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Mitigating the Impact of Data Sampling on Social
Media Analysis and Mining
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Abstract— The last decade has witnessed the explosive growth
of online social media in users and contents. Due to the
unprecedented scale and the cascading power of the underlying
social networks, social media has created a new paradigm for
sharing information, broadcasting breaking news, and reporting
real-time events by any user from anywhere at any time. Many
popular social media sites including Twitter provide streaming
data services by standard APIs to the broad researcher and
developer communities. Given the sheer data volume, rapid
velocity, and feature variety of online social media, these sites
often supply only a sampled set of streaming data, rather than the
full data set to reduce the resource cost of computations, storage,
and network bandwidth. In light of the substantial impact of
sampling in Twitter data stream, this article explores a com-
bination of spectral clustering, locality-sensitive hashing (LSH),
latent Dirichlet allocation (LDA) topic modeling, and differential
equation modeling to mitigate the impact of sampling on social
media data analysis, in particular on detecting real-world events
and predicting information diffusion. Our extensive experiments
demonstrate that our proposed method is able to detect effec-
tively the real-time emerging events and predict accurately the
cascading pattern of these events from the 1% sampled Twitter
data stream. To the best of our knowledge, this article is the
first effort to introduce a systematic methodology to study and
mitigate the impact of data sampling on social media analysis
and mining.

Index Terms— Big data, data sampling, social media analysis.

I. INTRODUCTION
HE last decade has witnessed the explosive growth
d disruptive utilities of online social media such as Twitter
for information dissemination and content distribution. A rich
literature has explored the benefit of real-time data streams
from social media to detect emergency events, natural
disasters, and trending topics [1]-[4]. Many popular social
media sites including Twitter provide streaming data services
by standard APIs to the broad researcher and developer
communities. Given the sheer data volume, rapid velocity,
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and feature variety of online social media, these sites often
supply only a sampled set of data streams, rather than the full
data sets to reduce the resource cost of computations, storage,
and network bandwidth [5], [6]. However, how much we can
trust the observations and analysis from the sampled data sets
remains a critical and challenging problem.

Our study on real-time Twitter sample stream reveals the
dramatic reduction in the data volume due to the 1% sampling
process, thus creating challenges and obstacles for effectively
detecting the breaking events and accurately predicting the
cascading process of information diffusion. To mitigate the
impact of data reduction caused by the sampling process,
this article proposes a systematical framework to combine
spectral clustering and locality-sensitive hashing (LSH) to
group effectively the related tweets triggered by the same real-
world events into coherent tweet clusters.

To understand the topics and themes of tweet clusters,
we adopt the widely used latent Dirichlet allocation (LDA) [7]
topic modeling to discover a mixture of latent topics for the
clusters. As each latent topic is expressed as a probability dis-
tribution over words observed in the tweet corpus, we further
identify the most relevant words for each of the latent topics
for the clusters.

To demonstrate the benefits of our proposed clustering algo-
rithm in mitigating the impact of data sampling, we leverage
tweet clusters for detecting the events from Twitter sample
streams over a four-month time span. Our experimental results
show that our proposed methodology is able to capture suc-
cessfully all eight earthquakes that happened in California
during our data-collection period between March 2018 and
June 2018 and were reported by the Earthquake Hazards
Program of the United States Geological Survey. An in-depth
analysis shows that our proposed algorithm effectively clusters
a set of sampled tweets related to the same earthquake and
detect the events by LDA topic modeling and emerging word
identification.

In addition, we combine genetic programming and the
least square method to build the ordinary differential equa-
tion (ODE) models for describing and predicting the dynamic
trend of the detected events. Our experimental results show
that our ODE model is able to characterize and pre-
dict accurately the process of information diffusion for real-
time events from sampled data streams. For example, the
scale-free normalized mean-square error (NMSE) values on
clustered tweets for two randomly selected events are
0.25 and 0.623, while the values on the most popular tweets
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Fig. 1. Sampling ratio converges to approximately 1% as the aggregation time window increases. (a) 1-min time window. (b) 5-min time window. (c) 1-h

time window.

are 0.749 and 28.601, respectively. Thus, predicting the dif-
fusion of clustered tweets has much better accuracy than
predicting the cascading patterns of the most popular tweets
thanks to the data and content aggregations by the tweet
clusters.

