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Abstract—Social media embed rich but noisy signals of physical
locations of their users. Accurately inferring a user’s location can
significantly improve the user’s experience on the social media
and enable the development of new location-based applications.
This paper proposes a novel community-based approach for
predicting the location of a user by using communities in the ego-
net of the user. We further propose both geographical proximity
and structural proximity metrics to profile communities in the
ego-net of a user, and then evaluate the effectiveness of each
individual metric on real social media data. We discover that
geographical proximity metrics, such as average/median haversine
distance and community closeness, are strong indicators of a good
community for geotagging. In addition, structural proximity met-
ric conductance performs comparable to geographical proximity
metrics while triangle participation ratio and internal density are
weak location indicators. To the best of our knowledge, this is
the first effort to infer the physical location of a user from the
perspective of latent communities in the user’s ego-net.

Index Terms—community detection, Ego-net, geographical
proximity, structural proximity, Twitter

I. INTRODUCTION

As social media get increasingly popular and are used to
host innovative applications to address real-world challenges,
accurately resolving the real-world geographic location of
a social media user is critical. For example, public health
applications such as flu surveillance systems [1] [2], which use
social media signals to infer the users’ real-world flu status,
require accurate user Geo-location in order to make location-
related actions. Additionally, accurate user location prediction
can significantly improve a user’s experience through location-
based personalization such as localized content and location-
aware recommendations. It can also enable new location-
based applications. In reality, today’s social media embed rich
geographic data. A user can provide their home location in
the location field of their user profile. Tweets may include
metadata such as the time and GPS-coordinates associated
with the tweet. The content of the tweet may also indicate a
location. However, the location information in social media is
usually noisy and sparse. The location information in the user
profile can be arbitrary strings instead of meaningful locations,
and tweet content can be ambiguous as well. Moreover, [3]
reports that only about 1 to 3% of all tweets are tagged
with geographical coordinates as meta-information in 2013.
Therefore, to correctly determine the real-world Geo-location
of a social media user is a challenging problem.

Extensive research has investigated the inference of a user
location by studying social relationships between users in
social media [4] [5] [6] [7] [8] [9] and utilizing the content
of their tweets [10] [11]. Several survey articles [12] [13]
also systematically compared different approaches of location
inference.

People form online social relationships for different reasons.
Some of them are between relatives or acquaintances and live
close. Others are formed by people from all over the world
who have never met each other, but simply share interests in
politics, sports, etc. This is especially true for Twitter since its
main purpose is for information dissemination. These different
contacts play different roles towards inferring physical location
of a target. For example, a family community should provide
more value in determining a user’s location than a general
political community that the user belongs to. A challenging
question is, how to distinguish such relationships and discover
the relationships that help the inference of a user’s location?

In this paper, we propose a novel methodology based on
latent communities in social media to determine the locations
of social media users. Community is a structure within which
users are densely connected to each other while being more
loosely connected to the outside world. By identifying the
communities that a user belongs to, we can divide their
contacts into groups of different purposes and choose the best
community to predict the location of the user.

Our methodology contains three steps. First, collect and
build the ego-net of individual users. The ego-net is a network
evolving around a user, called the focal node. It includes
the focal node, all its neighbors, and the ties between those
neighbors. Second, remove the focal node from the ego-net
and then apply community detection algorithms to discover
all communities in the ego-net. We adopt a well-accepted
algorithm Infomap [14] to discover the latent communities.
As mentioned in [15], Infomap can produce communities with
desirable sizes for social media. Third, we define geographical
proximity and structural proximity metrics to profile a com-
munity and choose the community which can provide the most
reliable location information for the user. The location of the
user is then predicted by the geometric median of the locations
of all users in the best community. We propose metrics such
as average/median haversine distance and community close-
ness to measure the geographical proximity of a community.
Family communities usually have a high geographical prox-
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imity since family members tend to live close to each other.
We also use structure-based metrics including conductance,
triangle participation ratio, and internal density to measure
the structural properties of a community. In our experiments,
we investigate the impact of a community’s structure and
geographical proximity on the accuracy of inferred locations.
We discover that geographical proximity metrics including
average/median haversine distance and community closeness
are strong indicators of a good community for geotagging.
In addition, structural proximity metric conductance performs
comparable to geographical proximity metrics while triangle
participation ratio and internal density are weak location
indicators.

