This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

e
Addressing Unreliabili

Emerging Devices and
Non-von Neumann
Architectures Using
Coded Computing

BY SANGHAMITRA DUTTA
YAOQING YANG

AND PULKIT GROVER", Senior Member, IEEE

ABSTRACT | Computing systems are evolving rapidly. At the
device level, emerging devices are beginning to compete with
traditional CMOS systems. At the architecture level, novel
architectures are successfully avoiding the communication
bottleneck that is a central feature, and a central limitation,
of the von Neumann architecture. Furthermore, such sys-
tems are increasingly plagued by unreliability. This unreliability
arises at device or gate-level in emerging devices, and can
percolate up to processor or system-level if left unchecked.
The goal of this article is to survey recent advances in reliable
computing using unreliable elements, with an eye on nonsili-
con and non-von Neumann architectures. We first observe that
instead of aiming for generic computing problems, the com-
munity could use “dwarfs of modern computing,” first noted in
the high-performance computing (HPC) community, as a start-
ing point. These computing problems are the basic building
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blocks of almost all scientific computing, machine learning,
and data analytics today. Next, we survey the state of the artin
“coded computing,” which is an emerging area that advances
on classical algorithm-based fault-tolerance (ABFT) and brings
a fundamental information-theoretic perspective. By weaving
error-correcting codes into a computing algorithm, coded com-
puting provides dramatic improvements on solutions, as well
as obtains novel fundamental limits, for problems that have
been open for more than 30 years. We introduce existing and
novel coded computing techniques in the context of “coded
dwarfs,” where a specific dwarf’'s computation is made resilient
by applying coding. We discuss how, for the same redun-
dancy, “coded dwarfs” are significantly more resilient com-
pared to classical techniques such as replication. Furthermore,
by examining a widely popular computation task—training
large neural networks—we demonstrate how coded dwarfs can
be applied to address this fundamentally nonlinear problem.
Finally, we discuss practical challenges and future directions in
implementing coded computing techniques on emerging and
existing nonsilicon and/or non-von Neumann architectures.
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LINTRODUCTION

With the imminent saturation of Moore’s law and Dennard
scaling and the ever-increasing rate of incoming data,
the current scaling of transistors cannot keep up with
the data growth (also called “data deluge gap”) [1]. This
has resulted in the community adopting novel approaches
at all levels: from circuits and devices, all the way to
system-level innovations. At device level, departing from
the well-established CMOS technologies, designers are
exploring novel nonsilicon devices ranging from spintron-
ics, graphene, mechanical switches, to analog computa-
tion engines. Alongside, to improve performance, at chip
and system-level, the community has been seeking solu-
tions through massively parallel and distributed systems
that depart radically from the conventional von Neu-
mann architectures. For instance, nowadays, deep neural
networks (DNNs) are trained over hundreds of graphics
processing unit (GPU)-accelerated servers, where each
GPU has thousands of cores [2]. The communication bot-
tleneck of accessing data in von Neumann architectures
is, to some extent, alleviated in massively distributed
computing [3, p.3] by bringing compute to the data and
pinning the data at distributed computers for reuse (e.g.,
in iterative machine learning and data analytics [4]). This
simple departure from von Neumann architectures shifts
the major bottleneck from the memory—compute inter-
face to the message-passing interface between distributed
machines, and the difficulty shifts from conducting some
reads and writes to keeping thousands of machines and
their communication links simultaneously reliable.!

All of these approaches suffer from different forms
of unreliability. In emerging devices, unreliability can be
imposed by low energy/low volume requirements, for
example, due to the use of analog systems aimed at
performing tasks implemented digitally today. The result-
ing errors, if left unchecked, accumulate and propagate,
an effect known as “information dissipation” [5], [6].
The scale of parallelism in upcoming systems brings
about new reliability challenges as well [7]-[10]. To see
how scale affects reliability, consider the Fugaku super-
computer which is planned to be fully operational in
2021. The Fugaku system consists of 150000 physical
nodes with a total of 8 million cores [11]. To achieve
a system-level mean-time-between-failures (MTBFs) of
24-48 h, the MTBF of each node must be 411-822 years.
Such nodes are difficult to design, implement, and test,
and leave little room for unexpected reliability issues
(e.g., dirty power and unexpected early wear-out [12],
[13]). Another type of unreliability, that is more com-
mon in shared cloud computing environments with thou-
sands of distributed nodes, is “straggling.” Stragglers are
nodes that take substantially longer time to complete
their computation task than their counterparts, becom-
ing system-level bottlenecks. Straggling can occur for a

Note that popular instantiations of non-von Neumann architectures,
such as single-instruction—multiple-data (SIMD) and cellular automa-
tons, share the same fundamental bottleneck with parallel and distributed
computing.
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multitude of reasons [14] including hardware heterogene-
ity [15]-[17], hardware failures [18], [19], and various
OS-related effects [20], [21]. It was observed that the
slowest nodes can be >8x slower than the median, and
addressing straggling can reduce the average completion
time by 47% [19].

An ambitious example of how emerging devices depart
from both classical CMOS and classical von Neumann
architecture are novel analog computation engines. These
engines perform small analog computations efficiently,
and can be used as building blocks in a larger system. How
should a designer choose which computation these engines
implement? The choice must be driven by applications.
Indeed, the first such engines [22]-[26] implemented
dot products, which are building blocks of dense
linear algebraic operations frequently used in machine
learning and scientific computing (see Section III).
What can be other such choices? In the mid-2000s,
the high-performance computing (HPC) community
arrived at several such canonical computations that form
the basic building blocks of modern-day computing,
including machine learning, data analytics, and scientific
computing. We propose that small computations within
these dwarfs can serve as goals for analog computation
engine designers to design the next class of systems.
Initially, seven so-called “dwarfs of computation” [27]
were identified (a set which was later expanded [28]),
each of which is a class of computations that share similar
computation and communication patterns.

The challenge of interest in this article is one of
integration: how do we reliably implement the compu-
tation dwarfs by integrating unreliable components? To
address this question, we leverage techniques developed
recently in the information theory community, collectively
called “coded computing.” These techniques incorporate
error-correcting codes (ECCs) into computation, advancing
(sometimes dramatically) on classical techniques in the
field of algorithm-based fault tolerance (ABFT) [29]-[31].
Coded computing has generated exciting results in recent
years [32]-[34], including notable breakthroughs such
as obtaining storage-optimal solutions to error-resilient
matrix multiplication [35]-[37], obtaining the first solu-
tion to linear transforms with all elements being error-
prone [38], and addressing the fundamental question of
error-resilient neural network training [39], [40] (inspired
from von Neumann’s 60-year-old work on computing reli-
ably using unreliable organisms?). In the spirit of dwarfs
of computation, we call the coded computing solutions
for computing dwarfs, “coded dwarfs.” Compared to tra-
ditional techniques, such as replication or checkpointing,
coded dwarfs can obtain a target error tolerance with sub-
stantially smaller overhead. For example, for distributed
matrix multiplication, replication-based schemes require

2In his seminal work [41], von Neumann also referred to the
McCulloch—Pitts model of a neuron [42], an extremely simple example
of an artificial neuron, thus provoking a question that is very relevant
in today’s world: how to train reliably using unreliable computational
units?
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two times redundancy for detecting an error and three
times redundancy [also known as triple modular redun-
dancy (TMR)] for correcting an error. On the other hand,
coded matrix multiplication can provide a single error
detection and correction capability with a small (asymp-
totically negligible) redundancy.