The contributions of this article are threefold, which are as
follows.

1) This article systematically studies the impact of sam-
pling in social media data streams and introduces spec-
tral clustering algorithms for discovering the tweet clus-
ters from the sampled data streams.

2) This article explores LSH for effectively constructing
a similarity matrix for clustering analysis, thus sig-
nificantly reducing the overall running time of tweet
clustering.

3) This article demonstrates that our proposed system is
able to detect effectively all the real-time events from
the 1% sampled Twitter data streams and to predict
accurately the process of information diffusion over
online social media with simple yet effective data-driven
ODE models.

The remainder of this article is organized as follows.
Section II discusses the rationale and impact of data sampling
in social media analysis and outlines our proposed systematic
framework for mitigating such an impact. Section III presents
our proposed clustering algorithms to group the related tweets
into distinctive tweet clusters from the sampled data streams,
while Section IV introduces LSH for effectively constructing
the similarity matrix for the clustering algorithm. Section V
demonstrates the benefits of tweet clustering for effective event
detection from the Twitter sample streams, while Section VI
explores the genetic programming and ODE models for pre-
dicting the process of information diffusion for the tweet clus-
ters. Section VII discusses the related work on data sampling,
event detections in social media, and information diffusion
over online social media. Finally, Section VIII concludes this
article and outlines our future work.

II. REAL-TIME SAMPLED DATA STREAMS

In this section, we first describe the rationale of sampling in
social media data sharing, and subsequently shed light on the
impact of sampling on social media analysis using real-time

event detection and information diffusion as case studies.
We conclude this section with an overview of our proposed
framework for mitigating the impact of data sampling on social
media analysis and mining.

A. Benefits of Sampling

Considering the sheer data volume and velocity, sharing the
full data set is often expensive in terms of storage and network
bandwidth; thus, sampling becomes a popular choice for online
social media to share data to the researcher and developer
community. For example, the sample Tweets API available
at the Twitter developer platform returns random samples of
all tweets in real time. A few research studies [8]-[11] have
confirmed that the sampled data stream is approximately 1%
of the full data set and, more importantly, have pointed out
the challenges and opportunities of analyzing the sampled data
sets.

Since early 2018, we have been continuously collecting
real-time Twitter data streams by the sample Tweets APIs as
well as the complete set of tweets for a number of selected
topics by the filter Tweets APIs, which track a predefined list
of keywords associated with unpredictable natural disasters
and extreme events such as earthquake, typhoons, floods,
epidemics, and infectious diseases. For the simplicity of
presentation, we refer to the random sampled tweets as the
sampled data set, while referring to the complete set of tweets
for the selected topics as the full data set.

As shown in Fig. 1(a)—(c), the number of the sampled tweets
containing earthquake is approximately 1% of the full set
of tweets containing the same keyword. In addition, as we
increase the time window for data aggregation from 1 to 5 min
or even to 1 h, the observations on the actual sampling ratio
of approximately 1% become much clearer due to the law of
large numbers.

B. Impact of Sampling

1) Impact of Sampling on Detecting Real-Time Events:
The sampling approach for social media data sharing is very
effective for reducing the data size of collection and compu-
tations; however, data reduction due to the sampling process
creates challenges for accurately detecting the emerging events
embedded in the Twitter data streams. As Twitter is a major
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Fig. 2. Tweet time-series from full and sampled data sets on Monday, April 9,
2018 when 27 earthquakes were reported worldwide.

platform for Internet users to report natural disasters or the
latest news, it is not surprising to observe a number of
the spikes on the tweets related to earthquakes on April 9,
2018 when several earthquakes were reported worldwide [12],
from the full data set tracking the earthquake keyword, as
evidenced in the top red line of Fig. 2. However, such spikes
are insignificant and infrequent in the sampled data set, i.e., the
bottom blue line in Fig. 2 due to the sampling process. The
early detection on such earthquake events is very crucial to
inform the general public on the latest status and to coordinate
the disaster recovery.