The contribution of this paper are twofold: 1) we propose
a novel community-based approach for location inference
in social media. To the best of our knowledge, this is the
first time that a community-based approach is introduced and
systematically evaluated on a real data set. 2) We propose
metrics to measure the geographical proximity and structural
proximity of a community and carry out extensive experiments
to evaluate the effects of these metrics on the accuracy of
location inference.

The remainder of this paper is organized as follows. Section
II describes the proposed community based location predica-
tion approach and the metrics for community proximity and
community structure. Section III explains our data collection
and filtering process and shows the statistics of the data. Exper-
imental results are given in Section IV. Section V summarizes
related work in location inference in social media and Section
VI concludes this paper and outlines our future work.

II. COMMUNITY BASED LOCATION PREDICTION
APPROACH

In this section, we first illustrate the motivation of the
community-based location prediction approach, and then pro-
pose metrics to profile a community and decide the coordinates
of the focal node of the community.

A. Communities in User Ego-Net

Social media users form online social relationships which
can be used as indicators for predicting a user’s physical
location. However, social relationships are formed for a variety
of reasons. Family and friends in real life will be natural
friends on social media, while relationships can also form
when two social media users share similar interests in politics
or sports, even if they are from distant physical locations and
have never met each other. Different contacts play different
roles towards inferring the physical location of a target. We
propose a novel methodology based on latent communities
in social media to determine the locations of social media
users. To be more specific, our approach utilizes the social
relationships embedded in the communities of the ego-net of
a user and then choose the best communities to infer the
geographic location of the target node. The ego-net is defined
as the network evolving around a focal node. It includes the
focal node and all its neighbors and the ties among all its

neighbors. We choose the ego-net because the location of
a user is more related to the locations of their friends and
how their friends are connected among themselves, rather
than the locations of others that are not directly related to
the user. Communities in an ego-net are then identified with
the directed Infomap [14] algorithm, which is a random walk
algorithm based on information theory and produces high
quality communities [15].

Fig. 1: Ego-net of a user in New York, NY

Figure 1 illustrates the motivation of our community-based
approach. The central yellow node is a user who lives in
New York, NY with 10 associated communities. The largest
community colored red is around Los Angeles, California. The
second largest community colored dark orange is in Philadel-
phia, PA, followed by the light orange community in New
York, NY. If the location of the focal node is determined based
on the most common locations of its contacts, this user would
be geotagged to Los Angeles, California. With community-
based approach, by choosing the communities with the best
community closeness value, we are able to infer the user’s
correct location in New York, NY.

B. Community Goodness Metrics

We propose to measure the goodness of a community
from two perspectives: community geographical proximity
and community structural proximity. Community geographical
proximity is measured with average/median haversine distance
and community closeness. Community structural proximity
is measured with conductance, internal density, and triangle
participation ratio. We list and describe these metrics as below:

Average/Median haversine distance: The haversine dis-
tance calculates the arc distance between two points on a
sphere given their longitudes and latitudes. For every pair of
users in a community, we calculate the haversine distance be-
tween them, filter the long-distance outliers using the Median
Absolute Deviation (MAD), and calculate the average/median
haversine distance of all remaining distances.

