

1 Article

2 **Evaluation of bipolar, tripolar and quadripolar
3 Laplacian estimates of electrocardiogram via
4 concentric ring electrodes**5 **Javier Garcia-Casado ^{1,*}, Yiyao Ye-Lin ¹, Gema Prats-Boluda ¹, Oleksandr Makeyev ²**6 ¹ Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia,
7 46022, Spain; jgarciac@ci2b.upv.es; yiye@ci2b.upv.es; gprats@ci2b.upv.es8 ² Department of Mathematics, Diné College, Tsai, AZ 86556, USA; omakeyev@dinecollege.edu

9 * Correspondence: jgarciac@ci2b.upv.es ; Tel.: +34 963877007 ext. 76027

10 Received: date; Accepted: date; Published: date

11 **Abstract:** Surface Laplacian estimates via concentric ring electrodes (CRE) have proven to enhance
12 spatial resolution compared to conventional disc electrodes which is of great importance for P-wave
13 analysis. In this study Laplacian estimates for traditional bipolar configuration (BC), two tripolar
14 configurations with linearly decreasing and increasing inter-ring distances ($TC_{LDI RD}$ and $TC_{LI RD}$
15 respectively), and quadripolar configuration (QC) were obtained from cardiac recordings with
16 pentapolar CREs placed at CMV1 and CMV2 positions. Normalized P-wave amplitude (NAP) was
17 computed to assess the contrast to study atrial activity. Signals were of good quality (20-30 dB).
18 Atrial activity was more emphasized at CMV1 ($NAP \approx 0.19-0.24$) compared to CMV2 ($NAP \approx 0.08-0.10$). Enhanced spatial resolution of $TC_{LI RD}$ and QC resulted in higher NAP values than BC and
19 $TC_{LDI RD}$. Comparison with simultaneous standard 12-lead ECG proved that Laplacian estimates at
20 CMV1 outperformed all the limb and chest standard leads in the contrast to study P-wave. Clinical
21 recordings with CRE at this position could allow more detailed observation of atrial activity and
22 facilitate the diagnosis of associated pathologies. Furthermore, such recordings would not require
23 additional electrodes on limbs and could be performed wirelessly, so it should also be suitable for
24 ambulatory monitoring, for example, using cardiac Holter monitors.
2526 **Keywords:** electrocardiography; biopotentials; measurement; wearable sensors; concentric ring
27 electrodes; Laplacian; estimation
2829 **1. Introduction**30 Cardiovascular disease is the principal cause of morbidity and mortality in developed
31 countries and in ten years it is expected to become the main cause of death worldwide [1,2]. While
32 mortality associated with cardiovascular disease tends to decrease [3], its costs are expected to
33 increase substantially over the next two decades, mostly due to aging population [4]. It is estimated
34 that by year 2035 131.2 million of Americans will suffer from cardiovascular disease with projected
35 cost of \$1.1 trillion [4]. In European Union costs associated with cardiovascular disease amount to
36 approximately €169 billion per year [5]37 Electrocardiogram (ECG) is the recording of a vital signal extensively used in diagnostics. It
38 provides information not only about the heart rate but about the electrical conduction in the heart. A
39 wide range of cardiac pathologies can be diagnosed using ECG such as bundle-branch and
40 atrioventricular blocks as well as myocardial infarction and dysrhythmias (fibrillations, tachycardias
41 and bradycardias) [6]. Currently, standard 12-lead ECG does not perform well in the diagnosis of

42 pathologies related to local electrical conduction abnormalities in the heart, such as ventricular
43 ischemia, and especially those related to the atrial activity, with a smaller number of cells involved
44 than in case of ventricles, such as atrial flutter often requiring invasive electrophysiology [7]. This is
45 due to the low spatial resolution of bipolar recordings from conventional disc electrodes, commonly
46 used in clinics, that are affected by the blurring effect of the body volume conductor [8]. High spatial
47 resolution non-invasive monitoring systems would be very valuable in the diagnosis of these
48 pathologies. Body surface potential maps, obtained from bioelectric signals recorded from tens of
49 electrodes located on the torso, offer diagnostic information not present in data from 12-lead standard
50 systems that could be crucial in the diagnosis of aforementioned pathologies [9–11]. However,
51 improvement in spatial resolution of the surface potential recordings due to an increase in the
52 number of recording electrodes is limited because of the smearing effect caused by the volume
53 conductor [12]. Body surface Laplacian potential recordings were proposed to overcome this
54 limitation. Surface Laplacian has been shown to be negatively proportional to the two dimensional
55 divergence of the tangential components of the current density on the body surface [13]. This implies
56 that bioelectrical dipoles closest to the recording electrode obtain higher weights than more distant
57 ones thus improving the dipole source discrimination[14]. Body surface Laplacian maps require
58 placement of a large number of disc electrodes on the chest and application of discrete estimation
59 algorithms. This approach is time consuming and therefore potentially aggravating for clinicians and
60 patients which hinders its application in clinical practice as a diagnostic tool [15–18].

