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Nonetheless, the connection between 150‐km echoes, photoelectrons, and electron densities has yet to be
fully explored. Understanding the relationship between 150‐km echoes and electron densities would provide
an additional step toward developing a complete theory to explain the 150‐km echoes, improving our
understanding of the equatorial ionosphere. If a relationship between electron density and the power
striations can be determined, 150‐km echoes could also provide a high signal‐to‐noise ratio (SNR) radar
target for accurately measuring the electron density between the E region and the F region of the ionosphere.

The main objective of the present study is to further investigate the connection between electron densities
and the 150‐km echo layers. This is done through a comparison of Jicamarca Radio Observatory (JRO) obser-
vations of 150‐km echoes during the 7 September 2005 solar flare with electron densities simulated in the
Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X).
The simulated electron densities closely follow the observed layering structure of the 150‐km echoes,
supporting the close connection between the electron densities and the gaps that form between the
150‐km echo layers. We further investigate the change in vertical plasma drift velocity during the solar flare
and find that this is likely related to a rapid change in the conductivity that occurs during the solar flare.

2. JRO Observations

The JRO observations were taken as part of a Mesosphere, Stratosphere, and Trosposphere (MST)‐
Incoherent Scatter Radar (ISR) experiment, which is an experiment designed to observe the MST at the same
time as the ionosphere in quasi‐thermal equilibrium via the ISR mode (e.g., Lehmacher et al., 2009, 2019).
The MST mode allows the observation from 0 to 200 km, while the ISR mode measures from 200 to

Figure 1. (a) Jicamarca Radio Observatory observed signal‐to‐noise ratio (SNR) during the 7 September 2005 solar flare.
White areas indicate time periods without observations. (b) Electron densities simulated by Whole Atmosphere
Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) at the location of Jicamarca, Peru.
(c) Observed Geostationary Operational Environmental Satellite (GOES) X‐ray flux for 0.1–0.8 nm.
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900 km in altitude. Although the mesosphere stops at around 100 km, the MST mode has proven to also be
useful in the study of coherent scattering from ionospheric irregularities, such as those coming from 150‐km
echoes (e.g., Chau & Kudeki, 2006; Kudeki & Fawcett, 1993). The MST‐ISR mode is realized by interleaving
sequences of pulses with different repetition, pulse width, and pulse coding. In the case of the MST part, 20
consecutive pulses with 1.33‐ms (or ∼200 km) interpulse period and 64 baud complementary codes pulses
with a total width of 64 μs (or 9.6 km) are transmitted. In the case of the ISR part, two Barker‐3 coded
pulses with a total width of 300 μs (or 45 km) and an interpulse period of 6.66 ms (or ∼1,000 km) were
transmitted. The nominal range resolution of the observations is 150 m.

These pulse sequences were transmitted simultaneously on four different beam positions (north, east, south,
and west), taking advantage of the modular and polarization features of JRO. Two transmitters of 1‐MW
peak power each were combined before feeding all four beams simultaneously; that is, on each beam
500‐kW peak power was transmitted. In this work we present the results of 7 September 2005 only from
the MST part of the West beam (−87.68° azimuth, 87.52° elevation), which is the beam pointing the closest
to perpendicular to the Earth's magnetic field B (beam gain peak ∼0.8° from perpendicular to B and
elongated in the north‐south direction with a beam width of ∼1.4°) at 150 km at the time of the experiment.
More details of the JRO modes, signal processing, other solar flare effects, and other events can be found in
Reyes (2012).