Community closeness: This metric is the ratio of the
pairwise users in the same community who are within 25
miles from each other. Equation (1) gives the formula of the
Community Closeness (CC) of community C, where d is a
distance threshold and |lu− lv| denotes the haversine distance
between two users u and v in C.
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(a) Location Density in Communities (b) Location Density in Ego-Nets

Fig. 2: Histograms of Location Frequencies in Ego-Nets

CCC =
|u, v ∈ C : |lu − lv| ≤ d|

|C||C − 1|
(1)

Conductance, internal density, and triangle participa-
tion ratio: These are three common metrics to measure the
closeness of a community in terms of the structure of its
social relationships. Conductance is a metric that takes both
external and internal connections of a community [16] into
consideration. It is defined as the ratio of the number of edges
between the community and its complement over the sum of
degrees of nodes within the community. Internal density [16]
is a measure of the internal structure within a community.
It is defined as the number of edges in the community
divided by the total possible edges in the community. Triangle
Participation Ratio (TPR) [17] is defined as the number of
nodes in a community that form a triad, divided by the total
number of nodes in the community.

C. Location Prediction

After the best community is chosen based on a good-
ness metric, the geographic coordinates of its focal node
are predicted by the geometric median of all users in that
community. The coordinates are then mapped to a (city, state,
country) tuple using Google’s Reverse Geocoding API. The
geometric median of a community is defined as follows: Given
a community and a set of coordinates (latitude, longitude)
of all users in the community, the geometric median is the
point that has the minimal sum of haversine distances to
all the other nodes in the community. We adopt Weiszfeld’s
algorithm [18] for this purpose. This algorithm iteratively re-
weights least squares and is robust to location outliers. The
python implementation of the Weiszfeld algorithm has a time
complexity of O(nI) where n is the number of points and I
is the number of iterations. The number of iterations is set to
50 by default.

III. DATASETS

In this section, we first explain our approach of ego-net
collection and filtering then present the density of location
information in the filtered ego-nets.

A. Ego-Net Collection

We collected the ego-nets of 1, 317 Twitter users during
winter 2018 using Twitter’s REST API. The Twitter users were
randomly selected from a flu tweet stream gathered during
the 2017-2018 Flu season. We limited our collection process
to users with less than 500 followers and 500 friends. This
restriction was to reduce the number of API calls because
Twitter imposes rate limits on their REST API. This decision
is also consistent with the findings in [4], which state that
users who follow too many others or have too many followers
are not good sources for geo-tagging.

B. Ego-Net Filtering

Due to the extreme ambiguity of the self-reported user
profile location fields, we use the following steps to further
filter the 1, 317 collected ego-nets: 1) remove the ego-nets
whose focal nodes do not provide a (city, state) pair in the
location field of their user profile. This reduced our data set
to 1, 088 ego-nets with 82,511 users; 2) remove the ego-nets
whose focal nodes do not have valid GPS coordinates returned
by Google Geocoding API. This reduced our data set to 1, 064
ego-nets; 3) remove the ego-nets whose focal nodes do not
have any neighboring node in the same city, state, or country
as themselves. We believe that it is unlikely for a user’s profile
location to be genuine if they do not share a city or state with
any of their friends. This reduced our data set to 936 ego-
nets with 76,167 users whose focal nodes have at least one
state-level matching neighbor and 607 ego-nets with 54,113
users whose focal nodes have at least one city-level matching
neighbor. The 607 city-matched ego-nets contains 29,426 users
with city-level location and 723,017 edges between them.
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C. Ego-Net Location Density

Figure 2 illustrates the sparsity level of location information
in communities and ego-nets at the city level. Fig 2a is a
histogram of the distribution of location densities on com-
munities. Generally speaking, the histogram is right-skewed,
which means the overall frequency of communities with more
than half of users with locations with being disclosed is smaller
than the frequency of communities with less than half of such
users. Furthermore, the graph contains a number of spikes.
For example, there are 21.66% of communities with location
density being exactly 0, and 18.97% of communities with
location density being 0.5. This is due to the average com-
munity size being low (on average approximately 5 users for
each community). Fig 2b is a histogram of the distribution of
location densities on ego-nets. The histogram is right-skewed,
consistent with the pattern in the left panel. Nevertheless, the
plot is smoother because the locations hardly concentrate on
a specific ratio with the sizes of ego-nets being larger.

