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Abstract— The last decade has witnessed the explosive growth 
of online social media in users and contents. Due to the 
unprecedented scale and the cascading power of the underlying 
social networks, social media has created a new paradigm for 
sharing information, broadcasting breaking news, and reporting 
real-time events by any user from anywhere at any time. Many 
popular social media sites including Twitter provide streaming 
data services by standard APIs to the broad researcher and 
developer communities. Given the sheer data volume, rapid 
velocity, and feature variety of online social media, these sites 
often supply only a sampled set of streaming data, rather than the 
full data set to reduce the resource cost of computations, storage, 
and network bandwidth. In light of the substantial impact of 
sampling in Twitter data stream, this article explores a com- 
bination of spectral clustering, locality-sensitive hashing (LSH), 
latent Dirichlet allocation (LDA) topic modeling, and differential 
equation modeling to mitigate the impact of sampling on social 
media data analysis, in particular on detecting real-world events 
and predicting information diffusion. Our extensive experiments 
demonstrate that our proposed method is able to detect effec- 
tively the real-time emerging events and predict accurately the 
cascading pattern of these events from the 1% sampled Twitter 
data stream. To the best of our knowledge, this article  is  the  
first effort to introduce a systematic methodology to study and 
mitigate the impact of data sampling on social media analysis  
and mining. 

Index Terms— Big data, data sampling, social media analysis. 
 

I. INTRODUCTION 

HE last  decade  has  witnessed  the explosive  growth 

and disruptive utilities of online social media such as Twitter 

for information dissemination and content distribution. A rich 

literature has explored the benefit of real-time data streams 

from social media to detect emergency events, natural 

disasters, and trending topics [1]–[4]. Many popular social 

media sites including Twitter provide streaming data services 

by standard APIs to the broad researcher and developer 

communities.  Given  the  sheer  data  volume,  rapid velocity, 
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and feature variety of online social media, these sites often 

supply only a sampled set of data streams, rather than the full 

data sets to reduce the resource cost of computations, storage, 

and network bandwidth [5], [6]. However, how much we can 

trust the observations and analysis from the sampled data sets 

remains a critical and challenging problem. 

Our study on real-time Twitter sample stream reveals the 

dramatic reduction in the data volume due to the 1% sampling 

process, thus creating challenges and obstacles for effectively 

detecting the breaking events and accurately predicting the 

cascading process of information diffusion. To mitigate the 

impact of data reduction caused by  the  sampling  process, 

this article proposes a systematical framework to combine 

spectral clustering and locality-sensitive hashing (LSH) to 

group effectively the related tweets triggered by the same real- 

world events into coherent tweet clusters. 

To understand the topics and  themes  of  tweet  clusters,  

we adopt the widely used latent Dirichlet allocation (LDA) [7] 

topic modeling to discover a mixture of latent topics for the 

clusters. As each latent topic is expressed as a probability dis- 

tribution over words observed in the tweet corpus, we further 

identify the most relevant words for each of the latent topics 

for the clusters. 

To demonstrate the benefits of our proposed clustering algo- 

rithm in mitigating the impact of data sampling, we leverage 

tweet clusters for detecting the events from Twitter sample 

streams over a four-month time span. Our experimental results 

show that our proposed methodology is able to capture suc- 

cessfully all eight earthquakes that happened in California 

during our data-collection period between March 2018 and 

June 2018 and were reported by the Earthquake Hazards 

Program of the United States Geological Survey. An in-depth 

analysis shows that our proposed algorithm effectively clusters 

a set of sampled tweets related to the same earthquake and 

detect the events by LDA topic modeling and emerging word 

identification. 

In addition, we combine genetic programming and  the  

least square method to build the ordinary differential equa- 

tion (ODE) models for describing and predicting the dynamic 

trend of the detected events. Our experimental results show 

that  our  ODE  model  is  able  to   characterize   and   pre- 

dict accurately the process of information diffusion for real-

time events from sampled data streams.  For  example, the 

scale-free normalized mean-square error (NMSE) values on 

clustered tweets for two randomly selected events are 

0.25 and 0.623, while the values on the most popular tweets 
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Fig. 1. Sampling ratio converges to approximately 1% as the aggregation  time window  increases.  (a) 1-min time window.  (b) 5-min time window.  (c) 1-h  
time window. 