To make this integration issue more concrete, consider
the following example. As we noted, researchers in circuits
and devices have implemented specialized analog engines
for computing dot products of two vectors (see [23]
and [24] among others). How do we integrate these
engines to perform modern computations, for example,
for training DNNs (see Section VII)? Being emerging
technologies, their yield rates can be small, and failure
rates in run-time high. Furthermore, for some inputs,
the errors are small, while for others, they can be quite
large. Despite being carefully crafted using state-of-the-art
technologies, these systems can suffer from significant
errors that are in some cases dependent on input vectors
(see [23]). Improved fabrication techniques can reduce
these issues, but not eliminate them. Thus, the system
needs to be engineered in a way that can address these
errors before they snowball into large errors affecting the
eventual decision or inference.

The goal of this article is to survey recent advances
in error-correction techniques for computing that can
help address unreliability in the future computational
systems that arises due to the use of emerging devices.
Furthermore, this article also discusses techniques to
address errors/faults that percolate to the level of a single
processor or node, for example, in massively distributed
non-von Neumann computing systems. At that level,
errors, faults, straggling, network delays, etc., exist in
today’s systems, and are increasing as these systems
become more complex and more constrained. As novel
technologies start forming the building blocks of these
systems, the unreliability will only increase. Understanding
and advancing techniques for addressing different types
of unreliabilities is thus an urgent and important issue.

In the remainder of this article, we introduce coded
dwarfs, that is, computation dwarfs that are made
resilient to errors using coded computing techniques. In
Sections III-VI, we review and summarize coded
computing techniques applied to four dwarfs: dense lin-
ear algebra, sparse linear algebra, spectral methods, and
MapReduce. In Section VII, we discuss how coded dwarfs
can be utilized for important machine learning applications
through an example of training a neural network. Finally,
in Section VIII, we identify some important open problems,
and lay out our vision on how information theorists, sys-
tems experts, and circuit designers can work together to
build resilience in the next generation computing systems.

II. BACKGROUND AND NOTATION
A. Computation Dwarfs

What are the indispensable computation building
blocks in modern-day computing? Colella [27] introduced

the idea of seven dwarfs of computation in his
2004 presentation, which are seven building blocks® for
modern day scientific computing: 1) dense linear algebra;
2) sparse linear algebra; 3) spectral methods; 4) N-body
methods; 5) structured grids; 6) unstructured grids; and
7) Monte Carlo (MapReduce). The seven dwarfs have
served as a guideline for building and testing a parallel
system [43], [44]. In this article, we focus on four of the
seven dwarfs for which coding strategies have studied:
dense and sparse linear algebra, spectral methods, and
MapReduce.

B. ECCs in Communication and Storage

ECCs are commonly used in communication and storage
systems with the objective of recovering lost or corrupted
data through adding redundancy. We now introduce a few
mathematical notation required to describe ECCs. We will
use uppercase bold fonts for matrices (e.g., A) and lower-
case bold fonts for vectors (e.g., X). Let a denote a length-m
input vector. By adding P —m redundant symbols, we want
to encode this input vector into a length-P coded vector
Acoded- A popular choice of encoding function is a linear
mapping which can be represented as

QAcoded = GT a (D)

where G is a m-by-P matrix, called a generator matrix.
An important question is: how many lost symbols can we
recover if we add P — m redundant symbols? One might
hope to tolerate P — m erasures since P — m redundant
symbols were added. Indeed, this is provably the best
performance any encoding function can achieve, and there
exists a linear encoding scheme that achieves this. Coding
schemes that achieve this are called maximum distance
separable (MDS) codes. Another important class of codes
is systematic codes. In systematic codes, the first m symbol
of a.,geq Would be just a copy of the original message a,
and the last P — m symbols would be linear combinations
of a. Encoded symbols in systematic codes are often called
parity symbols or checksums.

C. Non-von Neumann Computing Systems and
Unreliabilities

In most parts of this article, we consider distributed/
parallel computing systems where each compute node is
equipped with its own memory. In distributed systems,
principal unreliability concerns are node failures (nodes
that crash in the middle of computation) and stragglers
(nodes that respond substantially slower than others). For
both, we will consider them as “erasures” as one can dis-
card results from failed or straggling nodes. When design-
ing a coding strategy for these systems, some important
overheads to consider are communication, computation

3The set was later expanded to 13 dwarfs by Asanovic er al. [28] to
include graphical models, finite state machines, among others.
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per node, memory usage per node, and the required num-
ber of distributed nodes.

Another non-von Neumann system that we consider
is low-energy compute engine for specific computa-
tions. Developing specialized energy-efficient accelerators
has been a crucial part of the roadmap to nonsilicon,
non-von Neumann computing. However, due to low energy
constraints and the use of emerging materials, gates
on these circuits can have high unreliability. We will
consider gate-level transient errors (see Section III-C),
as well as large analog errors in analog compute
engines (see Section III-A2), in these emerging devices
and systems.

D. Performance Metrics

In distributed systems, we use P to denote the total
number of nodes. We define the recovery threshold (K) as
the number of nodes that have to compute successfully out
of a total of P nodes, to be able to obtain the entire final
result. Throughout this article, recovery threshold is often
used as a performance metric of a coding strategy. Lower
recovery threshold means that we can tolerate more faults
and errors with the same number of nodes. Depending
on the problem, we also examine some other performance
metrics, for example, expected runtime in the presence of
straggling nodes, convergence rate in the case of iterative
algorithms, etc.

III. CODED DWARF 1:
ALGEBRA

The first dwarf, dense linear algebra comprises a large
set of operations on dense vectors and matrices, with
abundant applications in scientific computing and machine
learning [45]. The operations in dense linear algebra are
largely classified into three categories: vector—vector oper-
ations (BLAS Level 1), matrix—vector operations (BLAS
Level 2), and matrix-matrix operations (BLAS Level 3).
As these operations are essential in scientific computing
and machine learning [45], some of the first analog com-
putation engines have been built to support them [23],
[24]. At system-level, there exist multiple libraries imple-
menting these operations (e.g., BLAS and LAPACK).

DENSE LINEAR

In this section, we review coded computing
techniques for fault/error resilient matrix—vector
(Ax) or matrix-matrix (AX) multiplication. These

linear transforms are the building blocks of various
machine learning problems [45], (e.g., regression,
and classification) and are also used in acquiring and
preprocessing the data through Fourier transforms,
wavelet transforms, filtering, etc. In Sections III-A and III-
B, we review results on combating stragglers/node failures
on distributed systems. In Section III-C, we turn our
attention to emerging devices for binary linear transforms
and introduce a strategy called ENcoded COmputation
with Decoders EmbeddeD (ENCODED) [38] that studies
how to make the circuit resilient when all gates are prone
to errors.