IV. PERFORMANCE ANALYSIS

In this section, we investigate the effects of using different
proximity metrics to predict a user’s (focal node’s) physical lo-
cation. The optimal approach and two baseline approaches are
defined as below. Nearest Community: choose the community
that is closest to the actual location of the focal node as the best
community. This is the optimal approach. Geometric Median:
use the geometric median of all the user’s neighbors as the
focal node’s location. Random Neighbor: use a randomly
chosen neighbor’s location as the focal node’s location.

A. The Effect of Geographical Proximity Metrics and Struc-
tural Proximity Metrics

Figure 3 compares the impact of geographical proximity and
structural proximity metrics, where the x-axis is the distance
between a user’s predicted and actual location in miles, and the
y-axis is the fraction of users geotagged to a location within
x miles of their actual location. As can be seen in Fig 3a, the
median haversine distance metric outperforms other metrics in
the range of 1 to 10 miles. It can geolocate 52% of users within
1 mile and 76% of users within 10 miles. There is not much
difference between community closeness, average haversine
distance, and geometric median in this range. In the 10-30 mile
range, we find that the community closeness metric becomes
the best, after which geometric median performs slightly better
until the distance becomes approximately 70 miles. All of
these metrics performed significantly better than the random
neighbor baseline.

Fig 3b shows the effect of the structural proximity metrics of
conductance, triangle participation ratio, and internal density.
We find that conductance outperforms other structural metrics
and has comparable performance to geographical proximity
metrics. For example, it geotags 48% of users within 1
mile and 60% users within 10 miles, which is close to the
performance of average haversine distance and community
closeness metrics. A surprising discovery is that random neigh-
bor baseline outperforms internal density, which measures

the connectivity within a community. Linear regression also
indicates a strong negative correlation between the prediction
accuracy and internal density. Intuitively, users that are densely
connected to each other in a community should have a higher
chance to live close. We plan to carry out in-depth statistical
analysis on our dataset to understand this scenario better.

B. The Effect of Community Closeness Threshold

We plotted the community closeness distance thresholds of
0, 1, 5, 10, 15, 20, 25, 30, 50 and 100 miles respectively,
in Fig. 4a in order to understand what is a proper distance
threshold to define community closeness. Fig. 4b includes
representative thresholds to allow clear comparison. At 1 mile,
threshold 5 performs the best by geotagging 51% of users
within 1 mile. Threshold 5 quickly starts to perform worse
than the others after approximately 7 miles. Threshold 0 and
threshold 30 become the worst from 7 to 100 miles and
threshold 5 tends to stay between all other thresholds. We
find that the threshold of 50 miles performs the best after 15
miles and remains the best until all the closeness thresholds
begin to merge. Specifically, threshold 50 geolocates 70% of
users within 15 miles and 83% of users within 50 miles which
is about the size of a large city. Therefore, we have chosen
threshold 50 as the standard distance threshold for community
closeness.

C. Visualization of Geotagging Results

We visualize the geotagging result for a Twitter user that
lives in Ormond Beach, FL on a map in Figure 5. The
focal node location is marked by a green house symbol. This
user has 19 different communities in their ego-net, and these
communities contain users spread all over the world. We plot
the geometric medians of each nearby community on the
map by using blue markers. As can be seen, the ego-net of
this user has communities in Atlanta, Georgia, New Orleans,
Louisiana, and many locations in Florida, such as Tampa.
The furthest community (not shown on the map) is located
in Romania. We then highlight the predicted location using
community closeness metric as a red star marker. Both median
haversine distance and average haversine distance output the
same location, marked by a purple star marker. We find that the
community closeness metric performs the best by geotagging
the user to Deltona, FL, which is about 20 miles from the
user’s actual location.