 

are 0.749 and 28.601, respectively. Thus, predicting the dif- 

fusion of clustered tweets has much better accuracy than 

predicting the cascading patterns of the most popular tweets 

thanks to the data and content aggregations by the tweet 

clusters. 

The contributions of this article are threefold, which are as 

follows. 

1) This article systematically studies the impact of sam- 

pling in social media data streams and introduces spec- 

tral clustering algorithms for discovering the tweet clus- 

ters from the sampled data streams. 

2) This article  explores LSH  for  effectively constructing 

a similarity matrix for clustering analysis, thus sig- 

nificantly reducing the overall running time of tweet 

clustering. 

3) This article demonstrates that our proposed system is 

able to detect effectively all the real-time events from 

the 1% sampled Twitter data streams and to predict 

accurately the process of information diffusion over 

online social media with simple yet effective data-driven 

ODE models. 

The remainder of this article is organized as follows. 

Section II discusses the rationale and impact of data sampling 

in social media analysis and outlines our proposed systematic 

framework for mitigating such an impact. Section III presents 

our proposed clustering algorithms to group the related tweets 

into distinctive tweet clusters from the sampled data streams, 

while Section IV introduces LSH for effectively constructing 

the similarity matrix for the clustering algorithm. Section V 

demonstrates the benefits of tweet clustering for effective event 

detection from the Twitter sample streams, while Section VI 

explores the genetic programming and ODE models for pre- 

dicting the process of information diffusion for the tweet clus- 

ters. Section VII discusses the related work on data sampling, 

event detections in social media, and information diffusion 

over online social media. Finally, Section VIII concludes this 

article and outlines our future work. 

 
II. REAL-TIME SAMPLED DATA STREAMS 

In this section, we first describe the rationale of sampling in 

social media data sharing, and subsequently shed light on the 

impact of sampling on social media analysis using real-time 

event detection and information diffusion as  case  studies.  

We conclude this section with an overview of our proposed 

framework for mitigating the impact of data sampling on social 

media analysis and mining. 

 
A. Benefits of Sampling 

Considering the sheer data volume and velocity, sharing the 

full data set is often expensive in terms of storage and network 

bandwidth; thus, sampling becomes a popular choice for online 

social media to share data to the researcher and developer 

community. For example, the sample  Tweets  API  available 

at the Twitter developer platform returns random samples of 

all tweets in real time. A few research studies [8]–[11] have 

confirmed that the sampled data stream is approximately 1% 

of the full data set and, more importantly, have pointed out  

the challenges and opportunities of analyzing the sampled data 

sets. 

Since early 2018, we have been continuously collecting 

real-time Twitter data streams by the sample Tweets APIs as 

well as the complete set of tweets for a number of selected 

topics by the filter Tweets APIs, which track a predefined list 

of keywords associated with unpredictable natural disasters 

and extreme events such as earthquake, typhoons, floods, 

epidemics, and infectious diseases. For the simplicity of 

presentation, we refer to the random sampled tweets as the 

sampled data set, while referring to the complete set of tweets 

for the selected topics as the full data set. 

As shown in Fig. 1(a)–(c), the number of the sampled tweets 

containing earthquake is approximately  1%  of  the  full  set 

of tweets containing the same keyword. In addition, as we 

increase the time window for data aggregation from 1 to 5 min 

or even to 1 h, the observations on the actual sampling ratio  

of approximately 1% become much clearer due to the law of 

large numbers. 

 
B. Impact of Sampling 

1) Impact of Sampling on Detecting Real-Time Events: 

The sampling approach for social media data sharing is very 

effective for reducing the data size of collection and compu- 

tations; however, data reduction due to the sampling process 

creates challenges for accurately detecting the emerging events 

embedded in the Twitter data streams. As Twitter is a major 
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Subsequently, we explore LSH and cluster analysis to con- 

struct efficiently the similarity matrix and group the related 

tweets from the Twitter sample stream into tweet clusters. For 

each cluster, we run LDA topic modeling on its text corpus  

for an in-depth understanding of tweet contents, topics, and 

themes in the cluster. Our experimental results show that the 

availability of tweet clusters and their topics allows us to detect 

effectively the real-world events and characterize and predict 

accurately the cascading process of information diffusion over 

online social media. 

 
 

 
 

 

 
Fig. 2. Tweet time-series from full and sampled data sets on Monday, April 9, 
2018 when 27 earthquakes were reported worldwide. 