61 Concentric ring electrodes (CRE) in bipolar, quasi-bipolar and tripolar configurations were
62 proposed to estimate surface Laplacian at each electrode with a linear combination of signals from
63 all of its recording surfaces [12][19]. It has been shown that tripolar CREs provide more accurate
64 estimate of surface Laplacian compared to quasi-bipolar and bipolar CREs while also offering better
65 spatial resolution [19,20]. CREs were first implemented on rigid substrates [20][22][27] and
66 subsequently on flexible substrates such as polyester films [24][25][28], polydimethylsiloxane [27] or
67 textiles [28]. This study builds on a series of studies aiming to improve the accuracy of Laplacian
68 estimation using CREs by optimizing the number of concentric rings [29] and inter-ring distances
69 (distances between the consecutive rings) [30,31]. Main limitation of [29–31] is utilization of the
70 negligible dimensions model (NDM) of a CRE that assumes the radius of the central disc and the
71 widths of concentric rings to be negligible. The first step toward a comprehensive finite dimensions
72 model (FDM) of a CRE that includes these additional parameters along with the number of rings and
73 the inter-ring distances included in the NDM has been taken in [32]. Specifically, Laplacian estimate
74 was derived for a proof of concept tripolar CRE with non-negligible widths of the concentric rings
75 and the radius of the central disc [32]. This was accomplished by representing both concentric rings
76 as clusters of points with specific widths as opposed to concentric circle representation in NDM [32].
77 Central disc of the tripolar CRE was also represented by a cluster of points with specific radius as
78 opposed to a single point representation in NDM [32]. All the tripolar and quadripolar surface
79 Laplacian estimates derived and assessed in this study are FDM based. Moreover, while NDM based
80 analytic results from [29–31] were validated using finite element method modeling, the FDM based
81 surface Laplacian estimates in this paper are assessed using ECG data collected from 20 human
82 subjects via physical CRE prototypes.

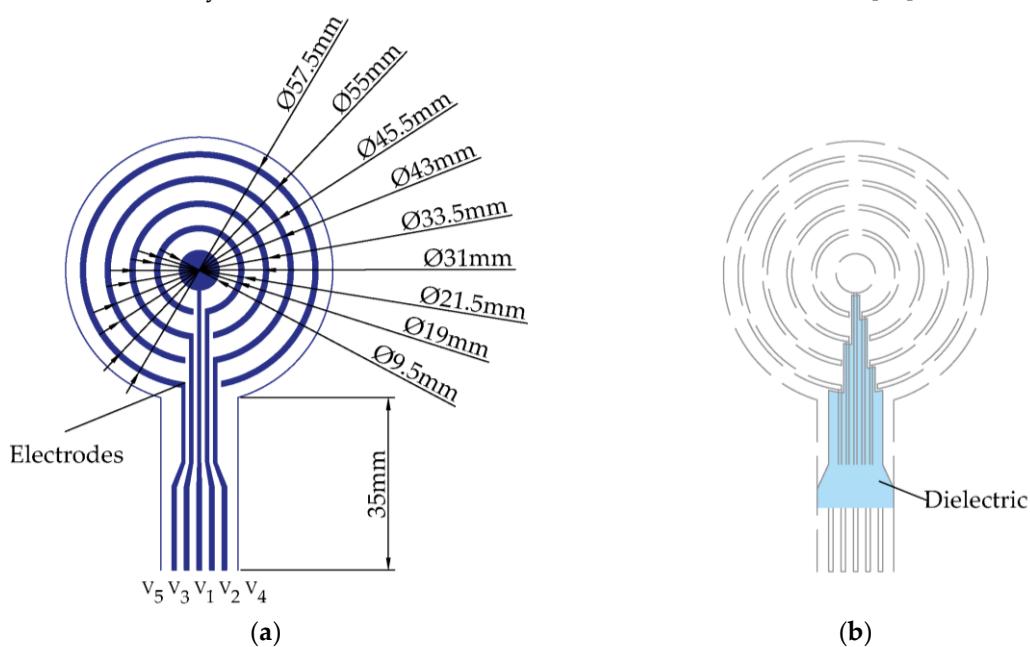
83 Therefore, the first aim of this work was to calculate different estimates of the surface
84 Laplacian using bipolar, tripolar (linearly increasing and decreasing inter-ring distances) and

85 quadripolar CRE configurations of the same size. The second aim was to assess the influence of the
 86 configuration on associated spatial resolution and signal quality as well as on the contrast to study
 87 the P-wave by assessing various metrics derived from the ECG signals recorded with a CRE sensor
 88 node. Comparison with standard 12-lead recordings was also performed.