4 PROCEEDINGS OF THE IEEE

A. Coded Dense Matrix—Vector Products

Can we perform reliable matrix—vector products (Ax)
using unreliable hardware, for example, distributed sys-
tem of processing nodes prone to faults and stragglers,
or emerging devices such as analog dot-product engines?

1) MDS Codes: A recent work [32] proposed the use of
MDS codes [46] for coded matrix—vector products, which
can be viewed as a rediscovery of the ABFT approach
adopted in the original work of Huang and Abraham [29].
Consider the problem of multiplying a matrix A with a
vector x such that the matrix A is too large to be stored
on any single node. We start with a simple example.

a) Simple example: Assume that each node can only
store half of the matrix A. Divide A horizontally as follows:
A= [ﬁ; ] Let two nodes store these two submatrices in

their local memories and compute A;x and AqX, respec-
tively. The master node waits for both the nodes to finish
their computation, and then produces the final result.
Note that the two nodes can compute these matrix—vector
products using different implementations.

In this setting, if any one node is prone to faults or
stragglers, then the entire computation is affected. One
method to ensure error tolerance is to use two more
nodes and replicate the computational tasks. The master
node can now tolerate one faulty node (essentially an
erasure) in the worst case and requires any three out of
the four nodes to finish the computation. Although it can
sometimes tolerate two erasures, it fails to reconstruct the
result if the two faulty nodes are the nodes performing
replicas of the same computation, for example, the two
nodes computing A;X. In this case, the recovery threshold
using replication is K = 3 because the master node can
recover the result using the partial computational results
from any three out of the four nodes.

The use of MDS codes reduces the recovery threshold
further as compared to the replication strategy. In this
case, we choose four linear combinations of A; and A, as
follows: A1, Az, A1 + Az, and A; — A,, respectively, and
store one at each of the four nodes. Each node multiplies
its stored encoded submatrix with x and sends the result
to the master node. Interestingly, the master node now
only requires any two out of the four computations A;x,
Aox, (A1 + A2)x, and (A; — A2)x to be able to successfully
reconstruct A;x and Asx. The recovery threshold is thus
reduced to 2 from 3. This provides better fault resilience
while using the same number of processing nodes, that is,
four and the same memory and computational resources at
each node as the replication strategy. It can be generalized
to using a (P,m) MDS code: the matrix A is split in
to m horizontal blocks and the MDS code generates P
linear combinations of the m submatrices such that any
m out of those P encoded blocks can reconstruct the final
output Ax.

b) Performance: Lee et al. [32] demonstrated
improvements in performance using MDS coded comput-
ing on straggling-prone nodes (through both theoretical
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analyses and experimental results) over replication and
uncoded strategies. While it has not been tested experi-
mentally yet, the techniques naturally extend to tolerate
errors (see [47] for how many errors can be tolerated),
and we believe that it will be as effective in systems with
error-prone nodes.

2) Short-Dot Codes: Short and fat linear transforms on
high-dimensional data arise frequently in dimensionality
reduction techniques such as principal component analysis
(PCA), linear discriminant analysis (LDA), and random
projections. Short-dot codes [34] provide a novel strat-
egy of performing fault-tolerant linear transforms where,
instead of computing long dot products as required in the
original linear transform, it constructs a larger number
of redundant and short dot products that can be com-
puted faster and more efficiently at individual processing
nodes. For instance, one can connect emerging devices
such as analog dot-product engines that can only compute
short dot products [22]-[24] in order to compute a large
matrix-vector product.

More specifically, short-dot codes [34] address the prob-
lem of distributed matrix—vector product (e.g., Ax) using
P faulty processing nodes under the constraint that each
node can only access s elements of the long vector x of
length N. The key novelty in this article is that redundant
and short dot products computed on different nodes can
be synthesized in an error-resilient fashion to recover the
matrix—vector product as illustrated in Fig. 1. In Fig. 1,
our goal is to compute two long dot products of length
N(= 12) using P(= 12) small and faulty dot product
engines that can only compute dot products of length
s(=4). Applying a (P, 2) MDS code naively to this problem
would result in P dot products of length N each and not
reduce the length of the individual dot products. On the
other hand, the short-dot codes enable us to generate a
redundant set of P vectors from the original two vectors
such that: 1) each vector only has s(= 4) nonzero elements
and 2) any K out of these P vectors can linearly span
the original two vectors, that is, we can recover the two
original dot products from any K out of these P dot prod-
ucts. An application of these codes to resilient data-parallel
gradient descent [48]-[51] is discussed in Section VII.

a) Performance: Dutta et al. [34] compared the
expected computation time of short-dot codes with com-
peting strategies. Fig. 2 shows that short-dot codes tradeoff
between the length of the dot products computed at each
node (s) and the recovery threshold (K). The MDS coding
strategy and the uncoded strategy are two special cases
of short-dot. Short-dot codes can tolerate P — K erasures
when the decoder knows which outputs are faulty, for
example, for the straggler problem it can identify which
nodes did not finish. It is also shown in [34] that short-dot
codes can tolerate | ((P — K)/2)] errors when the decoder
does not know which outputs are erroneous and has to
correct as well as detect errors.

b) Optimality of short-dot codes: Suh et al. [52] obtain
a fundamental limit (that improves on the fundamental
limit in [34]) to demonstrate that short-dot codes are
optimal in their tradeoff between the length of the dot
product (s) and recovery threshold (K).

In another related work, Beckman [22]
explored the intriguing problem of error-resilient inte-
ger matrix—vector products Ax using dot product engines
where the matrix A is realized as a crossbar array.
Conductors for each row and column form a grid and
programmable nanoscale resistors (e.g., memristors) at the
junctions of the grid have the conductance proportional
to the corresponding element of A. The goal in this arti-
cle [22] is not to make individual dot products short but to
address computational errors arising from a variety of fac-
tors such as inaccuracies while programming the resistors
in the crossbar, noise while reading the currents, junctions
in the crossbar becoming shorted, etc. Toward this goal,
they proposed using systematic ECCs and analyzed the
error tolerance in terms of L; metric and Hamming metric.

et al

B. Coded Matrix—Matrix Multiplication

In this section, we consider the problem of multiplying
two matrices A and X using a set of P worker nodes such
that each node can only store a fixed 1/m fraction of each

Uncoded, Wait for all

025

E MDS Coding _—

=

3 ez

X, Repetition

°

> P=1000
Sos ™

1] Short-Dot
o 200 400 _ 600 800 1000

No. of Dot-Products

Fig. 2.
dot products to be computed: Short-dot is faster than MDS when the

Expected computation time plotted against total number of

total number of dot products is much less than P, and outperforms
uncoded when the total number of dot products approaches P.

To model straggling, the runtime of each node is assumed to be
distributed as s + Exp(p./s) for computing a dot-product of length s
[34, Fig. 5].

