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Descriptive Models of Sequential
Decisions in Engineering Design:
An Experimental Study
Engineering design involves information acquisition decisions such as selecting designs in
the design space for testing, selecting information sources, and deciding when to stop
design exploration. Existing literature has established normative models for these decisions,
but there is lack of knowledge about how human designers make these decisions and which
strategies they use. This knowledge is important for accurately modeling design decisions,
identifying sources of inefficiencies, and improving the design process. Therefore, the
primary objective in this study is to identify models that provide the best description of a
designer’s information acquisition decisions when multiple information sources are
present and the total budget is limited. We conduct a controlled human subject experiment
with two independent variables: the amount of fixed budget and the monetary incentive pro-
portional to the saved budget. By using the experimental observations, we perform Bayesian
model comparison on various simple heuristic models and expected utility (EU)-based
models. As expected, the subjects’ decisions are better represented by the heuristic
models than the EU-based models. While the EU-based models result in better net
payoff, the heuristic models used by the subjects generate better design performance. The
net payoff using heuristic models is closer to the EU-based models in experimental treat-
ments where the budget is low and there is incentive for saving the budget. This indicates
the potential for nudging designers’ decisions toward maximizing the net payoff by setting
the fixed budget at low values and providing monetary incentives proportional to saved
budget. [DOI: 10.1115/1.4045605]
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1 Introduction
The engineering design process is recognized as an iterative

decision-making process, which proceeds in stages, with each
stage marked by decisions such as material selection, design evalu-
ation, manufacturing process selection, etc. [1]. A particular class of
design decisions is information acquisition decisions, which
includes decisions such as whether to gain more information
about a concept, whether to execute a simulation, how much to
refine a model, and which model to choose. The understanding of
how a designer makes information acquisition decisions is impor-
tant for improving the outcomes of design processes, e.g., effec-
tively managing the trade-off between the design performance
and the cost of information gathering. This understanding can
allow researchers to predict the outcomes of engineering design
and systems engineering processes (e.g., Refs. [2,3]), to identify
human-related sources of inefficiencies such as cognitive biases,
and to find ways to reduce inefficiencies.
Despite extensive research on decision-making in design, there

is a lack of quantitative descriptive models of information acquisi-
tion decisions that represent how humans actually make such deci-
sions in engineering design and systems engineering. Existing
studies in design decision-making have focused on normative
frameworks (e.g., Refs. [4–7]), such as the expected utility (EU)
theory [8], which assumes that designers are rational decision
makers. However, it is well known that humans do not necessarily
follow the normative models of decision-making [9–11]. Research-
ers in cognitive psychology and behavioral economics have

developed various descriptive models of human decision makers
[12,13]. Examples of these descriptive models include bounded
rationality-based models [14], fast and frugal heuristics [13],
models based on deviations from rationality [12], and cognitive
architecture-based models [15]. Although existing descriptive
models are alternatives to the normative models, they do not
account for the nuances of information acquisition decisions in
engineering design. For example, engineering design decisions
require comparisons between multiple information sources (e.g.,
simulation and physical prototypes), and they are constrained by
budget, time, and resources. Hence, the primary objective of this
paper is to identify models that provide the best description of a
designer’s information acquisition decisions when multiple infor-
mation sources are present and the total budget is limited.
The approach followed in this paper consists of (i) designing a

simple, but nontrivial, experimental task representative of the
sequential information acquisition process, (ii) collecting experi-
mental evidence on individuals’ decisions, (iii) formulating alterna-
tive models of decision strategies, and (iv) performing Bayesian
model comparison for identifying the best-fit models and estimating
the posterior distribution over the model parameters for quantifica-
tion of treatment effects (see Fig. 1). A within-subject controlled
experiment is useful for evidence collection as it mitigates the influ-
ence of external factors [16] and maintains a degree of realism by
using humans as designers and real money as incentives [17]. A
controlled experiment, as opposed to protocol analysis, elicits deci-
sion data in a nonintrusive manner. The decision models used in the
paper incorporate strategies ranging from simple heuristics to
expected utility-based judgments. This approach is adaptable to dif-
ferent design situations by changing the experiment task and asso-
ciated candidate models.
To bound the scope of the paper, we make a few simplifying

assumptions. The design task in the experiment consists of a one-
dimensional parametric design problem with a continuous design
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space. A designer’s problem-specific domain knowledge does not
have significant bearing on their sequential information acquisition
decisions, and they adhere to the same decision strategy until
stopping. The analysis approach and the models of the individual
decisions are, however, general and can be applied to more
complex design decision-making problems. Despite the simplifica-
tions, the experimental task represents a surrogate problem that
embodies certain characteristics of real design problems. It requires
evaluation of different designs using multiple information sources,
assessing their values, and deciding the best design [1], all under a
fixed budget. The best design is not known until information search,
processing of the acquired information, and stopping are
completed [18].
The primary contribution of this paper is an approach that com-

bines computational models of decision-making with behavioral
experiments to understand human decision-making behavior in
design under uncertainty. The paper points to specific heuristic
models that describe the subjects’ information acquisition decisions
better than the counterpart expected utility-based models. Another
contribution is the insights about nudging toward cost-effectiveness
by fixing the budget at low values and/or using an incentive to
reduce budget spending. Systems engineers can leverage these
insights for balancing the trade-off between performance and
design evaluation costs in their design processes.
The paper is organized as follows. Section 2 introduces the

sequential information acquisition process, which we use as a
basis for the design of the experiment task. Section 3 provides a
rationale for various descriptive decision models. Section 4 presents
the experimental treatments, subject population, and payment

structure. Sections 5 and 6 provide the results and discuss their
implications in the engineering design context.

2 Information Acquisition in Engineering Design
We begin with an abstraction of the design process called a

sequential information acquisition and decision-making process
[19], where design is considered a problem-solving activity with
known design parameters and evaluation criteria but unknown
mapping between the two.

2.1 Sequential Information Acquisition Decisions. A
designer’s objective is to find the design parameter values that max-
imize the performance (see Fig. 2). To achieve this objective, the
designer performs iterative evaluations of the design performance.
At each iteration, the designer makes the following three decisions:
(1) a decision to choose next design, (2) a decision to choose an
information source for performance evaluation, and (3) a decision
of whether to stop evaluations.
The process is constrained by a fixed budget, which limits the

number of design evaluations. The budget type may be financial
(e.g., fixed cash or capital) or technical (e.g., fixed computational
resources or energy) [20]. There are many examples of such a
design situation. For example, in the control problem for a room
heating system, a designer finds the temperature set point that min-
imizes energy consumption while maintaining thermal comfort
[21]. Another example is the design of superconducting materials
such as CuxBi2Se3, where a designer finds the dopant composition
(x) that maximizes superconductivity through a series of magnetiza-
tion experiments [22].
The process of iterative design evaluations, here referred to as

information acquisition, is typically performed with the help of
multiple prototypes that serve as information sources with different
costs and uncertainty. Various front-end methods for quantifying
the uncertainty associated with information sources are available,
e.g., probability distribution fitting on performance data, Delphi
approach to elicit expert knowledge, and evidence theory or infor-
mation gap theory to model information deficit [23].
Based on the preceding specifications, we model the case of mul-

tiple information sources as follows. Set X denotes the design
space, and x ∈ X denotes a point in the design space. The perfor-
mance function f(x) is a scalar function of the design, i.e.,
f :X → R. However, the value f(x) is not directly observable. A
designer can obtain information about f (x) through the query of a
costly and uncertain information source. We assume that the
designer has access to M≥ 1 such information sources. The infor-
mation source labeled by m in {1, …, M} has a cost cm≥ 0.
When this information source is evaluated at a point x, it reports
a performance measurement y = f (x) + ϵm, where ϵm is a random
variable representing the measurement uncertainty.
Considering that the designer performs information acquisition