2) Impact of Sampling on Characterizing Information Dif-
fusion: The sampling process with 1% sampling ratio also
creates difficulty in characterizing and predicting information
diffusion over Twitter social media due to the loss of nearly
99% retweet messages. Fig. 3(a) and (c) shows the diffusion
pattern in the first 2 h for the popular tweet messages from
three local Los Angles news organizations that report earth-
quake news on April 5,2018. The top line in each figure shows
the count of cumulative retweet messages of each tweet from
the full data set, which reflects the actual diffusion pattern
in the first 2 h, while the bottom line represents the count of the
cumulative retweets from the sampled data set that apparently
is unable to capture the rapid diffusion of the tweets from these
credible media organizations reporting the earthquake news.

C. Mitigating Sampling Impact

The sampling process undoubtedly reduces the data size for
storage and computations; however, it also creates substantial
challenges for early event detections for unexpected natural
disasters. In light of the impact of the sampling process on
real-world event detections and information diffusion charac-
terizations, we propose a systematic framework to combine
cluster analysis, LSH, and LDA topic modeling to mitigate
such an impact.

As illustrated in Fig. 4, we start with data collection by real-
time Twitter sample stream, and preprocess each tweet or
retweet to extract words and tokens from the main text.

Subsequently, we explore LSH and cluster analysis to con-
struct efficiently the similarity matrix and group the related
tweets from the Twitter sample stream into tweet clusters. For
each cluster, we run LDA topic modeling on its text corpus
for an in-depth understanding of tweet contents, topics, and
themes in the cluster. Our experimental results show that the
availability of tweet clusters and their topics allows us to detect
effectively the real-world events and characterize and predict
accurately the cascading process of information diffusion over
online social media.

III. DISCOVERING TWEET CLUSTERS BY SPECTRAL
CLUSTERING ALGORITHM

As shown in Section II, the data reduction in the sampling
process has smoothed the data volume spikes in the original
full data set and has dissolved the spreading pattern of broad-
casting tweets on emergency events from the influential news
organizations. Thus, it is necessary to develop effective tech-
niques to detect such events from the sampled data streams.

Cluster analysis is one of the widely used methods for
grouping similar data or content into coherent clusters [13];
thus, we explore the spectral clustering technique [14]-[16]
in this article due to its implementation simplicity and com-
putation efficiency to identify tweets that are scattered due to
the sampling process but are related to the same events. These
discovered tweet clusters help rapidly and effectively detect
real-world events in real time.

Algorithm 1 summarizes the major steps of our algorithm
for clustering and characterizing the group of tweets that
reflect similar events. After standard data preprocessing on
each tweet text such as tokenization, stemming, and lemmati-
zation, the prerequisite step of applying the spectral clustering
algorithm for discovering tweet clusters is to find the similarity
matrix for all the real-time tweets collected during a given
time window from 19 to 7946. For each pair of tweets,
we adopt Jaccard similarity, a popular document similarity
measure, reflecting the proportion of the number of shared
common words to the total number of unique words in these
two tweets, also referred to as documents in the literature to
calculate the content similarity between two original tweets
created between T 6 and 1 46. For example, given two
tweets ¢, and ,, their Jaccard similarity j (¢, t,) 1is calculated

as

di Nd
J(t 1Nd>

el (M

diud,
where d; and d> represent the set of unique words in #
and #,, respectively. The above Jaccard similarity captures
the similarity of contents in different tweets that are posted
in the same time window; thus, the Jaccard similarity indi-
rectly captures the temporal similarity of the tweets as well.
We have experimented additional features of tweeting and
retweeting behaviors, such as retweet count and comment
count, which exhibit little improvement on top of content-
based and temporal-based similarity. We conjecture that the
tweet similarity is largely driven by when and what are posted,
rather than who post the actual tweets.
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Fig. 3. Impact of sampling on the diffusion pattern and the influence intensity of the popular tweets reporting earthquake news by three different news

organizations. (a) Tweet 1. (b) Tweet 2. (c) Tweet 3.