89 **2. Materials and Methods**

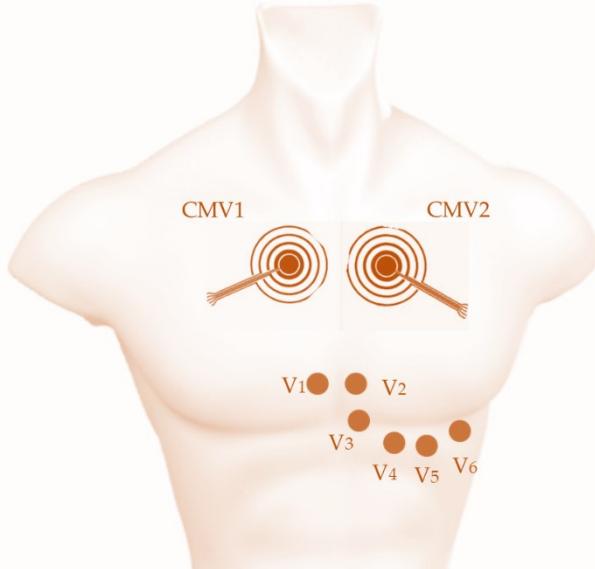
90 *2.1 ECG recording*

91 Data collection was conducted on twenty volunteers: 3 females and 17 males with body mass
 92 indices of $25.1 \pm 3.2 \text{ Kg/m}^2$ and ages of 36 ± 14.1 at the Health Center of the Universitat Politècnica de
 93 València (UPV) when attending routine check-ups. Volunteers were informed of the aim of the study
 94 and signed informed consent forms. The study was approved by the UPV Ethics Committee (project
 95 identification code P4_20_02_19) and adhered to the Declaration of Helsinki.


96 Standard 12-lead ECG signals (ECG 8270, Nihon Kohden, Japan) and 6 bipolar concentric
 97 ECG (BC-ECG) signals from two wireless CRE sensor nodes were recorded for 5 minutes for each
 98 volunteer. The wireless CRE sensor node consisted of two parts: flexible CRE and electronic circuitry
 99 with analog signal processing, digitization, and transmission of three BC-ECG signals [33] as follows:

$$\text{BC}_1 = V_2 - V_1 \quad (1)$$

$$\text{BC}_2 = V_3 - V_1 \quad (2)$$


$$\text{BC}_3 = V_4 - V_1 \quad (3)$$

100 where V_1 , V_2 , V_3 and V_4 were the surface potentials picked up by the central disc and the three open
 101 (concentric) rings from the inside out on Figure 1. No external reference electrode was used. The
 102 outermost CRE ring was connected to analog ground so as to diminish common mode interference.
 103 The node circuitry included 0.3–150 Hz bandpass filtering and 4084 V/V gain. Sampling rate for
 104 bioelectric signals was equal to 500 Hz (with 24-bit resolution) and recorded signals could be either
 105 transmitted wirelessly via Bluetooth or stored on a microSD card in real time [33].

106 **Figure 1.** Bilayer design of the CRE: (a) recording surfaces including the central disc and open rings along with
 107 their dimensions (b) dielectric layer to avoid shortcuts.

108 Sensor nodes were placed at positions CMV1 (comparable to V1, near the right atria) and CMV2
 109 (similar to V2, near the left atria), as shown in Figure 2, since these were previously determined to be
 110 the positions offering the best detectability of cardiac waves in general and of the P-wave in particular
 111 [24,34]. To improve skin-contact impedance, chest area where the electrodes were located was
 112 exfoliated using an abrasive gel (Nuprep, Weaver and Company, USA) and cleaned with alcohol.
 113 This area was also shaved first for male volunteers.

114 **Figure 2.** Scheme of the electrode placement for conventional disc electrodes in precordial positions V1, V2, V3,
 115 V4, V5 and V6 and two CREs in positions CMV1 (comparable to V1) and CMV2 (comparable to V2) for ECG
 116 recording.

117 2.2 Laplacian estimates

118 First, to reduce residual baseline drifts BC-ECG signals were digitally high-pass filtered (0.1 Hz,
 119 zero-phase, fifth-order, Butterworth filter). Next, four FDM based estimates of the surface Laplacian
 120 potential corresponding to bipolar (BC), tripolar (with linearly decreasing and increasing inter-ring
 121 distances: TC_{LDIRD} , TC_{LIIRD}), and quadripolar (QC) CRE configurations were computed using filtered
 122 BC-ECG signals to be used for subsequent analysis and feature extraction:

$$BC = BC_3 \quad (4)$$

$$TC_{LDIRD} = BC_2 - 0.28361 \cdot BC_3 \quad (5)$$

$$TC_{LIIRD} = BC_1 - 0.044389 \cdot BC_3 \quad (6)$$

$$QC = BC_1 - 0.263865 \cdot BC_2 + 0.0304459 \cdot BC_3 \quad (7)$$

123 All the CRE configurations had the same size with the third open ring serving as the outer ring.
 124 For the case of bipolar configuration (BC) from equation (4), previous result of Huiskamp has been
 125 used since Laplacian estimate in this case is proportional to a single bipolar signal (BC_3) and not to a
 126 linear combination of multiple bipolar signals as in case of tripolar and quadripolar configurations
 127 [35]. For the cases of linearly decreasing (TC_{LDIRD}) and linearly increasing (TC_{LIIRD}) inter-ring distances
 128 tripolar configurations from equations (5) and (6) respectively, steps identical to the ones in [32] were
 129 used to find the coefficients of the Laplacian estimate using potentials on respective recording
 130 surfaces. To compute those potentials, first, the outer radius of the outer ring (radius of the electrode)
 131 was set equal to a large arbitrary numeric constant (e.g. 50,000). Next, the radius of the central disc