3. WACCM‐X

Model simulations are performed in WACCM‐X Version 2.0 (Liu, Bardeen, et al., 2018). WACCM‐X extends
from the surface to the upper thermosphere (4.1 × 10−10 hPa, ∼500–700 km depending on solar activity) and
has a resolution of 1.9° in latitude, 2.5° in longitude, and 0.25 scale heights above the stratosphere. Up to the
lower thermosphere, WACCM‐X is based on the Community Atmosphere Model Version 4 (Neale et al.,
2013) andWhole Atmosphere Community Climate Model Version 4 (Marsh et al., 2013). Upper atmospheric
processes, including the transport of O+, self‐consistent ionospheric electrodynamics, and energetics
included in WACCM‐X, are primarily based on the Thermosphere‐Ionosphere‐Electrodynamics General
Circulation Model (Richmond et al., 1992; Roble et al., 1988). Liu, Bardeen, et al. (2018) and Liu, Liu, et al.
(2018) provide a detailed description and validation, respectively, of WACCM‐X Version 2.0

For the model simulations in the present study, the specified dynamics approach (Smith et al., 2017) is used
to constrain the lower atmosphere meteorology up to 50 km to the National Aeronautics and Space

Figure 2. Observed signal‐to‐noise ratio (SNR; colors) and Whole Atmosphere Community Climate Model with
thermosphere‐ionosphere eXtension (WACCM‐X) electron densities in units of log10 cm−3 (contours) during the
7 September 2005 solar flare.
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Administration Modern Era Retrospective Analysis for Research and
Applications Version 2 (Gelaro et al., 2017). Geomagnetic forcing is
incorporated by imposing the Heelis empirical convection pattern at
high latitudes (Heelis et al., 1982), which is driven by the 3‐hr geomag-
netic Kp index. The Flare Irradiance Spectral Model (FISM; Chamberlin
et al., 2008) provides the solar spectral irradiance for the solar flare that
occurred on 7 September 2005. FISM is an empirical model that uses
observational data from Geostationary Operational Environmental
Satellite (GOES) X‐Ray Sensor, Thermosphere Ionosphere Mesosphere
Energetics and Dynamics Solar Extreme Ultraviolet Experiment, and
Solar Radiation and Climate Experiment SOlar Stellar Irradiance
Comparison Experiment to estimate the solar irradiance at wavelengths
from 0.1 to 190 nm at 60‐s temporal resolution. FISM is thus able to cap-
ture the solar irradiance variability during solar flares at wavelengths
that directly impact the ionosphere and thermosphere, which includes

the soft X‐rays (0.1–10 nm) and extreme ultraviolet (10–121.6 nm). Previous studies have demonstrated
that the solar flare irradiance information provided by FISM is suitable for studying the effects of solar flares
in the mesosphere, thermosphere, and ionosphere (e.g., Pettit et al., 2018; Qian et al., 2011).

4. Results and Discussion
4.1. Flare Impact on 150‐km Echoes and Electron Density

The SNR observed by JRO on 7 September 2005 is shown in Figure 1a. The X‐ray flux observed by GOES X‐
Ray Sensor is shown in Figure 1c. An X‐17 solar flare began at 17:17 UT, reached its maximum intensity at
17:40 UT, and the solar irradiance returned to nominal levels over the next ∼1 hr. Prior to the solar flare, the
characteristic behavior of 150‐km echoes is observed, with gradually descending layers of enhanced SNR that
are 5–10 km thick. The enhanced SNR layers are separated by gaps that are on the order of a kilometer thick.
The layers descend rapidly in altitude beginning around 17:30 UT, which corresponds to the time when the
X‐ray enhancement was observed by the GOES satellite. After the flare, around 18:00 UT, the layers initially
rise rapidly, though the rate of ascent slows over the following hour. The vertical thickness of the layers also
appears to be changed by the solar flare, with the layers being narrower following the solar flare.

The corresponding electron densities simulated by WACCM‐X are shown in Figure 1b. Note that the
WACCM‐X results have been shifted later by 5 min to be more consistent with the observations. This
corresponds to the model time step, as well as the solar flare forcing input, so we consider a 5‐min offset
to not be a significant discrepancy between the timing of the solar flare effects in the observations and
simulations. We also note that the coarse (relative to solar flare time scales) time step ofWACCM‐Xmay tend
to smooth the model response to the solar flare. Contours of constant electron density in the WACCM‐X
simulations exhibit many of the same features that are seen in the observations. Prior to the flare, the
electron density contours can be seen to largely track the gaps and edges in the radar echoes, the exception
being the smaller‐scale structures that are seen in the observations, which are attributed to gravity waves that
are unresolved in WACCM‐X. The consistency between the Jicamarca observations and WACCM‐X
simulations is especially apparent during the solar flare. In particular, both show a rapid descent in altitude
beginning around 17:30 UT, followed by a more gradual ascent around 18:00 UT. The electron density
contours are additionally more closely spaced following the flare, a feature consistent with the JRO
SNR observations.

