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Abstract

Accurate prosody prediction from text leads to more
natural-sounding TTS. In this work, we employ a new set of fea-
tures to predict ToBI pitch accent and phrase boundaries from
text. We investigate a wide variety of text-based features, in-
cluding many new syntactic features, several types of word em-
beddings, co-reference features, LIWC features, and specificity
information. We focus our work on the Boston Radio News
Corpus, a ToBI-labeled corpus of relatively clean news broad-
casts, but also test our classifiers on Audix, a smaller corpus
of read news, and on the Columbia Games Corpus, a corpus of
conversational speech, in order to test the applicability of our
model in cross-corpus settings. Our results show strong per-
formance on both tasks, as well as some promising results for
cross-corpus applications of our models.
Index Terms: prosody, text-to-speech, ToBI, syntax, word em-
beddings

1. Introduction
Generating accurate prosody can lead to more natural text-to-
speech synthesis. However, most corpora used to train TTS
systems are unfortunately not prosodically labeled. In order to
generate accurate TTS output for novel sentences encountered
by a TTS system, it is necessary to predict prosodic informa-
tion from text. The problem of predicting prosody from text has
been studied for over three decades. However, earlier work pri-
marily focused on fairly simple feature sets, such as word posi-
tion in sentence (distance from beginning and end) and sentence
length, part of speech tags, punctuation, and word repetition.
This is likely due to the difficulty in extracting more complex
features at the time. While more recent work does make use
of more complex features, it has often focused on smaller fea-
ture sets or on only one type of feature, such as incorporating
syntactic features or only word embeddings.

Today, we have tools that can quickly and accurately extract
a wide variety of linguistic features from text. In this paper we
present results of work incorporating a number of these features,
including syntactic features, word embeddings, co-reference in-
formation, LIWC features, and specificity information in order
to improve prosody assignment from text. We focus our work
on the Boston Radio News Corpus (BURNC), a corpus of rela-
tively clean radio news speech, that has been labeled using the
ToBI (Tones and Break Indices) labeling system [1, 2, 3]. We
additionally test our models on Audix, a smaller ToBI-labeled
corpus of news speech, and the Columbia Games Corpus, a
corpus of conversational speech created to investigate the rela-
tionship between prosody and co-reference, in order to examine

the performance of our model in cross-corpus and cross-domain
settings.

We focus on two tasks: predicting pitch accents, words that
are produced with more intonational prominence than others,
and phrase boundaries, pauses or intonational breaks between
words. We treat both tasks as binary classification tasks on the
text in our corpora, predicting whether a given word is accented
or not and whether or not a word is followed by a phrase bound-
ary. To do this, we treat all ‘*’ tone labels for Standard Ameri-
can English ToBI (such as H*, L* or !H* accents) as belonging
to the positive ‘pitch accent’ category, and all ‘4’ and ‘4-’ break
labels in the ToBI phrase labeling scheme as belonging to the
positive ‘phrase boundary’ category.

2. Previous Work
The problem of predicting prosody from text has been studied
for over three decades. Most of the earliest research used simple
features that are relatively easy to extract from text, such as part
of speech, a word’s position in a sentence or paragraph, punc-
tuation, and whether a word has previously appeared in the text
[4, 5, 6]. Somewhat later work incorporated more complex syn-
tactic features, showing that syntactic supertags and informa-
tion about syntactic constituency improve prosody prediction
[7, 8].

Much of the more recent work on prosody prediction has
focused on incorporating a more complex set of syntactic fea-
tures into the earlier feature sets. Ingulfsen performed phrase
boundary detection on BURNC and examined a large set of syn-
tactic features, showing that shallow features pulled from con-
stituency and dependency parses outperformed more complex
forms of syntactic chunking [9]. Chen et al. similarly used syn-
tactic features to perform both phrase boundary and pitch accent
detection, again on the BURNC data, using a neural model that
incorporated parts of speech as well as information about words
at the boundaries of syntactic constituents [10]. Tepperman and
Nava also experimented on BURNC, showing that a model built
using parse tree transducers outperforms a simple n-gram based
model for both phrase boundary and pitch accent detection [11].
More recently, in 2015, Mishra et al. demonstrated that a non-
lexicalized model built of part of speech tags and dependency
features performs comparably to a lexical model containing the
same features on phrase boundary prediction, making it more
applicable in cross-corpus situations [12]. In the same year,
Obin and Lachantin incorporated a rich set of syntactic fea-
tures, pulled from syntactic and constituency parses as well as
tree-adjoining grammar parses, showing that these were useful
for predicting both breaks and accents in read and spontaneous
speech [13].