 

 
platform for Internet users to report natural disasters or the 

latest news, it  is  not  surprising  to  observe  a  number  of  

the spikes on the tweets related to earthquakes on April 9, 

2018 when several earthquakes were reported worldwide [12], 

from the full data set tracking the earthquake keyword, as 

evidenced in the top red line of Fig. 2. However, such spikes 

are insignificant and infrequent in the sampled data set, i.e., the 

bottom blue line in Fig. 2 due to the sampling process. The 

early detection on such earthquake events is very crucial to 

inform the general public on the latest status and to coordinate 

the disaster recovery. 

2) Impact of Sampling on Characterizing Information Dif- 

fusion: The sampling process with 1% sampling ratio also 

creates difficulty in characterizing and predicting information 

diffusion over Twitter social media due to the loss of nearly 

99% retweet messages. Fig. 3(a) and (c) shows the diffusion 

pattern in the first 2 h for the popular tweet messages from 

three local Los Angles news organizations that report earth- 

quake news on April 5, 2018. The top line in each figure shows 

the count of cumulative retweet messages of each tweet from 

the full data set,  which reflects the actual diffusion pattern    

in the first 2 h, while the bottom line represents the count of the 

cumulative retweets from the sampled data set that apparently 

is unable to capture the rapid diffusion of the tweets from these 

credible media organizations reporting the earthquake news. 

III. DISCOVERING TWEET CLUSTERS BY SPECTRAL 

CLUSTERING ALGORITHM 

As shown in Section II, the data reduction in the sampling 

process has smoothed the data volume spikes in the original 

full data set and has dissolved the spreading pattern of broad- 

casting tweets on emergency events from the influential news 

organizations. Thus, it is necessary to develop effective tech- 

niques to detect such events from the sampled data streams. 

Cluster analysis is one of the widely used methods for 

grouping similar data or content into coherent clusters [13]; 

thus, we explore the  spectral clustering  technique [14]–[16] 

in this article due to its implementation simplicity and com- 

putation efficiency to identify tweets that are scattered due to 

the sampling process but are related to the same events. These 

discovered tweet clusters help rapidly and effectively detect 

real-world events in real time. 

Algorithm 1 summarizes the major steps of our algorithm 

for clustering and characterizing the group of tweets that 

reflect similar events. After standard data preprocessing on 

each tweet text such as tokenization, stemming, and lemmati- 

zation, the prerequisite step of applying the spectral clustering 

algorithm for discovering tweet clusters is to find the similarity 

matrix for all the real-time tweets collected during a given 

time  window  from  τ0  to  τ0  δ.  For  each  pair  of  tweets, 

we adopt Jaccard similarity, a popular document similarity 

measure, reflecting the proportion of the number of shared 

common words to the total number of unique words in these 

two tweets, also referred to as documents in the literature to 

calculate the content similarity between two original tweets 

created between τ  δ  and  τ  δ. For  example, given two  

tweets t1 and t2, their Jaccard similarity j (t1, t2)  is calculated 

as 

 
C. Mitigating Sampling Impact 

J(t , t ) 
d1 ∩ d2

 

d1 ∪ d2 

 

(1) 

The sampling process undoubtedly reduces the data size for 

storage and computations; however, it also creates substantial 

challenges for early event detections for unexpected natural 

disasters. In light of the impact of the sampling process on 

real-world event detections and information diffusion charac- 

terizations, we propose a systematic framework to combine 

cluster analysis, LSH, and LDA topic modeling to mitigate 

such an impact. 

As illustrated in Fig. 4, we start with data collection by real-

time Twitter sample stream, and  preprocess each tweet  or 

retweet to extract words and tokens from the main text. 

where d1 and d2  represent  the  set  of  unique  words  in  t1 

and t2, respectively. The above Jaccard  similarity  captures 

the similarity of contents in different tweets  that  are posted  

in the same time window; thus, the Jaccard similarity indi- 

rectly captures the temporal similarity of the tweets as well. 

We have experimented additional features of tweeting and 

retweeting behaviors, such as retweet count and comment 

count, which exhibit little improvement on top of content- 

based and temporal-based similarity. We conjecture that the 

tweet similarity is largely driven by when and what are posted, 

rather than who post the actual tweets. 
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Fig. 3. Impact of sampling on the diffusion pattern and the influence intensity of the popular tweets reporting earthquake news by three different news 
organizations. (a) Tweet 1. (b) Tweet 2. (c) Tweet 3. 

