates back to [Kle99] (see also more recent papers [Sha11,
ET11, GV18]). The crucial role is played by a function � : bXk ! [�1,1) given by

�(⇤) := log inf
v2⇤

kvk. (2.6)

Note that �(⇤) = �1 if and only if ⇤ 3 0. Also it is easy to see that � is uniformly continuous
outside of the set where it takes small values.

Lemma 2.1. For any z 2 R, � is uniformly continuous on the set ��1([z,1)). That is, for any
z 2 R and any " > 0 there exists a neighborhood U of the identity in bGk such that whenever
�(⇤) > z and g 2 U , one has |�(⇤)��(g⇤)| < ".

Proof. Let c > 1, z 2 R. Choose � > 0 so that

c
�1kvk 6 kv +wk 6 ckvk

whenever kwk 6 � and log kvk > z� log c. Then if log kvk > z, kwk < � and the operator norms
of both g and g

�1 are not greater than c (the latter two conditions define an open neighborhood
U of the identity in bG such that hg,wi 2 U), we have

kvk
c2

6 kgvk
c

6 kgv +wk 6 c · kgvk 6 c
2 · kvk.

Thus if �(⇤) > z and hg,wi 2 U , we have

�(⇤)� 2 log c 6 �(g⇤+w) 6 �(⇤) + 2 log c.

Since c > 1 is arbitrary, � is uniformly continuous on ��1([z,1)). 2

Another important feature of � is that it is unbounded from above; indeed, the grid

diag
�
1, . . . , 1, 14e

�z
, 4ez

�
Z
k + (0, . . . , 0, 2ez)

is disjoint from the ball centered at 0 of radius ez. Consequently, sets��1([z,1)) have non-empty
interior for all z 2 R.

Let us now describe a basic special case of the correspondence between inhomogeneous
improvement of Dirichlet’s theorem and dynamics on bXk. The next lemma is essentially an
inhomogeneous analogue of [KW08, Proposition 2.1].
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Lemma 2.2. Let C > 0 and put z = (logC)/(m+ n). Then (A,b) 2 bDm,n(C 1) if and only if
�(gt⇤A,b) < z for all large enough t > 0.

Proof. For T > 1, put  (T ) = C 1(T ) = C/T , and define

t := log T � n

m+ n
logC () T = C

m/(m+n)
e
t
.

Then  (T ) = C
n/(m+n)

e
�t, and the system (1.5) can be written as

kAq+ b� pkm < C
n/(m+n)

e
�t
, kqkn < C

m/(m+n)
e
t
,

which is the same as

e
t/mkAq+ b� pk < C

1/(m+n)
, e

�t/nkqk < C
1/(m+n)

.

In view of (2.1), (2.5) and (2.6), the solvability of (1.5) in (p,q) 2 Z
m+n is equivalent to

�(gt⇤A,b) <
logC

m+ n
= z,

and the conclusion follows. 2

We will use the above lemma and the ergodicity of the gt-action on bXk to compute the
Lebesgue measure of bDm,n(C 1). The proof contains a Fubini theorem argument (following
[KM99, Theorem 8.7] and dating back to [Dan85]) used to pass from an almost-everywhere
statement for lattices to an almost-everywhere statement for pairs in Mm,n ⇥ R

m. We will refer
to this argument twice more in the sequel.

Proposition 2.3. For any m,n 2 N and any C > 0, the set bDm,n(C 1) has Lebesgue measure
zero.

Proof. Suppose U is a subset of Mm,n ⇥R
m (⇠=H as in (2.2)) of positive Lebesgue measure such

that �(gt⇤A,b) < (logC)/(m+ n) for any (A,b) 2 U and all large enough t. Then there exists
a neighborhood V of identity in H̃ as in (2.3) such that for all g 2 V , (A,b) 2 U and all large
enough t,

�(gtg⇤A,b) = �(gtgg
�1
t gt⇤A,b) <

logC

m+ n
+1. (2.7)

Indeed, one can use Lemma 2.1 and (2.4) to choose V such that if (2.7) does not hold for
g 2 V , then |�(gtgg

�1
t gt⇤A,b) � �(gt⇤A,b)| < 1. But since the product map H̃ ⇥ H ! bGk

is a local di↵eomorphism, V ⇥ U is mapped onto a set of positive measure. It follows that
�(gt⇤) < (logC)/(m+ n) + 1 for all large enough t and for a set of lattices ⇤ of positive Haar

measure in bXk.
On the other hand, from Moore’s ergodicity theorem [Moo66] together with the ergodicity

criterion of Brezin and Moore (see [BM81, Theorem 6.1] or [Mar91, Theorem 6]) it follows that
every unbounded subgroup of Gk, in particular, {gt : t 2 R} as above, acts ergodically on bXk.
Since for any C > 0 the set ��1([(logC)/(m+ n) + 1,1)) has a non-empty interior, it follows
that µ-almost every ⇤ 2 bXk must visit any such set at unbounded times under the action of gt,
a contradiction. 2
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3. A correspondence between Dirichlet improvability and dynamics

Lemma 2.2 relates the complement of bDm,n(C 0) to the set of grids visiting certain ‘target’

subsets of bXk at unbounded times under the diagonal flow gt. This is the special case where
the target does not change with the time parameter t. For general non-increasing  , we get a
family of ‘shrinking targets’ ��1([z (t),1)) (which in fact are shrinking only in a weak sense;
see Remark 3.3), where z is gotten by the following change of variables, known as the Dani
correspondence.

Lemma 3.1 (See [KM99, Lemma 8.3]). Let positive integersm,n and T0 2 R+ be given. Suppose
 : [T0,1) ! R+ is a continuous, non-increasing function. Then there exists a unique continuous
function

z = z : [t0,1) ! R,

where t0 := (m/(m+ n)) log T0 � (n/(m+ n)) log (T0), such that:

(i) the function t 7! t+ nz(t) is strictly increasing and unbounded;

(ii) the function t 7! t�mz(t) is non-decreasing;

(iii)  (et+nz(t)) = e
�t+mz(t) for all t > t0.