sequentially, at each step of the process, the designer chooses a

Fig. 1 An overview of the research approach

Fig. 2 Sequential information acquisition process with multiple uncertain information sources and fixed budget
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design point and an information source to query based on their
current state of knowledge about the performance function and
the measurement uncertainties. Mathematically, at iteration i, the
designer evaluates the information source mi at a point xi ∈ X
using the observed history of evaluations Hi−1 = {(xj, mj, yj)}i−1j=1,
where H0 =∅ along with any prior beliefs (see Fig. 2). For a par-
allel design procedure, in contrast, the designer would query multi-
ple pairs of information sources and designs at each step without
incorporating learning derived from the current knowledge of per-
formance observations. Although the design process may comprise
parallel and sequential queries [24,25], we focus on sequential
queries as a first step toward modeling information acquisition in
engineering design.
After observing the performance at the end of each step, the

designer decides whether to continue or stop the evaluations. If
the decision is to continue, the designer evaluates the performance
function at a new point. The designer cannot perform an additional
evaluation if the cost of querying the information source is larger
than the available budget amount. If the decision is to stop, the
outcome of the design process is the most recent state of knowledge
about f, denoted by the probability measure p(f |Hi).

2.2 Design of the Experimental Task. To operationalize the
sequential information acquisition process, we designed an experi-
ment task using specific assumptions about the nature of the design
space, information sources and fixed budget. The task involves a
subject making design decisions, and a user interface processing
acquired information in the back-end to display the state of knowl-
edge about the design performance in a visual format. The roles of
the subject and the user interface are separated to maintain unifor-
mity in how different subjects process the acquired information.
The incentives are proportional to the outcomes of the process to
motivate the subject to maximize the design performance.
ASSUMPTION 1 (Continuous design space). The design perfor-

mance f (x) is a scalar continuous function of a single design
parameter x.
ASSUMPTION 2 (Sequential evaluation process). Subjects evaluate

multiple designs sequentially. Each evaluation takes one unit of
time to run, during which the subject may not begin another
evaluation.
ASSUMPTION 3 (Multiple uncertain information sources). Subjects

evaluate the performance using either a low-fidelity or a high-
fidelity information source (M= 2).
We denote the low-fidelity information source by m 1 or “L” and

the high-fidelity information source by m 2 or “H.” We denote the
total number of low (high)-fidelity observations at step i by ni,L
(ni,H). It is ni,L =

∑i
j=1 1{L}(mj) (ni,H =

∑i
j=1 1{H}(mj)), where

1A(·) is the indicator function of the set A. An example of a low-
fidelity source is a stochastic computer-based simulation with large
uncertainty due to approximations such as discretization of the
design space, computational limitations, and errors from theoretical
inadequacy. An example of a high-fidelity source is a physical pro-
totype with relatively low uncertainty due to manufacturing defects
or machining tolerances when preparing a test specimen. Simula-
tions and prototype tests in this scenario assume aleatory uncer-
tainty, in that they generate different observations from different
evaluations of the same design point.
ASSUMPTION 4 (Gaussian measurement uncertainty). The mea-

surement process is modeled as a Gaussian random variable cen-
tered at the true (but unknown) performance function.
That is, the measurement y conditioned on the design x and the

information source m is as follows:

y|x, m ∼ N (f (x), v2m) (1)
The noise variance v2m is constant for each source m and is known to
the designer. By definition, we have v2L > v2H .
ASSUMPTION 5 (Known costs). The evaluation of the performance

at any design point costs a fixed amount, which is known a priori to

the designer. The cost in this scenario is tied to the definition of
budget, which may mean financial or technical resources.
If cL and cH are the costs of the low-fidelity and high-fidelity

observations, respectively, then cL< cH.
Since the true performance function f (x) is unknown, we assume

that the user assigns a zero mean Gaussian prior on f (x),

f |H0 ∼ p(f |H0): = GP(0, k) (2)

where k(x, x′) = v0 exp − 1
2 ((x − x′)2/ℓ2)

{ }
is a squared exponential

covariance function with parameters length scale ℓ> 0 and variance
v0 > 0. After making i observations, the state of the knowledge
changes to

f |Hi ∼ p(f |Hi): = GP(μi, ki) (3)

where μi(x)= k(x, x1:i)(Ki+Vi)
−1y1:i and ki(x, x′)= k(x, x′)− k(x,

x1:i)(Ki+Vi)
−1k(x1:i, x)′ are the posterior mean and posterior co-

variance functions, respectively. Here, we have defined x1:i =
(x1, · · · , xi) to be the vector of the first i designs and y1:i to
be the vector of the corresponding measurements. The 1 × i
matrix k(x, x1:i) is the cross-covariance between x and x1:i, Ki=
k(x1:i, x1:i) is the i × i covariance matrix of x1:i, Σ is an i × i diagonal

matrix with elements, and Vi = diag v2m1
, . . . , v2mi

( )
. Then, the point

predictive probability of f (x) is as follows:

f (x)|Hi ∼ N μi(x), σ
2
i (x)

( )
(4)

where the posterior predictive variance is σ2i (x) = ki(x, x). We
assume that ℓ and v0 are constants and independent of i.
ASSUMPTION 6 (Visualization of the state of knowledge). The user

interface visualizes the state of knowledge p(f |Hi) by displaying the
mean estimate of true performance, the 5th and 95th percentiles.
This way the acquired information gets processed and visualized
in the same manner for all subjects, and observing the subjects’
decisions remains the focus of the experiment task.
ASSUMPTION 7 (Fixed budget). Each subject has a total budget

of B for performance evaluations. A subject may stop before
exhausting the entire budget B, so the total cost incurred, Ci=
cLni,L+ cHni,H, is less than or equal to B.
ASSUMPTION 8 (Performance-based payment). The subject’s

payment includes a fixed payment, a bonus proportional to the
best high-fidelity observation, and a bonus proportional to the
budget saved.
The payment after i iterations is as follows:

I(Hi): = I0 + 1[1,∞)(nH) G(y
∗
i ) + H(B − Ci)

[ ] (5)
where we term G as the gross payoff, which is proportional to the
best high-fidelity measurement y∗i =max j:1≤j≤i,mj=H yj. Bonus H is
a function of the remaining budget B−Ci. At least one high-fidelity
measurement is required to receive bonuses because high-fidelity
measurements are valued more than low-fidelity observations.
Then, the net payoff is defined as the difference between the
gross payoff and cost incurred so far,

N(Hi): = G(y∗i ) − Ci (6)

3 Formulation of Descriptive Decision Models
The descriptive models of information acquisition decisions fall

on a spectrum with expected utility theory on one end and simple
heuristics on the other end. Models closer to the EU theory
embody rational judgments such as where the expectation of infor-
mation gain is maximum and whether maximum performance has
been achieved. They are based on criteria such as the probability
of improvement (PI) [26], the expected improvement (EI) [27],
the expected conditional improvement (ECI) [28], and the
maxima-region entropy. Models closer to simple heuristics use
cues from the environment (e.g., user interface in the experiment).
Examples of such cues are predictive mean, variance, remaining
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budget, and the number of evaluations. Simple heuristic models of
the information acquisition decisions include the upper confidence
bound (UCB) [29], conditional UCB (CUCB), the fixed sample
number (FSN), the fixed remaining budget (FRB), and
the dominant physical prototype (DPP). Table 1 lists descriptive
models used in this paper and their underlying type (expected
utility-based or simple heuristic). These models are inspired from
the literature, observations of past experiments [30], and survey
responses in the experiment detailed in Ref. [31].
The definition of a descriptive decision model involves two

stages, (i) formulating a decision strategy as an acquisition function
or a feature of observed history and (ii) modeling deviation from the
strategy using a likelihood function. Acquisition functions and fea-
tures are deterministic models that predict decisions for a given
decision strategy, while likelihood functions, with their model
parameters, impose a layer of uncertainty around those predictions.
Such a construct assumes that designers are likely to make errors
and deviate from predicted decisions, irrespective of whether their
underlying strategies are EU based or heuristic based. For the
EU-based models, the assumption of probabilistic decisions
mirrors the limited cognitive ability of designers to make accurate
decisions even though their judgments may be aligned with rational
judgments.

