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ABSTRACT

Similarity assessment is a cognitive activity that pervades
engineering design practice, research, and education. There has
been a significant effort in understanding similarity in cognitive
science, and some recent efforts on quantifying the similarity of
design problems in the engineering design community. How-
ever, there is a lack of approaches for measuring similarity in
engineering design that embody the characteristics identified in
cognitive science, and accounts for the nature of design activi-
ties, particularly in the embodiment design phase where scien-
tific knowledge plays a significant role. To address this gap, we
present an approach for measuring the similarity among design
problems. The approach consists of (i) modeling knowledge us-
ing probabilistic graphical models, (ii) modeling the functional
mapping between design characteristics and the performance
measures relevant in a particular context, and (iii) modeling the
dissimilarity using KL-divergence in the performance space. We
illustrate the approach using an example of a parametric shaft
design for fatigue, which is typically a part of mechanical engi-
neering design curricula, and test the validity of the approach
using an experiment study involving 167 student subjects. The
results indicate that the proposed approach can capture the well-
documented characteristics of similarity, including directional-
ity, context dependence, individual-specificity, and its dynamic
nature. The approach is general enough that it can be extended
further for assessing the similarity of design problems for ana-
logical design, for assessing the similarity of experimental de-
sign tasks to real design settings, and for evaluating the similar-
ity between design problems in educational settings.

Keywords: Similarity assessment, design problems, proba-
bilistic models, causal graphs, KL-divergence.

1 Introduction

Similarity assessment is a fundamental cognitive activity
that underlies human judgment, reasoning, learning, and deci-
sion making. Similarity is a field of study in diverse domains
ranging from cognitive science to visual analytics, and artificial
intelligence to Internet search. Since cognitive activities are in-
herently a part of engineering design, similarity assessment plays
an important role in design practice, research, and education.

Designers assess similarity in all phases of the design pro-
cess. For example, similarity among customers’ needs is used to
develop product strategies. Designers use functional similarity
to generate design concepts. Similarity is the basis for analogy-
based design and bio-inspired design. Designers rely on the sim-
ilarity between models (computational models and physical pro-
totypes) and real designs to predict the actual performance of
the product. Similarity between test conditions and the operating
conditions in the field is essential for product validation. Simi-
larity with past designs is used for budget allocation in systems
design. Algorithms for searching designs (e.g., shape search) are
dependent on measures of similarity.

Assessment of similarity is also essential for design re-
search. Researchers use similarity to assess the representative-
ness of experimental settings relative to real design settings. Sim-
ilarity aids generalizability of outcomes of experiments to other
settings. Similarity of design problems used in human-subject
experiments aids in reducing the variability of outcomes of the
experiments.
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Similarity is also an important consideration in design ed-
ucation. For example, design educators may want to use simi-
lar, but non-identical, design problems for students’ learning as-
sessment. Sometimes the similarity assessment is between the
problems discussed in the classroom and the problems in exams,
while at other times, the comparison is with problems in the past
exams. Educators are often interested in evaluating the similar-
ity between textbook problems and real-world design problems.
Because of its pervasiveness in design-related activities, there is
a need to understand what similarity is, and how to quantify sim-
ilarity between designs, design settings, and design problems.

Recently, there have been some efforts on quantifying sim-
ilarity of design problems. Some of these efforts are geared to-
wards supporting analogy-based design [1, 2], while others are
aimed at improving the reliability and replicability of experimen-
tal studies [3, 4, 5, 6]. These efforts are focused on identifying
the features of design problems that contribute to their similar-
ity. These feature-based approaches are limited in their applica-
tion to engineering design problems for two main reasons. First,
the identified features are appropriate for conceptual design tasks
only. There is a lack of approaches to measure similarity of de-
sign problems in the embodiment design phase, where scientific
(causal) knowledge plays a significant role. Second, existing ap-
proaches do not account for the characteristics of similarity, in-
cluding directionality, context dependence, individual specificity,
and the dynamic nature of similarity. These characteristics have
been identified by the broader cognitive science research com-
munity. To address these limitations, we present a knowledge-
based approach for similarity measurement, and show how the
proposed approach can be used for engineering design problems.

The paper is organized as follows. We review the litera-
ture on similarity assessment in engineering design and in cog-
nitive science in Section 2. The proposed approach for similarity
assessment is presented in Section 3. An illustrative example
of shaft design for fatigue is presented in Section 4. Section 5
presents the results of an experiment study investigating the rela-
tionship between a designer’s knowledge level and their usage of
the knowledge-based approach versus a feature-based approach.
Finally, the potential applications of the proposed approach in
design practice, research, and education are presented are dis-
cussed in Section 6.

2 Literature Review: Measurement of Similarity

As alluded to earlier, similarity has been a subject of study
in many fields. In this section, we review the literature on simi-
larity measurement in engineering design (Section 2.1) because
it is the domain of interest for this paper, and foundational re-
search on similarity within cognitive science (Section 2.2) as it
has influenced similarity studies in other fields.

2.1 Similarity in Engineering Design Research

Similarity has been studied within engineering design for
two main reasons: (i) to support designers in generating new de-
signs, and (ii) to support experimental research in design.

The studies in the former category include design support for
analogy-based design. McAdams and Wood [2] present a quanti-
tative metric of similarity for design-by-analogy. The focus is on
conceptual design phase and is based on function-based design
methodology. Therefore, the similarity metric is based on evalu-
ating functional similarity between products. Fu et al.’s [1] goal
is to understand which analogies presented to designers achieve
the best design outcomes in analogy-based design. They quantify
similarity of designs based on the semantic similarity of patent
documents, evaluated using latent semantic analysis. In addition
to evaluating the similarity of designs, researchers have also re-
lied on similarity of design problems to support anaogy-based de-
sign. Anandan et al. [7] review similarity metrics from different
fields and show how the similarity metrics can be used for eval-
uating the similarity of designs problems. They argue that simi-
larity of design problems can be defined in terms of the follow-
ing features: product design specifications, constraints, function
structures, concepts, shapes, and manufacturing process plans.
McTeague and co-authors [8] attempt to understand how design-
ers make similarity judgments and what aspects of design con-
cepts determine similarity. They view similarity from a structural
alignment perspective.