Remark 3.2. The function z of Lemma 3.1 di↵ers from the function r of [KM99, Lemma 8.3]
by a minus sign. This reflects the di↵erence between the asymptotic and uniform approximation
problems.

Remark 3.3. For future reference, we point out that properties (1) and (2) of Lemma 3.1 imply
that any z = z does not oscillate too wildly. Namely,

z(s)� 1

m
6 z(u) 6 z(s) +

1

n
whenever s 6 u 6 s+ 1.

Now we can state a general version of the correspondence between the improvability of the
inhomogeneous Dirichlet theorem and dynamics on bXk, generalizing the first paragraph of
the proof of Theorem 2.3.

Lemma 3.4. Let  : [T0,1) ! R+ be a non-increasing continuous function, and let z = z 

be the function associated to  by Lemma 3.1. The pair (A,b) is in bDm,n( ) if and only if
�(gt⇤A,b) < z (t) for all su�ciently large t.

Proof. We argue as in the proof of Lemma 2.2. Since t 7! t+nz(t) is increasing and unbounded,
(A,b) 2 bDm,n( ) if and only if for all large enough t we have

kAq+ b� pkm <  (et+nz(t)) = e
�t+mz(t)

, kqkn < e
t+nz(t)

,

for some q 2 Z
n, p 2 Z

m. This is the same as the solvability of

e
t/mkAq+ b� pk < e

z(t)
, e

�t/nkqk < e
z(t)

,

which is the same as �(gt⇤A,b) < z (t). 2

Thus a pair fails to be  -Dirichlet if and only if the associated grid visits the ‘target’
��1([z (t),1)) at unbounded times t under the flow gt. This is known as a ‘shrinking target
phenomenon’. Our next goal is to recast condition (1.6) using the function z .
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Lemma 3.5. Let  : [T0,1) ! R+, T0 > 0, be a non-increasing continuous function, and z = z 

the function associated to  by Lemma 3.1. Then we have

1X

j=dT0e

1

j2 (j)
< 1 if and only if

1X

t=dt0e

e
�(m+n)z(t)

< 1.

Proof. We follow the lines of the proof of [KM99, Lemma 8.3]. Using the monotonicity of  and
Remark 3.3, we may replace the sums with integrals

Z 1

T0

x
�2

 (x)�1
dx and

Z 1

t0

e
�(m+n)z(t)

dt,

respectively. Define

P := �log �  � exp : [T0,1) ! R and �(t) := t+ nz(t).

Since  (e�) = e
�P (�), we have
Z 1

T0

x
�2

 (x)�1
dx =

Z 1

log T0

 (e�)�1
e
��

d� =

Z 1

log T0

e
P (�)��

d�.

Using P (�(t)) = t�mz(t), we also have
Z 1

t0

e
�(m+n)z(t)

dt =

Z 1

log T0

e
�(m+n)z(m�/(m+n)+nP (�)/(m+n))

d


m

m+ n
�+

n

m+ n
P (�)

�

=
m

m+ n

Z 1

log T0

e
P (�)��

d�+
n

m+ n

Z 1

log T0

e
��

e
P (�)

dP (�)

=
m

m+ n

Z 1

log T0

e
P (�)��

d�+
n

m+ n

Z 1

log T0

e
P (�)��

d�

+
n

m+ n

⇣
lim
�!1

e
P (�)�� � 1

⌘
,

where we integrated by parts in the last line. Since all these quantities (aside from the
constant �1) are positive, the convergence of

R1
t0

e
�(m+n)z(t)

dt implies the convergence ofR1
log T0

e
P (�)��

d�. Conversely, suppose
R1
log T0

e
P (�)��

d� converges, yet
R1
t0

e
�(m+n)z(t)

dt diverges.

Then since u 7!
R u
t0
e
(m+n)z(t)

dt is increasing in u, and the first two terms of the sum above

converge, we must have e
P (�)�� eventually increasing in � (recall that � is an increasing and

unbounded function). But this contradicts the convergence of
R1
log(T0)

e
P (�)��

d�. 2

Now we are ready to reduce Theorem 1.6 to the following statement concerning dynamics
on bXk.

Theorem 3.6. Fix k 2 N and let {gt : t 2 R} be a diagonalizable unbounded one-parameter
subgroup of Gk. Also take an arbitrary sequence {z(t) : t 2 N} of real numbers. Then the set

{⇤ 2 bXk : �(gt⇤) > z(t) for infinitely many t 2 N} (3.1)

is null (respectively, conull) if the sum

1X

t=1

e
�kz(t) (3.2)

converges (respectively, diverges).
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D. Kleinbock and N. Wadleigh

Proof of Theorem 1.6 assuming Theorem 3.6. Suppose that the series (1.6) converges, and take
z(t) = z (t), the function associated to  by Lemma 3.1. In view of Lemma 3.5, the series (3.2)
converges as well. In particular, it follows that z(t) > 0 for all large enough t 2 N, and also thatP1

t=1 e
�k(z(t)�C)

< 1 for any C > 0. Take gt as in (2.1); Theorem 3.6 then implies that

bµ
�
{⇤ 2 bXk : �(gt⇤) > z(t)� C for infinitely many t 2 N}

�
= 0. (3.3)

Suppose that the Lebesgue measure of bDm,n( )c is positive. Lemma 3.4 asserts that there exists a
set U of positive measure consisting of pairs (A,b) for which �(gt⇤A,b) > z(t) for an unbounded
set of t > 0. Then, using z(t) > 0 and Lemma 2.1, we can replace t with its integer part:

�(gbtc⇤A,b) = �(g(btc�t)gt⇤A,b) > �(gt⇤A,b)� c > z(t)� c > z(btc)� c� 1/m,

where c is a positive constant and the last inequality follows from Remark 3.3. Therefore we get
�(gt⇤A,b) > z(t)� c� 1/m for an unbounded set of t 2 N as long as (A,b) 2 U .