132 and inner and outer radii of both concentric rings were expressed as integer fractions of this constant
 133 based on their actual dimensions from Figure 1(a). For example, the radius of the central disc was set
 134 equal to $4.8*50,000/22.8 \approx 10,526$. Finally, potentials on the recording surfaces were calculated as
 135 averages of potentials on all the concentric circles included in them. For example, potential on the
 136 central disc was calculated as the arithmetic mean of 10,527 potentials including one at the center of
 137 the disc and potentials on concentric circles with radii up to 10,526. For the quadripolar configuration
 138 (QC) from equation (7) potentials on the four recording surfaces were calculated in the same way.
 139 Next, three bipolar signals (BC_1 , BC_2 , and BC_3) corresponding to differences of potentials on each of
 140 the three concentric rings and on the central disc were linearly combined to cancel out both the fourth
 141 and the sixth order truncation terms (as opposed to just the fourth order truncation term being
 142 cancelled out in case of tripolar CRE configurations).

143 Laplacian estimate coefficients are not unique for FDM since as shown in [32] they are a solution
 144 of a system of linear equations. Since Laplacian estimate coefficients are determined up to
 145 (multiplication by) a constant factor they were scaled for all four CRE configurations to a unit value
 146 of the first coefficient to allow direct comparison.

147 2.3 Data analysis

148 ECG fiducial points were identified by detecting the R-wave using Hamilton & Tompkins
 149 algorithm [36]. The average beat (\overline{ECG}) of the Laplacian estimations: BC, TC_{LDIRD} , TC_{LIIRD} and QC was
 150 computed in a 60 s window, covering from 250 ms prior to 375 ms after the R-wave.

151 To compare the signal quality of these Laplacian estimates, the average value of signal-to-noise
 152 ratio (SNR) was computed for each recording session.

153 • Signal-to-noise ratio (SNR): ratio of the peak-to-peak amplitude of the average beat \overline{ECG}
 154 and the root mean square (RMS) of the noise during the isoelectric period between beats,
 155 the latter being calculated as the RMS value for all the isoelectric periods over the 60 s
 156 window.

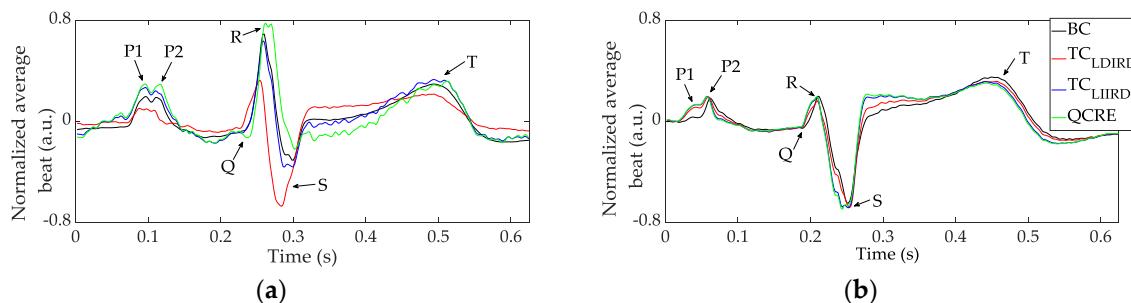
$$157 SNR (dB) = 20 \cdot \log_{10} \left(\frac{V_{PP}(\overline{ECG})}{V_{rms}(noise)} \right) \quad (8)$$

158 The absolute signal amplitude of the ECG signal does not provide relevant information as long
 159 as the signal quality is good enough. The normalized amplitude of the cardiac waves is relevant since
 160 it provides information on the ability to analyze the morphology of each wave for clinical diagnosis.
 161 Previous studies have shown that one of the main benefits of Laplacian ECG recording via CREs
 162 associated with enhanced spatial resolution is the increase of P-wave contrast assessed by its
 163 normalized P-wave amplitude (NAP) [24,27]. Therefore, this metric was computed to compare
 164 different Laplacian ECG estimates derived from the CRE and the 12-lead ECG signals:

165 • NAP: Normalized amplitude of the P-wave with respect to the peak-to-peak amplitude
 166 (RS) of the average beat (\overline{ECG}).

167 To assess the variability of NAP for different Laplacian estimates for a given subject, the
 168 coefficient of variation (CV_NAP) was computed for each recording session:

169 • CV_NAP (%): Coefficient of variation of NAP.


$$170 CV_NAP (\%) = \left(\frac{\sigma\{NAP_{BC}, NAP_{TC_{LIRD}}, NAP_{TC_{LDIRD}}, NAP_{QC}\}}{\text{mean}\{NAP_{BC}, NAP_{TC_{LIRD}}, NAP_{TC_{LDIRD}}, NAP_{QC}\}} \right) \cdot 100 \quad (9)$$

171 Wilcoxon signed rank sum test was performed to assess statistical differences in NAP values for
 172 different Laplacian estimates (BC, TC_{LDIRD} , TC_{LIIRD} and QC) and those of 12-lead standard recordings.
 173 MANOVA test was performed to compare the metrics for the different Laplacian estimates from
 174 positions CMV1 and CMV2.