Fig. 4. Schematic of our proposed methodology for mitigating the impact of data sampling on social media analysis and mining.

The availability of a similarity matrix § ¢ R"*" between

the tweets leads us to the nextj}gg‘ 9]§ Eonstructinv the
Laplacian matrix L as L = A4 4~ 1/2 where X is a

n

diagonal matrix and A(i, i) = (IREID where 1< i < n.
To identify the optimal number of clusters, we employ the
elbow principle of searching for the largest k eigenvalues [17].
Subsequently, we identify the top k eigenvalues and their
corresponding tweet clusters.

The last step of the clustering algorithm is to perform
LDA [7] topic modeling to unveil the latent topics of each
tweet cluster. The basic idea of applying LDA on the text
corpus in each tweet cluster is to represent these tweets
as a random mixture of latent topics. Each latent topic is
expressed as a probability distribution over the words observed
in the tweet corpus. The clustering steps presented in Algo-
rithm 1 essentially explore a two-step clustering approach
for discovering distinct tweet clusters from real-time Twitter
sample streams. The first clustering step relies on the content
similarity to group tweets that share similar contents including
event, time, location, and people, while the second clustering
step uses LDA topic modeling to capture tweets with similar
latent topics due to the same underlying events.

To quantify the topic quality, we rely on The topic coherence
measure score [18], which is calculated as

coherence(W, ) = score(w;, w; ) 2

{wi,wjteW

where Ws the set of words for a given latent topic ¢, and
w; and w; are the two words inW/. The pairwise coherence
score score(w;, w; ) is derived as
D(w;,w;) +E
score(wew ) log " °° 3)
D(w;)

where D(w;, w; ) is the number of tweets containing both
words w;_and w; and D(w; ) is the number of tweets contain-
ing w; . E1s set to 1 to address the scenario of D(w;,w; ) =

In addition, the word with the highest probability or weight
in the latent topic is considered as the most representative
token for the topic. Thus, the step of LDA topic modeling
generates the latent topics represented with a bag of weighted
words for each tweet cluster. In our experiments, we choose
the number of latent topic as 3 for each cluster, since our
empirical analysis shows that three latent topics are often
sufficient to characterize the actual topics and themes from
the overall content of the tweet clusters.

IV. EFFICIENT SIMILARITY MATRIX
CONSTRUCTION BY LSH

The similarity matrix construction in the aforementioned
spectral clustering algorithm has a running time of O(n?)
due to the pairwise similarity measure calculation, where 7 is
the number of the tweets or retweets captured during a given
time window. Thus, optimizing the construction of similarity
matrix could essentially improve the overall running time of
the clustering algorithm, a very crucial system aspect for real-
time event detections, for a large value of n even in the Twitter
sample streams.

Given the diversity of tweets reflecting different events
over the world, many tweets actually share little or no con-
tent or event similarity. Thus, a natural optimization strat-
egy would be focusing on the similarity calculation on the
tweets that are likely to be related to the same events.
In this article, we explore the benefit of LSH, a widely
used algorithm for near-duplicate detection and near-neighbor
search [19], to calculate the similarity measures among tweets
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Algorithm 1 Algorithm of Discovering Tweet Clusters From
Real-Time Twitter Sample Streams
Input: a set of sampled tweets, denoted as 7 with a size of

n, within a given time window from 1o to 7o + 6.