Now recall the groups H and H̃ from Equations (2.2) and (2.3). As in the proof of
Proposition 2.3, we may identify U with a subset of H and, using the uniform continuity of
� (Lemma 2.1), find a neighborhood of identity V ⇢ H̃ such that, for all g 2 V and (A,b) 2 U ,

�(gtg⇤A,b) = �(gtgg
�1
t gt⇤A,b) > �(gt⇤A,b)� 1

for all t > 0, hence �(gtg⇤A,b) > z(t) � 1 � c � 1/m for an unbounded set of t 2 N. Since the

product map H̃ ⇥ H ! bGk is a local di↵eomorphism, the image of V ⇥ U is a set of positive
measure in Gk, contradicting (3.3).

The proof of the divergence case proceeds along the same lines. If (1.6) diverges, by Lemma 3.5
so does (3.2). Define z

0(t) := max(z(t), 0); then we have
P1

t=1 e
�k(z0(t)) = 1 as well, thereforeP1

t=1 e
�k(z0(t)+C) = 1 for any C > 0. In view of Theorem 3.6,

the set {⇤ 2 bXk : �(gt⇤) > z
0(t) + C for infinitely many t 2 N} has full measure. (3.4)

Now assume that the set bDm,n( ) has positive measure. Then using Lemma 3.4, one can choose
a set U of positive measure consisting of pairs (A,b) for which

�(gt⇤A,b) < z(t) 6 z
0(t)

for all large enough t. Then, as before, using Lemma 2.1 with z = 0 and (2.4), one finds a
neighborhood of identity V ⇢ H̃ such that for all g 2 V and (A,b) 2 U ,

�(gtg⇤A,b) = �(gtgg
�1
t gt⇤A,b) < max(�(gt⇤A,b), 0) + 1

for all t > 0; hence �(gtg⇤A,b) < z
0(t) + 1 for all large enough t. Again using the local product

structure of bGk, one concludes that the image of V ⇥ U in bXk is a set of positive measure,
contradicting (3.4). 2

We are now left with the task of proving Theorem 3.6. The proof will have two ingredients.
In the next section we will establish a dynamical Borel–Cantelli lemma (Theorem 4.4) showing
that the limsup set (3.1) is null or conull according to the convergence or divergence of the series

1X

t=1

bµ({⇤ 2 bXk : �(⇤) > z(t)}). (3.5)

The proof is based on the methods of [KM99, KM18]; namely, it uses the exponential mixing of
the gt-action on bXk, as well as the so-called DL property of �. The latter will be established
in § 6. Moreover, there we will relate (3.2) and (3.5) by showing that the summands in (3.5) are
equal to e

�kz(t) up to a constant (Theorem 4.6).
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An inhomogeneous Dirichlet theorem

4. A general dynamical Borel–Cantelli lemma and exponential mixing

In this section we let G be a Lie group and � a lattice in G. Denote by X the homogeneous space
G/� and by µ the G-invariant probability measure on X. In what follows, k · kp will stand for
the L

p-norm. Fix a basis {Y1, . . . , Yn} for the Lie algebra g of G, and, given a smooth function
h 2 C

1(X) and ` 2 Z+, define the ‘L2, order `’ Sobolev norm khk2,` of h by

khk2,`
def
=

X

|↵|6`

kD↵
hk2,

where ↵ = (↵1, . . . ,↵n) is a multi-index, |↵| =
Pn

i=1 ↵i, and D
↵ is a di↵erential operator of order

|↵| which is a monomial in Y1, . . . , Yn, namely D
↵ = Y

↵1
1 · · ·Y ↵n

n . This definition depends on the
basis; however, a change of basis would only distort khk2,` by a bounded factor. We also let

C
1
2 (X) = {h 2 C

1(X) : khk2,` < 1 for any ` 2 Z+}.

Fix a right-invariant Riemannian metric on G and the corresponding metric ‘dist’ on X. For
g 2 G, let us denote by kgk the distance between g 2 G and the identity element of G. Note that
kgk = kg�1k due to the right-invariance of the metric.

Definition 4.1. Let L be a subgroup of G. Say that the L-action on X is exponentially mixing

if there exist �, E > 0 and ` 2 Z+ such that for any ', 2 C
1
2 (X) and for any g 2 L one has

����hg', i �
Z

X
' dµ

Z

X
 dµ

���� 6 Ee
��kgkk'k2,`k k2,`. (EM)

Here h·, ·i stands for the inner product in L
2(X,µ).

We also need two more definitions from [KM99, KM18].

Definition 4.2. A sequence of elements {ft : t 2 N} of elements of G is called exponentially

divergent if

sup
t2N

1X

s=1

e
��kfsf�1

t k
< 1 8 � > 0. (4.1)

Now let � be a real-valued function on X, and for z 2 R denote

��(z)
def
= µ(��1([z,1))).

Definition 4.3. Say that � is DL (an abbreviation for ‘distance-like’) if there exists z0 2 R

such that ��(z0) > 0 and

(a) � is uniformly continuous on ��1([z0,1)); that is, for all " > 0 there exists a neighborhood
U of identity in G such that for any x 2 X with �(x) > z0,

g 2 U =) |�(x)��(gx)| < ";

(b) the function �� does not decrease very fast; more precisely,

9 c, � > 0 such that ��(z) > c��(z � �) 8 z > z0. (4.2)

The next theorem is a direct consequence of [KM18, Theorem 1.3].
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D. Kleinbock and N. Wadleigh

Theorem 4.4. Suppose that the action of a subgroup L ⇢ G on X is exponentially mixing. Let
{ft : t 2 N} be a sequence of elements of L satisfying (4.1), and let � be a DL function on X.
Also let {z(t) : t 2 N} be a sequence of real numbers. Then the set

{⇤ 2 X : �(gt⇤) > z(t) for infinitely many t 2 N} (4.3)

is null (respectively, conull) if the sum

1X

t=1

��(z(t)) (4.4)

converges (respectively, diverges).