More recent work has focused instead on using word em-
beddings for prosody prediction. Rendel et al. examined the use
of a number of pre-trained embeddings in prosody prediction,
showing that using GLoVe pre-trained embeddings and a con-
tinuous bag-of-word model trained on Google news data could
provide sizeable improvement in pitch accent prediction and a
slight improvement in phrase boundary prediction [14]. Sim-
ilarly, Klimkov et al. used pre-trained word2vec embeddings
along with part of speech and dependency parse features to per-
form phrase break detection on a corpus of audiobook speech
[15].

In research on cross-corpus evaluation of prosody predic-
tion, Rosenberg et al. investigated phrase boundary predic-
tion and detection across five different corpora from different
domains, including both BURNC and the Columbia Games
corpus, showing not surprisingly that the performance drops
in cross-corpus applications, particularly on the spontaneous
speech of the Games corpus [16]. More recently, Rendel et
al. trained a model on a corpus of professionally recorded
speech specifically designed for building a TTS system and
tested it on BURNC, showing that precision remained similar
but that recall dropped significantly in the cross-corpus scenario
[17].

In the work we present here we employ a new set of features
— new syntactic features, several types of word embeddings,
co-reference features, LIWC features, and specificity informa-
tion — along with features known to be useful to classify pitch
accent and phrase boundary prediction on the BURNC corpus.
Many of these features have never been used before, and many
of those that have have not been used in conjunction. We then
test models trained on BURNC on the Audix Corpus of read ra-
dio news to examine cross-corpus prediction in a similar genre.
We also test on a larger version of the Columbia Games Corpus
to explore cross-corpus prediction on a different genre, sponta-
neous conversation.

3. ToBI Labeling for Standard American
English

The labeling scheme our corpora were annotated in is the ToBI
(Tones and Break Indices) system [2, 3], developed in the 1990s
by a large number of linguists and computational linguists to
enable the sharing of prosodically labeled data across multiple
labs. The ToBI labeling scheme consists of four tiers: an or-
thographic tier for time-aligned transcripts; a tone tier for pitch
accents and phrase accents; a break index tier where degrees
of juncture between words are marked from 0 (no break) to
4 (an intonational phrase break); and a -miscellaneous tier in
which other phenomena such as self-repairs, laughter, and filled
pauses may be marked if desired. The ToBI system for Standard
American English defines five pitch accent types marking sim-
ple H* and L* accents as well as complex tones that combine
the two in different ways. It also defines two types of phrasal
accents: intermediate phrases that are associated with a level 3
break index and intonational phrases that are associated with a
level 4 break, usually accompanied by some degree of pause.
The AuToBI system [18] was developed to classify these phe-
nomena automatically by training on prosodically labeled and
transcribed speech. In our work on prosody prediction from
text, we collapse pitch accent types into a binary decision: ac-
cented or deaccented (not accented) and phrase breaks so level 4
or 4- (slightly lesser boundary) or other. Lower level boundaries
are very difficult to annotate or to produce in a TTS system.

4. Corpora
4.1. BURNC

The major focus of the work we present here has been done on
the BURNC (Boston University Radio News Corpus) [1] data of
read news broadcast speech. BURNC was compiled from over
seven hours of professional read radio newscast speech by Mari
Ostendorf, Patti Price and Stephanie Shattuck-Hufnagel. Their
primary objective in creating BURNC was to generate clean
speech data conducive to prosody research. Speakers consist
of three female and four male professional radio news announc-
ers. Due to the high quality of speech, the corpus contains very
few disfluencies or prosodic “irregularities”. Orthographic tran-
scription of the data was performed by hand, and part of speech
labels were generated automatically and then hand-corrected.