 

 

Fig. 4. Schematic of our proposed methodology for mitigating the impact of data sampling on social media analysis and mining. 
 

The availability of a  similarity matrix Rn×n between 

the   tweets  leads  us  to  the   next  step   of  constructing  the 
Laplacian  matrix  L   as   L   =  A−1/2 SA−1/2,  where  A  is a 

where D(wi ,w j  ) is the number of tweets containing both 

words wi  and wj and D(wj ) is the number of tweets  contain- 
ing wj . E is set to 1 to address the scenario of D(wi ,w j  ) = 0. 

diagonal matrix  and  A(i, i ) n    si, j ,  where 1    i     n. 

To identify the optimal number of clusters, we employ the 

elbow principle of searching for the largest k eigenvalues [17]. 

Subsequently, we identify the top k eigenvalues and their 

corresponding tweet clusters. 

The last step of the clustering algorithm is  to  perform  

LDA [7] topic modeling to unveil the latent topics of each 

tweet cluster. The basic idea of applying LDA on the text 

corpus in each  tweet  cluster  is  to  represent  these  tweets  

as a random mixture of latent topics. Each latent topic is 

expressed as a probability distribution over the words observed 

in the tweet corpus. The clustering steps presented in Algo- 

rithm 1 essentially explore a  two-step  clustering  approach 

for discovering distinct tweet clusters from real-time Twitter 

sample streams. The first clustering step relies on the content 

similarity to group tweets that share similar contents including 

event, time, location, and people, while the second clustering 

step uses LDA topic modeling to capture tweets with similar 

latent topics due to the same underlying events. 

To quantify the topic quality, we rely on The topic coherence 

measure score [18], which is calculated as 

In addition, the word with the highest probability or weight 

in the latent topic is considered as the most representative 

token for the topic. Thus, the step of LDA topic modeling 

generates the latent topics represented with a bag of weighted 

words for each tweet cluster. In our experiments, we choose 

the number of latent topic as 3 for each cluster, since our 

empirical analysis shows that three latent topics are often 

sufficient to characterize the actual topics and themes from  

the overall content of the tweet clusters. 

 
IV. EFFICIENT SIMILARITY MATRIX 

CONSTRUCTION BY LSH 

The similarity matrix construction in the aforementioned 

spectral clustering algorithm has a running  time  of  O(n2 ) 
due to the pairwise similarity measure calculation, where n is 

the number of the tweets or retweets captured during a given 

time window. Thus, optimizing the construction of similarity 

matrix could essentially improve the overall running time of 

the clustering algorithm, a very crucial system aspect for real- 

time event detections, for a large value of n even in the Twitter 

sample streams. 
coherence(Wt ) = 

{wi ,wj }∈W 

score(wi ,w j  ) (2) Given the diversity of tweets reflecting different events 

over the world, many tweets actually share little or no con- 

where t  is  the  set  of  words for  a  given latent topic t, and 

wi and wj are the two words in t . The pairwise coherence 

score score(wi ,w j  ) is derived as 

tent or event similarity. Thus, a natural  optimization strat-  

egy would be focusing on the similarity calculation on the 

tweets  that  are  likely  to  be  related  to  the  same  events.  

In this article, we explore the benefit of LSH, a widely 

score(w ,w ) log 
D(wi ,w j  ) + E

 
D(wj ) 

(3) used algorithm for near-duplicate detection and near-neighbor 

search [19], to calculate the similarity measures among tweets 
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, and construct the Laplacian matrix L as L = 

 
 

Algorithm 1 Algorithm of Discovering Tweet Clusters From 

Real-Time Twitter Sample Streams 

Input: a set of sampled tweets, denoted as T with a size of 

n, within a given time window from τ0 to τ0 + δ. 

1: Calculate the Jaccard similarity, Ji, j , for each pair of 

tweets, ti and t j based on their content, and obtain the 
similarity matrix ST ∈ Rn×n for all tweets in T ; 

2:  Build a diagonal matrix A with A(i, i ) = 
Ln si, j , where 

A−1/2 SA−1/2; 
3: Search the largest k eigenvalues, λ1, λ2, ··· , λk such that 

k 
i 1 

λk ); 
λi ≥ α × 

Ln
 λn and (λk − λk+1) ≥ β × (λk−1 − 

4:  Construct  the matrix E e1 e2 ek  Rn×k with the 

corresponding k eigenvectors (ev1, ev2, , evk ) associated 

with the above k eigenvalues, and normalize E to derive 

the matrix Z such that each row in the normalized matrix  

Z has a unit length, and consider each row as a point; 

5: Perform k-means cluster analysis on Z to identify k 

clusters (D1, D2, ··· , Dk ); 
6: Assign the tweet ti to the cluster C j if the row i of Z is 

 

 
 

Fig. 5.   Impact of the number of bands in minhash design on the threshold   
of Jaccard similarity, which are likely to be detected by 240 minhashes. 