3.1 Modeling the Decision to Choose the Next Design. In
selecting xi+1 for the (i+ 1)th iteration, an acquisition function
assigns a value to every x ∈ X based on the observed history Hi.
The acquisition function, denoted by χi(x, Hi, ψ), has a set of
designer-specific parameters ψ. It also depends on the number of
iterations i, which represents the possibility that a strategy is
likely to adapt as more evaluations are accumulated, e.g., exploring
the design space during initial stages while exploiting regions of
high performing designs at later stages. In a deterministic setting,
the best design to pick is the one that maximizes the acquisition
function. For a probabilistic setting, however, we define the proba-
bility of picking xi+1 using Boltzmann-like likelihood function:

p(xi+1|χi, θd , Hi) ∝ exp γχi(xi+1, Hi, ψ)
{ }

(7)

where θd = {γ, ψ} collectively denotes all model parameters. This
likelihood function ensures that parts of the design space with

high acquisition function values are preferred over other parts and
that points with the same value of acquisition function have the
same probability of being selected. The rate parameter γ ≥ 0 is
associated with the sensitivity of probability density to changes in
the acquisition function. In one extreme, as γ → ∞, the model
becomes equivalent to the deterministic one as the likelihood func-
tion collapses to a Dirac delta centered at the maximum of the acqui-
sition function. At the other extreme, as γ → 0+, the likelihood
function becomes uniform over X . Different decision models
based on different acquisition functions are presented later.

3.1.1 Upper Confidence Bound. The upper confidence bound
model promotes the exploration of design space during the initial
iterations and exploitation of peak performance areas during later
iterations [29]. Design points with high values of μi(x) + αiσi(x),
where αi is an exploration parameter, are preferred. The correspond-
ing information acquisition function is as follows:

χi(x,Hi, ψ) = μi(x) + ae−biσi(x) (8)

where ψ = {a, b} are the model parameters. The parameter αi=
ae−bi is a decreasing exponential function of i because the model
represents the strategy to explore first and exploit later.

3.1.2 Probability of Improvement. The acquisition function for
this model is proportional to the probability that the next evaluation
at x will generate higher performance than the current best perfor-
mance [26]. We take the current best to be the maximum of predic-
tive means at past design evaluations, μ∗i =max1≤j≤i μi(xj), because
of the uncertain information sources. LetΔi(x) =max{ f (x) − μ∗i , 0}
be the improvement at x. Given that the state of knowledge about
performance f (x) is distributed as Eq. (4), the parameter-free infor-
mation acquisition function is as follows:

χi(x, Hi): = P Δi(x) > 0|Hi[ ] = 1 −Φ
μi(x) − μ∗i

σi(x)

( )
(9)

where Φ is the cumulative density function of the standard normal
distribution.

3.1.3 Expected Improvement. The expected improvement
model prefers design points with high expectation of improvement

Table 1 Models for the information acquisition decisions and their underlying type (simple heuristic or expected utilty (EU) based)

Decision model Underlying strategy Model type

1. Decision to choose next design
a. UCB [29] Explore design space during initial iterations while exploit during later iterations. Simple

heuristic
b. Probability of improvement (PI) [26] Selection probability proportional to PI value. EU based
c. EI [27] Selection probability proportional to EI value. EU based
d. ECI [28] Selection probability inversely proportional to ECI value. EU based

2. Decision to choose information source
a. FSN Test high-fidelity source after a fixed number of samples. Simple

heuristic
b. FRB Test high-fidelity source if the remaining budget is smaller than a fixed value. Simple

heuristic
c. Fixed maximum-region entropy (FME) Test high-fidelity source if the information entropy of the location of maximum is smaller than

a fixed value.
EU based

d. Fixed expected conditional
improvement (FECI)

Test high-fidelity source when the difference between EI from one step and EI from two steps
is smaller than a fixed value.

EU based

3. Decision to stop
a. FSN Stop after a fixed number of samples. Simple

heuristic
b. FRB Stop after a fixed amount of budget is remaining. Simple

heuristic
c. DPP Stop when the best high-fidelity measurement minus the largest predictive mean is smaller

than a fixed value.
Simple
heuristic

d. FME Stop after the entropy of the location of maximum is smaller than a fixed value. EU based
e. FEI [32] Stop after EI is below a fixed value. EU based
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relative to μ∗i from a single additional design evaluation [27]. Its
acquisition function is as follows:

χi(x, Hi) = E Δi(x)|Hi[ ]

= (μi(x) − μ∗i )Φ
μi(x) − μ∗i

σi(x)

( )

+ σi(x)ϕ
μi(x) − μ∗i

σi(x)

( ) (10)

where the expectation is over the state of knowledge at step i and Φ
is the cumulative distribution function of the standard normal
distribution.

3.1.4 Expected Conditional Improvement. This model formu-
lates the strategy of looking two steps ahead and minimizing the
aggregate expectation of conditional improvement from the
second step after the next one [28]. Suppose that we are making a
hypothetical observation using the hypothetical next-step design,
x, and the hypothetical next choice of information source, m. The
hypothetical point predictive density is N (μi|x,m(x̃), σ2i|x,m(x̃)).
Assume that this density has the mean equal to the current mean,

μi|x,m(x̃) = μi(x̃) (11)

which is justifiable because the predictive density of f (x̃|x, m) is
unchanged without observing the outcome y at {x, m}. Given that
y at {x, m} has been added to the observations, the hypothetical pre-
dictive variance is as follows:

σ2i|x,m(x̃) = σ2i+1|x,m,y(x̃) = σ2i (x̃) −
k2i (x̃, x)

ki(x, x) + v2m
(12)

Note that σ2i|x,m(x̃) is equal to σ2i+1|x,m,y(x̃) because σ2i+1|x,m,y(x̃) is in
fact independent of y.
Then, Δi(x̃|x, m) =max {f (x̃|x, m) − μ̂i, 0} is called the condi-

tional improvement at x̃. If the current maximum is taken as the
maximum predictive mean overX , μ̂i =maxx̃∈X μi(x̃), the following
monotonicity condition is true for all x̃ ∈ X [28]:

E Δi(x̃|x, m)|Hi[ ] ≤ E Δi(x̃)|Hi[ ] (13)

where the expected conditional improvement, E Δi(x̃|x, m)|Hi[ ], is
calculated by substituting the hypothetical mean μi|x,m(x̃) and vari-
ance σ2i|x,m(x̃) in Eq. (10). This means that the improvement potential
of any design x̃ reduces or remains as is after adding the design x. If
the selected x is influential at reference point x̃, then the conditional
improvement at x̃ is small. Then, the most influential design is the
one that minimizes the aggregate conditional improvement over
all x̃ ∈ X (or maximize the negative of the same statistic). Accord-
ingly, we define the acquisition function as the integrated expected
conditional improvement:

χi(x, Hi|m) = −
∫
X
E Δ(x̃|x, m)|Hi[ ]dx̃ (14)

In the analysis, we take m to be the low-fidelity source, “L.”