A portion of the corpus was manually labeled with ToBI la-
bels, including some data from each of the female speakers and
two of the male speakers. We have labeled the remainder of the
corpus using an AuToBI model [18], a tool that automatically
generates prosodic labels from audio, trained on the prosodi-
cally labeled portions of BURNC, but we found that including
these data slightly decreased the performance of our classifiers
and therefore ultimately included only the hand-labeled data in
our experiments. This is likely due not only to some inaccura-
cies in the AuToBI output, but also to the nature of the prosodi-
cally unlabeled portion of the corpus, which contains some un-
scripted interview questions; these are more likely to contain
disfluencies.

4.2. Columbia Games Corpus

To examine how our classifier performs in cross-domain con-
texts, we also examined the Columbia Games Corpus, a cor-
pus of spontaneous conversational speech created to examine
the relationship between the givenness of a mentioned item and
the prosody the item was produced with. It was hypothesized
that the deaccenting of items which had been previously men-
tioned was related to the distance of the item from its previ-
ous mention, the number of times the item had been previ-
ously mentioned, the syntactic function (part of speech) of the
item, and the number of “given” items in the current utterance.
The Columbia Games Corpus consists of a collection of twelve
spontaneous task-oriented dialogues from six male speakers and
seven female speakers [19]. The subjects played two computer
games in pairs that required verbal communication to achieve
joint goals, one that required matching cards containing pic-
tures of multiple objects on their screens (which were not vis-
ible to their partner) and another that required describing an
object’s locations on the describer’s screen so that the listener
could place the same object on their screen in exactly the same
location (again, each subjects’ screens were not visible to the
partner). For both games, a different set of objects with varying
sizes and colors appeared on each player’s screen; successful
completion of the games required players to describe these ob-
jects in the Cards games and to describe the location of objects
in the Objects games. Subjects received points for each success-
fully completed subtask, and they were paid additional money
for the earned points.

The entire corpus was manually transcribed and time-
aligned. All of the Objects portion of the corpus and roughly
one third of the Cards portion, for a total of slightly over 5
hours, were manually labeled with ToBI labels. The remain-
der of the corpus was labeled using an AuToBI trained on the
manually labeled portion. The entire corpus was used in our



experiments. Note that this has resulted in a larger corpus than
previously used in prosody prediction research but also one with
some automatic prosodic labels as well as the manual labels.

4.3. Audix

The Audix corpus consists of ten news stories recorded by a fe-
male professional newscaster in laboratory conditions and com-
prises approximately thirty minutes of speech. The stories were
selected from the AP newswire and were produced largely as
written, with few disfluencies. The corpus is introduced in [6],
which used classification and regression trees (CART) to detect
pitch accents. We use six of these ten stories (as the remaining
four did not have usable ToBI lablels). These six represent 17
minutes of speech and 2833 total words. As this is the smallest
of our corpora, we primarily use it to evaluate models trained
on other corpora.

5. Classification Model
Our models for prosody prediction were Random Forest esti-
mators, each of which fits 200 decision tree classifiers on sub-
sets of the data. (Due to the relatively small size of our cor-
pora, we chose not to use deep learning models.) To assess the
performance of the predictive models in our experiments, both
within- and cross-corpus, it would not be satisfactory to use a
regular leave-one-speaker-out cross-validation scheme, because
the three corpora have different numbers of speakers and vary-
ing amounts of speech per speaker. Thus, to make these com-
parisons as fair as possible, we select one speaker each from
BURNC and Games (speakers f3a and 101, respectively) to
serve as the test sets. For BURNC, we use all remaining speak-
ers as the training set. For Games, in order to avoid any potential
effects of entrainment (the tendency of conversational partners
to speak like one another), we also exclude all data from those
sessions in which speaker 101 participated, and we use the data
from the 10 remaining sessions as our training data.

The set of features we included in our models are presented
below. All of these features were tested first on the BURNC cor-
pus. In our cross-corpus experiments, we excluded all word em-
bedding features, as these were created specifically from the vo-
cabulary of BURNC. Additionally, as there was no punctuation
or proper names present in Games, punctuation and named en-
tity features were excluded from the cross-corpus experiments
that included Games.

5.1. Positional Features

For all corpora, the length of the current sentence and the
word’s position in the sentence were included as features. In the
BURNC and Audix corpora, punctuation was already present in
the transcripts. In the Games corpus, as there was no punctu-
ation present in the manual transcripts, these features were ex-
tracted using a rule-based sentence segmentation script, which
assigned sentence breaks based on the length of silence between
words, as well as the parts of speech occurring before and after
a potential sentence break.