175 3. Results

176 *3.1. Laplacian estimates of ECG via CRE*

177 Figure 3 shows normalized average beats of the Laplacian estimates (plotted in different colors)
 178 via CRE at position CMV1 on two volunteers. Average beats were normalized with respect to their
 179 peak-to-peak amplitudes for direct comparison. Traces are clean with slight oscillations after the
 180 averaging process. Main cardiac waves (P, Q, R, S and T) can be clearly observed in all the average
 181 beats. In panel (b) morphology barely changes between the different Laplacian estimates while it
 182 changes substantially in panel (a). Shorter duration of QR segment and longer for RS is observed for
 183 TC_{LDIIRD} . P- and T-waves amplitudes also vary, being the smallest for TC_{LDIIRD} in this case. It is
 184 noteworthy that two peaks can be observed in the P-wave, probably associated to P1- and P2-waves
 185 of left and right atrial activity.

186 **Figure 3.** Normalized average beat of the Laplacian estimates via CRE at position CMV1 (a) from a
 187 volunteer with $CV_{NAP} = 35.0\%$ (b) from a volunteer with $CV_{NAP} = 4.3\%$

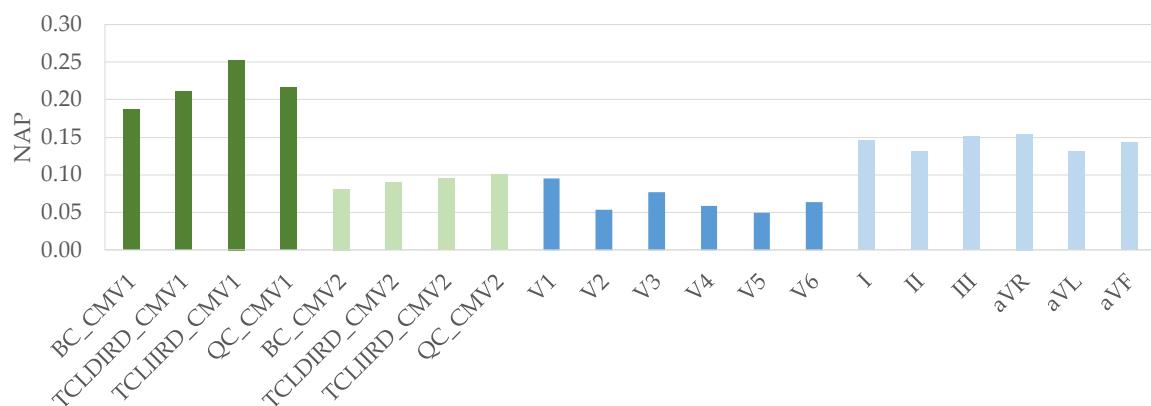
188 Table 1 shows the results obtained for characteristic metrics derived from the Laplacian
 189 estimates via CREs at positions CMV1 and CMV2 for all the volunteers ($N = 20$). In case of SNR,
 190 the mean values range from about 20 dB to 37 dB, showing that the cardiac signal amplitude is
 191 between 10 and 70 times greater than that of noise. SNR values from CMV2 were significantly
 192 greater than those from CMV1 ($p < 0.05$, MANOVA) indicating the effect of CRE position on the
 193 signal quality. It is also noteworthy that, in general, SNR of BC > TC_{LDIIRD} > TC_{LIIIRD} > QC for both
 194 CRE positions ($p < 0.05$, Wilcoxon signed-rank test, except for TC_{LIIIRD} vs QC at CMV1). The
 195 opposite trend is found in the mean values of NAP related to electrode configuration, with the
 196 exception of TC_{LIIIRD} and QC at CMV1. Significant differences ($p < 0.05$, Wilcoxon signed-rank
 197 test) were only found for BC vs TC_{LIIIRD} at both positions, and BC vs QC at CMV2. Cardiac signals
 198 recorded at CMV1 resulted in NAP values more than double the values at CMV2 ($p < 0.05$,
 199 MANOVA). Mean values of CV_{NAP} at CMV1 and CMV2 were equal to 26.43% and 20.11%
 200 respectively, indicating that normalized P-wave amplitude varies between different Laplacian
 201 estimates for a given volunteer. Standard deviations of CV_{NAP} were high (20.03% and 11.20%),
 202 showing that such variability can change substantially depending on the volunteer. In particular,
 203 panel (a) of Figure 3 represents a case with high variability of NAP among Laplacian estimates
 204 ($CV_{NAP} = 35\%$), whereas panel (b) represents a case with similar morphology and NAP values
 205 for different Laplacian estimates ($CV_{NAP} = 4.3\%$).

206 **Table 1.** Mean \pm standard deviation¹ of metrics computed for different Laplacian estimates (BC,
 207 TC_{LIIIRD} , TC_{LDIIRD} and QC) at two positions (CMV1 and CMV2).