 

a set of H = {h1, h2, ..., hn } hash functions. The intuition 

assigned  to the cluster j ; 

7: Run LDA topic modeling to discover latent topics Li  for  

all the tweets in each cluster Ci in C. 

Output: tweet clusters C1, C2, ···  , Ck , where Ci = { p j |z j ∈ 

Yj }, and the latent topics Li for each cluster. 
 

 

 
whenever necessary, rather than calculating all pairs of simi- 

larity measure in a brute-force fashion. 

Minhash, one of the first and most popular  LSH  meth- 

ods, is an LSH function originally designed for efficiently 

approximating the Jaccard similarity [20]. Let h  denote  a 

hash function that maps words or terms in the tweet doc- 

uments to distinct integers, also referred to as hash bucket 

numbers. The minhash on a set  X ,  hmin(X),  is  defined  as 

the minimal value h(x), where  x  is one of the  elements in  

the set X and h(x) is the smallest value  among  all  hash 

values for the elements in X .  A  key  property of  minhash 

lies in that the probability of the  minhash function on  the  

two word sets d1 and d2 from two tweets t1 and  t2,  pro- 

ducing the same values as the Jaccard similarity of two sets, 

i.e., Probability hmin(d1) hmin(d2) J(t1, t2). 
The proof of this property is  straightforward.  Obtaining 

the  same  value  for  hmin(d1) and  hmin(d2)  indicates  that   

the element with the smallest value of applying the hash 

function  h  on  d1   d2  is  also  in  d1    d2.  In  other  words, 

the  probability  of  hmin(d1)      hmin(d1)  essentially  becomes 

d1   d2/d1   d2. As shown in (1),  J(t1, t2)   d1    d2/d1    d2. 

Thus, Probability hmin(d1) hmin(d2) J(t1, t2) holds. 

Minhashing maps any tweet to a signature consisting of a 

set of integers and effectively preserves the content similarity 

for any two tweets. However, comparing minhashing for all 

possible pairs of tweets is fairly expensive due to the sheer 

size of the tweet streams. Thus, our next step is to explore 

minhash-based LSHs to calculate the similarity between the 

tweets in T by the hash collision probability distribution over 

of LSH on reducing similarity calculation is to hash tweets 

several times such that two tweets with shared content have 

higher probability to experience hash collision, i.e., be hashed 

to the same bucket, than the tweets sharing little or no content. 

Specifically, LSH first divides the hash values from n hash 

functions into b bands of r rows, and subsequently maps r 

values in each band with a simple hash function to a hash 

table. In other words, each band is divided into buckets. If two 

tweets exhibit the same hash values in one band, they will be 

mapped to the same bucket, thus becoming a  candidate pair 

of tweets for further similarity calculations. 

As proved in [21], the probability of detecting a candidate 

pair, p, via minhash LSH is a function of s, b, and r , i.e., p 

1 (1 sr)b. Thus, the threshold of Jaccard similarity between 

the two tweets for ensuring the 50% probability of becoming 

a candidate pair actually depends on the parameters of b and 

r . As shown in Fig. 5, as the number of bands in 240-minhash 

LSH increases, the threshold of Jaccard similarity decreases. 

For a given configuration of b bands with r rows for each 

band, a higher Jaccard similarity of two tweets increases the 

probability of detecting the pair as a candidate. As illustrated 

in Fig. 6, the three S-curves for 60, 80, and 120 bands, respec- 

tively, capture the relationship between the Jaccard similarity 

of two  tweets  and  the  probability  of  detecting  the pair as 

a candidate in minhash-based LSH. For the same Jaccard 

similarity, the detection probability is higher for 120 bands 

LSH, which is consistent with the observations in Fig. 5. 

In this article, we choose 120 for the parameter b to balance 

the detection coverage and computational overhead. 