PROCEEDINGS OF THE IEEE 5

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:12:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Dutta et al.: Addressing Unreliability in Emerging Devices and Non-von Neumann Architectures

1000

ABFT

800
Polynomial
600
400

200

Recovery Threshold
=
2
o
S
o
o
%
]
7]

Generalized
PolyDot
i_nterpolates
0 5 10 15 20
Storage Parameter (m)

Fig. 3.
i.e., when each node can store a fraction 1/m of each of the matrices
being multiplied. Total number of nodes is P = 1000. MatDot codes
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achieve the lowest recovery threshold for the storage constrained
matrix multiplication problem. Generalized PolyDot codes
interpolate between MatDot codes and polynomial codes

(figure from [47]).

matrix. For simplicity, we assume that both the matrices are
N x N square matrices. We measure performance in terms
of erasure recovery threshold (for failures and stragglers).
The results carry over to error recovery threshold using
approaches similar to those for matrix—vector products.
We will first introduce ABFT/Product codes which can be
considered as an extension of MDS codes for matrix—vector
multiplication. Then, we will discuss three code construc-
tions and bring out the interesting tradeoff between com-
munication costs and recovery threshold. The performance
of the four strategies we discuss here is summarized
in Fig. 3.

1) ABFT/Product Codes: ABFT techniques for matrix
multiplication [29] as well as the recently proposed prod-
uct codes [53] for this problem have a similar encoding
technique. The first matrix A is split horizontally and
the second matrix X is split vertically into m submatrices
each. Next, the submatrices of A are encoded using a
(v/P,m) MDS code to generate /P submatrices such that
any m out of them are sufficient to generate A. Similarly,
the m submatrices of X are also encoded using another
(v/P,m) MDS code to generate v/P coded submatrices.
Next, every coded submatrix of A is multiplied with every
coded submatrix of X in a separate worker node.

a) Performance: This strategy has a worst case recov-
ery threshold of K = 2(m—1)vV/P—(m—1)*+1 = 0(/P),
even though in the average-case fewer nodes suffice [53].

2) Polynomial Codes: The worst case recovery threshold
for this problem was improved in scaling sense using
another code construction called polynomial codes [54].
In this coding technique, the matrices A and X are again
split horizontally and vertically into m submatrices as
before. Next, we use two carefully chosen polynomials* for
encoding the input matrices, one for each of A and X. The

4Using polynomials is a common technique in coding theory.
Some of the most well-known codes, e.g., Reed—Solomon codes (on
whose construction polynomial codes are based), are constructed from
polynomials.
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coefficients of each polynomial are the submatrices of A
and X, respectively. Each node gets different encoded ver-
sions of A and X, which are the evaluations of the encoding
polynomials at different points. Then, it performs matrix
multiplication on those encoded matrices and sends the
computational result to the decoder. The judicious choice
of the two encoding polynomials enables the decoder to
reconstruct the final result from a subset of the worker
nodes using polynomial interpolation.

a) Performance: The recovery threshold of this strat-
egy is K = m? a scaling sense improvement over
ABFT/product codes. Also, polynomial codes achieve the
optimal communication cost.

3) MatDot Codes: In [35], a novel encoding technique
called MatDot codes was proposed that outperform poly-
nomial codes, achieving an even lower recovery threshold
of 2m — 1, albeit a higher communication cost and higher
per-node computational complexity. Contrary to the par-
titioning of polynomial codes, in MatDot codes, the first
matrix A is divided vertically and the second matrix X is
divided horizontally. Then, we encode them using thought-
fully designed polynomials specific to this partitioning.

a) Performance:  The recovery threshold s
K =2m — 1. This is a scaling sense improvement over
m? achieved by polynomial codes. It is the best-known
recovery threshold, and one can also prove that it is
optimal under assumptions noted in Section III-B5.

4) Generalized PolyDot Codes: There is a tradeoff
between the recovery threshold and the communica-
tion/computational costs. Polynomial codes have a higher
recovery threshold of m?, but have a lower communication
cost of O(N?/m?) per worker node, and also a lower com-
putational cost of O(N?®/m?). On the other hand, MatDot
codes have a lower recovery threshold of 2m—1, but have a
higher communication cost of O(N?) per worker node, and
a computational cost of O(N?/m). A family of codes called
generalized PolyDot codes [35], [55] (independently dis-
covered as entangled polynomial codes [37], both of these
works followed the discovery of MatDot codes [35]) bridge
the gap between polynomial codes and MatDot codes and
provide intermediate communication costs and recovery
thresholds.

For this construction, we consider a slightly more gen-
eral problem statement where we want to multiply two
matrices A and X such that each node can store a fixed
1/m fraction of A and 1/m/ fraction of X. Choose integers
r,s,t such that rs = m and st = m/. First, we partition A
into an r x s grid of equal-sized subblocks and X into an
s x t grid. The PolyDot framework for matrix multiplication
(originally proposed in [35] and later improved in [37]
and [55]) introduces two multivariate polynomials for
encoding A and X. Computation at each node and decoding
through polynomial interpolation are essentially the same
as polynomial codes and MatDot codes. One exciting appli-
cation of this family of codes is training DNNs, which we
discuss in Section VII.
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codes by varying r, s, and t for a fixed m = m’ = 36. MatDot codes
have the lowest recovery threshold 2m — 1 = 71. The minimum
communication cost is N2, corresponding to polynomial codes, that
have the largest recovery threshold m? = 1296. Generalized PolyDot
codes bridge between these two strategies, improving the tradeoff
using garbage alignment (figure from [47]).

a) Performance: The recovery threshold of general-
ized PolyDot codes is K = rst + s — 1. It is achieved by
a novel technique called “garbage alignment” that aligns
some of the unwanted coefficients in the polynomials to
reduce the degree of the final polynomial being interpo-
lated. In Fig. 4, we illustrate the tradeoff between MatDot
and polynomial codes, as achieved by generalized PolyDot
codes.

5) Fundamental Limits and Other Works: The recovery
threshold of MatDot codes improves in scaling sense over
polynomial codes. Subsequent work [37] obtained a fun-
damental limit of min{P,rs + st — 1} for this problem
when each input matrix is partitioned both vertically and
horizontally under the assumption that the input encoding
is linear and each node simply performs matrix multiplica-
tion on encoded matrices. These limits show that for the
chosen partitioning (r = ¢ = 1,s = m), MatDot codes
are, in fact, optimal. The recovery threshold of MatDot
codes also match in scaling sense with the more gen-
eral, information-theoretic converse of max{rs, st} in [37].
However, for other kinds of partitioning, there is a gap
between the fundamental limits and the best known
achievability of K = rst + s — 1.

We also refer the reader to some recent works [56]—-[66]
in the coded computing community using interesting alter-
nate techniques such as efficient task allocation, perfor-
mance analysis, and utilizing partial task of slow workers.
Recent work [67] has shown that although the MatDot
code was originally proposed to reduce the storage over-
head instead of communication cost, it naturally applies
to the widely used communication-avoiding matrix multi-
plication algorithm [68] on a 3-D mesh, by exploiting the
outer-product decomposition.