Proof. The convergence case is immediate from the classical Borel–Cantelli lemma. The
divergence case is established in [KM99, KM18] for L = G, but the argument applies verbatim
if G is replaced by a subgroup. 2

From now on we will take k > 2 and consider the case G = bGk, � = b�k, X = bXk, and L = Gk,
with notation as in the previous section. Then we have the following theorem.

Theorem 4.5. The Gk-action on bXk = bGk/
b�k is exponentially mixing.

Proof. According to [KM99, Theorem 3.4], exponential mixing holds whenever the regular
representation of Gk on the space L

2
0( bXk) (functions in L

2( bXk) with integral zero) is isolated in
the Fell topology from the trivial representation. This is immediate if k > 2 since in this case Gk

has Property (T).
If k = 2, let us write L

2
0( bX2) as a direct sum of two spaces: functions invariant under

the action of R
2 by translations, and its orthogonal complement. The first representation is

isomorphic to the regular representation of SL2(R) on L
2
0(SL2(R)/ SL2(Z)), which is isolated

from the trivial representation by [KM99, Theorem 1.12]. As for the second component, one can
use [HT92, Theorem V.3.3.1] (see also [GGN18, Theorem 4.3]) which asserts that for any unitary
representation (⇢, V ) of ASL2(R) with no non-zero vectors fixed by R

2, the restriction of ⇢ to
SL2(R) is tempered, that is, there exists a dense set of vectors in V whose matrix coe�cients are in
L
2+" for any " > 0. Exponential mixing thus follows from [KS94, Theorem 3.1], which establishes

exponential decay of matrix coe�cients of strongly L
p irreducible unitary representations of

connected semisimple centerfree Lie groups. See also the preprint [Edw13] for more precise
estimates. 2

Now let � be the function on bXk defined by (2.6). In the next section we will establish the
following two-sided estimate for the measure of super-level sets of �.

Theorem 4.6. For any k > 2 there exist c, C > 0 such that

ce
�kz 6 ��(z) 6 Ce

�kz for all z > 0. (4.5)

This is all one needs to settle Theorem 3.6.

Proof of Theorem 3.6 modulo Theorem 4.6. Let {gt : t 2 R} be a diagonalizable unbounded one-
parameter subgroup of Gk. By Theorem 4.5, the action of Gk on bXk is exponentially mixing.
Observe also that one has kgtk > ↵t for some ↵ > 0, which immediately implies (4.1). It is easy
to see that (4.5) implies (4.2) with z0 = 0, and part (a) of Definition 4.3 is given by Lemma 2.1.
The conditions of Theorem 4.4 are therefore met, and Theorem 3.6 follows. 2
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An inhomogeneous Dirichlet theorem

5. � is distance-like: a warm-up

For the rest of the paper we keep the notation

G = Gk,
bG = bGk = Gk o R

k
, X = Xk = Gk/�k,

bX = bXk = bGk/
b�k,

and let µ (respectively, bµ) be the Haar probability measure on X (respectively, bX). We denote by
µG and µ bG the left-invariant Haar measures on G and bG, respectively, which are locally pushed
forward to µ and bµ.

Recall that

��(z) = bµ({⇤ 2 bX : �(⇤) > z}) = bµ({⇤ 2 X : ⇤ \B(0, ez) = ;}),

where for v 2 R
k and r > 0 we let B(v, r) be the open ball in R

k centered at v of radius r with
respect to the supremum norm. It will be convenient to write

Sr := ��1([log r,1)) = {⇤ 2 bX : B(0, r) \ ⇤ = ;}.

Our goal is thus to prove that

cr
�k 6 bµ(Sr) 6 Cr

�k for all r > 1, (5.1)

where c, C are constants dependent only on k.
First let us discuss the upper bound. It is in fact a special case of a recent result due to

Athreya, namely a random Minkowski-type theorem for the space of grids [Ath15, Theorem 1].

Proposition 5.1 (Athreya). For a measurable E ⇢ R
k,

bµ({⇤ 2 bX : ⇤ \ E = ;}) 6 1

1 + �(E)
.

Here and hereafter � stands for Lebesgue measure on R
k. Taking E = B(0, r) shows that bµ(Sr) <

2�k
r
�k. Thus it only remains to establish a lower bound in (5.1).
There exists an obvious projection, ⇡ : bX ! X, making bX into a T

k-bundle over X (⇡ simply
translates one of the vectors in a grid to the origin). It is easy to see that µ bG is the product of
µG and �. Therefore one has the following Fubini formula:

bµ(Sr) =

Z

X
Q(⇤, r) dµ(⇤), where Q(⇤, r) := �(Sr \ ⇡

�1(⇤)). (5.2)

Here, for ⇤ 2 X, ⇡�1(⇤) is identified with R
k
/⇤ via

[v] 2 R
k
/⇤  ! ⇤� v, (5.3)

and, in the hope that it will not cause any confusion, we will let � stand for the normalized Haar
measure on R

k
/⇤ for any ⇤ 2 X. Writing ⇢⇤ for the projection R

k ! R
k
/⇤, we have

S(r) \ ⇡
�1(⇤) = {[v] 2 R

k
/⇤ : B(0, r) \ (⇤� v) = ;}

= {[v] 2 R
k
/⇤ : B(v, r) \ ⇤ = ;} = ⇢⇤

✓
R
k
r

[

v2⇤
B(v, r)

◆
, (5.4)

so that Q(⇤, r) is the area of a region in a fundamental domain (parallelepiped) in R
k for ⇤

consisting of points which are farther than r from its vertices, that is, from all points of ⇤.
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D. Kleinbock and N. Wadleigh

Recall that SL2(R) double-covers the unit tangent bundle of the hyperbolic upper-half plane,
H

2. Since the action of SL2(Z) on H
2 has a convenient fundamental domain, there are convenient

coordinates for a set of full measure in SL2(R)/ SL2(Z). This enables us to give a rather tidy
proof for the two-dimensional case of (5.1), handling both bounds simultaneously without using
Proposition 5.1. This proof also illustrates the main idea necessary to proving the lower bound in
the general case. We therefore start with a separate, redundant proof of the two-dimensional case.