Our experimental results have revealed the significant ben- 

efit of applying minhash-based LSH for calculating similarity 

matrix for the tweet set  T .  As  shown  in  Fig.  7,  this 

method has successfully and consistently reduced over 90% 

similarity calculations on real-time Twitter sample streams 

from different time windows when choosing 120 bands for 

240-minhash-based LSH for approximately constructing the 

similarity matrix. 
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Fig. 6. Probability of detection as candidate pairs for two tweets with 
different Jaccard similarities. 

 

 

Fig. 7. Reduction of pairwise similarity calculations for varying similarity 
threshold. 

 

 
V. EFFECTIVE EVENT DETECTION BY TWEET CLUSTERS 

In this article, we define an event as a continuous data 

stream contributed by different users on the same social media 

platform who share, discuss, and comment on the same topic 

during a specific time window. For example, Fig. 8(a) shows 

an original tweet posted by the official Twitter account of the 

United States Geological Survey reporting a 5.3 earthquake on 

the Santa Rosa Island near Los Angles on April 5, 2018. This 

timely post shared a breaking news on a significant natural 

disaster, and was retweeted, liked, and commented by 432, 

578, and 91 Twitter users, respectively, during a very short 

time window. Similarly, Fig. 8(b) illustrates a CNN’s tweet 

reporting Guatemala’s deadly volcanic eruption on June 4, 

2018, which was retweeted, liked, and commented by 483, 

594, and 29 users, respectively. These two examples reflect the 

disruptive utility of online social media for event broadcasting 

and information sharing. 

Detecting the events from the full data set of Twitter streams 

is relatively simple due to the sudden increase in retweets, 

comments, and likes of the most popular  tweets.  However, 

the 1% sampling process has significantly reduced the data 

volumes and smoothed the changes and dynamics of the trends 

for almost all tweets including the most popular ones. Thus, 

our tweet clustering algorithm addresses the limitations of the 

sampling process by recreating the social media dynamics of 

the same underlying real-world events by grouping together 

all related tweets or retweets for the same event into coherent 

tweet clusters. 

Considering the importance of detecting the events from 

real-time Twitter sample streams, we build a prototype system 

that takes the sampled data streams from each 1-min time win- 

dow as the input and generate tweet clusters and their corre- 

sponding latent topics as output. To detect the emerging events 

from these tweet clusters, we devise a simple change-detection 

algorithm that constantly searches for emerging tokens, which 

are the top-weighted words from the latent topics for each 

cluster and are not observed in the previous time windows, 

from the latent topics for each cluster. 

The  earthquake  event  in  Fig.  8(a)  happened  at  

19:29:16 UTC on April 5, 2018. Table I shows the tokens  

with the highest weight for the top five cohesive  clusters 

along with the emerging statuses between  19:27:00  UTC  

and 19:32:00 UTC during that day. Our simple yet effective 

change-detection algorithm is able to uncover the emerging 

earthquake token within 2 min of the actual earthquake event 

from a tweet cluster that carries earthquake as an emerging 

token and consists of only 36 sampled tweets or retweets. 

Discovered by the our proposed clustering algorithm, these 

tweet clusters group together similar tweets reporting and 

commenting the same real-world event, and significantly 

improve our ability to detect quickly these extreme events or 

natural disasters in the very beginning. Such early detection is 

very critical for the first respondents in the disaster recovery 

and rescue. Similarly, our proposed technique has successfully 

identified the event of Guatemala’s deadly volcanic eruption, 

as shown in Fig. 8(b), within 2 min. 

Table II summarizes the effective event detection of our 

proposed methodology for capturing all eight significant earth- 

quakes that happened in California during our data collection 

period between March 2018 and July 2018 and were reported 

by the Earthquake Hazards Program of the United States 

Geological Survey [22]. As shown in Table II, our proposed 

algorithm effectively clusters a set of sampled tweets related 

to the same earthquakes and detect the events by LDA topic 

modeling and emerging token identification. In this  article, 

we rely on the case studies to evaluate the effectiveness of 

detecting the real-time events of our proposed methodology. 

For each case, we manually identify the corresponding event 

on the official site of the Earthquake Hazards Program of the 

United States Geological Survey. Due to the manual validation 

process, we are unable to  run  a  large-scale event  detection 

in this article. One of our future works is to work with the 

Earthquake Hazards Program and other official channels to 
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Fig. 8. Natural disaster events reported on Twitter in real time. (a) Tweet reporting a 5.3 earthquake on the Santa Rosa Island near Los Angles. (b) Tweet 
reporting on Guatemala’s volcanic eruption. 