C. Coded Dense Linear Algebra Using Entirely
Unreliable Components

In the discussion thus far, we have assumed that the
computing engines are unreliable, but that the encod-
ing/decoding mechanisms can be performed reliably. This

is justified in many cases because the encoding/decoding
complexity is much lower than that of the engine. In this
section, we consider a more challenging problem, one
where all elements are noisy. In fact, the study of this
problem was initiated by von Neumann in 1956. In his
model, the computation units and storage cells on a circuit
are arranged in a fully distributed fashion, and different
subsets of these units take turns to become active to carry
out the computation. All the units, including the compu-
tation units and the storage cells, and the error correc-
tion mechanism, can have transient faults. Therefore, it is
desired that the circuit structure itself, that is, the way that
the computational units and the storage cells are wired
together, is designed to be error-tolerant. Note that the
main focus of this section is on the circuit implementations
instead of the distributed computing models considered
in Sections III-A and III-B, and also that we consider
circuit-level transient faults instead of machine failures or

stragglers.
Interestingly, on any single path of computational
units, the computation error must accumulate,

as discussed in the information dissipation work of
Evans and Schulman [5, Lemma 2] (see also [6]). Thus,
to reduce error accumulation, we should maximally
distribute the information in the network, so that
information can be integrated from different paths to fight
the dissipation on each path. This leads to the idea of
expander graphs, which have been used as building blocks
of certain low-density parity-check (LDPC) codes [69].
Expander graphs are sparse graphs constructed such that
each small subset of fewer than S vertices are connected
to more than 4S5 vertices for some positive constant 4.
This strong connectivity property leads to reliable coding
designs on the graph, ensuring that any wrong information
contained in a small subset of vertices can be corrected
using a local majority vote in a large neighborhood.

In [38], the first coding technique for computing binary
linear transform using entirely unreliable components was
proposed. The strategy is called “ENcoded COmputation
with Decoders EmbeddeD,” or “ENCODED” to highlight the
critical aspect of embedded decoding units. At a high level,
for computing A - x (A and x are binary), the computation
is partitioned into multiple stages, so that errors at each
stage do not accumulate and make the code unable to
handle them. Then, low-complexity decoding is carried out
in each stage, that is, we partition the decoding as well
and interleave the computation stages with the “noisy”
decoding stages (utilizing results from [70] to [71]) to
maximally suppress errors with limited resources. Specif-
ically, the matrix A is encoded into A.yged, and the compu-
tation Acodeq - X is partitioned into the summation of z; - a;,
where z; and a; are, respectively, the ith entry of x and
the ith column of A ygeq- This is to ensure that the iterative
formula at each stage of the computation has the formy, =
y,_; + i - a;, so that the intermediate result at each stage
is a codeword (in the noiseless case). It is shown, through
both theoretical results and simulations, that the error

PROCEEDINGS OF THE IEEE 7

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:12:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Dutta et al.: Addressing Unreliability in Emerging Devices and Non-von Neumann Architectures

0.3

0.25

= Repetition-3 -
B ~
50.15

i}

@ 01 7 Repetition-4

BER<0.005

0 100 200 300 400 500 600
Stage Index in the FOR-Loop

Fig. 5.
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ENCODED is able to keep errors contained even as the

cannot. Here, the x-axis represents the index of the interleaved
compute-decoding stages conducted by a FOR-loop.

accumulation remains contained throughout the computa-
tion (see Fig. 5). As mentioned earlier, the error correction
mechanism itself, that is, each interleaved decoding stage,
is noisy as well. Thus, the error rate after each decoding
stage cannot go to zero. However, the interleaved decoding
stages can repeatedly suppress the error and contain error
accumulation.

D. Open Problems

Coded computing research has chiefly focused on
basic linear operations, namely matrix—vector products
or matrix-matrix products. However, a large portion of
dense linear algebra routines is solving linear systems, for
example, solving linear equations, least-squares problems,
or eigenvalue problems. These routines require matrix
factorization (e.g., QR factorization or LU factorization)
and triangular solve. Although ABFT techniques for these
operations have been studied before in the HPC com-
munity [72]-[74], there have been few works in coded
computing in this direction. One recent work [75] has pro-
posed a new coding strategy for QR decomposition. More
broadly, there are exciting opportunities in developing new
coding techniques for parallel linear solvers, particularly
those that factor in practical concerns in HPC systems.

Another significant open problem that remains is at the
intersection of circuits/devices and the proposed strate-
gies. How can models of emerging devices and analog
computation engines inform and improve the performance
of the proposed strategies? What implementations can
perform digital error correction on errors in analog com-
ponents?

IV. CODED DWARF 2: SPARSE LINEAR
ALGEBRA

Sparse linear algebra concerns the problems and methods
of manipulating sparse matrices, such as multiplying a
sparse matrix to a vector, or performing graph analytics
(graphs have sparse matrix representations). Sparse linear
algebra has become increasingly important as numerous
data sets for machine learning applications are very sparse

8 PROCEEDINGS OF THE IEEE

(e.g., user ratings on products). However, coding sparse
matrices using dense codes will make them dense, and
increasing computation and communication costs substan-
tially. In this section, we will focus on recent progress that
deals with one important sparse linear algebra problem:
solving a linear system Ax = Yy in which A is sparse,
which naturally leads (as discussed in [76]) to impor-
tant problems such as leading eigenvector computations,
directly useful in singular value decomposition (SVD) and
PCA computation. Note that the system model we consider
in this section is large-scale distributed systems and we
tackle node failures. Extending the techniques for errors
at the gate/device level and developing coding techniques
for general sparse linear algebra operations (e.g., sparse
matrix-matrix products) on the whole remain open.

A. Sparse Linear Systems: The Importance of the
Problem and Techniques in the Literature

Solving a sparse linear system has a variety of
applications, including web data analysis [77]-[79],
semi-supervised learning [80], partial differential equa-
tions [81], [82], circuit simulations [83], power grids
[84], and finite element analysis [85]. The connection
of sparse linear systems with coding is first mentioned
in [86], where a sparse equiangular tight frame (ETF) is
used to partially maintain the data sparsity. The proposed
technique in [87] encodes the data before solving the
linear system, and is thus beyond the scope of coded matrix
multiplication. Another line of works of Yang et al. [76],
Haddadpour et al. [88], and Yang et al [89], [90]
treats the problem of solving linear systems as repeated
matrix—vector multiplications, that is, power method [91],
and hence coding can be done across multiple iterations.
Since sparse matrices have much larger matrix size than
dense matrices for the same data size, ordinary matrix
operations such as full-spectrum SVD and matrix inverse
are hard to realize. A standard family of techniques to
deal with large-scale sparse linear systems originates from
different variations of the power method, for example,
the widely used Krylov-subspace methods. A comparison
of the Krylov-subspace methods and the ordinary power
method is given in [92] with an example of solving the
PageRank equation [77].