5.2. Syntactic Features

We used a wide variety of syntactic features in our model. For
BURNC, gold standard labels for the current and next word’s
parts of speech were provided with the corpus. These labels
were initially automatically generated and then were hand cor-
rected, so they are fairly similar to the output of automatic tag-

gers like the Stanford CoreNLP tagger but are presumably more
accurate. For the Games and Audix corpora, these features were
extracted using Stanford CoreNLP’s part of speech tagger.

The Stanford parser was used to obtain dependency and
syntactic parses for all corpora. From the dependency parse,
we obtained each word’s syntactic function, the label of the de-
pendency relationship that has the given word as the head. The
current and next words’ syntactic functions were included as
features.

The depth and width of the syntactic parse trees were in-
cluded as features, as well as the depth of the current word in the
tree. We also included the width and depth of the smallest con-
stituent containing the current word, as well as this constituent’s
root label and the position of the current word with in the con-
stituent. Finally, we included the width, depth, and root label
as features and the minimal spanning tree containing the leaf
nodes for the current word and the next word, as we believed
these features would be helpful in determining the presence of
a phrase boundary between the two words.

Lastly, in addition to part of speech tags, we include su-
pertags, which are tags that provide more specific information
about a word’s syntactic role [20]. Based on the Tree-Adjoining
Grammar formalism, supertags consist of a portion of a syntax
tree, which can capture information about a word’s arguments,
as well as its part of speech. For example, a supertag can dis-
tinguish between a noun in a subject position and one in object
position. Previous work has shown that supertags can improve
prosody prediction [7]. So we extracted supertags to use as fea-
tures with a newer bi-LSTM based supertagger pre-trained on
the Wall Street Journal [21].

5.3. Word-Level Features

We included a number of word-level features in our model.
Most simply, we included the number of syllables in each word.
For BURNC and Audix, we also included the punctuation ap-
pearing after each word.

Using Stanford CoreNLP, we ran named entity recognition
(NER) on both BURNC and Audix. (Note that the Games cor-
pus did not include any named entities.) We included the NER
tags of the current and next words as features.

Lastly, we used Linguistic Inquiry and Word Count (LIWC)
[22] dimensions as features. LIWC is a system that uses a
dictionary to categorize words into 73 categories pertaining to
emotions, thinking styles, social concerns, and parts of speech.
For example, the word trying belongs to the categories of cogni-
tive processes, drives (e.g. needs and motives), verbs, tentative,
and achievement.

5.4. Co-Reference Features

The presence and frequency of a word’s previous co-references
can have an effect on its prosody. In particular, it is believed
that a new word is more likely to be accented than a given
word that has previously appeared. In all three corpora, we
identified co-reference using Stanford CoreNLP’s determinis-
tic CorefAnnotator [23]. Using these groups of co-references,
we then extracted a set of co-reference features, specifically the
number of previous mentions of the current word, the distance
between the current word and its most recent mention, the part
of speech of the most recent mention, and the syntactic function
of the most recent mention. We also separately included the dis-
tance, part of speech, and syntactic function of the most recent
explicit (identical) mention and the most recent implicit (non-
identical) mention. In cases where co-references were multi-



word phrases, the head word of the phrase was used to generate
these features.

5.5. Word Embedding Features

Word embeddings often augment the performance of NLP mod-
els by quantifying measures of syntactic and semantic relations
in language, and they often can capture elements of syntax and
usage that cannot be captured by more transparent linguistic
features. Previous studies have shown that word embeddings
can be a useful feature in predicting prosody [14, 15]. In our
experiments, we looked at both word embeddings and sentence
embeddings, which are generated by adding the embeddings of
each word in a given sentence. In order to integrate word em-
beddings into our Random Forest model, we performed clus-
tering on these embeddings using the k-means clustering algo-
rithm [24].

We trained word embeddings on the BURNC corpus di-
rectly, as well as experimenting with a variety of pre-trained
embeddings. To begin with, we trained 200d embeddings on
BURNC directly, using the Word2vec skipgram model with
negative sampling [25], with a window size of 4 words. Further-
more, because syntactic structure has a strong relationship with
prosody, we also used the dependency parses to generate an-
other set of 200d embeddings from BURNC by using word2vec
with a word’s lexical dependencies instead of a linear context
window. We also used a set of pre-trained 300d dependency-
based vectors trained on Wikipedia data by Levy and Goldberg
[26].