Proof of (5.1) for k = 2. For fixed r, consider the map (, n, a) 7! Q(naZ2
, r), whose domain

is K ⇥ N ⇥ A, the Iwasawa decomposition for G = SL2(R). (Here K, N , A are the groups of
orthogonal, upper-triangular unipotent, and diagonal matrices respectively.) We first show that
a change of  does not significantly change the value of Q. Indeed, since rotation perturbs the
sup norm by no more than a factor of

p
2, for any  2 K and x,y 2 R

2 we have

kx� yk >
p
2r =) kx� yk > r =) kx� yk > r/

p
2,

hence

⇢⇤

✓
R
2
r

[

v2⇤
B(v,

p
2r)

◆
⇢ ⇢⇤

✓
R
2
r

[

v2⇤
B(v, r)

◆
⇢ ⇢⇤

✓
R
2
r

[

v2⇤
B(v, r/

p
2)

◆
.

By (5.4), this implies
Q(⇤,

p
2r) 6 Q(⇤, r) 6 Q(⇤, r/

p
2). (5.5)

Let a = diag(↵,↵�1). If
2r > ↵, (5.6)

then the lattice naZ
2 consists of horizontal rows of vectors, each closer than 2r to its horizontal

neighbors. Thus the boxes making up the union
S

v2naZ2 B(v, r) overlap in the horizontal
direction, creating horizontal strips. Thus, by (5.4), Q(naZ2

, r) is just the area of the fundamental
parallelogram na(I ⇥ I) minus the strips on top and bottom, as in the following figure.

This smaller parallelogram has area ↵(↵�1 � 2r), provided it is non-empty, that is, provided
2r 6 ↵

�1. Thus from (5.5), if ⇤ = naZ
2, where a = diag(↵,↵�1), we have

Q(⇤, r) 6 Q(�1⇤, r/
p
2) = Q(naZ2

, r/

p
2).

Then if
p
2r > ↵ (so that (5.6) holds for naZ2, after adjusting r as above), we have

↵(↵�1 � 2
p
2r) 6 Q(⇤, r) 6 ↵(↵�1 �

p
2r) if

p
2r 6 ↵

�1
,

Q(⇤, r) = 0 if
p
2r > ↵

�1
.

(5.7)
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An inhomogeneous Dirichlet theorem

We now identify X2 with SL2(Z)\T 1(H2) via gZ
2 7! g

�1(i, i) (here, the matrix g
�1 acts on

(i, i) as a fractional-linear transformation). Recall that

F := T
1{|z| > 1, |Re(z)| 6 1/2}

is a fundamental domain for the action of SL2(Z) on T
1(H2). Under the correspondence g�1(i, i)

7! gZ
2, a point (z, ✓) 2 F maps to a lattice ⇤ = naZ

2 with
p
3/2 6 Im(z) = ↵

�2. Thus if
p
3r2 > 1 (5.8)

(which ensures that the condition
p
2r > ↵ for (5.7) is met) then the estimates (5.7) hold with

Im(z) = ↵
�2 for any lattice ⇤(z,✓), (z, ✓) 2 F . Writing y = Im(z), the estimates become

1� 2
p
2r

p
y

6 Q(⇤(z,✓), r) 6 1�
p
2r

p
y

if
p
2r 6 p

y,

Q(⇤(z,✓), r) = 0 if
p
2r > p

y.

(5.9)

Since the Haar measure on X2 corresponds to the hyperbolic measure (1/y2) dx dy d✓ on F , we
have Z

X0
2

Q(⇤, r) dµ0(⇤) =

Z

F
Q(⇤(x+iy,✓), r) ·

1

y2
dx dy d✓.

Finally, since r is large,3 Q(⇤(z,✓), r) vanishes in the region of F between the line y = 2r2

and the arc of the unit circle, permitting us to integrate over an unbounded rectangular region.
The estimates (5.9) give

2⇡

Z 1

8r2

✓
1� 2

p
2r

p
y

◆
dy

y2
6

Z

X2

Q(⇤, r) dµ(⇤) 6 2⇡

Z 1

2r2

✓
1�

p
2r

p
y

◆
dy

y2
,

where the 2⇡ comes from integrating a constant function over the ✓ factor. Computing these
integrals gives

⇡

12r2
6 bµ(Sr) 6

⇡

3r2
whenever r > 3�1/4

.

This proves (5.1). 2

6. Completion of the proof of Theorem 4.6

We now set up the proof of the general case (k > 2) with some notation and remarks on Siegel
sets. Then the proof will be given following two lemmas generalizing some statements from the
proof of the two-dimensional case.

As before, we wish to write Q(⇤, r) introduced in (5.2) in terms of the coordinates of the
Iwasawa decomposition of a representative g 2 G for ⇤ = gZ

k. We will assume g lies in a subset
of a particular Siegel set. Specifically, for elements of G of the form

n =

2

666664

1 ⌫1,1 ⌫1,2 · · · ⌫1,k�1

0 1 ⌫2,1 · · · ⌫2,k�2

0 0 1
. . .

...
...

...
. . .

. . . ⌫k�1,1

0 0 · · · 0 1

3

777775
, a =

2

666664

a1 0 0 · · · 0
0 a2 0 · · · 0

0 0 a3
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 ak

3

777775
, (6.1)

3
Specifically we need

p
2r > 1, which is already covered by (5.8).
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D. Kleinbock and N. Wadleigh

and for d, e 2 R, c 2 R+, define

Ac := {a 2 A : aj+1 > caj > 0 (j = 1, . . . , k � 1)},
Ne,d := {n 2 N : e 6 ⌫i,j 6 d (1 6 i, j 6 k � 1)}.