1: Calculate the Jaccard similarity, J; ; , for each pair of

tweets, £ and 7 ; based on tlggir content, and obtain the
similarity matrix Sy € R"*" for all tweets in T';

2: Build a diagonal matrix 4 with A(i, i )= " ;15s;;, where
1 < i < n,and construct the Laplacian matrix L as L =
A—l/ZSA—l/Z; )

3: Search the largest & eigenvalues, A1, A2, - - -, Ax such that

A= ax L'; _ Avand (A — Ari) 2 8 X (At —
Ak )>

4: Construct the matrix £ = [e1 e2 .. €] € Rk with the
corresponding k eigenvectors(evi, eva, ... , evy) associated
with the above k eigenvalues, and normalize £ to derive
the matrix Z such that each row in the normalized matrix
Z has a unit length, and consider each row as a point;

5: Perform k-means cluster analysis on Z to identify k&
clusters (D1, Dy, - -+, Dy);

6: Assign the tweet £ to the cluster C  if the row i of Z is
assigned tothe cluster D;;

7: Run LDA topic modeling to discover latent topics L; for
all the tweets in each cluster C; in C.

Output: tweet clusters Ci, C,, - - -, Cy, where C; ={p;|z; €
Y; }, and the latent topics L, for each cluster.

whenever necessary, rather than calculating all pairs of simi-
larity measure in a brute-force fashion.

Minhash, one of the first and most popular LSH meth-
ods, is an LSH function originally designed for efficiently
approximating the Jaccard similarity [20]. Let # denote a
hash function that maps words or terms in the tweet doc-
uments to distinct integers, also referred to as hash bucket
numbers. The minhash on a set X, Anin(X), is defined as
the minimal value A(x), where x is one of the elements in
the set X and /(x) is the smallest value among all hash
values for the elements in X . A key property of minhash
lies in that the probability of the minhash function on the
two word sets d; and d, from two tweets #; and t, pro-
ducing the same values as the Jaccard similarity of two sets,
i.e., Probability frmin(d1) hwin(d2) J(11, Jt2)-

The proof of this property is straightforward. Obtaining
the same value for /min(di) and hmin(d2) indicates that
the element with the smallest value of applying the hash
function 4 on dyyd, is also in di nd>. In other words,
the probability of /min(di) = hmin(di) essentially becomes
d ndo/d, \g>. As shown in (D), J(t, &) = din do/d) U da.
Thus, Probability fimin(d1) hm:(d2) J(11, ]t} holds.

Minhashing maps any tweet to a signature consisting of a
set of integers and effectively preserves the content similarity
for any two tweets. However, comparing minhashing for all
possible pairs of tweets is fairly expensive due to the sheer
size of the tweet streams. Thus, our next step is to explore
minhash-based LSHs to calculate the similarity between the
tweets in 7" by the hash collision probability distribution over

50 100 150 200 250

Fig. 5. Impact of the number of bands in minhash design on the threshold
of Jaccard similarity, which are likely to be detected by 240 minhashes.

aset of H = {hy, hy, ..., h, } hash functions. The intuition

of LSH on reducing similarity calculation is to hash tweets
several times such that two tweets with shared content have
higher probability to experience hash collision, i.e., be hashed
to the same bucket, than the tweets sharing little or no content.
Specifically, LSH first divides the hash values from # hash
functions into b bands of » rows, and subsequently maps r
values in each band with a simple hash function to a hash
table. In other words, each band is divided into buckets. If two
tweets exhibit the same hash values in one band, they will be
mapped to the same bucket, thus becoming a candidate pair
of tweets for further similarity calculations.

As proved in [21], the probability of detecting a candidate
pair, p, via minhash LSH is a function of s, b, and r ,i.e.,p =
141 5")2. Thus, the threshold of Jaccard similarity between
the two tweets for ensuring the 50% + probability of becoming
a candidate pair actually depends on the parameters of » and
r . As shown in Fig. 5, as the number of bands in 240-minhash

LSH increases, the threshold of Jaccard similarity decreases.

For a given configuration of » bands with » rows for each
band, a higher Jaccard similarity of two tweets increases the
probability of detecting the pair as a candidate. As illustrated
in Fig. 6, the three S-curves for 60, 80, and 120 bands, respec-

tively, capture the relationship between the Jaccard similarity

of two tweets and the probability of detecting the pair as

a candidate in minhash-based LSH. For the same Jaccard

similarity, the detection probability is higher for 120 bands

LSH, which is consistent with the observations in Fig. 5.