CRE position	Laplacian estimate	SNR (dB)	NAP	CV_{NAP} (%)
CMV1	BC	29.56 ± 5.62	0.19 ± 0.09	26.43 ± 20.03
	TC_{LDIIRD}	23.53 ± 5.29	0.21 ± 0.11	
	TC_{LIIIRD}	19.94 ± 8.48	0.25 ± 0.14	
	QC	19.71 ± 7.38	0.22 ± 0.10	
CMV2	BC	36.99 ± 4.70	0.081 ± 0.034	20.11 ± 11.20
	TC_{LDIIRD}	34.49 ± 4.56	0.090 ± 0.046	

208

¹ N = 20 volunteers.


209

3.2. Comparison with the standard 12-lead ECG

210

Figure 4 shows mean values of NAP obtained for the Laplacian estimates via CREs at CMV1 and CMV2 along with those for standard 12-lead ECG signals. It can be observed that greatest NAP values are obtained from CRE at CMV1, followed by limb leads (I, II, III, aVR, aVL and aVF). The highest mean NAP value for standard chest leads was obtained for V1 (NAP = 0.09) which is similar to those from CRE at CMV2.

214

216
217

Figure 4. Mean values of NAP for Laplacian estimates via CREs at CMV1 and CMV2 and those for standard 12-lead ECG signals.

218

Statistical comparison of NAP for Laplacian estimates via CREs with those for standard 12-lead ECG is summarized in Table 2. NAP of signals recorded via CRE at CMV1 was significantly greater than any of the standard 12-lead ECG ($p < 0.05$, two-sample comparison), with the exception of BC vs lead III. Furthermore, statistical significance was very high ($p < 0.001$) in all the comparisons with standard chest leads and with many of the limb leads. NAP values from CRE signals at CMV2 were significantly greater than those of chest leads, except for V1 and for V3 in some cases, and they were not significantly greater than those of limb leads.

225
226

Table 2. Statistically significant differences¹ between NAP values for Laplacian estimates (BC, TC_{LIIRD}, TC_{LDIRD} and QC) at the two positions (CMV1 and CMV2) and NAP values for standard 12-lead ECG.

CRE posit.	Laplac. estim.	V1	V2	V3	V4	V5	V6	I	II	III	aVR	aVL	aVF
CMV1	BC	***	***	***	***	***	***	*	**		**	*	*
	TC _{LDIRD}	***	***	***	***	***	***	***	***	**	***	**	**
	TC _{LIIRD}	***	***	***	***	***	***	**	**	*	***	**	**
	QC	***	***	***	***	***	***	**	***	*	***	**	**
CMV2	BC		**		**	***	*						
	TC _{LDIRD}		**		**	***	*						
	TC _{LIIRD}		**	*	***	***	**						
	QC		***	*	***	***	**						

227
228

¹ * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Wilcoxon signed-rank test, alternative hypothesis: median NAP for Laplacian estimates is greater than that for 12-lead ECG

229

4. Discussion

This is the first time that Laplacian quadripolar and LIIRD and LDIRD tripolar estimates are obtained from a physical CRE and that results from real biological signals are analyzed. The experiments have been carried out on signals of cardiac origin due to the great relevance and prevalence of cardiovascular diseases and the diagnostic potential associated with the ECG. The PQRST peaks were easily identifiable visually in different Laplacian estimates and signal quality was good. The signal-to-noise ratio was of about 20-30 dB is consistent with other studies on bipolar ECG signals via CREs on textile [28] and polyester [33] substrates.

P-waves which are associated with atrial activity are the lowest ECG peaks and the most challenging ones to identify. This is because atrial activation involves fewer cardiac cells than ventricular one. In this context, position of the recording electrode and its spatial resolution play an important role in providing a good contrast in the monitoring of atrial cardiac activity. Regarding the position, CRE at CMV2 is closer to the heart in general and to the ventricles in particular. On one hand, this is responsible for greater amplitude and quality of signals derived from this site in comparison to CMV1. On the other hand, it also leads to stronger contribution of ventricular myocytes and therefore larger QRS amplitude with respect to atrial activity (P-wave). At CMV1 the proportional attenuation of ventricular activity is higher than that of the atrial activity, resulting in greater normalized P-wave amplitude. This is in agreement with previously published results on Laplacian estimates with bipolar configuration at these two areas [24,34]. Regarding the spatial resolution, simulation studies have reported that the far-field rejection of tripolar configuration (constant inter-ring distances, TC_{CIRD}) is greater than that of bipolar CRE configuration which is greater than that of a unipolar one (e.g. standard chest leads) [37]. Enhanced spatial selectivity of TC_{CIRD} vs BC has also been experimentally demonstrated in [21]. Moreover, analytical study validated using finite element method modeling have predicted that the error, in descending order, of the Laplacian estimates assessed in this study would be $BC > TC_{LDIRD} > TC_{LIIRD} > QC$ [30]. This is consistent with the experimental results obtained for NAP in this study that showed the poorest contrast of P-wave in BC and increasing NAP values for the other Laplacian estimates at both positions except for the comparison between TC_{LIIRD} and QC at CMV1. It is also consistent with SNR values obtained for different Laplacian estimates i.e. the poorer the spatial resolution, the larger the volume of sensed bioelectric dipoles and the greater the energy of the cardiac signal and the SNR. In case of cardiac recordings on the chest, there is no significant contribution of bioelectric interferences from other organs. Moreover, the background noise is associated predominantly with the electronic noise in the signal conditioning and acquisition hardware which is virtually constant regardless of the configuration of Laplacian estimate. Other studies that compared TC_{CIRD} vs BC Laplacian estimates for EEG [38] and for EMG recordings on the forearm [27] reported higher SNR for TC_{CIRD} . In these cases, the greater far-field rejection of TC_{CIRD} yields a greater attenuation of cardiac interference which may be responsible for the increased SNR. The robustness of signals from CRE to movements, bad contact or partial contact during potential clinical operation has not been specifically addressed in present work. Previous works reported similar SNR and saturation percentage of BC ECG records and Mason-likar Lead-I ECG recordings carried out with commercial wet disk electrodes [39]. BC ECG recorded from textile CRE have been shown to be robust to the artifacts originating lateral head movement and vertical arm or leg movements while more sensitive to the one corresponding to deep breathing or laughing [28].