The studies in the latter category focus on finding different
design problems that are similar so that they can be used in ex-
perimental studies to produce reliable and consistent results. The
goal is to achieve improved repeatability through standardiza-
tion. Durand et al. [5] identify the following structural features
of design problems: problem size, functional coupling, partici-
pants’ familiarity with the design problem/solutions and underly-
ing principles, nature of solution space: size and constraints, ef-
fort required to solve the problem, domain of design problem and
degree to which analogous solutions can be retrieved. Kumar and
Mocko [3] evaluate the similarity of design problems used in re-
search experiments based on their representation. They analyzed
55 design problems from the literature using protocol analysis,
and latent semantic analysis. The design problems are charac-
terized based on five structural elements: goals of the problem,
functional requirements, non-functional requirements, informa-
tion about end user, and reference to an existing product. Levy
et al. [6] experimentally compare design problems for their sim-
ilarity in design ideation tasks. The output is measured in terms
of student design performance measured using ideation metrics
of quantity, quality, novelty, variety, and completeness metrics.
Sosa [4] proposes metrics for selecting design tasks in experi-
mental creativity research, which includes design tasks such as
idea generation and conceptual design. The phenomena under
study are fixation, analogical reasoning, and ideation techniques.

2 Copyright © 2019 ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59278/V007T06A045/6454167/v007t06a045-detc2019-98272.pdf by Purdue U

niversity at W
est Lafayette user on 30 July 2020



The author [4] examines 160 design tasks from 140 published
studies, with different characteristics, including task elaboration,
task orientation, task selection, participants, and time allocated
for ideation. The metrics proposed are: semantic score, lexical
ambiguity, precedent analysis, and readability metrics.

In summary, existing studies on similarity have been primar-
ily focused on the conceptual design phase, with the objective of
either supporting designers during the conceptual design or sup-
porting design researchers who study conceptual design. Some
of the efforts have been focused on quantifying similarity of de-
signs, whereas others are focused on similarity of design prob-
lems. Because of the focus on the conceptual design phase, these
studies do not account for the scientific knowledge (e.g., dynam-
ics, thermal science, and mechanics of materials) that designers
use to judge the extent to which two designs or design problems
are similar (or dissimilar).

2.2 Similarity in Cognitive Science

In cognitive science, the studies on similarity have been fo-
cused on descriptive theories of similarity, i.e., understanding
how people assess two things to be similar or dissimilar. Typ-
ically, these studies start with experiments on human subjects,
and then develop models to explain how people judge similarity.
The resulting approaches for similarity measurement in cogni-
tive science can be broadly classified into spatial approaches and
featural approaches.

In the spatial approaches, such as in Ref. [9], objects are
considered points in a dimensionally-organized metric space, and
similarity is inversely related to the distance between objects in
the metric space. This approach is suitable for representing fea-
tures that are naturally described using real numbers.

While the spatial approaches are intuitive, and widely used,
they do not account for the directional nature of similarity,
which has been documented in experimental studies with human
subjects. Tversky [10] showed that if there are two objects a and
b, then people may assess the similarity of a to b to be different
from the similarity of b to a. To address these limitations of the
spatial approaches, Tversky [10] developed the featural theory of
similarity, where objects are represented as a discrete collection
of features, and similarity is directly proportional to the number
of common features and inversely proportional to the number of
distinctive features. This idea is embodied in the contrast model,
which uses a linear combination of common and distinctive fea-
tures. Let A be the set of features of object a, and B be that of
object b. Then, the similarity of objects using the contrast model
is:

Sc(a,b) = θ f (A∩B)−α f (A−B)−β f (B−A), (1)

where θ ,α,β ≥ 0; A∩B is the set of features common to both a
and b; A−B is the set of features that belong to A but not B; and

B−A is the set of features that belong to b but not a. Here, f is a
non-negative interval scale. Tversky [10] also presented an alter-
nate measure of similarity, called the ratio model of similarity:

Sr(a,b) =
f (A∩B)

f (A∩B)+α f (A−B)+β f (B−A)
, (2)

where α,β ≥ 0. Both the contrast model and the ratio model
capture the directional nature of similarity.

One of the other characteristics of similarity is that simi-
larity judgments are highly context dependent [11]. Two ob-
jects may have high similarity in one context, but low similarity
in another context. Goodman [12] strongly criticized the notion
of similarity. He argued that similarity of two objects is an ill-
defined notion because it is not constraining enough. Similarity
judgements are not meaningful unless one can say “in what re-
spects” two objects are similar. Different features are important
in different contexts. Unless the features and their importance
are specified, the similarity cannot be calculated. Medin and co-
authors [13] discuss this issue at length. Using the example of
plums and lawnmowers, they argued that any two things can be
arbitrarily similar and arbitrarily dissimilar [14, pg. 292]. This is
because the relative weighting of features and the relative impor-
tance of common and distinctive features (the parameters θ ,α,β
in Equations 1 and 2) vary with the context and the task. In his
paper on the featural model, Tversky [10] briefly mentioned that
the representation of an object as a collection of features is “a
product of a prior process of extraction and compilation”. How-
ever, he did not provide specifics on that prior process, and how
the features can be identified or weighted.

In addition to context dependence, similarity assessment is
also individual specific. Similarity assessment of individuals de-
pends on their background knowledge, expertise, and past expe-
rience. The individual differences in knowledge and expertise re-
sult in different representations of problems in the feature space,
resulting in individual differences in the perception of similarity
and difference [15]. These differences have been shown in the
context of physics problems by Chi and coauthors [16].