 
TABLE I 

TOP TOKENS WITH THE MOST WEIGHT FROM THE FIRST LATENT TOPIC FOR THE TOP FIVE COHESIVE TWEET CLUSTERS IN EACH 1-min TIME WINDOW 

 
      

      

      

      

      

      

 
TABLE II 

EFFECTIVE EVENT DETECTION ON ALL EIGHT SIGNIFICANT CALIFORNIA EARTHQUAKES BETWEEN MARCH 2018 AND JULY 2018 

 
  

   
     

     

     

     

     

     

     

     

 

 

explore the API-based automation methods for collecting the 

ground-truth events for large-scale experimental evaluations. 

VI. MODELING AND PREDICTING INFORMATION 

DIFFUSION OF TWEET CLUSTERS 

The process of data sampling has  substantially  reduced  

the number of the retweets,  comments,  or  likes  even  for  

the most popular tweets that report breaking news such as 

earthquake events. The reduction of tweets creates challenges 

for accurately characterizing and predicting the cascading 

process of information diffusion over online social media. 

However, our clustering approach for aggregating similar 

tweets into coherent clusters for the same real-world events 

 

accumulates sufficient signals to apply mathematical models 

for characterizing and predicting the diffusion process of tweet 

clusters. 

Mathematical and statistical models are widely used for 

various predictions. The ODE model is a vital mathematical 

tool arising in biology, sociology, economics, physics, and 

other fields. It has been extensively used for describing and 

predicting various time evolutions. In this article, we combine 

the genetic programming and least square method [23], [24]  

to build the ODE models to describe and predict the dynamic 

trend of the earthquake. 

Genetic programming is an effective evolutionary method, 

which mimics the mechanisms of natural selection and 
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Fig. 9. Predicting diffusion patterns for tweet clusters and the most popular tweets for two earthquake events. (a) Tweet cluster, April 5 earthquake. (b) Most 
popular tweet, April 5 earthquake. (c) Tweet cluster, May 15 earthquake. (d) Most popular tweet, May 15 earthquake. 

 

 

genetic variation. Based on suitable coding, genetic program- 

ming uses genetic operators and the principle of “survival of 

the fittest” to search for the optimal  solutions. Specifically, 

we use tree-structure-based evolutionary algorithm to evolve 

the ODE model. The main procedure of constructing the ODE 

model is as follows. 

1) Define the function set and the operator set. 

2) Generate the initial ODE model as the first generation  

of the population. 

3) Perform structure optimizations of the ODE models 

with various operations such as mutation, crossover, and 

selection. 

4) Run parameter optimizations of the ODE models with 

the least square method. 

5) Repeat steps 3 and 4 in each generation until a prede- 

fined number of iterations have reached or an optimal 

structure is found. 

As  a result of the procedure, an ODE model is developed  

in the following form: 
dy(t) 

dt 
=  f (t, y(t)) (4) 

where f is a function involving multiple elementary functions, 

e.g.,  f (t, y(t))    αtsin(t)    βy(t)et     γ t, with  the  structure 

and constants α, β, and γ of the ODE  model determined by 

the above procedure. 

Using the genetic programming and least square methods, 

we apply the retweets on any of the tweets in the cluster from 

the first 10 min since discovering the tweet cluster to train   

the ODE model, and then predict the growth of the retweets  

in the next 2 h and 50 min. Fig. 9 illustrates the prediction 

accuracy on the diffusion patterns for the tweet clusters and 

the most popular tweet for two earthquake events happening 

on April 5, 2018 and May 15, 2018. As shown in Fig. 9, the 

prediction quality on the tweet clusters [see Fig. 9(a) and (c)] 

is much higher than the prediction on the most popular tweets 

[see Fig. 9(b) and (d)] from the Twitter sample streams. 

To measure quantitatively the actual prediction improvement 

on tweet clusters over the most popular tweets for both events, 

we use NMSE to calculate the scale-free difference between 

the actual diffusion over the predicted diffusion. The NMSE 

values on the tweet clusters for two events are 0.025 and 0.623, 

while the values on the most popular tweets are 0.749 and 

28.601, respectively. Thus, the NMSE metrics also confirm 

that predicting the diffusion of tweet clusters has much better 

 

accuracy than predicting the cascading patterns of the most 

popular tweets from the Twitter sample streams. Similar to  

the evaluation of event detection, we also  use  case  studies 

for evaluating the prediction of  information  diffusion  for  

the underlying events. The automated ground-truth collection 

framework developed in our future work will enable us to 

present quantitative evaluations on a much larger scale. 