B. Coded Sparse Linear Systems: The
“Substitution” Technique

Before we explain the coded computing technique
for solving sparse linear systems, we want to discuss a
fundamental challenge in coded computation for sparse
matrix—vector multiplications. Traditional codes require
dense linear combinations of input data. For example,
the encoding of a typical coded computing scheme requires
multiplying the data matrix with a dense generator
matrix G [see (1)]. However, if we take dense linear com-
binations of sparse matrices, it can significantly increase
the number of nonzero elements. For example, consider
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Fig. 6. Key ideas in substitute decoding. (a) Finding the maximal
information of the vector y by projecting it onto the column space of
Gs. (b) Approximating the unknown part of y using the result from
the last iteration, x(,

computing Ax with a sparse matrix A partitioned evenly
into ten submatrices, each stored in different distributed
nodes. When we introduce redundancy by coding, one
linear combination of the ten submatrices using a dense
code can lead up to ten times higher storage cost. This
problem is unique for sparse data matrices because linearly
combining a completely dense matrix does not increase the
density. Thus, in practice, for sparse coded matrix multi-
plications, we are likely to be limited to using extremely
sparse codes with small row-weights® of their generator
matrix G (ideally a small constant that is independent of
the code length). However, fundamental limits on sparse
codes for coded computing show that the number of
tolerable faults is linearly proportional to the row-weight
of the generator matrix [34], [49], [50], [64], [65], [93].
Thus, using a sparse code is not a sufficient solution either.
The limitation of using sparse codes can be intuitively
described as follows. Suppose the desired result y is in an
encoded form Gy, where G is the sparse generator matrix.
If the row-weight of the generator matrix G is a small
constant, a worst case fault can easily erase all the columns
of G which have a nonzero element on a particular row
(with index ). Then, the remaining matrix, denoted by G,
becomes singular because the submatrix is all-zero on the
sth row. This will result in decoding failure as obtaining y
from Gy is not possible.

1) Substitute Decoding for Sparse Linear Systems: We now
discuss the recently developed techniques [76], [90] to
boost the fault tolerance of extremely sparse codes for
linear systems. The problem considered in [76] and [90]
is solving sparse linear systems, which is one of the pri-
mary applications of sparse matrix multiplications. In par-
ticular, we take the famous PageRank equation as an
example [77]:

x = (1 — d)Ax + dr. 2)

Here, A is a sparse column-normalized graph adjacency
matrix, and d is the “teleport probability” with which the

SThe row-weight of a generator matrix is defined as the number of
nonzeros on each row of the matrix.

random walk modeled by PageRank restarts from the ini-
tial distribution r. The PageRank equation is solved using
the power iterations

x = (1 - d)Ax"Y + dr 3)

until X converges to the fixed point of (2). The computa-
tion of Ax(") can be done using the standard master—worker
setup, in which the sparse matrix A is partitioned into
several row blocks A = [A[A; ... Af] " and each worker
machine computes one A;x". A straightforward way of
coding power iteration is linearly combining the subma-
trices A;’s so that the result y = (1 — d)Ax)) + dr is also in
a coded form G'y. However, recall that choosing G to be
either dense or sparse comes with downsides (as discussed
above).

To overcome this issue, two key ideas were intro-
duced [76]. The first key idea is that even when the
partial encoding matrix G, (remained after deleting the
columns due to failures or stragglers), as mentioned above,
is singular, instead of declaring the decoding failure of
obtaining y from G.y, we can “maximally” invert G, by
using its pseudo-inverse, which gives Pg_y, in which Pg_ is
the projection onto the column space of G;. This procedure
can maximally preserve the information contained in the
successful computations G.y. However, this procedure
results in information loss of y because the projection Pg_
is not full-rank. To get back the remaining part (I — Pg,)y,
the second key idea is to use the “side information” x) as
a proxy of the unknown y. That is to say

xD = pg y + (1 —Pg_)x". %)

The intuition is that for the iterative computations given
in (2), the intermediate result y = (1 — d)Ax(l) + dr
and x) get closer to each other as x) converges to the
fixed point of (2). Thus, substituting x* in the equation
(which is what the authors call “substitute decoding”)
can maximally recover the required result y even when
the exact computation of y is unavailable due to failed
nodes. These key ideas are illustrated in Fig. 6. In [76],
it is shown that substitute decoding for sparsely coded
linear systems achieves almost the same convergence rate
as the noiseless systems even if there are a large number
of random (transient) failures (see Fig. 7). It is also shown
that this technique can generalize to the computation of
leading eigenvectors of a large and sparse matrix, and the
computation of gradient vectors (see [77, Sec. V-B-V-D]).

C. Open Problems

The broad issue of which analog engines could be
implemented to support sparse linear algebra remains
open, in part because sparse matrices are often stored
in compressed forms. Besides this open problem, there is
a pending question in designing codes for sparse linear
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Fig. 7. Convergence exponent of substitute decoding (blue line) is
close to the optimal value (red line) even when the number of
failures is large. Substitute decoding significantly improves the
failure tolerance when the failures are random.

algebra due to the limitation of sparse codes: they provide
limited error resilience for worst case failures, especially
when the storage overhead is crucial. For example, if one
imposes the restriction that the coded data overhead can-
not exceed 30%, even the sparsest codes may fail to satisfy
the requirement. We propose two different directions we
can explore to address this issue.

1) One may consider approximate computation instead
of exact computation. For example, the recent works
on coded sketching provide an alternative way to
address the sparse linear algebra problem [94], [95].

2) The other direction is more ambitious. One can try to
design coded schemes that are beyond making linear
combinations of the submatrices, and thus bypass the
difficulty of using sparse codes. The coded schemes
should introduce sufficient redundancy to the data,
while essentially maintaining the original sparsity of
the data.

V.CODED DWARF 3: SPECTRAL
METHODS
A. Spectral Methods

Spectral methods refer to Fourier representations and
related operations [such as the fast Fourier transform
(FFT)], which convert data into frequency domain. Typi-
cally, spectral methods use multiple stages of a butterfly
network. When deployed in a distributed way, the butterfly
network combines multiply-add operations with a specific
pattern of data permutation, using all-to-all communica-
tion in some stages and being strictly local in others [28].
FFT operations are widely used in signal processing, and
are a valuable tool to speed up scientific computing such
as solving differential equations with FFT acceleration
[96], [97]. One very important application of FFT is
computing convolutions.® When convolving two vectors of
length N, a brute force approach requires O(N?) com-
putations. However, one can perform convolution by first
converting the vectors into frequency domain, perform-
ing element-wise multiplication in the frequency-domain,
and then converting back to the original domain. This

5Computing convolutions directly without using FFT was also stud-
ied in the coded computing literature. See [54], [98], and [99].
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FFT-based method requires O(N log N) operations instead
of O(N?).

In this section, we will consider computing an N-point
DFT:

z = Fyx )

where x is an input data vector of length N, Fy is an
N-by-N DFT matrix (wn: the Nth root of unity)
represented as

wON W?v W?v
wON w}v wjj\\;fl
Fn=1| . . X . (6)
0 N-1 (N—1)2
Wl wy e wy

and z is a length-V vector of the Fourier transform of x.
We assume that N is large, and the data cannot be stored
in one processor. Using the Cooley-Tukey technique [100],
the computation of (5) can be broken down into smaller
FFTs of size N1 and N, where N = N; N»

N-1
nk
P WN T
n=0
Ni—1 No—1
_ niki noko 7
= Wry  tng ke WN, TngNi+ng (7
ni= no=0
where k¥ = ki No + ks, k1 = 0,...,N; — 1, and

k2 = 0,..., Ny — 1. The terms ¢,, x,’s are called twiddle
factors which are equal to wf,‘\',? "1 For simplicity, we will
focus on 1-D FFT here, but note that the coding strate-
gies discussed here easily extend to multidimensional

FFTs [101], [102].