In this article, we choose 120 for the parameter b to balance
the detection coverage and computational overhead.

Our experimental results have revealed the significant ben-
efit of applying minhash-based LSH for calculating similarity
matrix f8r the tweet set 7. As shown in Fig. 7, this
method has successfully and consistently reduced over 90%
similarity calculations on real-time Twitter sample streams
from different time windows when choosing 120 bands for
240-minhash-based LSH for approximately constructing the
similarity matrix.
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V. EFFECTIVE EVENT DETECTION BY TWEET CLUSTERS

In this article, we define an event as a continuous data
stream contributed by different users on the same social media
platform who share, discuss, and comment on the same topic
during a specific time window. For example, Fig. 8(a) shows
an original tweet posted by the official Twitter account of the
United States Geological Survey reporting a 5.3 earthquake on
the Santa Rosa Island near Los Angles on April 5, 2018. This
timely post shared a breaking news on a significant natural
disaster, and was retweeted, liked, and commented by 432,
578, and 91 Twitter users, respectively, during a very short
time window. Similarly, Fig. 8(b) illustrates a CNN’s tweet
reporting Guatemala’s deadly volcanic eruption on June 4,
2018, which was retweeted, liked, and commented by 483,
594, and 29 users, respectively. These two examples reflect the

disruptive utility of online social media for event broadcasting
and information sharing.

Detecting the events from the full data set of Twitter streams
is relatively simple due to the sudden increase in retweets,
comments, and likes of the most popular tweets. However,
the 1% sampling process has significantly reduced the data
volumes and smoothed the changes and dynamics of the trends
for almost all tweets including the most popular ones. Thus,
our tweet clustering algorithm addresses the limitations of the
sampling process by recreating the social media dynamics of
the same underlying real-world events by grouping together
all related tweets or retweets for the same event into coherent
tweet clusters.

Considering the importance of detecting the events from
real-time Twitter sample streams, we build a prototype system
that takes the sampled data streams from each 1-min time win-
dow as the input and generate tweet clusters and their corre-
sponding latent topics as output. To detect the emerging events
from these tweet clusters, we devise a simple change-detection
algorithm that constantly searches for emerging tokens, which
are the top-weighted words from the latent topics for each
cluster and are not observed in the previous time windows,
from the latent topics for each cluster.

The earthquake event in Fig. 8(a) happened at
19:29:16 UTC on April 5, 2018. Table I shows the tokens
with the highest weight for the top five cohesive clusters
along with the emerging statuses between 19:27:00 UTC
and 19:32:00 UTC during that day. Our simple yet effective
change-detection algorithm is able to uncover the emerging
earthquake token within 2 min of the actual earthquake event
from a tweet cluster that carries earthquake as an emerging
token and consists of only 36 sampled tweets or retweets.
Discovered by the our proposed clustering algorithm, these
tweet clusters group together similar tweets reporting and
commenting the same real-world event, and significantly
improve our ability to detect quickly these extreme events or
natural disasters in the very beginning. Such early detection is
very critical for the first respondents in the disaster recovery
and rescue. Similarly, our proposed technique has successfully
identified the event of Guatemala’s deadly volcanic eruption,
as shown in Fig. 8(b), within 2 min.

Table II summarizes the effective event detection of our
proposed methodology for capturing all eight significant earth-
quakes that happened in California during our data collection
period between March 2018 and July 2018 and were reported
by the Earthquake Hazards Program of the United States
Geological Survey [22]. As shown in Table II, our proposed
algorithm effectively clusters a set of sampled tweets related
to the same earthquakes and detect the events by LDA topic
modeling and emerging token identification. In this article,
we rely on the case studies to evaluate the effectiveness of
detecting the real-time events of our proposed methodology.
For each case, we manually identify the corresponding event
on the official site of the Earthquake Hazards Program of the
United States Geological Survey. Due to the manual validation
process, we are unable to run a large-scale event detection
in this article. One of our future works is to work with the
Earthquake Hazards Program and other official channels to
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Fig. 8. Natural disaster events reported on Twitter in real time. (a) Tweet reporting a 5.3 earthquake on the Santa Rosa Island near Los Angles. (b) Tweet

reporting on Guatemala’s volcanic eruption.
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explore the API-based automation methods for collecting the
ground-truth events for large-scale experimental evaluations.