3.2 Models of the Decision to Choose an Information
Source. Different attributes of the observed history Hi influence
the decision to choose among information sources. Apart from
past observations, these attributes can be derived quantities such
as the sequence of different information sources used, the frequency
of a particular source, the total cost, etc. Formally, we refer to a
mapping between the observed history to some attribute as a
feature function. A feature function (or simply feature) incorporates
the observed history into the decision models. Given that multiple
history attributes may influence decisions, a decision strategy is
specified in terms of a weighted sum of multiple independent fea-
tures. The decision models defined on the basis of feature functions
are threshold based, i.e., a decision is made based on whether the

weighted sum of features is greater or less than a threshold value.
Mathematically, we characterize a particular strategy using Rm

independent features denoted by gm,i,1(Hi), . . . , gm,i,R(Hi), with
wm,1, . . .wm,Rm as the weight parameters. The likelihood of choosing
the high-fidelity information source (mi+1= 2) is defined using the
sigmoid function as follows:

p(mi+1 = H|θm, Hi) = sigm
∑Rm

r=1

wm,rgm,i,r(Hi)

( )
(15)

where sigm(λ) = (1 + exp { − λ})−1 is the sigmoid function and
θm = {wm,1:Rm} are model parameters. The weight parameter wm,r

is positive or negative, respectively, based on whether an increase
in gm,i,r(Hi) increases or reduces the selection probability of the
high-fidelity source. The likelihood of selecting the low-fidelity
information source is p(mi+1 = L|θm, Hi)= 1− p(mi+1 =H|θm, Hi)).
In a threshold-based decision model, we always include a cons-

tant, negative basis function gm,i,1(Hi) = −1 because the difference
between the weighted sum and a threshold determines the decision
strategy. Furthermore, we assume that each designer’s strategy
relies upon a single element of history, and the decision model
uses two features (Rm= 2), one more in addition to the constant
one. This assumption reflects that people’s cognitive ability is
limited, and they do not consider all the relevant information
while making decisions [33].

3.2.1 Fixed Sample Number. In this model, the low-fidelity
information source is used for a fixed number of samples, and the
expensive high-fidelity source is used thereafter. The feature used
for this model is as follows:

gm,i,2(Hi) = i (16)

3.2.2 Fixed Remaining Budget. In this model, the remaining
budget determines the choice between the two information
sources. Low-fidelity observations, if any, are collected during
initial iterations until a fixed amount of remaining budget is left,
and high-fidelity observations are collected thereafter.
The feature for this model is as follows:

gm,i,2(Hi) = B − Ci (17)

where cost Ci= ni,LcL+ ni,HcH is a function of observed history Hi.

3.2.3 Fixed Maximum-Region Entropy. A strategy is based on
the judgment of whether the region of function maximum has been
sufficiently identified given the observed history. It is assumed that
once the information entropy of the posterior probability density of
the performance maximum reduces to a fixed value, the designer
starts design evaluations using the high-fidelity information source.
To define the entropy, let X∗ be the random variable representing

the location of the maximum, i.e., X∗ = X∗[f ] = argmaxx∈X f (x).
The posterior probability density of X∗ is given by:

p(x∗|Hi) = E δ x∗ − argmax
x∈X

f (x)

( )
|Hi

[ ]
(18)

The entropy of this distribution is as follows:

gm,i,2(Hi) = S(Hi): = −E log p(X∗|Hi)|Hi

[ ]
= −

∫
x∗∈X

log p(x∗|Hi)p(x
∗|Hi) dx

∗ (19)

We estimate the entropy numerically using the maxima of 500
functions sampled from the posterior GP, see Eq. (3). Specifically,
we estimate p(x∗|Hi) by building the histogram of the sampled
maxima and then performing the integration of Eq. (19)
numerically.

3.2.4 Fixed Expected Conditional Improvement. In this model,
two possible actions are compared at each iteration for the selection
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between information sources, (i) evaluate using the expensive high-
fidelity source or (ii) evaluate using the cheap low-fidelity source
first and then using the expensive high-fidelity source next. The
first action is desirable when only a small improvement in
performance is expected, whereas the second action is desirable
when large improvements are possible and exploration of the
design space is beneficial. Accordingly, this model compares the
maximum expected improvement from a single physical prototype
(maxx∈X E Δi(x)|Hi[ ]) to that from one computer simulation and
one physical prototype (maxx,x̃∈X (E Δi(x)|Hi[ ] + E Δi(x̃|x, L)[ ])).
The cost difference between the two actions, i.e., the cost of one
computer simulation is absorbed in the constant feature. The
feature function for choosing the first action over the second one
is as follows:

gm,i,2(Hi) = max
x,x̃∈X

(E Δi(x)|Hi[ ] + E Δi(x̃|x, L, Hi)[ ])

−max
x∈X

E Δi(x)|Hi[ ]
(20)

3.3 Models of the Decision to Stop. The strategies for decid-
ing whether to stop are modeled using basis functions in the same
manner as the decision to choose information source. Assume
that a strategy for stopping after i iterations is dependent on Rs

features of history Hi and characterized by basis functions
gs,i,1(Hi), . . . , gs,i,Rs (Hi). Then, the likelihood of stopping is
defined using a sigmoid function as follows:

p(si = 1|θs, Hi) = sigm
∑Rs

r=1

ws,rgs,i,r(Hi)

( )
(21)

where θs = {ws,1:Rs} are designer-specific model parameters. The
weight parameter ws,r can be positive or negative depending on
whether an increase in gs,i,r(Hi), respectively, increases or reduces
the probability of stopping. Again, we take gs,i,1(Hi) = −1, and
we assume that the designer only relies upon a single feature of
history while deciding whether to stop. Thus, Rs= 2 for all the
models.

3.3.1 Fixed Sample Number. According to this model, the total
number of iterations performed is fixed. Accordingly, the feature
function is as follows:

gs,i,2(Hi) = i (22)

3.3.2 Fixed Remaining Budget. In this model, we assume that
design evaluations are stopped when the remaining budget B−Ci

reduces to a fixed value. The basis function has the following form:

gs,i,2(Hi) = B − Ci (23)

3.3.3 Dominant Physical Prototype. Design evaluations are
stopped when the difference between the largest high-fidelity mea-
surement and the maximum of predictive mean is smaller than a
fixed value. We define the corresponding feature as follows:

gs,i,2(Hi) =max
x∈X

μi(x) − max
j:1≤j≤i,mj=H

yj (24)

3.3.4 Fixed Expected Improvement. In this model, we assume
that design evaluations are stopped if the maximum expected
improvement from the next sample is small. This strategy fits into
Eq. (21) by defining the feature function as follows:

gs,i,2(Hi) = E Δi(x)|Hi[ ] (25)

where the expected improvement is calculated in the same way as
given in Eq. (10).