B. Coded Distributed FFT Strategies

We introduce two recent works on applying the idea
of coded computing to distributed FFT algorithms which
build up on ABFT techniques for FFT [103]-[106]. One
is under a master-worker setup [102] and the other is
under a master-less (i.e., decentralized) setup [101]. While
these works largely focus on node failure in distributed
computing, we will also discuss how these ideas can be
extended to analog engines or FFT accelerator circuits.

To utilize (7), let us first rearrange the input data « into
a matrix form X

T1 TN1+1 L(Ny—1)Np+1
X =

| TNy T2 Ny TN; Ny

., (row)

X3

_ : _ I:X;col) xﬁ?’l)] )

(row)

[ XK
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Fig. 8. Encoding and decoding steps of masterless coded FFT algorithm with an example of P =3 K = 2 [101, Fig.1].

Then, computing FFT can be thought of as first computing
Ns-point FFT on the row vectors of X, then computing N;-
point FFT on the column vectors. Up to the first N»-point
FFT computation, the two strategies [101], [102] follow
the same coding scheme. In both schemes, the input data
are encoded as follows:

(row)

Z(Tow) (row) + o Gk XS ®)

i = gi1Xy

where GT = [gi;]i=1,....p,j=1,...,x is an encoding matrix of a
(P, K)-MDS code. Then, each node gets the encoded data
%" and performs N-point FFT on the encoded data.
Due to the linearity, this guarantees that

T = gy 4+ gy ©)
where y", ..., y'") result from the first No-point FFT,

Now, let us discuss how the two strategies differ after
this.

1) Master—Worker Coded FFT: In the master—worker

setup, the master node waits for the first successful
K outputs among ", ..., 7", After receiving
the computation output from K successful work-
ers, the master decodes these outputs to recover
yioW . y°") . Then, the master node carries out
the remaining computation: multiplying twiddle fac-
tors, and performing the N;-point FFT.
Limitations of this strategy are: 1) N can be very large
in scientific computing, and the assumption that there
is a powerful master node that can store and process
the entire vector can be unrealistic and 2) depending
on the choice of N, computational load at the master
node can be as big as the computational load at each
worker node, which defeats the purpose of distributed
computing.

2) Master-Less Coded FFT: In the master-less setup,
the second FFT, that is, N;-point FFT in (7), is per-
formed at distributed nodes as well. After the first
N-point FFT, the distributed nodes wait until there
are K successful workers. Then the successful nodes
perform all-to-all communication with each other to

transpose their output. These nodes perform decoding
locally to recover y' ...y, Now, another step
of encoding is performed to protect the second FFT
step from faults. K nodes that possess y\, .. ., y'®)
communicate to the remaining P — K nodes to encode
parity symbols. After encoding, all the nodes perform
N;p-point FFT on the encoded data. These steps are
summarized in Fig. 8.

While the strategy in [101] overcomes the limitations
of master—worker coded FFT, the real challenge is to
ensure that communication overhead of distributed
encoding and decoding does not exceed the built-in
communication cost of the FFT algorithm itself. Jeong
et al. [101] showed that if we use systematic MDS
codes with a very small number of parity nodes, that
is, P — K = o(log K), the communication overhead
can be amortized.

C. Open Problems

We believe that the two different coded FFT methods
proposed for distributed computing systems can map to
connecting multiple FFT accelerators [107]-[109]. As the
FFT algorithm is vital for DSP applications and image
processing (e.g., convolutions in neural networks [110])
that are being implemented on low-energy embedded
systems, there will be continued efforts in building
energy-optimized FFT circuits with emerging technologies.
The master-worker and master-less coded FFT methods
can apply to computing a large-scale FFT (e.g., 1 million
point FFT) by connecting small FFT accelerators with unre-
liability with or without a central controller. Expanding the
current results that largely remain theoretical to experi-
mental validation on such systems would be an intriguing
future direction.

VIL. CODED DWARF 4: MAPREDUCE
A. MapReduce

MapReduce is a widely used framework in the
large-scale data processing. It has two phases, “map,” and
“reduce.” In the map phase, input data is split into indepen-
dent chunks and sent to distributed nodes. At distributed
nodes, key/value pairs are processed locally to generate
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a set of intermediate key/value pairs. The second phase
reduces the returned values from all the nodes into a
summarized result by merging intermediate values asso-
ciated with the same intermediate key. While not exactly
in the original seven dwarfs of computation, the “Monte
Carlo” dwarf was generalized to MapReduce since the
communication and computation pattern of MapReduce
generalizes that of Monte Carlo.

In this section, we introduce the coded MapRe-
duce (CMR) strategy [111]. The CMR strategy does not
directly add resilience to errors or faults. Instead, the main
purpose of applying coding in the CMR strategy is to
reduce communication cost. Although this is not perfectly
aligned with the core theme of this article, we include
the CMR strategy because coding for fault tolerance in
MapReduce computations is broadly unaddressed and this
article can inspire future work in this direction. Also,
on a system where more unreliabilities are present in
communication than computation, the CMR strategy can
be thought of as a way to mitigate unreliability. Recently,
Li et al. [33] proposed a unified framework that encap-
sulates both communication cost reduction and fault toler-
ance, generalizing results in [32], but this was only limited
to matrix—vector multiplication, which was extensively dis-
cussed in Section III-A.

B. Coded MapReduce

Between the map and the reduce phase, “data shuffling”
is required to rearrange data so that the data with the same
intermediate key value can be located in the same worker
machine. Often, this data shuffling operation is the bottle-
neck of MapReduce computations. For example, in Face-
book’s Hadoop cluster 33% of the total time is consumed
by data shuffling, and in self-join applications on Amazon
EC2, 70% of the total time is consumed by data shuffling.
The core idea of the CMR strategy is to add redundant
computations at each worker node to reduce the amount of
data that has to be communicated during the shuffle stage.
In other words, the CMR strategy leverages the tradeoff
between computation and communication.

A Simple Example: Let us explain the CMR strategy
through a simple example given in Fig. 9 where we use
three nodes to compute three different functions on six
input files. Three different shapes (blue triangle, green
square, and red circle) represent three different output
functions, and we use numbers to denote six different
input files. During the data shuffle stage, we want to send
all the values associated with the same output function to
the same node, that is, red circle outputs to node 1, green
squares to node 2, and blue triangles to node 3.

In the uncoded strategy depicted in Fig. 9(a), each input
file is located in only one server. For data rearrangement
before the reduce phase, each node has to send two of
its outputs to the other nodes. Thus, four intermediate
values should be communicated from each node, and the
total of 12 values need to be communicated. In the coded
strategy in Fig. 9(b), each input file is present in two nodes.
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represent different output functions, and we use numbers to denote
different input files (a) r=1. (b) r=2[112, Fig.1].

Example of (a) uncoded and (b) CMR. Different shapes

Now, if we do not leverage coding, each node needs two
more intermediate values to proceed to the reduce phase.
This requires 2 x 3 = 6 values to be communicated in total.
However, by leveraging coding, we can further reduce this
communication load. As illustrated in Fig. 9(b), by sending
the XOR of the intermediate values, communication can be
reduced to multicasting only three values, instead of six.
In fact, Li et al. [111] have shown that when we replicate
the same computation r times, the CMR strategy reduces
the communication load by 1/r compared to the uncoded
communication load.