Also write K for SO (k). It is known that KA1/2N�1,0 is a ‘coarse fundamental domain’ for �k in
Gk (see [Mor15, § 19.4(ii), following Remark 7.3.4]4). That is,KA1/2N�1,0 contains a fundamental
domain for the right-action of �k on Gk, and it is covered by finitely many �k-translates of that
domain. Therefore KA1N�1,0 is contained in a coarse fundamental domain, and since we are
interested in a lower bound for

R
X Q(⇤, r) dµ(⇤), it will su�ce to bound the integral
Z

KA1N�1,0

Q(gZk
, r) dµG(g) (6.2)

from below.
For the purpose of the lower bound it will su�ce to restrict ourselves to the subset of

KA1N�1,0 with a satisfying

0 < a1 6 a2 6 · · · 6 ak�1 < 2r 6 ak; (6.3)

as we will show, the integral over this set contains the highest-order term of (6.2) as a function
of r.

Lemma 6.1. Suppose a and n are as in (6.1), and assume that a satisfies (6.3). Then

Q(naZk
, r) = 1� 2ra1 . . . ak�1. (6.4)

Proof. The proof follows that of the two-dimensional case. Write ⇤ = naZ
k and let ⇢⇤ : Rk !

R
k
/⇤ be the projection. Using (5.4), one can write

Q(⇤, r) = �

✓
⇢⇤

✓
R
k
r

[

v2⇤
B(v, r)

◆◆
= �

✓
naI

k
r

[

v2⇤
B(v, r)

◆
, (6.5)

where Ik = [0, 1]⇥ · · ·⇥ [0, 1], and �, as before, stands for both the normalized volume on ⇡
�1(⇤)

and Lebesgue measure on R
k. Equation (6.3) implies
[

v2⇤
B(v, r) = R

k�1 ⇥
[

`2Z
(`ak � r, `ak + r),

so that the measure of naIk r
S

v2⇤B(v, r) is the measure of a parallelepiped of dimensions
a1, a2, . . . , ak�1 and ak � 2r, precisely as in the two-dimensional case. In fact the figure used in
the proof of the two-dimensional case is still illustrative: just replace the squares with hypercubes,
let the y-axis stand for the ak-axis, and let the x-axis stand for the hyperplane ak = 0. This
yields (6.4). 2

The next lemma will allow us to disregard the factor K when estimating the integral (6.2).

Lemma 6.2. For  2 K and ⇤ 2 X,

Q(⇤, k1/2r) 6 Q(⇤, r) 6 Q(⇤, k�1/2
r).

4
Our definition is that of [Moo66] post-composed with g 7! g�1

, since our action is on the right.
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An inhomogeneous Dirichlet theorem

Proof. If P ⇢ R
k is a fundamental parallelipiped for the action of ⇤ on R

k, (6.5) gives

Q(⇤, r) = �

✓
Pr

[

v2⇤
{B(0, r) + v}

◆
= �

✓
Pr

[

v2⇤
{�1

B(0, r) + v}
◆
.

But
B(0, rk�1/2) ⇢ 

�1
B(0, r) ⇢ B(0, rk1/2),

so the result follows from another application of (6.5). 2

Now we are ready to write down the proof of (5.1) for the (k > 2)-dimensional case.

Proof of (5.1) for k > 2. Let da, dn, d denote Haar measures on A, N , and K. Define

⌘ : A ! R, a = diag(a1, . . . , ak) 7!
Y

i<j

ai

aj
.

Then the Iwasawa decomposition identifies µG with the product measure ⌘(a) d da dn
(cf. [BM00, V.2.4]). Recall that we aim to bound the integral (6.2) from below. Let us write
n
a = ana

�1 for n 2 N , a 2 A. By decomposing µG as above and restricting the domain of
integration, we have

Z

KA1N�1,0

Q(gZk
, r) dµG(g) =

Z

KA1N�1,0

Q(anZk
, r) d da dn

=

Z

KA1N�1,0

Q(na
aZ

k
, r) d da dn

>
Z

K

Z

N�1,0

Z

{a2A1:ak�162r
p
k6ak}

Q(na
aZ

k
, r)⌘(a) da dn d.

By Lemma 6.2, the latter integral is not smaller than
Z

K

Z

N�1,0

Z

{a2A1:ak�162r
p
k6ak}

Q(na
aZ

k
, k

1/2
r)⌘(a) da dn d,

and by Lemma 6.1 this is the same as
Z

K

Z

N�1,0

Z

{a2A1:ak�162r
p
k6ak}

(1� 2rk1/2a1 . . . ak�1)⌘(a) da dn d.

Since this integrand depends only on a, and the other factors have finite measure, it su�ces to
consider Z

{a2A1:ak�162r
p
k6ak}

(1� 2rk1/2a1 . . . ak�1)⌘(a) da.

Finally we identify da with Lebesgue measure (up to a constant) on R
k�1 via

diag(a1, . . . , ak) 7! (log(a1), log(a2), . . . , log(ak�1)),

see [BM00, V.2.3].5 We are therefore left with the integral

Z

b16b26···6bk�16log(2r
p
k)6�

Pk�1
i=1 bi

✓
1� 2rk1/2 exp

k�1X

i=1

bi

�◆
exp

X

i<j

(bi � bj)

�
d�,

5
Our identification is theirs composed with a linear isomorphism of R

k�1
.
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D. Kleinbock and N. Wadleigh

where the bk occurring in the exponent of the second factor of the integrand must be understood
to stand for �

Pk�1
i=1 bi.