3.4 Conditional Decisions to Choose the Next Design and to
Choose the Information Source. The decisions of choosing
the next design and choosing information source can be

interdependent. For example, a designer may use the low-fidelity
information source to evaluate design points with large uncertainty
(for exploration) and the high-fidelity information source to eval-
uate design points closer to regions of large performance and rel-
atively low uncertainty (for exploitation). We call this model the
CUCB model.
For the case when selecting xi+1 is conditional on the choice

of information source mi+1, the joint probability of both the
decisions is p(xi+1, mi+1|Hi) = p(mi+1|Hi)p(xi+1|mi+1, Hi), where
p(xi+1|mi+1, Hi) is the conditional likelihood function for the deci-
sion to choose next design,

p(xi+1|mi+1, Hi) ∝ exp γ′ μi(xi+1) + α′σi(xi+1)
[ ]{ }

(26)

The exploration parameter α′ is a′e−b
′i for mi+1= L and 0 for mi+1=

H, where a′and b′ are positive parameters. The conditional likeli-
hood function is dependent onmi+1 and independent of its probabil-
ity p(mi+1|Hi), which can take any of the forms given in Sec. 3.2.
The joint probability can be alternatively written as follows:

p(xi+1, mi+1|Hi) = p(xi+1|Hi)p(mi+1|xi+1, Hi). Here, the likelihood
of choosing the high-fidelity source (mi+1=H) conditional on xi+1
is as follows:

p(mi+1 = H|xi+1, Hi) = sigm
∑Rm

r=1

wm,rgm,i,r(xi+1, Hi)

( )
(27)

where wm,r are model parameters. In a manner similar to the models
in Sec. 3.2, we fix Rm = 2and gm,i,1 = −1. Then, the feature that
specifies the dependence between the decisions is as follows:

gm,i,2(xi+1, Hi) =max
x∈X

μi(x) − μi(xi+1) (28)

The above formulation supports picking the high-fidelity informa-
tion source for designs that have high expectation of performance.

4 A Controlled Experiment to Elicit Design Decisions
For parameter estimation and comparison of the decision models,

we gathered data from decisions by conducting an experiment with
the experimental task presented in Sec. 2.2.

4.1 Subjects, Treatments, and Payment. A total of 63
student subjects were recruited from an introductory undergraduate
level machine design course. The participation was voluntary and
was not considered toward students’ grades.
Each subject performed 18 runs of the experimental task with a

distinct unknown performance function. A run of the experimental
task is called a period. The objective in each period was to find the
maximum of an unknown function. For every iteration in each
period, subjects made three decisions, (i) decision to choose x, (ii)
decision to choose an information source, and (iii) decision about
whether to stop. The 18 distinct functions were randomly generated
prior to the experiment and were fixed for all subjects. The assign-
ment of these functions to periods was randomized for each subject
to minimize potential confounding between functions and treat-
ments. Some parameters of the experimental task were fixed. In par-
ticular, the design evaluation costs were cL= 2, cH= 8, the
measurement variance were vL= 10, vH= 0.0, the design space
was X = [−10, 10], and the fixed minimum payment I0 = $5.
The user interface is shown in Fig. 3. For the ease of understanding
of the subjects, we termed the low-fidelity information source as a
computer simulation, and the high-fidelity information source as a
physical prototype.
The experiment was divided into three parts:

(1) Trial part (two periods): The first part involved two trial
periods to help the subjects get familiarized with the user
interface before starting the actual experiment. The outcomes
of these functions were not considered toward the subjects’
payment.
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(2) Use-it-or-lose-it part (nine periods): For this part, the sub-
jects were allocated a fixed budget per period. Any remaining
budget was discarded and not added to the subject’s
payment. In this part, a subject evaluated nine unknown
functions in nine periods, with three functions each for
three treatments of fixed budget per period: (i) treatment
T1 : B= 20, (ii) treatment T2 : B= 40, and (iii) treatment
T3 : B= 60.

(3) Save-remaining-budget part (nine periods): For this part, the
subjects were allocated a fixed budget per period and any
remaining budget at the end of every period was added to
payment as a bonus Hb. Subjects evaluated nine unknown
functions in nine periods, with three functions each for the
three treatments of fixed budget per period: (i) treatment
T4 : B= 20, (ii) treatment T5 : B= 40, and (iii) treatment
T6 : B= 60.

At the end of the above three parts (six treatments), the subjects
completed a survey on their computer screen where they responded
to three questions asking them to list the strategies they used for the
three decisions.
The order of treatments was varied across the subjects to control

for order effects [35]. The four different orders of six treatments
were as follows: (i) T1− T2− T3−T4− T5− T6, (ii) T3− T2−
T1 − T6− T5− T4, (iii) T4− T5− T6− T1− T2− T3, and (iv) T6
−T5− T4− T3− T2− T1.
If y∗i was the best observation in high-fidelity observations, then

the gross payoff was calculated as follows:

G(y∗i ) = 100 − (fmax − y∗i )francs (29)

where fmax was the true maximum value of a given unknown
function and franc was the experimental currency unit. The
gross payoff for a period was revealed only after stopping. For
the periods in save-remaining-budget treatments, any remaining
budget was added to the gross payoff, i.e., H(B−Ci)=B−Ci.
For the periods in use-it-or-lose-it treatments, H(B−Ci) equalled
0. We converted the total payment (G(y∗i ) + H(B − Ci)) from two
randomly selected periods into equivalent US dollars for payment
so as to encourage subjects to put their best effort in each period.
The bonus payment and the conversion rate between francs and
US dollars was revealed at the end of the experiment to
mandate participation in all parts to receive any payment. This
rule was aimed at minimizing the wealth effect that influences
the future effort once winnings from the previous periods
are revealed. The rule also reduces the selection bias, which

discourages participation in future treatments once the payment
from previous treatments is received.

4.2 Data Acquisition. We collected data on the choice of
design point, xi ∈ X , the choice of information source, mi∈ {L,
H}, and the choice of stopping, si which is 0 if the subject
stopped after the iteration or 1 otherwise. We also recorded the
related quantities such as gross payoff, fixed budget, functional per-
formances, and the index of iteration i associated with every evalu-
ation. In addition, we recorded the text of the subjects’ survey
responses.
The descriptive statistics for different treatments are shown in

Table 2. With the increase in the amount of fixed budget, the
subjects performed more iterations and evaluated more number of
high-fidelity information sources. When the incentive to save
budget was in place, the number of iterations reduced. Higher
number of iterations resulted in better performance on average as
well as higher costs, as shown in Fig. 4, but the net payoff (perfor-
mance minus cost) was lower. Net payoff increased with the incen-
tive-to-save-budget. These observations highlight the usefulness of
high fixed budget for improving design performance and that of
the incentive-to-save-budget for reducing spending and improving
net payoff.

Fig. 3 A screenshot of the user interface, developed using oTree [34], shows the information
provided to the subjects during the experiment

Table 2 Mean and standard deviation of some basic attributes
from the dataset

Treatments

Attribute T1 T2 T3 T4 T5 T6

Number of
subjects

63 63 63 63 63 63

Total number of
decisions

1292 2100 2602 1155 1608 1743

Number of
iterations per
period

6.8
(±1.7)

11.1
(±3.5)

13.8
(±4.7)

6.1
(±1.6)

8.5
(±2.9)

9.2
(±3.0)

Number of
high-fidelity
information
sources per
period

1.0
(±0.6)

2.7
(±1.2)

4.3
(±1.8)

1.0
(±0.5)

1.8
(±1.1)

2.3
(±1.7)

Duration of
iteration (s)

11.5
(±8.7)

11.1
(±6.6)

11.6
(±7.6)

11.5
(±8.1)

10.6
(±6.1)

11.1
(±9.3)

Duration of
period (s)

76.7
(±30.8)

123.6
(±54.2)

159.3
(±70.0)

68.9
(±28.4)

89.4
(±40.6)