To better illustrate the relationship between the 150‐km echoes observed by JRO and the electron density
simulated by WACCM‐X, the two are plotted together in Figure 2 for a shorter time interval around the solar
flare. The remarkable agreement in the effect of the solar flare on contours of constant electron density and
the structure of the 150‐km echo layers can be clearly seen in Figure 2. From Figure 2, it is apparent that the
gaps in the 150‐km echoes seem to follow electron density contours; however, the reason for this relationship
is not yet known. With plasma lines, there is a matching condition between plasma frequency, radar wave-
length, and suprathermal electron velocity (photoelectrons and auroral secondary electrons), which results
in electron density dependent plasma‐line radar echo enhancements (Perkins et al., 1965). The fact that this

Figure 3. Equatorial vertical drift velocity on 7 September 2005 from
Jicamarca 150‐km echoes (blue) and Whole Atmosphere Community
Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X)
simulations at 285° E (black) and 320° E (red) geographic longitude. Dashed
lines indicate WACCM‐X results without inclusion of the solar flare.
JRO = Jicamarca Radio Observatory.
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also occurs for the 150‐km echoes points to a similar wave‐particle interaction (Oppenheim&Dimant, 2016).
An alternative possibility is that the observed layering is related to gyroharmonics (Lehmacher et al., 2018),
though this would not explain the formation of multiple layers in the E region because there are only two
contours in the Eregion where the electron density plasma frequency is an integer multiple of the
gyrofrequency. Thus, although the results demonstrate a close connection between electron density and
the 150‐km echo layers, the reason for this relationship remains unknown. Both of the previously
mentioned hypotheses will be explored in detail in a future work, where comparisons between JRO
observations and WACCM‐X simulations under nominal (i.e., nonflare) conditions will be considered.

4.2. Flare Impact on Vertical Plasma Drifts

In addition to influencing the E region electron densities and 150‐km echoes, solar flares can modulate the
electrodynamics of the ionosphere (Qian et al., 2012; Zhang et al., 2017). As seen in Figure 3, the JRO

Figure 4. Changes in (a) Hall and (b) Pedersen conductivity at 285° E geographic longitude and 17:45 UT. (c) Zonal wind
at 285° geographic longitude and 17:45 UT. (d–f) Same as (a)–(c) except for at 320° E geographic longitude.
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observations of vertical plasma drift velocity (blue) show a clear response to the solar flare, and the drifts
exhibit a sudden ∼15 m/s decrease at the onset of the solar flare. The WACCM‐X simulations only exhibit
a weak (1–2 m/s) response to the solar flare at 285° E geographic longitude (black). However, a stronger
response occurs in the WACCM‐X simulations at 320° E geographic longitude (red), though it is still slightly
weaker than seen in the observations. Nonetheless, the vertical plasma drift response at 320° E is generally
consistent with the JRO observations, and we can thus use the simulations to understand the mechanism
behind the rapid decrease in the vertical plasma drift during the solar flare.

Previous studies investigating the solar flare effects on electrodynamics, and ionospheric currents, have
attributed the response to a change in the ionospheric conductivity (Annadurai et al., 2018; Qian et al.,
2012) and/or penetration electric field due to the imbalance of high‐latitude Regions 1 and 2 field‐aligned
currents. The later mechanism was proposed by Zhang et al. (2017) as a source of the decrease in vertical
plasma drift observed during the 7 September 2005 solar flare. The WACCM‐X simulation does not include
the effects of penetration electric fields, and we therefore attribute the change in vertical plasma drifts to
changes in the ionospheric conductivity. It should be noted that we cannot entirely discount effects of pene-
tration electric fields and inclusion of penetration electric fields could lead to a larger vertical plasma drift
response. The fact that theWACCM‐X simulations capture a decrease in vertical plasma drifts at 320° E does,
however, indicate that conductivity changes are an important mechanism by which solar flares
influence electrodynamics.