 
VII. RELATED WORK 

Online social media has recently become a  major venue  

for disseminating breaking news and broadcasting emergency 

events such as natural disasters, epidemic outbreaks, and even 

local traffic congestions due to its large-scale user base and 

rising popularity. In light of the unprecedented scale of online 

social media, sampling becomes an intuitive and important 

technique for collecting, exploring, and understanding big 

social media data. A number of research studies [25], [26] 

have pointed out the impact of sampling on social media 

analysis and modeling. For example, [25] shows the nontrivial 

impact of attribute and topology-based sampling strategies on 

a variety of metrics of information diffusion with  crawled 

data sets from Twitter, while [26] systematically compares the 

popularity, topical diversity, trustworthiness, and timeliness of 

the content generated by the users who are randomly selected 

with the content generated by a sampled set of expert users on 

Twitter. Complement to these prior efforts, this article sheds 

light on the impact of sampling on real-time Twitter data 

streams on event detection and information-diffusion modeling 

and prediction. 

Event detection is one of the important applications of 

exploring online social media data. A number of literature 

studies [27]–[30] have explored Twitter data streams to detect 

real-world events. For example, [28] develops a real-time 

system to detect automatically and geo-tag security events 

from social media data, and demonstrates the system with 

Westgate shopping mall attack in September 2013 as a case 

study. Similarly, [29] proposes a location–time-constrained 

topic model to extract content, time, and location features 

from the tweet messages for monitoring online social events, 

while [30] explores the combination of the occurrence infor- 

mation of social media content and the profile of  social  

media users to detect real-time events from microblogging text 

streams as well as to predict the cascading popularity of the 

detected events. Our article is complement to these studies, 
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since the combination of spectral clustering, LSH similarity 

search, and LDA topic modeling in our proposed methodology 

can serve as the preprocessing steps for these event-detection 

methods and ultimately improve their detection quality and 

performance. 

Information diffusion is another hot topic of online social 

media research in the last decade due to its wide appli-  

cations such as sentiment analysis  and  fake  news  detec-  

tion [31]–[33]. For example, [31] characterizes the temporal 

and spatial-diffusion patterns of information spreading over 

social media and proposes a linear diffusive model based on 

the partial differential equation (PDE) to model and predict 

information diffusion over the time and underlying social 

network. This article will enhance the algorithms proposed in 

these prior studies in the context of sampled data sets. Simi- 

larly, [32] characterizes the temporal dynamics and cascading 

of topic-specific information such as hashtags over Twitter, 

and [33] proposes a new method of inferring multi-aspect 

diffusion networks with multi-pattern cascades for character- 

izing heterogeneous user interactions and diverse cascading 

patterns in social media. As analyzed in [25], the sampling 

process creates challenges in modeling and predicting infor- 

mation diffusion over online social media. Thus, our proposed 

method of spectral clustering will become a critical step for 

modeling information diffusion of tweet clustered discovered 

from real-time Twitter sample streams. 

 
VIII. CONCLUSION AND FUTURE WORK 

The last decade has witnessed  the  unprecedented growth 

of  online  social  media.  For  example,  Twitter  has  become 

a major channel for reporting  breaking  news  and  sharing  

the latest updates of social events. However, the sampling 

process of Twitter real-time data streams has created substan- 

tial challenges for making sense of social media data such as 

detecting real-time events and predicting the cascading process 

of information diffusion. This article proposes a systematic 

methodology to combine clustering algorithms, LSH, and topic 

modeling to mitigate effectively the impact of data sampling 

in social media analysis and mining with earthquake events as 

case studies. Our extensive experimental results have shown 

that our proposed system is able to effectively detect all 

significant earthquake events happening in California between 

March 2018 and June 2018 from the 1%  sampled  Twitter 

data stream, and our system accurately predicts the cascad- 

ing pattern of information diffusion for earthquake  events 

with sampled data streams. Our future work is centered on 

understanding and mitigating the impact of social media data 

sampling on sentiment analysis and content modeling with 

word embedding [34] and natural language processing (NLP) 

techniques. In addition, we are planning to integrate the 

prototype system with the Apache Spark real-time streaming 

analytics engine [35] to reduce the latency of event detections 

to less than 1 min. 
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