101.9
(±50.3)
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5 Bayesian Model Comparison of the Descriptive
Decision Models
In this section, we describe the variational Bayes approach to find

approximations to posterior distributions of the model parameters
and to estimate lower bounds to marginal log-likelihoods of the
decision models conditional on the experimental data [36]. The var-
iational Bayes approach is useful in complex stochastic models
where analytical forms of posterior distributions are intractable.
The model evidence lower bound (ELBO), that is, an approximation
to the expectation of log posterior probability of the data, quantifies
the support for a model, i.e., the accuracy with which a model
represents the experimental data. We denote ELBO, say for
model Mj, as Lj.
It is assumed that all models are equally likely to represent the

data a priori. To facilitate more intuitive explanation of the param-
eter estimates in the results, we transform the likelihood functions in
Eqs. (15), (21), and (27) and take the weight parameters wm,2 and
ws,2 out of the summation. This way the threshold parameters are
given by wm,1/wm,2 and ws,1/ws,2.
A hierarchical form of a decision model is fitted to the experi-

mental data for each treatment group separately, as described in
Fig. 5. Hyperparameters are parameters of the prior distributions
over model parameters. They characterize the group-level prefer-
ences of the subject population. The prior distributions of model
parameters are functions of samples from hyperpriors, that is,
priors over the hyperparameters. Subject-specific model parameters

are independent samples from these prior distributions. With this
setup, the group-level treatment effects and individualized treatment
effects are implied from the posterior distributions of hyperpara-
meters and models parameters, respectively. See Table 3 for the
hyperpriors and the prior distributions.
Before performing model training, we partition the experimental

data into training and test datasets. The training dataset is drawn
from randomly selected 15 periods and used to estimate the
model parameters. The test dataset consisting of the remaining
three periods is used for estimating the posterior predictive accuracy
of the decision models. The predictive accuracy on the test data
is given by the computed log pointwise predictive density as
follows [37]:

Computed lppd =
∑N̂
n=1

log
1
S

∑S
s=1

p(zn|θs)
( )

(30)

where θs ∼ ppost(θ) for s= 1, 2,…, S are posterior samples of given
model parameters, zn is a test data point, and N̂ is the number of test
data points. A non-Bayesian measure, called accuracy score, is also
calculated for the decision models of choosing information source
and stopping which have discrete alternatives. If z(p)n is a prediction
corresponding to a data point zn, then the accuracy score is

(1/N̂)
∑N̂

n=1 1{zn}(z
(p)
n ).

The posterior distribution approximations and ELBO for decision
models were estimated using automatic differentiation variational
inference [38] algorithm in PyMC3 module of PYTHON [39]. This
algorithm was run for 50,000 iterations, and among those, last
5000 iterations were used to calculate the average ELBO.

5.1 Estimates of Model Evidence Lower Bound. The posi-
tive values of estimates of model ELBOs relative to random sam-
pling Lj − Lrand in Fig. 6 highlight that the predictions of the
decision models are more accurate than random predictions. The
ELBO of random sampling Lrand for the decision to choose next
design is N log ( 1

20 ) assuming a uniform distribution function over
the design space [−10, 10] and N is the training data size. It is
Nlog (0.5) for the decisions to choose an information source and
to stop assuming the probability of 0.5 for each of the two alterna-
tives in both the decisions. We are able to compare the support for
any two models, say j1 and j2, by comparing L j1 − Lrand and
L j2 − Lrand , because Lrand remains constant in a given treatment.
RESULT 1. For the decision to choose the next design, the UCB

model and the CUCB model have the highest ELBOs.
From Result 1 and Fig. 6, we conclude that exploration during

initial iterations while exploitation during later iterations, captured
by UCB and CUCB models, is the most likely strategy for choosing
the next design point. At low-budget treatments T1 and T4, the
ELBO of the CUCB model is the highest, suggesting that the selec-
tion of a design point and an information source are interdependent.
The subjects use low-fidelity observations for exploration and high-
fidelity observations for exploitation.
RESULT 2. For the decision to select an information source, the

FSN model and the CUCB model have higher ELBOs than the
other alternative models. The FSN model has the highest ELBO
at low budget, whereas the CUCB model has the highest ELBO
at medium and high budgets.
Selecting the first high-fidelity observation after a fixed number

of iterations is the most likely strategy at low budget. However,
with higher total budget, subjects also rely on the predictive mean
to select whether to choose the high-fidelity information source.
Evaluating high-fidelity observations at locations closest to the
highest predictive mean is the most likely strategy for medium
and high budgets.
RESULT 3. For the decision to stop, the FRB model has the

highest ELBO in all treatments, except in medium- and high-budget
treatments of “save-remaining-budget” part where the DPP model
has the ELBO similar to that of the FRB model.

Fig. 5 A graphical representation of the hierarchical decision
models. A hollow circular node denotes random parameters
and a shaded circular node denotes observations.

Fig. 4 The subjects’ actual performance and total cost after
stopping different treatments
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According to the results in Fig. 6, the subjects stopped after
exhausting the entire or part of the available budget in treatments
T1, T2, T3, and T4. However, at medium and high budget in the
“save-remaining-budget” part (treatments T5 and T6), the subjects
stopped when the existing best performance from high-fidelity
observations was closer to the highest mean prediction of the
performance.
Results 1–3 also hold true for the test dataset based on computed

lppd metrics in Fig. 6 and prediction accuracy scores in Fig. 7. Both

the larger computed lppd and larger accuracy score imply better
support for a model. The differences in prediction accuracy from
different models are substantial given that lppd is defined in the log-
arithmic scale.

5.2 Effects of Fixed Budget and Payment Incentives. The
amount of fixed budget and the incentive-to-save-budget affect
the posterior distributions of model parameters and, by implication,
the subjects’ strategies for information acquisition decisions. The
exceptions are the rate parameter γ for the EI, PI, and ECI
models, where γ remains largely constant. Small γ means that the
decision is random according to the model, whereas a large γ
means the information acquisition function is closely followed. Pos-
terior distributions suggest that the UCB and CUCB models have
high γ’s, which is consistent with the ELBO results. Appendix
A.2 presents the posterior distributions of the model parameters.
Specific observations about the subjects’ behaviors are as follows.
RESULT 4. Exploration of design space increases with the

increase in fixed budget.
As observed in Fig. 8, the mean posterior estimates of the explo-

ration scale α increase with fixed budget between treatments. Note
that the mean posterior estimates of α are similar at medium and
high budget (treatments T5 and T6) in “save-remaining-budget”
part of the experiment. This implies that there is a reduction in

Fig. 7 Predictive accuracy scores of the decisionmodels on the
test data

Table 3 Uninformative hyperpriors and priors of model parameters for the hierarchical decision models

Decision to choose x(tji)i+1 Decision to choose m(tji)
i+1 Decision to choose s(tji)i+1

Hyperpriors over
hyperparameters
h(t)d , h(t)m , h(t)s

α(t)a , α(t)b , α(t)γ , β(t)γ ∼ Gamma(1, 1) α(t)wm1/wm2
, β(t)wm1/wm2

, α(t)wm,2
, β(t)wm,2

∼ Gamma(1, 1)

α(t)wm1/wm2
∼ Normal(1, 1) for CUCB

α(t)ws1/ws2
, β(t)ws1/ws2

, α(t)ws,2
, β(t)ws,2

∼ Gamma(1, 1)

α(t)ws1/ws2
∼ Normal(0, 1) for DPP

Priors over model
parameters
θ(tj)d , θ(tj)m , θ(tj)s

a(tj) ∼ Gamma(α(t)a , 5)

b(tj) ∼ Gamma(α(t)b , 5)

γ(tj) ∼ Gamma(α(t)γ , β(t)γ )