Finally, knowledge itself is not static; it evolves with expe-
rience and learning. Therefore, as the knowledge evolves, the
perception of similarity also changes [13]. This dynamic nature
of similarity has been highlighted by Tversky and Gati [17] –
“similarities are constantly updated by experience to reflect our
ever-changing picture of the world.”

The implication of these characteristics for engineering de-
sign is that two designs may be more or less similar, depending
on what the designers care about. A human-subject experiment
related to a specific design phenomenon may be more or less sim-
ilar to a “real” design setting depending on the phenomenon that
is being studied by the researcher. Similarly, a prototype (or sim-
ulation) may be more or less similar to the artifact being designed
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based on the phase of the design process, and what aspect of the
design is being evaluated. The implication of individual speci-
ficity is that an expert may see greater similarity between two
problems, based on some underlying physics. At the same time,
an expert may see greater differences between two problems de-
pending on the deeper differences that may not be apparent to a
novice. As a person transitions from being a novice to an expert
in a particular aspect of design, his/her perception of similarity
also changes.

In summary, the approach for evaluating similarity in engi-
neering design should account for the causal scientific knowledge
available in the design domain, and the following characteris-
tics of similarity: directionality, context dependence, individual
specificity, and dynamic nature. In Section 3, we present one
such approach where scientific knowledge is used as a basis to
account for these characteristics of similarity.

3 A Knowledge-Based Approach for Evaluating the
Similarity/Dissimilarity in Design

Our approach for evaluating similarity is based on the hy-
pothesis of Tenenbaum and Griffiths [18] that “a satisfying the-
ory of similarity is more likely to depend upon a theory of gener-
alization rather than vice versa.” They argued that “the similarity
of y to x may involve the probability of generalizing from x to y
or y to x or some combination of those two” [18]. In engineering
design, two designs are similar to the extent that one can gener-
alize from one to the other. Indeed, what to generalize depends
on what the context is. A test specimen is similar to a real part
while attempting to make a design decision, if the outcomes of
the test (experiment using the specimen) generalize to the real
part. To formalize this intuition let us define some keywords:
design, performance, knowledge, and a map between the design
and performance.

Design (X). A design X is described by a collection of D pa-
rameters which includes factors that may be precisely known and
factors that are uncertain but required for evaluating the perfor-
mance of the design. Given that it is impossible to accurately
assess all design parameters the designer places probabilistic be-
liefs over parameters in the form of a joint probability density,
denoted by fX(X). If the value of a parameter is known, then
it basically means that the belief includes a multiplicative Dirac
delta factor localized at that value.

Performance (Y ). Consider Y to be the P performance param-
eters that are important in a given context in which similarity is
being evaluated. The performance measures embody the context
of a design problem because the type of outcomes determines
which design parameters are influential and which part of the
designer’s knowledge is relevant. The similarity between two
designs X1 and X2 is measured for the given context specified by
performance measures.

Knowledge to map design to performance (K). To achieve
the desired performance outcomes, a designer requires the
knowledge of mapping that is believed to lead to outcomes.
This mapping that moves the problem solving from initial de-
sign specification to the desired performance is domain-specific
and dependent on task environment [19]. It can be described by
various forms of knowledge such as causal, topological and pro-
cedural knowledge. Since much of this knowledge is causal in
nature, especially the physics-based knowledge pertinent to the
embodiment design phase, we focus on causal knowledge in this
paper. Assume that there are N intermediate variables Z that are
required to establish a connection between a design X and its
performance Y . We model a designer’s knowledge about causal
relationships between X , Z, and Y as a directed, acyclic graph
K with M = D+N +P nodes. To be consistent, assume that the
first D nodes correspond to the design variables X , the next N
to the physical variables Z, and the last one to the scalar perfor-
mance measure Y . We may think of K as a matrix in {0,1}M×M ,
where Ki j = 1 if there exists a causal link between variable i and
j. If no direct causal relationship exists between i and j, then
Ki j = 0. Whether or not a causal relationship exists between i
and j depends on whether fixing the former modifies the latter.
Since they depend on the designer’s prior knowledge and famil-
iarity with the problem domain, the causal relationships remain
invariant when external conditions change. It is, however, possi-
ble for the lack of prior knowledge to manifest into the epistemic
uncertainty over causal relationships.

Mapping design X to performance Y . The causal graph
K specifies a factorial decomposition of the joint distribution
fZ,Y ∣X(z,y∣x) of the physical Z and the performance measure Y
conditioned on the design X . If certain relations between parent
and children nodes are deterministic, then this joint distribution
uses suitably localized Dirac delta factors. The performance Y of
a design X is described by the marginal conditional probability
density:

fY ∣X(y∣x) =∫ fZ,Y ∣X(z,y∣x)dz. (3)

Taking into account that the design X does not fully specify all
parameters, we can use Bayes rule to get the the overall belief
about the performance parameters:

bY ∣X(y) ∶=∫ fY ∣X(y∣x) fX(x)dx. (4)

For two designs X1 and X2, joint probability densities fX1(x)
and fX2(x) represent a designer’s beliefs about design parame-
ters, whereas bY ∣X1

(y) and bY ∣X2
(y) represent the designer’s be-

liefs about the performance measure achieved by design X1 and
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X2, respectively. We propose that a similarity/dissimilarity mea-
sure between designs X1 and X2 should be defined using a mea-
sure of distance between belief states bY ∣X1

(y) and bY ∣X2
(y).

3.1 Dissimilarity Measure

Based on the above assumptions, we can define the dissim-
ilarity measure of X1 with respect to X2 as the Kullback-Leibler
(KL) divergence of distribution bY ∣X1

(y) from bY ∣X2
(y):

DY (X1,X2) ∶= DKL(bY ∣X1
∥ bY ∣X2

)

= EbY ∣X1
[log

bY ∣X1
(y)

bY ∣X2
(y)
]

= ∫ bY ∣X1
(y) log

bY ∣X1
(y)

bY ∣X2
(y)

dy.