C. Experimental Results

Gains achieved by the CMR strategy are experimentally
quantified [112] using the TeraSort benchmark [113],
which is a popular benchmark to evaluate the performance
of MapReduce. The authors evaluated coded Terasort
implementation on Amazon EC2, and showed a significant
speed-up of coded TeraSort over uncoded TeraSort. Experi-
mental results of sorting 12 GB of data with 16 workers are
summarized in Table 1. Note that theoretically, communi-
cation is reduced by r times, but the speedup in the experi-
ments is less than r due to increased computation cost and
the absence of network-layer multicast support in EC2.
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Table 1 Summary of Experimental Results [112] for Sorting 12 GB of
Data With K = 16 Workers

Map | Shuffle | Reduce | Total | Speedup
(s) (s) (s) (8)
Uncoded TeraSort 1.86 945.7 10.47 961.3
Coded TeraSort (r = 3) | 6.03 4122 13.05 445.6 2.16x
Coded TeraSort (r =5) | 10.84 | 222.8 14.40 283.3 3.39x

D. Open Problems

There exists a chasm between the CMR strategy and the
unified coding framework for MapReduce [33]. The CMR
strategy works for any function but it does not provide fault
tolerance. The coding strategy in [33] provides fault toler-
ance but works only for matrix—vector products, which is
extensively studied beyond the MapReduce context. Coded
computing techniques are needed that can be applied
universally (similar to the CMR strategy), or to a broader
set of problems, to provide resilience against faults/errors
during computation.

VII. APPLICATION OF CODED

DWARFS: TRAINING A DNN

DNNs are rapidly becoming an important tool in mod-
ern computing applications. Training a DNN can be very
compute-intensive and memory-demanding as we use a
larger model. To distribute the task of training a DNN,
people often adopt either data-parallel or model-parallel
architecture. In data parallelism, different nodes store and
train a replica of the entire DNN on different pieces of data,
and a central parameter server combines gradient updates
from all the nodes to train a central replica of the DNN.
In model parallelism, different parts of a single DNN are
distributed across multiple nodes.

1) Coding Data-Parallel Training Using “Gradient Coding”:
Coding for data-parallel training is examined in [48] where
the problem is viewed as a matrix multiplication prob-
lem. Here, the matrix A is fixed and known in advance
and is required to be multiplied with another vector or
matrix (the gradients) generated in real-time. In fact,
gradient coding [48]-[51] uses short-dot codes (described
in Section III-A2) at its core.” The data set is divided into
N partitions. At each iteration of training, the master node
requires the sum of the gradients evaluated on all the data
partitions. Thus, the matrix A here is essentially a row
vector [1,1,...,1]ixn, and it is to be multiplied with a
matrix whose rows are gradients from a different partition
of the data set, that is

Xgmw)
(row)
x= | %2

XS{IOW)

TThe two results, gradient coding [48] and short-dot codes [34], were
arrived at simultaneously.

The goal is to generate a set of P(= N) sparse vectors, one
for each node, such that any subset of size K can linearly
span [1,1,...,1]1x~. The ith node computes a dot-product
of its corresponding sparse vector and X, and sends the
result to the master node. Because these generated N
vectors are sparse, the ith node only stores and computes
gradients on the data partitions indexed in the support set
of its corresponding sparse vector, and not on the entire
data set which reduces the computation at each node.
The master node waits for any K nodes to finish as they
are sufficient to compute the required gradient and thus
tolerates stragglers.

2) Model-Parallel Training: The problem of coded DNN
training requires making all the steps of DNN training
resilient to soft errors (bit flips during computation that
produce erroneous outputs) under the constraint that each
node has limited storage, that is, it can store only a fixed
fraction of each of the weight matrices being trained.
To compute the gradients, at each layer, we multiply
the weight matrix A with an operand from the right
side during the feedforward stage and again with an
operand from in the backpropagation stage, along with
other low-complexity operations such as nonlinear opera-
tions, Hadamard product, etc. Finally, in the update stage,
the weight matrices at each layer are all updated.

Dutta et al. [39], [40], and [47] studied training a
DNN under the masterless setting and identified three
challenges that have to be addressed in applying coded
computing to this problem: 1) prohibitively large overhead
of coding the weight matrices in each layer of the DNN at
each iteration; 2) nonlinear operations during the feedfor-
ward stage when propagating from one layer to the next,
which are incompatible with linear coding; and 3) absence
of an error-free master node, requiring us to architect a
fully decentralized implementation.

Toward addressing these additional challenges, carefully
weaving MDS codes (see [39]) or generalized PolyDot
codes (see [40] and [47]) into the operations of DNN train-
ing was proposed so that an initial encoding of the weight
matrices is maintained across the updates at each iteration.
To do so, at each iteration each node locally encodes much
smaller matrices consisting of N B elements instead of the
large matrix A of N2 elements where B is the mini-batch
size, adding negligible overhead. In particular, for the case
of B = 1, this simply reduces to encoding vectors instead of
matrices, which is much cheaper in terms of computational
complexity. Next, we circumvent the nonlinear activation
between layers by coding each layer separately. Lastly,
we also enable a fully decentralized implementation by
making each node as a functional replica of the master
node. Each node performs low-complexity operations that
were usually done in a master node such as aggregat-
ing the partial computation results, detecting/correcting
errors, and subsequent computing and encoding to gen-
erate inputs for the next stage of matrix-multiplication.
Simulation results in [39] show that a unified MDS coded
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DNN training strategy attains a better accuracy-runtime
tradeoff as compared to an uncoded strategy that
simply ignores soft errors or a replication based
strategy.

This article is a significant step in the design of biolog-
ically inspired neural networks with error resilience that
could hold the key to significant improvements in effi-
ciency and reduction of energy consumption during neural
network training. Thus, these results could be of broader
scientific interest to communities like HPC, neuroscience
as well as neuromorphic computing.

VIII. DISCUSSION AND FUTURE
DIRECTIONS

In this article, we reviewed coded computing techniques to
build fault tolerance into four of the seven dwarfs. Examin-
ing coded computing techniques for the remaining dwarfs
(including dwarfs added later, see Asanovic et al. [28]) is
an important future direction.

Integrating these techniques closely with design of
emerging devices and systems is perhaps the most impera-
tive future direction. For instance, in an unpublished work
with Ning Wang and Pop (the authors of [23]), we devel-
oped the concept of “analog computation flags.” These
flags are small computations outputs that indicate the
confidence an analog engine has in its own output, based
on its modeling of input dependent errors (as discussed
in [23], where this modeling is done for graphene-based
dot-product analog engines), and are attached to the
original analog computation engine which computes the
target function. Such novel systems, when implemented
in association with analog compute engines, could help
alleviate the system-level fault-tolerance problem because
it can help identify which nodes have erroneous outputs,
and discard those outputs from decoding (in coding-theory
parlance, they reduce errors to erasures).
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