−w(tj)
m,2 ∼ Gamma(α(t)wm,2

, β(t)wm,2
) for FME, FRB,

FECI, CUCB

w(tj)
m,2 ∼ Gamma(α(t)wm,2

, β(t)wm,2
) for FSN

w(tj)
m,1

w(tj)
m,2

∼ Gamma(α(t)wm,2
, β(t)wm,2

) for FME, FECI,

CUCB

w(tj)
m,1

w(tj)
m,2

∼ Normal(α(t)wm,2
, β(t)wm,2

) for FSN, FRB

−w(tj)
s,2 ∼ Gamma(α(t)ws,2

, β(t)ws,2
) for FME, FRB,

FECI

w(tj)
s,2 ∼ Gamma(α(t)ws,2

, β(t)ws,2
) FSN, DPP

w(tj)
s,1

w(tj)
s,2

∼ Gamma(α(t)ws,2
, β(t)ws,2

) for FME, FEI

w(tj)
s,1

w(tj)
s,2

∼ Normal(α(t)ws,2
, β(t)ws,2

) for FSN, DPP,

FRB

Fig. 6 Model evidence lower bound (Lk − Lrand) relative to random selection from training data
and computed log pointwise posterior density (computed lppdk) from the test data in different
treatments
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exploration when the subjects have an incentive to reduce budget
spending and when large savings are possible.
RESULT 5. There is an increase in the probability of selecting

high-fidelity information source as the fixed budget increases,
except for medium and high budgets in the “save-remaining
budget” part.
We observe that the posterior distribution of the threshold param-

eter wm,1/wm,2 for the FSN model increases with the increasing fixed
budget and decreases with the incentive-to-save budget. Theses
posterior values on average equal the number of high-fidelity infor-
mation sources provided in Table 2. The subjects choose a single
high-fidelity observation after six samples at low-budget treatments
(treatments T1 and T4). The average number of high-fidelity obser-
vations increases from 2.6 in treatment T2 to 4.2 in treatment T3.
RESULT 6. The probability of stopping early at high values of

remaining budget increases with an increase in fixed budget and
with the incentive-to-save budget.
The result follows from the posterior distribution of model param-

eters in the FRB model. Figure 9 shows the posterior probability of
stopping as a function of the remaining budget from the FRB
model. The FRB model’s threshold parameter estimate for the
“use-it-or-lose-it budget” part (mean posterior ws,1/ws,2≈ 1) is
smaller than the cost of one high-fidelity observation (cL= 2), which
implies that the subjects stop after exhausting almost the entire fixed
budget. On the other hand, in “save-remaining budget” part, the
mean estimates of ws,1/ws,2 increase as the fixed budget increases.

6 Discussion
6.1 Accuracy of the Models of Designers’ Decisions. The

results indicate that the simple heuristic models represent designers’
decisions in the sequential information acquisition process more
accurately than the expected utility-based models. No single
model captures all strategies exactly; however, the heuristic
models with the highest ELBOs provide most accurate approxima-
tions to the subjects’ strategies. As a result of accurate predictions of
the information acquisition decisions, the heuristic models also
predict the performance more accurately than the expected utility-
based models, e.g., EI, FECI, and FEI. To verify the results, we
performed 150 simulation runs for the sequential information acqui-
sition process using both a triplet of highest ELBO heuristic models
and a triplet of the expected utility-based models. At each iteration i
of a run, we quantified the current belief about the design per-
formance using normalization of the highest predictive mean
maxj=1≥j≤i μi(xj). A comparison of the predictions of these quanti-
ties with their actual values in the test dataset in Fig. 10 confirms
that the highest ELBO heuristic triplet has better predictive strength
than the expected-utility based triplet.
The heuristic models remain more likely to represent subjects’

decisions if the assumptions about the prior state of knowledge
are changed. For example, when Gaussian priors with means 30
and 50 are implemented as the prior state of knowledge instead of
the zero mean Gaussian prior in Eq. (4), the ELBO of the CUCB
model still remains higher than that of the EI-based model for
choosing next the design. The ELBOs of the CUCB model in treat-
ment T1 for means 0, 30, and 50, respectively, are 1783, 1722, and
1771, whereas those of the EI model are 1977, 1826, and 1850. A
possible reason for the high ELBO of the CUCB model is the inter-
dependence between the decisions of choosing the next design
and choosing an information source. Such interdependence is inev-
itable as the subjects have few available cues for most of the deci-
sions [33].

6.2 Implications for Engineering Design. On the objective
functions in the test dataset, the heuristic triplet model generates
higher design performance (gross payoff) than the EU-based
triplet model. Figure 11 plots the gross payoff (Eq. (5)) for both
the heuristic triplet and the EU-based triplet models. We observe
that the EU-based triplet has poorer gross performance, especially
in treatment T3. The gross performance of the heuristic triplet
model improves with the high fixed budget and without the incen-
tive for saving budget. That is because with the high fixed budget
and without the incentive for saving budget, the heuristic model

Fig. 8 Mean posterior estimations of the exploration scales α
and α′ for the decision to choose the next design

Fig. 9 Mean posterior probability of stopping for all subjects as
a function of the remaining budget under the FRB model

Fig. 10 Normalized design performance quantified as highest
predictive mean
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triplet completes larger number of iterations, conducts more design
exploration, and receives better performance. Figure 12 provides
evidence for this explanation. Therefore, if the goal is to maximize
the gross design performance, the system designers should allow
designers to spend a large fixed budget without any incentive to
reduce spending. Under this incentive structure, there is a
greater chance of finding the best design that maximizes the
performance.
Despite the large gross payoff and the closeness to human design

decisions, the heuristic models are less efficient in terms of the net
payoff. More iterations of the heuristic triplet model result in higher
total cost and therefore reduce the net payoff, i.e., the difference in
the achieved performance and the total cost incurred until stopping,
as shown in Fig. 11. We observe that the EU-based triplet model
provides higher net payoff on average than the heuristic triplet
models in all treatments. The difference in average net payoffs
from the heuristic triplet model and the EU-based triplet model
reduces with the decreasing fixed budget and with the incentive
to save budget.
If the goal is to maximize the net payoff, system designers

should restrict the amount of fixed budget or implement monetary
incentives proportional to the saved budget. The latter option is
more viable than the former if the appropriate amount of the

fixed budget cannot be determined. Under monetary incentives
for reducing spending, not only are the designers more likely
to maximize the net payoff but also their decisions are more
likely to be aligned with the expected utility-based models. The
prediction accuracy score of the FEI model on the test data is
larger in treatment T6 with the incentive-to-save budget than in
treatment T3 without such an incentive. The same holds true
for the training data where the FEI model’s accuracy scores in
treatments T3 and T6 are, respectively, 0.71± 0.02 and 0.76±
0.024 (pvalue < 0.0001). Note that we implemented the
incentive-to-save-budget by paying to the subjects the entire
remaining budget they saved. However, its effects may likely
be obtained by paying a smaller amount proportional to the
remaining budget. This is because people have the comparative
view of monetary benefits and prefer avoiding losses to acquiring
equavalent gains; for them, failing to receive even a small poten-
tial benefit is a lost opportunity [9].
The implication for our understanding of human decision-

making in engineering design is that designers may be more atten-
tive to the design performance than the cost of design evaluations
or the relative difference in two. Possible explanations of this
observed gap may include high cognitive load associated with pro-
cessing predictive uncertainty and estimating utility of the next
design in relation to the cost of evaluation. It is also likely that
the subjects are driven by intrinsic factors such as satisfaction
from finding the best design and delivering the best outcomes for
a given task. Further research is needed to determine the root
causes for this observed trend.