(5)

In the sense of the information theory, the KL-divergence-
based dissimilarity measure is interpreted as the amount of (ex-
tra) information required to describe the performance of design
X1 using the performance distribution of design X2, averaged
over possible performance of X1. The higher the information
required, the lower is the similarity of design X1 to design X2. In
the sense of generalizability [18], it represents (inversely) the de-
gree to which the performance of design X2 generalize to design
X1. The lower the value of DY (X1,X2), the higher is the gener-
alizability of design X2’s performance to design X1, and conse-
quently, the higher the similarity of design X1 to design X2.

3.2 Properties of the Dissimilarity Measure

To understand why this measure has the prototypical char-
acteristic of dissimilarity, let us discuss some of its mathematical
properties:

1. For any two designs X1 and X2, we have that the dissimilarity
is non-negative, i.e., DY (X1,X2) ≥ 0. This makes any two
designs comparable.

2. Take the case of two designs that have performance belief
states bY ∣X1

and bY ∣X2
with non-overlapping supports. These

designs are clearly dissimilar and indeed the metric gives
DY (X1,X2) =∞.

3. The dissimilarity measure DY (X1,X2) = 0 if and only if
bY ∣X1

=bY ∣X2
, i.e., the two designs are indistinguishable if and

only if they are believed to produce identical performance
outcomes.

4. The measure DY (X1,X2) is invariant under one-to-one, dif-
ferential transformations of the performance variable Y . In
particular, it does not change if we change the units or scale
of Y .

5. Note that the proposed dissimilarity measure is not al-
ways symmetric, i.e., DY (X1,X2) /= DY (X2,X1). To under-
stand this property, it is instructive to consider the special
case where both bY ∣X1

and bY ∣X2
are Gaussian, i.e., bY ∣Xi =

N (µi,Σi). Then, we have the following analytical formula:

DY (X1,X2) = 1
2{ tr(Σ−1

2 Σ1)+(µ2−µ1)Σ−1
2 (µ2−µ1)

−P+ log
∣Σ2∣
∣Σ1∣
}.

(6)

Consider the following subcases:

(a) Designs with identical performance uncertainty.
Take Σ1 = Σ2 = Σ. In this case, the metric is:

DY (X1,X2) =
1
2
(µ1−µ2)Σ−1(µ1−µ2).

Notice that this expression is symmetric DY (X2,X1) =
DY (X1,X2). In addition, we see that the dissimilarity
increases as the distance of the performance means in-
creases. Finally, as the uncertainty of the performance
increases (the diagonal elements of Σ become larger)
the dissimilarity decreases.

(b) Designs with identical performance mean, but dif-
ferent uncertainty. Take µ1 = µ2 = µ and, for simplic-
ity Σ1 =σ

2
1 IP and Σ2 =σ

2
2 IP, where IP is the unit matrix

in P dimensions. Then the metric becomes:

DY (X1,X2) =
P
2
{

σ
2
1

σ2
2
−1+ log

σ
2
2

σ2
1
} . (7)

First, notice that as P increases dissimilarity increases.
That is, dissimilarity increases linearly with the num-
ber of performance parameters being considered for
comparison. Second, the DY (X1,X2) is clearly non-
symmetric. To study this asymmetry, take the function
g(x) = P

2 (x− logx−1), see Figure 1, and notice that:

DY (X1,X2) = g(
σ

2
1

σ2
2
) ,

and

DY (X2,X1) = g(
σ

2
2

σ2
1
) .

It is also easy to show that h(x) = g(x)−g(x−1) = P
2 (x−

x−1−2log(x)) has the property that h(x) > 0 for x > 1.
From this property, we get that:

DY (X1,X2)−DY (X2,X1) = h(
σ

2
1

σ2
2
) > 0,
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FIGURE 1. A visualization of dissimilarity measure function g(x)
and function h(x) = g(x)−g(x−1

), for designs with identical means but
different uncertainty.

when σ1 > σ2. In other words, we have shown that,
given the same performance mean, if the performance
of design X1 is more uncertain than that of X2, then:

DY (X1,X2) >DY (X2,X1).

That is, a high-uncertainty design X1 is more dissimilar
to a low-uncertainty design X2 than vice versa.
To see why this property is intuitive, consider an ex-
ample of a block (low-uncertainty design) on an in-
clined plane versus a car on a banked curve road (high-
uncertainty design) in Figure 2. Not only does the car
in this situation have more uncertainties in its design
parameters such as geometry, weight distribution, con-
tact area etc., than the block, but it also possesses more
variance in outcomes such as friction forces. And, it
is obvious that we need much more information to de-
scribe the results of physical tests on a car using force
analysis of a block than to simulate motion of a block
given the test results. Therefore, in this context, the
car is more dissimilar to the block than the block is to
the car. Stated differently, the block is more similar to
the car, than the car is similar to the block. This intu-
ition is compatible with Tverskey’s [10] feature-based
explanation because the car has a greater number of
features than the block.

6. Finally, another important property of the KL-divergence is
that it is additive for independent distributions. This means
that if we have two performance metrics Y1 and Y2 that are
independent conditional on the design, we get that:

DY1,Y2(X1,X2) =DY1(X1,X2)+DY2(X1,X2). (8)

That is, dissimilarity increases with addition of more inde-
pendent and distinctive performance metrics. This result is

FIGURE 2. Similarity is asymmetric; a block on an inclined plane
resembles a car on a banked road more than vice versa, both in design
parameters and in performance measures. The KL-divergence measure
accounts for the asymmetric nature of similarity.

compatible with feature additivity property of feature-based
similarity [10] which says that similarity based on two dis-
joint sets of features is the sum of similarity based on indi-
vidual sets.