Now the challenge is not the integrand (which consists of nice exponential functions) but
the domain of integration. Thankfully we only have to integrate over a piece of it, since we are
interested in a lower bound. The piece we will consider is the following set:

⇢
(b1, . . . , bk�1) : bi 6 bi+1 6

�log(2r
p
k)

k � 1
(1 6 i 6 k � 2)

�
. (6.6)

This set is clearly contained in the domain of integration above. Reordering the variables
xi := bk�i, and using the identity

P
i<j xi � xj =

Pk�1
i=1 2ixi, we can compute the integral of

Q(aZk
,
p
kr) over (6.6) as an iterated integral:

Z �log(2r
p
k)/(k�1)

�1

Z �log(2r
p
k)/(k�1)

xk�1

· · ·
Z �log(2r

p
k)/(k�1)

x2

⇥
�
e

Pk�1
i=1 2ixi � 2re

Pk�1
i=1 (2i+1)xi

�
dx1 dx2 · · · dxk�1. (6.7)

It is easily seen by induction that for 2 6 ` 6 k � 1,
Z �log(2r

p
k)/(k�1)

x`

Z �log(2r
p
k)/(k�1)

x`�1

· · ·
Z �log(2r

p
k)/(k�1)

x2

⇥
�
e

Pk�1
i=1 2ixi � 2re

Pk�1
i=1 (2i+1)xi

�
dx1 dx2 · · · dx`�1

is a sum of terms of the form
c(2r

p
k)�m/(k�1)

e

Pk�1
i=` pixi

where c > 0, pi are positive integers, and m+
Pk�1

i=` pi = k(k � 1). Indeed,
Z �log(2r

p
k)/(k�1)

x`+1

c(2r
p
k)�m/(k�1)

e

Pk�1
i=` pixi dx`

=
c

p`
(2r

p
k)�(m+p`)/(k�1) exp

 k�1X

i=`+1

pixi

�

� c

p`
(2r

p
k)�m/(k�1) exp


(p` + p`+1)x`+1 +

k�1X

i=`+2

pixi

�
,

so that we have only to notice that

(m+ p`) +
k�1X

i=`+1

pi = m+


(p` + p`+1) +

k�1X

i=`+2

pi

�
= m+

k�1X

i=`

pi = k(k � 1)

from the induction hypothesis. Thus (6.7) is a sum of terms of the form
Z �log(2r

p
k)/(k�1)

�1
c(2r

p
k)�m/(k�1)

e
pk�1xk�1 dxk�1 =

c

pk�1
(2r

p
k)�(m+pk�1)/(k�1)

=
c

pk�1
(2r

p
k)�k(k�1)/(k�1)

=
c

pk�1
(2r

p
k)�k

,

where we have used m+pk�1 = k(k�1). Since the integral is positive, the sum of the coe�cients
must be positive, and the integral grows no more slowly than some multiple of r�k. 2
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An inhomogeneous Dirichlet theorem

7. Concluding remarks and open questions

7.1 The homogeneous problem

Here we return to the homogeneous case and discuss the approach to Question 1.4 suggested
by the foregoing argument. Recall that X = Xk = SLk(R)/ SLk(Z) is the space of unimodular
lattices in R

k. Define
�0 : Xk ! R, ⇤ 7! log inf

v2⇤r0
kvk,

and for A 2 Mm,n, define

⇤A :=

✓
Im A

0 In

◆
Z
m+n 2 Xk,

where k = m + n. If we restrict the flow gt to Xk, it is not di�cult to show6 the following
homogeneous version of Lemma 3.4.

Proposition 7.1. Fix positive integers m,n, and let  : [t0,1) ! (0, 1) be continuous and
non-increasing. Let z = z be as in Lemma 3.1. Then A 2 Dm,n( ) if and only if

�0(gs⇤A) < z (s)

for all su�ciently large s.

This way Question 1.4 reduces to a shrinking target problem for the flow (X, gt), where
the targets are super-level sets ��1

0 ([z,1)). But the family of super-level sets of �0 di↵ers in
important ways from the family of super-level sets of �. In particular, by Minkowski’s theorem,
��1

0 [z,1) is empty for z > 0. Hence the problem reduces to the case where the values z (t)
accumulate at 0, so that the targets shrink to the set ��1

0 (0). The latter set is a union of
finitely many compact submanifolds of X whose structure is explicitly described by the Hajós–
Minkowski theorem (see [Cas71, §XI.1.3] or [Sha10, Theorem 2.3]). In particular, the function
�0 is not DL, and Theorem 4.4 is not applicable. Other approaches to shrinking target problems
on homogeneous spaces [Kel17, KY19, KZ18, Mau06] also do not seem to be directly applicable.

On the other hand, the one-dimensional case (m = n = 1) has been completely settled in
[KW18]. In particular, the following zero–one law has been established.

Theorem 7.2 [KW18, Theorem 1.8]. Let  : [t0,1) ! R+ be non-increasing, and suppose the
function t 7! t (t) is non-decreasing and

t (t) < 1 for all t > t0. (7.1)

Then if X

i

�log(1� i (i))(1� i (i))

i
= 1 (respectively < 1), (7.2)

then the Lebesgue measure of D1,1( ) (respectively, of D1,1( )c) is zero.

The proof is based on the observation that the condition ↵ 2 D1,1( ) can be explicitly
described in terms of the continued fraction expansion of ↵. However, this phenomenon is
inherently one-dimensional, and new ideas are needed to settle the general case.

6
See [KW18, Proposition 4.5], though notice that the function used there di↵ers from �0 by a minus sign.
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D. Kleinbock and N. Wadleigh

7.2 Hausdor↵ dimension

A sequel [HKWW18] to the paper [KW18] computes the Hausdor↵ dimension of limsup sets
D1,1( )c, and, more generally, establishes zero–infinity laws for the Hausdor↵ measure of those
sets. For example, it is proved there that

dim(D( )c) =
2

2 + ⌧
when  (t) =

1� at
�⌧

t
(a > 0, ⌧ > 0).