VI. MODELING AND PREDICTING INFORMATION
DIFFUSION OF TWEET CLUSTERS

The process of data sampling has substantially reduced
the number of the retweets, comments, or likes even for
the most popular tweets that report breaking news such as
earthquake events. The reduction of tweets creates challenges
for accurately characterizing and predicting the cascading
process of information diffusion over online social media.
However, our clustering approach for aggregating similar
tweets into coherent clusters for the same real-world events

accumulates sufficient signals to apply mathematical models
for characterizing and predicting the diffusion process of tweet
clusters.

Mathematical and statistical models are widely used for
various predictions. The ODE model is a vital mathematical
tool arising in biology, sociology, economics, physics, and
other fields. It has been extensively used for describing and
predicting various time evolutions. In this article, we combine
the genetic programming and least square method [23], [24]
to build the ODE models to describe and predict the dynamic
trend of the earthquake.

Genetic programming is an effective evolutionary method,
which mimics the mechanisms of natural selection and
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Fig. 9. Predicting diffusion patterns for tweet clusters and the most popular tweets for two earthquake events. (a) Tweet cluster, April 5 earthquake. (b) Most
popular tweet, April 5 earthquake. (c) Tweet cluster, May 15 earthquake. (d) Most popular tweet, May 15 earthquake.

genetic variation. Based on suitable coding, genetic program-
ming uses genetic operators and the principle of “survival of
the fittest” to search for the optimal solutions. Specifically,
we use tree-structure-based evolutionary algorithm to evolve
the ODE model. The main procedure of constructing the ODE
model is as follows.

1) Define the function set and the operator set.

2) Generate the initial ODE model as the first generation
of the population.

3) Perform structure optimizations of the ODE models
with various operations such as mutation, crossover, and
selection.

4) Run parameter optimizations of the ODE models with
the least square method.

5) Repeat steps 3 and 4 in each generation until a prede-
fined number of iterations have reached or an optimal
structure is found.

As a result of the procedure, an ODE model is developed

in the following form:
dy(1)
- = ML) (4)

where fis a function involving multiple elementary functions,
e.g., f(t, y(t) = atsin(t) — By(t)e! +y t, with the structure
and constants a, 8, and y of the ODE model determined by
the above procedure.

Using the genetic programming and least square methods,
we apply the retweets on any of the tweets in the cluster from
the first 10 min since discovering the tweet cluster to train
the ODE model, and then predict the growth of the retweets
in the next 2 h and 50 min. Fig. 9 illustrates the prediction
accuracy on the diffusion patterns for the tweet clusters and
the most popular tweet for two earthquake events happening
on April 5, 2018 and May 15, 2018. As shown in Fig. 9, the
prediction quality on the tweet clusters [see Fig. 9(a) and (c)]
is much higher than the prediction on the most popular tweets
[see Fig. 9(b) and (d)] from the Twitter sample streams.

To measure quantitatively the actual prediction improvement
on tweet clusters over the most popular tweets for both events,
we use NMSE to calculate the scale-free difference between
the actual diffusion over the predicted diffusion. The NMSE
values on the tweet clusters for two events are 0.025 and 0.623,
while the values on the most popular tweets are 0.749 and
28.601, respectively. Thus, the NMSE metrics also confirm
that predicting the diffusion of tweet clusters has much better

accuracy than predicting the cascading patterns of the most
popular tweets from the Twitter sample streams. Similar to
the evaluation of event detection, we also use case studies
for evaluating the prediction of information diffusion for
the underlying events. The automated ground-truth collection
framework developed in our future work will enable us to
present quantitative evaluations on a much larger scale.