4 Illustrative Example: Shaft Design

In this section, we illustrate the application of the proposed
approach for assessing the (dis)similarity using a parametric
shaft design problem. We use the approach to identify sets of
shaft designs that are similar. The main objective of the example
in this paper is to show how the proposed approach satisfies the
properties identified in Section 2.2.

4.1 Problem Description

In a shaft design problem, the objective is to design a shaft
that can support a set of loads and is safe against yielding and
fatigue failure. The shaft is likely to yield due to large load or
fail from fatigue due to alternating stresses, and we aim to predict
whether such events will occur using the factors of safety.

The geometry of a shaft with two spur gears mounted on
it, and supported by two bearings is shown in Figure 3. The
geometric parameters include shaft diameters d1,d2, and d3, for
sections AD,DE, and EH respectively; gear widths w1 and w2;
gear pitch diameters, dg1 and dg2, of gear 1 and gear 2 respec-
tively; shaft lengths, a,b and L, respectively, between point A and
points C, F and H. The boundary conditions B include the sim-
ply supported ends that are free to rotate and offer no moment
resistance. A point load Pin with a constant pressure angle φ of
20 degrees acts on gear 1. The rotary motion of the shaft converts
the input load to the output load as Pout at gear 2. The ultimate
tensile strength Sut and yield strength Sy are the material proper-
ties. Overall, the design variables in the shaft design problem are
X = {Sy,Syt ,Pin,d1,d2,d3,w1,w2,dg1,dg2,a,b,L}.

We assume that the performance parameters, Y , include ei-
ther or both of the fatigue factor of safety (FoS) n f and the yield
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FIGURE 3. Shaft layout for the illustrative example. The shaft has
two spur gears mounted on it, and is supported by two bearings at A and
H.

FoS ny.
After defining the design parameters and the performance

measures, the details of the knowledge mapping K are in order.
Figure 4 summarizes this mapping as a causal knowledge graph.

The torque on the shaft is constant T(t) = Tm =
Find1

2
cos(φ) and

leads to nominal shear stress τ0(t) in the shaft. The internal load
V(x) and internal moment M(x) are non-zero and functions of x,
whereas the axial force in the x−direction F(x) is zero. Due to
continuous rotation, the internal bending moment M(x) results
in cyclic bending stress σ0(x) at every point on the outer surface
of the shaft.

The nominal shear stress τ0(x) due to torsion is a midrange
stress and has no alternating component, whereas the nominal
bending stress σ0(x) is an alternating stress and has zero mean.
Given that τ0(x) and σ0(x) have a combined effect on the fa-
tigue life of the shaft, the vonMises stresses for alternating and
midrange components at critical sections are written as [20, sec.
6-14]:

σ
′
a =K f σ0(t) =

32K f Ma

πd3 , (9)

σ
′
m =
√

3K f sτ0(t) =
√

3
16K f sTm

πd3 , (10)

where d is the shaft diameter at the cross-section where the
stresses are being calculated. Parameters K f and K f s are the fa-

tigue stress-concentration factors for bending and shear, respec-
tively. The fatigue stress-concentration factors account for the
increased fatigue sensitivity at notches on the shaft. They are in-
cluded only for transverse cross-sections with immediate vicinity
to notches such as at B,D,E and G, and not for cross-sections at
C and F .

The theoretical endurance limit S′e is defined in terms of the
ultimate tensile strength Sut for steels based on past empirical
observations of fatigue testing [20, sec. 6-7]. The endurance
limit S′e is adjusted through multiplication by Marin factors for
different conditions of surface finish, size, loading, temperature
and miscellaneous factors. The adjusted endurance limit Se is
written as:

Se = (kakbkckdkek f )S′e. (11)

The fatigue strength S f reduces from Sut for low number of stress
cycles N (N < 103) to Se for infinite cycles (N ≥ 106). Assuming
that the shaft is being designed for infinite number of stress cy-
cles and using the modified Goodman criterion, the fatigue factor
of safety n f and the yield factor of safety ny for a cross-section
of the shaft are written as:

n f = (
σ
′
a

Se
+ σ

′
m

Sut
)
−1

; ny =
Sy

σ ′
a+σ ′

m
(12)

The overall factors of safety for fatigue and yield are mini-
mum of the factors of safety at critical cross-sections such as
B,C,D,E,F, and G as shown in Figure 3.

4.2 Simulation Results

To generate shaft design scenarios for similarity assessment,
we vary the design parameters X , the knowledge mapping K, and
the performance measures Y . Particularly, we assume that a de-
sign X consists of deterministic factors that are precisely known
and other factors that are uncertain. The known factors are: the
yield strength Sy, shaft diameter d1, and load Pin. Accordingly, a
point (Sy kpsi,d1 in,Pin lb) describes design X . Further, we con-
sider that the designer places belief over the remaining uncertain
factors in the form of probability distributions, which are:

dg1,dg2 ∼ Uniform(2,6);
w1,w2 ∼ Uniform(0.5,1);

a,(b−a),(L−b) ∼ Uniform(2,10).
(13)

The intermediate variables Z take values according the following
relations. The ultimate tensile strength Sut is evaluated from yield
strength Sy using an empirical relationship for steels [21]. We
have that d3 = d1 and d2 = 1.1d1; the Marin factor for surface

7 Copyright © 2019 ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2019/59278/V007T06A045/6454167/v007t06a045-detc2019-98272.pdf by Purdue U

niversity at W
est Lafayette user on 30 July 2020



BC’s Geometry

Internal Loads

Material

Nominal Stresses

Adjusted Stresses

Stress Concentration Marin Factors

FOS

vonMises Theory

τ

ny

V

Sut

σ′

nf

σ′a σ′m

Sy

Kf

G

FM kaKtsT

W

Kt

σ′max

Sf

Se

kf kckbqs

Kfs

ke kd

σ0

q

σ

τ0

S ′
e

FIGURE 4. A knowledge map for calculating fatigue and yield factors of safety.

finish ka is 2; the shaft is operated at room temperature, i.e., kd =
1; the reliability factor is ke = 0.62; there are no miscellaneous
factors.