For pre-trained embeddings, we used a set of embeddings
trained from Google news [27], as the Google news dataset is
similar in domain to BURNC. We also used a set of pre-trained
300d gender-neutral embeddings based on GloVe embeddings
[28], as any gender bias present in our data is unlikely to have
an effect on prosody. Finally, we used an algorithm to map
words between two models of the same language [29] to adapt
pre-trained GLoVe embeddings to BURNC.

In most cases, we assigned each word embedding to one
of five clusters and each sentence embedding to one of twenty
based on our k-means clustering results. (These values were
determined empirically based on model performance.) These
clusters were able to capture grammatical and syntactic proper-
ties. For example, cluster 1 contained many proper nouns and
concrete nouns, cluster 4 contained many modifiers and com-
paratives, and cluster 5 contained many function words. For
each embedding, we included the current word and sentence’s
embeddings, as well as the embeddings for the sentences and
words two before and two after the current ones.

5.6. Speciteller

Speciteller [30] is a tool for determining how specific a given
sentence is. Based on the words present in the sentence, it
assigns a specificity score ranging from 0 (most general) to 1
(most detailed). Sentences with pronouns and general terms
will have lower scores, such as “Estimates vary widely on how
much money could be saved”, which has a score of 0.0186,
whereas sentences with more proper nouns and specific terms,
such as “Quincy based Arbella Mutual Liability can now take
over American Mutual’s forty thousand car and home owner’s
policies”, will have higher scores – in this case 0.872.

Feature Set Accuracy F1
Best Model 81.9% 0.844

Best Model without LIWC 80.9% 0.832
Best Model without Embeddings 80.2% 0.826

Best Model without Syntax 79.1% 0.817
Baseline 50.4%

Table 1: Performance scores for pitch accent detection

Feature Set Accuracy F1
Best Model 93.4% 0.810

Best Model without Punctuation 92.5% 0.774
Best Model without Syllables 92.0% 0.770
Best Model without Syntax 85.5% 0.575

Baseline 82.8%

Table 2: Performance scores for phrase boundary detection

6. Results
6.1. BURNC

The results for pitch accent detection are displayed in Table 1.
Our best model achieves an accuracy of 81.9%, which is higher
than Tepperman and Nava’s model, which achieved an accuracy
of 76.83% [11] and only slightly below Chen et al.’s accuracy
of 82.7% [10]. This indicates that our model is quite strong but
still has some room for improvement.

The best model for this task included all syntactic and
word-level features, as well as gender-neutral embeddings, co-
reference features, and Speciteller. Syntactic features, word
embeddings, and LIWC features had the strongest effect on
the model. In particular, the two most heavily weighted fea-
tures include the LIWC dimension for function words and the
number of syllables in the current word, as function words
and short words are less likely to be accented. Other heavily
weighted features include the sentence embedding features, the
parse tree’s width and depth, and the Speciteller score. These
results, along with the high performance of syntactic and em-
bedding features on this task, indicate that context is highly im-
portant in determining pitch accent, particularly among longer
content words. The performance of the gender-neutral embed-
ding features in particular seem to indicate the importance of
context, as all seven of the sentence embedding features were
weighted among the top 15 individual features in the random
forest model, whereas none of the word embedding features
were. The fact that the only helpful embeddings for this task
were gender-neutral embeddings, which were the set of embed-
dings least adapted to the news domain but also the only ones
that removed semantic bias, also seems to indicate that general
context plays a more important role in determining pitch accent
than a particular word’s semantic content.

The results for phrase boundary detection are displayed in
Table 2. Our best model achieves an accuracy of 93.4% and an
F1 of 0.810. This is a notable improvement over Rosenberg et
al.’s model, which had an accuracy of 90.5% and an F1 of 0.781
[16].

The best model for this task included all syntactic features,
all word-level features except for LIWC dimensions, the word
embeddings trained directly on BURNC, and Speciteller scores.
Syntactic features had by far the biggest impact on the model’s



Training Set
Games BURNC Naive

Te
st

Se
t Games Accuracy 73.5% 70.5% 65.5%

F1 0.566 0.630

BURNC Accuracy 70.2% 80.9% 52.8%
F1 0.562 0.776

Audix Accuracy 69.1% 80.2% 50.9%
F1 0.557 0.766

Table 3: Accuracy and F1 scores for cross-corpus evaluation of
pitch accent.