The changes in the WACCM‐X Hall (σH) and Pedersen (σP) conductivities at 17:45 UT are shown in Figure 4
for 285° E and 320° E geographic longitude. Note that the changes are calculated relative to a WACCM‐X
simulation that did not include the solar flare forcing. For reference, maximum Hall and Pedersen conduc-
tivities at this time in the WACCM‐X simulation without the solar flare are ∼8 × 10−4 and ∼5 × 10−4 S/m,
respectively. The conductivity changes due to the solar flare are thus large compared to the background con-
ductivities. The corresponding zonal winds are shown in Figures 4c and 4f. Note that the zonal winds are lar-
gely unchanged by the solar flare below ∼175 km and are enhanced by 5–10 m/s above 200 km (not shown).
The change in Hall conductivity due to the flare is larger at 285° E than it is at 320° E, which should contri-
bute to a larger decrease in the daytime eastward electric field, and thus a larger decrease in the vertical drift
at 285° E. The change in Pedersen conductivity due to the solar flare is generally similar at the two longi-
tudes. The background zonal winds are, however, notably different, which is likely due to the differences
in local time at the two longitudes (12:45 SLT at 285° E and 15:05 SLT at 320° E). We therefore attribute
the smaller change in the simulated drift response at 285° E to be due to the zonal winds at the time of
the solar flare, and it is possible thatWACCM‐X does not capture the flare effects at 285° E due to deficiencies
in the zonal winds. These differences highlight the need to accurately simulate both the neutral winds and
conductivities in order to accurately simulate the solar flare effects on ionospheric electrodynamics.

5. Conclusions

The present study investigates the effects of the 7 September 2005 X‐17 solar flare on the equatorial iono-
sphere using a combination of JRO observations andWACCM‐X simulations. The solar flare is found to pro-
duce similar changes in the layering structure of observed 150‐km echoes and simulated electron densities.
In particular, both reveal a rapid descent at the onset of the solar flare, followed by a gradual ascent following
the solar flare. The 150‐km echo layers and contours of constant electron density are also both found to be
narrower in vertical extent following the solar flare. These similarities support a connection between the
background electron density and the layering structure that is seen in 150‐km echoes. The reason for this
relationship does, however, remain unknown, and further investigations into this connection will help in
understanding the mechanisms that form the still unexplained 150‐km echoes. The results also demonstrate
that relatively coarse resolution whole atmosphere‐ionosphere general circulation models, such as
WACCM‐X, can provide insight into smaller‐scale structures in the equatorial ionosphere. This represents
a new application of such models, enabling potential future investigations focused on understanding, for
example, the day‐to‐day variability of 150‐km echoes.

The effect of the solar flare on the equatorial vertical plasma drifts was also investigated. The JRO observa-
tions show a sudden decrease in vertical plasma drift velocity of 15–20 m/s after the onset of the solar flare.
TheWACCM‐X simulations reproduce a decrease in vertical plasma drift at 320° E geographic longitude, but
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only a weak (1–2 m/s) decrease at the longitude of Jicamarca (285° E). The vertical plasma drift changes are
primarily attributed to changes in the conductivity in the simulations, which changes the daytime eastward
electric field, and the longitudinal differences may be related to differences in the zonal winds at the time of
the solar flare. This demonstrates that simulating the electrodynamic effects of solar flares requires
accurately simulating both the zonal winds as well as the conductivities. Penetration electric fields may also
influence the response of the equatorial vertical plasma drifts to the solar flare, though the present results
suggest that this may be a secondary effect.
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