Using the above design parameters X and knowledge map
K, we perform numerical simulations to approximate the perfor-
mance distributions bn f ∣X and bny∣X . We achieve this by sam-
pling 5000 sets of values for uncertain variables in Eq. (13)
and building a histogram of 5000 performance outcomes (n f and
ny). For example, Figure 5 shows the resulting distributions bn f ∣X
and bny∣X for a shaft with (Sy = 25 kpsi,d1 = 3.5 in,Pin = 200 lbs),
which is labeled design 7, and a shaft design labeled 26 with
(Sy = 125 kpsi,d1 = 3.5 in,Pin = 950 lbs).

We repeat the above procedure for 27 different de-
signs considering that the yield strength can take values Sy ∈
{25,75,125} kpsi, the shaft diameter can take values d1 ∈
{0.5,2,3.5} inches, and the load can assume values Pin ∈
{200,950,1700} lbs. Table 1 lists the 27 designs with different
sets of deterministic factors. For simplicity, we consider that all
designs share the same distribution over uncertain factors.

Then, dissimilarity between designs Xi and X j in the context
of performance Y is estimated as the KL-divergence measure be-
tween bY ∣Xi and bY ∣X j . The integration of Eq. (5) is performed
numerically. By following this process for 27×27 pairs of de-
signs, we get a dissimilarity matrix Dmat

Y = {DY (Xi,X j)}27×27.
The dissimilarity between designs is visualized using Multidi-
mensional scaling (MDS) on the average KL-divergence matrix
1
2(D

mat
Y +Dmat

Y
T ), where Dmat

Y
T is the transpose of Dmat

Y . We make
use of scikit-learn software [22] for this. The MDS oper-

ation places each design on a 2-dimensional space while main-
taining the between-design distance specified by the average KL-
divergence, as well as possible. The closer the designs are on a
multidimensional scaling (MDS) plot, the higher is the similarity
between those designs.

Next, we discuss the properties of the dissimilarity matrix in
the context of the shaft design example.

4.2.1 Context Effects Similarity depends on the per-
formance parameters Y we are interested in. The KL-divergence-
based dissimilarity measures are different for fatigue factor of
safety (FoS) as the outcome (Y = n f ) and yield FoS as the out-
come (Y = ny), see their MDS representations in Figure 7. The
relative placement of cluster (7,16,25) and cluster (9,14,24) on
MDS plots changes significantly between n f and ny parameters,
indicating that the similarity also changes. Designs 7 and 26 are
farther apart on the MDS plot of Y = n f than on the MDS plot
of Y = n f . This implies that designs 7 and 26 have greater sim-
ilarity when the performance is defined by the yield FoS (KL
divergence=0.02) as both designs are safe in yield (ny > 1), as
seen in Figure 5. Their similarity reduces when the performance
measure considered is the fatigue FoS, because design 26 is more
likely to fail under fatigue (n f < 1) than design 7.

4.2.2 Individual Differences The measure of similar-
ity depends on the designer’s belief about the knowledge map K.
Consider that there are two designers Alice and Bob. Alice is an
expert who has a high level of knowledge about the domain of
shaft design, and adheres to the causal knowledge map from Fig-
ure 4 for calculating fatigue FoS n f . On the other hand, Bob is
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TABLE 1. Different values (xd) of deterministic design parameters,
yield strength Sy, shaft diameter d1, and input load Pin, reported in se-
quence (Sy kpsi,d1 in,Pin lb).

xd xd

1 (25, 0.5, 200) 15 (75, 2, 1700)

2 (25, 0.5, 950) 16 (75, 3.5, 207.5)

3 (25, 0.5, 1700) 17 (75, 3.5, 950)

4 (25, 2, 200) 18 (75, 3.5, 1700)

5 (25, 2, 950) 19 (125, 0.5, 207.5)

6 (25, 2, 1700) 20 (125, 0.5, 950)

7 (25, 3.5, 200) 21 (125, 0.5, 1700)

8 (25, 3.5, 950) 22 (125, 2, 207.5)

9 (25, 3.5, 1700) 23 (125, 2, 950)

10 (75, 0.5, 200) 24 (125, 2, 1700)

11 (75, 0.5, 950) 25 (125, 3.5, 207.5)

12 (75, 0.5, 1700) 26 (125, 3.5, 950)

13 (75, 2, 200) 27 (125, 3.5, 1700)

14 (75, 2, 950)
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FIGURE 5. Fatigue FoS and yield FoS distributions for designs 7 ∶
(25.5 kpsi,3.5 in,207.5 lbs) and 26 ∶ (124.4 kpsi,3.5 in,950 lbs)

less of an expert, and lacks the knowledge about modifying fac-
tors such as stress concentration and Marin factors. The shaded
boxes in Figure 4 are missing in Bob’s knowledge graph. The
results suggest that Alice would conceive the similarity between
shaft designs according to the “full knowledge” plot in Figure 6.
Bob, without the knowledge of stress concentration and Marin
factors, however, would conceive the similarity according to the
“partial knowledge” plot in Figure 6.