VII. RELATED WORK

Online social media has recently become a major venue
for disseminating breaking news and broadcasting emergency
events such as natural disasters, epidemic outbreaks, and even
local traffic congestions due to its large-scale user base and
rising popularity. In light of the unprecedented scale of online
social media, sampling becomes an intuitive and important
technique for collecting, exploring, and understanding big
social media data. A number of research studies [25], [26]
have pointed out the impact of sampling on social media
analysis and modeling. For example, [25] shows the nontrivial
impact of attribute and topology-based sampling strategies on
a variety of metrics of information diffusion with crawled
data sets from Twitter, while [26] systematically compares the
popularity, topical diversity, trustworthiness, and timeliness of
the content generated by the users who are randomly selected
with the content generated by a sampled set of expert users on
Twitter. Complement to these prior efforts, this article sheds
light on the impact of sampling on real-time Twitter data
streams on event detection and information-diffusion modeling
and prediction.

Event detection is one of the important applications of
exploring online social media data. A number of literature
studies [27]-[30] have explored Twitter data streams to detect
real-world events. For example, [28] develops a real-time
system to detect automatically and geo-tag security events
from social media data, and demonstrates the system with
Westgate shopping mall attack in September 2013 as a case
study. Similarly, [29] proposes a location—time-constrained
topic model to extract content, time, and location features
from the tweet messages for monitoring online social events,
while [30] explores the combination of the occurrence infor-
mation of social media content and the profile of social
media users to detect real-time events from microblogging text
streams as well as to predict the cascading popularity of the
detected events. Our article is complement to these studies,
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since the combination of spectral clustering, LSH similarity
search, and LDA topic modeling in our proposed methodology
can serve as the preprocessing steps for these event-detection
methods and ultimately improve their detection quality and
performance.

Information diffusion is another hot topic of online social
media research in the last decade due to its wide appli-
cations such as sentiment analysis and fake news detec-
tion [31]-[33]. For example, [31] characterizes the temporal
and spatial-diffusion patterns of information spreading over
social media and proposes a linear diffusive model based on
the partial differential equation (PDE) to model and predict
information diffusion over the time and underlying social
network. This article will enhance the algorithms proposed in
these prior studies in the context of sampled data sets. Simi-
larly, [32] characterizes the temporal dynamics and cascading
of topic-specific information such as hashtags over Twitter,
and [33] proposes a new method of inferring multi-aspect
diffusion networks with multi-pattern cascades for character-
izing heterogeneous user interactions and diverse cascading
patterns in social media. As analyzed in [25], the sampling
process creates challenges in modeling and predicting infor-
mation diffusion over online social media. Thus, our proposed
method of spectral clustering will become a critical step for
modeling information diffusion of tweet clustered discovered
from real-time Twitter sample streams.

VIII. CONCLUSION AND FUTURE WORK

The last decade has witnessed the unprecedented growth
of online social media. For example, Twitter has become
a major channel for reporting breaking news and sharing
the latest updates of social events. However, the sampling
process of Twitter real-time data streams has created substan-
tial challenges for making sense of social media data such as
detecting real-time events and predicting the cascading process
of information diffusion. This article proposes a systematic
methodology to combine clustering algorithms, LSH, and topic
modeling to mitigate effectively the impact of data sampling
in social media analysis and mining with earthquake events as
case studies. Our extensive experimental results have shown
that our proposed system is able to effectively detect all
significant earthquake events happening in California between
March 2018 and June 2018 from the 1% sampled Twitter
data stream, and our system accurately predicts the cascad-
ing pattern of information diffusion for earthquake events
with sampled data streams. Our future work is centered on
understanding and mitigating the impact of social media data
sampling on sentiment analysis and content modeling with
word embedding [34] and natural language processing (NLP)
techniques. In addition, we are planning to integrate the
prototype system with the Apache Spark real-time streaming
analytics engine [35] to reduce the latency of event detections
to less than 1 min.
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