In addition to the type of CRE configuration used for Laplacian estimation, another important factor affecting the spatial resolution is the size of the electrode. A larger electrode size corresponds to worse spatial resolution [33,34,40]. In this study Laplacian estimates via four CRE configurations with the same external diameter of the electrode (45.5 mm) were assessed for direct comparison of the configuration effect. Other studies have reported NAP values of BC recordings at CMV1 of 0.18 [27] and 0.16 [34] with electrodes of external diameter equal to 15 mm and 42 mm respectively. Despite having used larger electrodes in this study, better spatial resolution of TC_{LIIRD} and QC resulted in higher NAP values (0.25 and 0.22 respectively).

Variability of NAP for different configurations of Laplacian estimates via CREs at a given position was also assessed in this study. Results showed that in some cases NAP variability was very

282 small (< 20% in half of the volunteers) with different estimates being affected by virtually constant
283 scaling factor while preserving similar morphology. Some other cases showed greater variability in
284 NAP and in the morphology and duration of cardiac waves (Figure 3 (a)). This could be related to
285 differences in the physiological constitution of individual subjects and to relative position and
286 orientation of the heart with respect to the CRE. Previous studies reported similar behavior when
287 studying the influence of ring dimension and, hence, of spatial resolution on BC Laplacian estimates
288 of cardiac signal [33]. Variability of the relative position and orientation of the heart with respect to
289 the CRE for different subjects and enhanced spatial resolution of CREs in comparison with
290 conventional disc electrodes are likely to be responsible for high standard deviation of NAP of a given
291 Laplacian estimate.

292 Comparison of NAP values for CRE signals with those for standard 12-lead shows that Laplacian
293 estimates offer better contrast for the study of the P-wave. Specifically, signals from CRE in CMV1
294 position outperformed those from all the standard leads, both on limbs and chest. Clinical recordings
295 with CRE at this position could allow more detailed observation of atrial activity and facilitate the
296 diagnosis of associated pathologies. Furthermore, such recordings would not require wires (if
297 wireless sensor node similar to the one used in this study is adopted) or additional electrodes on
298 limbs, so it should also be suitable for ambulatory monitoring, for example, using cardiac Holter
299 monitors.

300 **Author Contributions:** Software and Formal Analysis, Y.Y.L.; Methodology J.G.C. and O.M., Supervision J.G.C.,
301 Visualization, G.P.B., Y.Y.L., Writing - Original Draft, G.P.B., J.G.C. and O.M.; Writing - Review & Editing, G.P.B.,
302 J.G.C., O.M. and Y.Y.L.

303 **Funding:** This research was funded by the National Science Foundation (NSF) Division of Human Resource
304 Development (HRD) Tribal Colleges and Universities Program (TCUP), grants number 1622481 and 1914787 to
305 O.M.

306 **Acknowledgments:** The authors would like to thank Dr. Rafael Rodriguez de Sanabria for his help with the
307 human ECG data collection and Dr. Eduardo Garcia-Breijo for his help with the CRE implementation.

308 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
309 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
310 publish the results.

311 References

- 313 1. Roth, G. A. *et al.* Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990
314 to 2015. *J. Am. Coll. Cardiol.* **2017** *70*, 1–25
- 315 2. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of
316 disease and risk factors, 2001: systematic analysis of population health data. *Lancet* **2006**
317 doi:10.1016/S0140-6736(06)68770-9
- 318 3. Bhatnagar, P., Wickramasinghe, K., Wilkins, E. & Townsend, N. Trends in the epidemiology of
319 cardiovascular disease in the UK. *Heart* **2016** *102*, 1945–1952
- 320 4. AHA. CARDIOVASCULAR DISEASE: A COSTLY BURDEN FOR AMERICA PROJECTIONS
321 THROUGH 2035. *Am. Hear. Assoc.* **2017** *1–16* doi:1/17DS11775
- 322 5. Leal, J., Luengo-Fernández, R., Gray, A., Petersen, S. & Rayner, M. Economic burden of cardiovascular
323 diseases in the enlarged European Union. *Eur. Heart J.* **2006** *27*, 1610–1619
- 324 6. Malmivuo, J. The Basis of ECG Diagnosis. in *BioelectromagnetismPrinciples and Applications of Bioelectric*
325 and *Biomagnetic Fields* (Oxford University Press, 1995). 320–335
326 doi:10.1093/acprof:oso/9780195058239.003.0019
- 327 7. Wang, Y. *et al.* Noninvasive Electroanatomic Mapping of Human Ventricular Arrhythmias with
328 Electrocardiographic Imaging. *Sci. Transl. Med.* **2011** *3*, 98ra84–98ra84