Two observations are worth noting in this scenario. First,
the cluster of designs 7,16, and 25 appear similar to the cluster
of designs 22 and 26 for Bob with “partial knowledge”, however,

the two clusters are quite dissimilar for Alice with “full knowl-
edge”. Second, problem 6 is dissimilar to the cluster of 19,20,
and 21 and nearby problems for Bob, but it is similar to the that
of cluster Alice. The reason for these effects is that neglecting
the Marin and concentration factors fails to account for the re-
duced endurance limit and increased stresses due to stress con-
centration. These multiplicative factors predict the reduction in
endurance limit stemming from varying size, loading conditions
etc. Without these considerations in Bob’s case, the endurance
limit is incorrectly considered larger than actual, and the fatigue
FoS is therefore larger for different designs of Table 1. For de-
signs 7 and 26 specifically, the uncertainty and the means in fa-
tigue FoS both increase. The increased uncertainty and means
reduce the KL-divergence and, therefore, the conceived dissimi-
larity between designs 7 and 26 decreases.
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FIGURE 6. MDS representation of the dissimilarity measures with
the knowledge of marine factors considered (“full knowledge”) and
without the knowledge of marine factors (“partial knowledge”).

Changing the assumptions about the knowledge map may
further change the dissimilarity values. For example, the in-
clusion of transverse shear stress for FoS calculations, which is
ignored in the current causal graph model, will change the fa-
tigue FoS and yield FoS outcomes, especially for a shaft geome-
try with large diameter and short length. The changed outcomes
will result in different MDS representation than the current rep-
resentations in Figures 7 and 6. Also, the beliefs about the non-
deterministic parameters (e.g., the bounds of a uniform distribu-
tion in Eq. (13) or the distribution themselves) can be different
for different designers.

4.2.3 Directionality Similarity depends on the direc-
tion X1→X2 or X2→X1. We observe that the dissimilarity matrix
Davg

Y is asymmetric for all cases of Y = n f ,Y = ny and Y = {n f ,ny}.
For a pair of designs which possess asymmetric similarity, this
result implies that one design offers better generalizability of per-
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formance than the other design.

4.2.4 Other Properties The KL divergence-based
dissimilarity measure is also useful for evaluating similarity
based on multidimensional outcomes. For a 2-dimensional out-
come Y = {n f ,ny}, the distribution bY ∣X(y) is a joint distribution.
We estimate this joint distribution for every design using the sam-
pled values of fatigue FoS and yield FoS. The KL-divergence of
joint distributions between two designs is numerically evaluated
assuming a 2D mesh grid over the performance space. The mul-
tidimensional scaling of these KL-divergences is shown in Fig-
ure 7, which is significantly different from those of Y = n f or
Y = ny.

The approach can be used to learn underlying commonali-
ties that are not immediately apparent in the structure space. For
example, the proximity of problems 4,8, and 23 on the MDS-
based similarity representation in Figure 7 indicates that the ef-
fect of increasing the shaft diameter d1 from 2 inches to 3.5
inches balances the effect of increasing the load Pin from 200
lbs to 950 lbs, whereas the same effect is balanced by reducing
the yield strength from 125 kpsi to 25 kpsi. As a result, problems
4,8, and 23 are close to each other.

5 Experimental Validation

While the simulation results suggest that the choice of a
knowledge graph affects the similarity measure, it remains to be
validated whether human designers with different knowledge as-
sess similarity differently. In this regard, the specific simulation
results about the individual differences and the context effects
lead us to posit the following hypotheses:

Hypothesis 1: The likelihood of a designer using the
knowledge-based approach for similarity assessment increases
with their knowledge of the mapping between design and perfor-
mance.

Hypothesis 2: The likelihood of a designer using the feature-
based approach for similarity assessment decreases with their
knowledge of the mapping between design and performance.

5.1 Details of the Experiment

To test the hypotheses, we asked the students of an intro-
ductory machine design class to answer few questions assessing
the similarity between different designs. As shown in Figure 8,
each question presented a scenario with the baseline value(s) of
design parameter(s), four alternative values of the design param-
eter(s), and the output parameter upon which the four alternatives
are to be compared against the baseline. We designed ten scenar-
ios for similarity assessment in such a way that the prediction
of the knowledge-based approach (which compares values of the
output parameter) in each scenario would be different from the
prediction of the feature-based approach, which compares val-
ues of design parameter(s). For example, in Scenario 6 shown
in Figure 8, the option with the least Euclidean distance between
own design parameters to the baseline design parameters was op-
tion (ii). However, option (iv) was closest to the baseline design
parameters in the sense of output parameter, i.e., fatigue factor
of safety, because both the baseline and option (iv) result in the
fatigue factor of safety of 1. This property of the similarity ques-
tions provided a direct way to estimate from responses whether
a subject followed the knowledge-based approach or the feature-
based approach.

The total of ten scenarios were divided into four sets with
each set including five scenarios and each scenario repeating in
two different sets. Each subject was assigned to a randomly se-
lected set of five scenarios. Overall, 167 subjects responded to
the questions asking for the most similar alternatives in part or all
of the five scenarios provided to them. The similarity assessment
questions were part of the cumulative final exam and included as
extra credit questions. The final exam was written and quantita-
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tive in nature, and focused on the knowledge of fatigue failure
theory1. A subject’s score in this final exam was assumed as a
quantification of their knowledge of fatigue theory concepts.

FIGURE 8. Two example scenarios out of ten scenarios for which the
subject population selected the most similar design to the given design.
Letters KR mark the response as assessed by the knowledge-based ap-
proach, whereas letters FR mark the response as assessed by the feature-
based approach.

5.2 Experiment Results

The results from the experiment suggests a correlation be-
tween a subject’s knowledge of machine design and fatigue the-
ory and their use of the knowledge-based approach for similar-
ity assessment. Figure 9a shows that the fraction of total re-
sponses aligning with the knowledge-based approach increases
with the final exam score. Figure 9a also shows 5% and 95%
percentile bounds on the fraction of knowledge-based responses
at any value of final exam score which are derived from fit-
ting a Gaussian processes regression model on the experimen-
tal data. Although the uncertainty bounds seem to depict large
variability in the relationship, this relationship is still statisti-
cally significant. Fitting a linear regression model between the
number of knowledge-based responses and the final exam score

1The final exam question paper and the questions of similarity assessment are
available upon request through email.

provides a slope parameter of 0.007. This slope parameter is
statistically significant is at the significance level α = 0.05 with
t-statistic= 4.63 and p-value< 0.001.