One can ask similar questions for higher-dimensional versions, both in homogeneous and
inhomogeneous settings. Even the m = n = 1 case of the inhomogeneous problem is open.

7.3 Singly versus doubly metric problems

The main result of the present paper computes Lebesgue measure of the set bDm,n( ) ⇢ Mm,n ⇥
R
m. As often happens in inhomogeneous Diophantine problems, one can fix either A or b and

ask for the Lebesgue (or Hausdor↵) measure of the corresponding slices of bDm,n( ). It seems
plausible that the convergence/divergence of the same series (1.6) is responsible for a full/zero
measure dichotomy for slices

{A 2 Mm,n : (A,b) 2 bDm,n( )}

for any fixed b /2 Z
m. On the other hand, the Lebesgue measure of the set

{b 2 R
m : (A,b) 2 bDm,n( )}

for a fixed A 2 Mm,n seems to depend heavily on Diophantine properties of A. For example,

if A has rational entries, then (A,b) is not in bDm,n( ) whenever b /2 Q
m and  (T ) ! 0 as

T ! 1. And on the other end of the approximation spectrum, if A is badly approximable it
is easy to see that there exists C > 0 such that for all b 2 R

m, (A,b) belongs to the (null) set
bDm,n(C 1). Indeed, by the classical Dani correspondence, A is badly approximable if and only
if the trajectory {gt⇤A : t > 0} is bounded in Xk, which is the case if and only if {gt⇤A,b : t > 0}
is bounded in bXk for any b 2 R

m. Thus the claim follows in view of Lemma 2.2. It would
be interesting to describe, for a given arbitrary non-increasing function  , explicit Diophantine
conditions on A 2 Mm,n guaranteeing that (A,b) 2 bDm,n( ) for all (or almost all) b 2 R

m.

7.4 Eventually always hitting

Finally, let us connect our results on improving the inhomogeneous Dirichlet theorem with a
shrinking target property introduced recently by Kelmer [Kel17]. We start by setting some
notation. Let ↵ be a measure-preserving Z

n-action on a probability space (Y, ⌫). For any N 2 N

denote
DN := {q 2 Z

n : kqk 6 N}

(here, as before, k · k stands for the supremum norm). Then, given a nested family B =
{BN : N 2 N} of subsets of Y , let us say that the ↵-orbit of a point x 2 Y eventually always hits

B if ↵(DN )x \BN 6= ; for all su�ciently large N 2 N. Following [Kel17], denote by A↵
ah(B) the

set of points of Y with ↵-orbits eventually always hitting B. This is a liminf set with a rather
complicated structure. In [Kel17] su�cient conditions for sets A↵

ah(B) to be of full measure were
found for unipotent and diagonalizable actions ↵ on hyperbolic manifolds. Namely, it was shown7

7
Note that Kelmer considered the eventually always hitting property for forward orbits, that is, with sets D+

N :=

{q 2 Z
n
: qi > 0, kqk 6 N} in place of DN .
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An inhomogeneous Dirichlet theorem

(see [Kel17, Theorem 22 and Proposition 24]) that for rotation-invariant monotonically shrinking
families B, ⌫(A↵

ah(B)) = 1 if the series

X

j

1

2nj⌫(B2j )
(7.3)

converges. See also [KY19] for some extensions to actions on homogeneous spaces of semisimple
Lie groups. However, to the best of the authors’ knowledge, there are no non-trivial examples of
measure-preserving systems for which necessary and su�cient conditions for sets A↵

ah(B) to be
of full measure exist in the literature.

Now, given A 2 Mm,n, take Y = T
m with normalized Lebesgue measure ⌫ and consider the

Z
n-action

x 7! ↵(q)x := x+Aq mod Z
m (7.4)

on Y (generated by n independent rotations of Tm by the column vectors of A). Also fix y 2 Y

and a non-increasing sequence {r(N) : N 2 N} of positive numbers, and consider the family B
of open balls

BN := {x 2 T
m : kx� yk < r(N)}. (7.5)

Then it is easy to see that x 2 A↵
ah(B) if and only if for all su�ciently large N 2 N there exist

q 2 Z
n and p 2 Z

m such that

kqk < N + 1 and kx+Aq� p� yk < r(N). (7.6)

Here and hereafter ↵ and A are related via (7.4). A connection to the improvement of the
inhomogeneous Dirichlet theorem is now straightforward. Indeed, from Theorem 1.6 one can
derive the following corollary.

Corollary 7.3. Fix y 2 T
m and let B = {BN : N 2 N} be as in (7.5), where {r(N) : N 2 N}

is a non-increasing sequence of positive numbers. Then for Lebesgue-almost every A 2 Mm,n the
set A↵

ah(B) has zero (respectively, full) measure provided the sum (7.3) diverges (respectively,
converges).

Proof. Extend r(·) to a non-increasing continuous function on R+ in an arbitrary way (for
example, piecewise linearly). Then, similarly to the observation made after (1.4), one can notice
that x 2 A↵

ah(B) if and only if the system (7.6) is solvable in integers p,q for all su�ciently large

N 2 R+. The latter happens if and only if the pair (A,x� y) belongs to bDm,n( ), where

 (T ) := r(T 1/n � 1)m.

In view of Theorem 1.6, the divergence of the sum

X

j

1

 (j)j2
=

X

j

1

r(j1/n � 1)mj2
⇣

Z
dx

r(x1/n � 1)mx2
⇣

Z
(y + 1)n�1

dy

r(y)m(y + 1)2n

⇣
Z

dy

r(y)myn+1
⇣

Z
2z dz

r(2z)m2z(n+1)
⇣

X

j

1

r(2j)m2nj
⇣

X

j

1

2nj⌫(B2j )

implies that bDm,n( ) has measure zero. Hence for almost every A the setA↵
ah(B) is null. Similarly,

the convergence of (7.3) implies that bDm,n( ) is conull. Thus for Lebesgue-generic A the set
A↵

ah(B) has full measure. 2
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