Training Set
Games BURNC Naive

Te
st

Se
t Games Accuracy 87.4% 84.2% 83.7%

F1 0.565 0.442

BURNC Accuracy 70.2% 92.6% 52.8%
F1 0.137 0.783

Audix Accuracy 79.4% 89.8% 78.5%
F1 0.079 0.732

Table 4: Accuracy and F1 scores for cross-corpus evaluation of
phrase boundaries.

performance, followed by the number of syllables in the current
word and punctuation following the word. In particular, heav-
ily weighted features included features tied to the constituency
parse, including the width of the parse tree, the width of the
spanning tree, and the position of the current word in its smallest
syntactic constituent, as well as the supertag t3, which consists
of nouns appearing at the end of noun phrases. These results are
unsurprising, as periods and commas generally indicate phrase
boundaries, and phrase boundaries often occur at the end of syn-
tactic constituents. However, the results of combining these fea-
tures with our new features are most encouraging, as our results
are improved by including more semantically oriented features,
such as Speciteller, word embeddings, and NER features. (In
fact, the Speciteller score is a heavily weighted feature in our
trained model.) Furthermore, the performance of supertag fea-
tures, which alone improve our model’s accuracy by over 1%,
indicates that more complex syntactic features can be useful in
predicting prosody along with more simple constituency infor-
mation.

6.2. Cross-Corpus Evaluation on the BURNC, Games and
Audix Corpora

Tables 3 and 4 show the cross-corpus results for pitch accent
and phrase boundary prediction, as well as the results on these
corpora when tested with a naive model that predicts the major-
ity class in all cases.

As these results show, the models perform well when tested
on new corpora within the same domain, as the results of train-
ing on BURNC and testing on Audix are only mildly worse than
the results of training and testing on BURNC for both tasks. Ad-
ditionally, on the pitch accent prediction task, the model trained
on BURNC seems to perform adequately in cross-domain appli-
cations, as that model has a higher F1 (albeit a lower accuracy)
than the model trained and tested on Games and performs no-
ticeably better than the majority class baseline. However, nei-

ther model performs particularly well, so it is clear that a differ-
ent set of features is necessary to achieve strong performance
on the Games corpus.

On the other hand, while our models apply well across cor-
pora of the same domain on the phrase boundary prediction
task, they perform very poorly in cross-domain situations — in
this case when models trained on read speech are tested on con-
versational data or vice versa. The model trained on BURNC
performs only slightly better than the baseline when tested on
Games, and the models trained on Games and tested on BURNC
and Audix perform extremely poorly, having a recall of less than
0.1. This is most likely because of the presence of punctuation
in the news corpora, which is not present in Games. Further-
more, the news data contains longer, more structured sentences,
whereas Games contains many more fragments and disfluen-
cies. Therefore, phrases, and consequently phrase boundaries,
are very different across the corpora.

7. Conclusions
In this paper, we have presented a text-based model that pre-
dicts binary ToBI labels for pitch accent and phrase breaks
from text and can be applied across corpora of scripted news
data. Our model performs very well when trained and tested on
BURNC, particularly on the phrase boundary prediction task,
where it noticeably outperforms previous text-based work on
the same corpus. Performance on pitch accent prediction is also
stronger than or comparable to prior work. It also shows rel-
atively strong performance in cross-corpus applications within
the same domain of broadcast news, but it performs less well
in cross-domain applications of spontaneous conversation. Im-
proving cross-domain performance by examining the prosodic
differences between read and spontaneous speech and determin-
ing which features are similar between the two will be a focus
of future study.

Additionally, while we have shown that our model suc-
cessfully predicts ToBI labels, the success of prosody realiza-
tion within text-to-speech systems can be much more subjec-
tive. Future work will focus on incorporating our models into
a text-to-speech system to determine if they do in fact improve
naturalness. Furthermore, by focusing on news data, and even
within the Games corpus, this work focuses primarily on neutral
speech presenting factual information. However, in many new
text-to-speech applications, such as voice assistants, there is a
need for producing not just conversational but also emotional
speech, which involves major differences in prosody. Future
work will extend our models into these domains.
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