(a)

(b)

FIGURE 9. a) The fraction of knowledge-based responses versus the
final exam score in an introductory machine design class. b) The frac-
tion of feature-based responses versus the final exam score. The data
includes responses of 167 subjects. The number of total responses is
distributed between one to five as [5,1,2,10,149].

The results also suggest a trend of decreasing dependence
on the feature-based approach for similarity assessment as the
level of knowledge increases. According to the observations
from Figure 9b, the fraction of total responses aligning with the
feature-based approach decreases with the final exam score. This
trend, however, is only marginally significant. The slope param-
eter after fitting a linear regression model between the number of
feature-based responses and the final exam score is −0.004. This
parameter is marginally significant at significance level α = 0.05
with t-statistic= −2.1 and p-value= 0.040.

Further analysis needs to be completed before the hypothe-
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ses’ validity can be accepted or refuted. Specific directions
for future work include building knowledge graphs for individ-
ual subjects for systematic and accurate quantification of their
knowledge level, quasi-experimental analysis for controlling the
effects of external factors, and modeling uncertainty in the sub-
jects’ responses.

6 Future Research Directions

The shaft example discussed in Section 4 and experimental
validation in Section 5 illustrate the proposed approach, which
consists of (i) modeling knowledge using probabilistic graphi-
cal models, (ii) modeling the functional mapping between design
parameters and the performance metrics relevant in a particular
context, and (iii) modeling the dissimilarity using KL-divergence
in the performance space. The approach accounts for the causal
scientific knowledge available in engineering design, which is of
importance in the embodiment design phase. The approach also
embodies the characteristics of similarity identified in cognitive
science, including, directionality, context dependence, individual
specificity, and dynamic nature. Though the shaft design exam-
ple presented in this paper is simple, the approach can be ex-
tended to more general settings discussed in Section 1, such as
design research, practice, and education.

Design Research. Consider an experimental research setting
where a researcher is interested in comparing an experiment
to a real-world phenomenon. The design parameters (X) in-
clude treatment conditions related to design expertise, incentives,
availability of information sources, the type of design process,
etc. They are controlled in experiments but not controllable in
real-world situations [23]. The performance measures (Y ) under
consideration depend on the research study. These measures can
be creativity and novelty of ideas for the studies of design fixa-
tion [24,25], and the amount of information exchanged or search
strategies in the studies of decision making [26]. The knowledge
mapping from X to Y may be known if the scientific theory is
well developed. In scenarios where the theory is not well devel-
oped, the knowledge mapping is itself uncertain, and may vary
with the lens used to evaluate the mapping. For this setting, the
knowledge-based approach suggest that a fair comparison of an
experiment to a real-world situation should explicitly and unam-
biguously specify the phenomenon being studied and the knowl-
edge mapping being assumed. With this assumption satisfied,
quantifying the similarity of a real phenomenon to an experi-
ment becomes synonymous to evaluating the external validity of
experimental results.

Design Practice. In a design setting where a designer is inter-
ested in comparing a prototype to a real part in practice, design
parameters X include various physical characteristics such as ge-
ometry, material properties, aesthetics, the level of fidelity [27],
etc., which vary between a prototype to a real part. The perfor-
mance Y is defined by measures such as fatigue life, maximum

tensile strength, maximum payload, perceived risk of failure, etc.
A well-defined performance measure implies that the problem
context is fixed. In some cases, the knowledge mapping may be
known, empirically or theoretically. In other cases, the knowl-
edge mapping may not be precisely known due to epistemic un-
certainty. For this setting, one of the challenges in evaluating
similarity is that the designer has to rely on tests and simula-
tions to evaluate performance. Because tests and simulations can
be expensive and time consuming, we need efficient computa-
tional methods to calculate the KL-divergence-based dissimilar-
ity measure. The a well-defined parametric shaft design problem
presented in Section 3 is an example of this setting. For more
complex and ill-structured design problems, we need to account
for the impact of design process on the performance. This also
points to the larger need of incorporating a model of the design
process (in addition to the causal knowledge mapping) into the
calculation of similarity.

Design Education. In the context of engineering education, we
can use the knowledge-based similarity evaluation for drawing
insights on student assessment and developing educational as-
sessment tools. For comparing in-class teaching to tests/exams
in disciplinary subjects, the design parameters X mostly relate
to technical complexity which is well-specified both in in-class
teaching and in exam problems. In-class teaching determines the
nature and scope of the knowledge graph, which is tested through
exam problems. The performance metrics Y such as grades mea-
sure students’ problem solving abilities. An exam problem only
tests certain parts of the knowledge graph. The knowledge-based
approach can help us in evaluating dissimilarity of different exam
problems, and identifying problems with high generalizability
that can collectively and entirely test a given knowledge graph.

The knowledge-based approach of similarity assessment
also highlights the importance of developing knowledge-based
and process-based assessment for student design projects. In
a setting for comparing different design projects in a project-
based course such as capstone design, the design parameters X
generally consist of theoretical complexity, problem framing, re-
sources required etc. Commonly used performance metrics Y
are outcome-specific and delineated by whether a project gets
completed by the deadline, whether a design artifact is fully as-
sembled and functional, etc. However, the knowledge graph that
leads to an outcome changes with every design project. The the-
oretical complexity depends on the specific requirements of an
individual design project [28]. In addition to theoretical knowl-
edge, failure to account for a multi-level design process [28], or
deviation from a rational design process [29] negatively impacts
the design performance. Then, just as similarity is contextual, as-
sessment of students’ performance in design projects should be
conditional on the specialized theoretical knowledge and a pre-
scribed design process.
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