7 Conclusion
In this paper, we present an approach that combines computa-

tional modeling and behavioral experiments to quantify designers’
decision strategies during the sequential information acquisition
process. By using Bayesian inference, we observe that the heuris-
tic models provide the best descriptions of subjects’ strategies for
making information acquisition decisions. The subjects rely on
simple cues accessible via graphical interfaces for making the
most of the information acquisition decisions. This reliance on
simple cues for making design decisions may be attributed to
the relatively smaller cognitive effort involved in using simple
cues. Moreover, the subjects’ decisions are affected by the
amount of fixed budget and incentives to save budget. For
example, the subjects select design points close to the highest
upper confidence bound (UCB and CUCB models) when
seeking to maximum design performance. The subjects mostly
select a fixed number of low-fidelity and a fixed number of high-
fidelity observations (FSN model) at low budget. At large budget,
they query the low-fidelity source for evaluating high uncertainty
regions (exploration in CUCB model) and the high-fidelity source
for low uncertainty regions (exploitation in CUCB model). For
stopping evaluations, the subjects exhaust entire or a fixed fraction
of the fixed budget (FRB model), unless they are incentivized to
save budget in which case they stop if the current best perfor-
mance is marginally better than the mean of the predicted perfor-
mance (DPP model).
The insights from the analysis have implications for engineering

design research and practice. With the models that incorporate
simple heuristics, researchers can quantify design performance in
terms of designers’ decision strategies, as illustrated in Fig. 10.
The applications of this include design crowdsourcing where
game-theoretic models lack design process models [2,40] and the
agent-based models of engineering systems design where character-
ization of quality as a function of designer effort is difficult to
achieve [3]. Furthermore, system engineers and managers can set
the fixed budget at low values or provide monetary incentives for
reducing spending to nudge a designer’s decisions toward
EU-based strategies, which are efficient for maximizing net
payoff (design performance minus cost of evaluation).

Fig. 11 The gross payoff G(Hi) and the net payoff N(Hi) after
stopping for heuristic triplet model and the expected utility-
based triplet model. The gross payoff is a function of the best
design performance y*i calculated according to Eq. (29). The
net payoff is the gross payoff minus total cost, i.e., G(Hi)−Ci.

Fig. 12 Total cost Ci and the number of iterations i after stop-
ping for the heuristic triplet model and the expected utility-based
triplet model
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The methodology used for eliciting decisions and estimating
decision strategies is particularly suited for the embodiment phase
of the design process. There is a need for further research to estab-
lish generalizability across contexts, problems, and populations.
Some assumptions require further validation, e.g., Assumption 6,
which states based on the existing studies in Refs. [41–43] that
the Gaussian processes closely represent human information pro-
cessing. Because this study utilizes student population and a short-
run decision-making process, more empirical evidence is required
to establish the generalizability of the results to engineers as design-
ers and long-term design processes. Future descriptive modeling
efforts need to account for context-dependent design situations,
where decision strategies depend on the availability of
problem-specific information or the lack thereof [44], an acceptable
quantification of predictive uncertainty is absent [45], and the
mapping between resources expended and the value of prototypes
created varies across disciplines and knowledge domains [46].
Such design situations should include multiple objectives and/or
multidimensional design parameters.
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Appendix
A.1 Design Performance Functions. Design performance

functions are shown in Fig. 13.

A.2 Posterior Distributions of the Model Parameters. Pos-
terior distributions of the model parameters are presented in Table 4.

Fig. 13 Eighteen unknown design performance functions used
in the experiment

Table 4 Mean and standard deviation (in parenthesis) of the posterior distribution for the subject-specific model parameters

Model parameters

Decision to choose design x

γ or γ′ a or a′ b or b′

Model T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

UCB 12.87
(1.37)

12.08
(0.65)

10.0
(0.46)

11.18
(2.38)

11.62
(0.96)

10.87
(1.08)

5.37
(0.13)

6.99
(0.14)

7.12
(0.14)

4.75
(0.12)

6.24
(0.14)

6.42
(0.15)

0.15
(0.03)

0.11
(0.02)

0.1
(0.03)

0.17
(0.03)

0.11
(0.03)

0.11
(0.03)

CUCB 12.81
(1.26)

9.47
(0.75)

6.96
(0.45)

12.18
(1.11)

9.58
(0.79)

9.75
(0.84)

5.72
(0.14)

7.21
(0.15)

7.8
(0.16)

6.11
(0.14)

7.14
(0.16)

7.23
(0.16)

0.13
(0.05)

0.12
(0.05)

0.1
(0.05)

0.16
(0.04)

0.12
(0.13)

0.12
(0.05)

PI 1.47
(0.15)

1.58
(0.11)

1.58
(0.1)

1.56
(0.17)

1.32
(0.14)

1.3
(0.14)

– –

EI 1.92
(0.17)

1.9
(0.11)

1.95
(0.11)

1.88
(0.16)

1.72
(0.15)

1.65
(0.13)

– –

ECI 1.4
(0.14)

1.32
(0.1)

1.08
(0.08)

1.35
(0.14)

1.17
(0.12)

1.19
(0.12)

– –

Decision to choose an information source
wm,2 wm,1/wm,2 –

FSN 7.14
(1.26)

0.58
(0.05)

0.39
(0.04)

2.82
(0.37)

0.5
(0.04)

0.59
(0.05)

5.38
(0.08)

10.06
(0.25)

10.89
(0.3)

5.13
(0.07)

8.57
(0.2)

8.65
(0.22)

–

FRB 0.2
(0.02)

0.07
(0.0)

0.03
(0.0)

0.17
(0.01)

0.06
(0.0)

0.03
(0.0)

2.79
(0.25)

3.22
(0.27)

4.03
(0.29)

2.79
(0.25)

2.66
(0.29)

2.74
(0.3)

–

FME 1.17
(0.08)

0.95
(0.06)

0.73
(0.05)

1.05
(0.07)

1.03
(0.06)

0.93
(0.06)

0.56
(0.08)

0.83
(0.1)

0.96
(0.11)

0.52
(0.08)

0.65
(0.09)

0.56
(0.09)

–

FECI 1.93
(0.12)

2.81
(0.13)

3.09
(0.17)

1.69
(0.11)

1.94
(0.11)

1.92
(0.11)

0.34
(0.05)

0.52
(0.03)

0.58
(0.03)

0.34
(0.05)

0.41
(0.05)

0.39
(0.04)

–

CUCB 0.57
(0.11)

0.18
(0.02)

0.16
(0.02)

0.24
(0.03)

0.23
(0.03)

0.19
(0.02)

1.48
(0.15)

1.15
(0.25)

2.28
(0.29)

6.48
(0.3)

6.05
(0.34)

5.99
(0.39)

–

Decision to stop
ws,2 ws,1/ws,2 –

FSN 5.27
(0.6)

1.4
(0.09)

1.37
(0.1)

2.31
(0.22)

1.09
(0.07)

1.15
(0.07)

6.42
(0.04)

11.45
(0.12)

14.32
(0.14)

6.08
(0.06)

9.09
(0.13)

9.85
(0.12)

–

FRB 2.71
(0.33)

1.71
(0.18)

1.06
(0.13)

1.86
(0.2)

0.33
(0.03)

0.1
(0.01)

2.86
(0.19)

3.3
(0.2)

3.29
(0.24)

4.35
(0.19)

9.59
(0.36)

9.01
(0.5)

–

DPP 0.52
(0.12)

0.25
(0.03)

0.42
(0.03)

0.27
(0.04)

0.41
(0.06)

0.41
(0.05)

−2.2
(0.19)

1.35
(0.16)

2.21
(0.11)

−2.61
(0.23)

−0.74
(0.19)

−0.16
(0.21)

–

FME 1.16
(0.07)

1.6
(0.06)

1.79
(0.06)

1.03
(0.07)

1.39
(0.07)

1.45
(0.06)

0.41
(0.07)

0.25
(0.04)

0.2
(0.04)

0.44
(0.07)

0.32
(0.05)

0.29
(0.05)

–

FEI 1.83
(0.17)

1.42
(0.1)

1.01
(0.08)

0.92
(0.07)

1.26
(0.1)

1.52
(0.14)

2.07
(0.11)

1.97
(0.12)

2.05
(0.19)

1.82
(0.12)

1.99
(0.11)

1.93
(0.11)

–

Note: Columns T1, T2, T3, T4, T5, and T6 denote different experiment treatments.
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