V. RELATED WORK

Existing research on social media user location infer-
ence can be divided into three categories: social relationship
based approaches [5] [4] [6] [7] [8] [9], content-based ap-
proaches [10] [11], and a few comprehensive surveys [12]
[13].

[5] is the earliest effort to study the relationship between
the distance of two users and their friendship and is based on
the precise street addresses of Facebook users. It gave empir-
ical evidence that the probability of friendship decreases as
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Fig. 3: Geographical Proximity Metrics vs. Structural Proximity Metrics
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Fig. 5: Map of Geotagging Results of a Twitter User

distance increases in Facebook. It then proposed a maximum-
likelihood approach which associated a probability calculated
based on the distance of two endpoints of an edge with each
edge, calculated the likelihood of all possible locations of
a user, and chose the location with maximum likelihood as
the location of the user. It further improved the algorithm by
pruning the geographic search space based on the observation
that the likelihood of a location is almost always maximized at
the location of a friend of the user. [4] considered the strength
of the social relationship between users for improved location
estimation. It identified several factors which can reveal the
distance between a pair of users, such as the number of
followers, the reciprocity of the relationship, the locality of a
user called local the contact ratio, and whether the location is a
big or small city. It used these factors to train a decision tree to
distinguish between pairs of users who are likely to live nearby
and pairs of users who are likely to live in different areas. The
results of the decision tree served as the input to a maximum
likelihood estimator to predict a user’s location as in [5]. [6]
introduced the problem of global inference of location, that
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is, given a network with a small subset of users with initial
locations, decide the locations of all users in the network
through iteratively using the inferred location to predict for the
next round in a multiple pass approach. It built the mention
network in Twitter to simulate a user’s social relationship,
and used the geometric medium of a set of GPS-tagged tweet
locations to decide the location of the user, then it proposed
spatial label propagation algorithm to infer the location of all
users. It discovered that geometric median approach performs
well.

[10] and [11] proposed content-based approaches for geo-
tagging which rely on tweet contents for location prediction.
Given a set of prespecified cities, [10] counted the frequency
for each word that the word is issued by a user located
in a specific city. Then given the set of words extracted
from a certain user, the aforementioned paper predicted the
likelihood of the user being located in a city by averaging
the frequencies for each word, weighted by the appearance
frequency of words. This paper then improved the prediction
accuracy by two additional techniques: 1) select words with a
strong local geo-scope using a probabilistic model of spatial
variation and certain machine learning techniques. 2) Smooth
the distribution of words over cities by variants of smoothing
techniques to overcome the location sparsity of words in
tweets. [11] used a language modeling approach to model
the likelihood of a tweet being issued from a certain location
given the content of the tweet. It is worth noticing that both
methods in [10] and [11] can only make predictions from a
prespecified set of locations since their methods compute the
posterior probability for each location given the tweets.

Several survey articles systematically compared different
approaches. [12] grouped the methods into home location
predication, tweet location predication, and mention location
prediction categories and summarized over 50 studies on the
inference of the location of a Twitter user, the location of a
tweet, and the location mentioned in a tweet. [13] conducted an
empirical comparison of nine location inference approaches.
All nine methods were performed on the same dataset with the
ground truth and were evaluated with the same standardized
performance metrics.

Our work belongs to the social relationship based approach
category and we are the first effort to introduce a community
based approach for location inference.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we first introduced a community-based ap-
proach for inferring a user’s geographic location. We then
proposed both geographical proximity and structural proximity
metrics to profile communities in the ego-net of a user and
evaluated the effectiveness of each individual metric on real
social media data. We discovered that geographical proximity
metrics, average/median haversine distance and community
closeness, and structural proximity metric conductance are
all strong indicators of a good community for geotagging
while triangle participation ratio and internal density are weak
location indicators. In the future, we will propose and evaluate

new metrics for geographical proximity, adopt machine learn-
ing models to use a combination of metrics to determine the
best community, continue the ego-net collection and carry out
experiments on larger data sets, and study the global location
inference problem from the perspective of communities.
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