329 8. He, B. & Wu, D. Laplacian electrocardiography. *Crit. Rev. Biomed. Eng.* **1999** *27*, 285–338

330 9. SippensGroenewegen, A. *et al.* Body surface mapping during pacing at multiple sites in the human
331 atrium: P-wave morphology of ectopic right atrial activation. *Circulation* **1998** *97*, 369–80

332 10. Kornreich, F., MacLeod, R. S. & Lux, R. L. Supplemented standard 12-lead electrocardiogram for optimal
333 diagnosis and reconstruction of significant body surface map patterns. *J. Electrocardiol.* **2008** *41*, 251–256

334 11. Fereniec, M., Stix, G., Kania, M., Mroczka, T. & Maniewski, R. An Analysis of the U-Wave and Its
335 Relation to the T-Wave in Body Surface Potential Maps for Healthy Subjects and MI Patients. *Ann.*
336 *Noninvasive Electrocardiol.* **2014** *19*, 145–156

337 12. Lian, J., Li, G., Cheng, J., Avitall, B. & He, B. Body surface Laplacian mapping of atrial depolarization in
338 healthy human subjects. *Med. Biol. Eng. Comput.* **2002** *40*, 650–659

339 13. Wu, D., Tsai, H. C. & He, B. On the estimation of the Laplacian electrocardiogram during ventricular
340 activation. *Ann.Biomed.Eng* **1999** *27*, 731–745

341 14. He, B. & Cohen, R. J. Body surface Laplacian mapping of cardiac electrical activity. *Am. J. Cardiol.* **1992**
342 *70*, 1617–20

343 15. He, B. & Cohen, R. J. Body surface Laplacian ECG mapping. *IEEE Trans.Biomed.Eng* **1992** *39*, 1179–1191

344 16. He, B. & Cohen, R. J. Body surface Laplacian electrocardiographic mapping—a review. *Crit
345 Rev.Biomed.Eng* **1995** *23*, 475–510

346 17. UMETANI, K. *et al.* Body Surface Laplacian Mapping in Patients with Left or Right Ventricular Bundle
347 Branch Block. *Pacing Clin. Electrophysiol.* **1998** *21*, 2043–2054

348 18. Bin He, B., Guanglin Li, G. & Jie Lian, J. A spline Laplacian ECG estimator in a realistic geometry volume
349 conductor. *IEEE Trans. Biomed. Eng.* **2002** *49*, 110–117

350 19. Besio, W. G., Koka, K., Aakula, R. & Dai, W. Tri-polar concentric ring electrode development for
351 laplacian electroencephalography. *IEEE Trans.Biomed.Eng* **2006** *53*, 926–933

352 20. Besio, W., Aakula, R., Koka, K. & Dai, W. Development of a tri-polar concentric ring electrode for
353 acquiring accurate Laplacian body surface potentials. *Ann.Biomed.Eng* **2006** *34*, 426–435

354 21. Besio, W. & Chen, T. Tripolar Laplacian electrocardiogram and moment of activation isochronal
355 mapping. *Physiol Meas.* **2007** *28*, 515–529

356 22. Lu, C. C. & Tarjan, P. P. An ultra-high common-mode rejection ratio (CMRR) AC instrumentation
357 amplifier for Laplacian electrocardiographic measurement. *Biomed. Instrum. Technol.* **1999** *33*, 76–83

358 23. Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L. & Ye-Lin, Y. Active concentric ring electrode
359 for non-invasive detection of intestinal myoelectric signals. *Med. Eng. Phys.* **2011** *33*,

360 24. Prats-Boluda, G., Ye-Lin, Y., Bueno-Barrachina, J. M., Rodriguez De Sanabria, R. & Garcia-Casado, J.
361 Towards the clinical use of concentric electrodes in ECG recordings: Influence of ring dimensions and
362 electrode position. *Meas. Sci. Technol.* **2016** doi:10.1088/0957-0233/27/2/025705

363 25. Zena-Giménez, V., Garcia-Casado, J., Ye-Lin, Y., Garcia-Breijo, E. & Prats-Boluda, G. A flexible multiring
364 concentric electrode for non-invasive identification of intestinal slow Waves. *Sensors (Switzerland)* **2018**
365 *18*,

366 26. Ye-Lin, Y. *et al.* Feasibility and Analysis of Bipolar Concentric Recording of Electroyhysterogram with
367 Flexible Active Electrode. *Ann. Biomed. Eng.* **2015** *43*,

368 27. Wang, K. *et al.* Stretchable Dry Electrodes with Concentric Ring Geometry for Enhancing Spatial
369 Resolution in Electrophysiology. *Adv. Healthc Mater.* **2017** *6*, 1700552

370 28. Lidón-Roger, J. V., Prats-Boluda, G., Ye-Lin, Y., Garcia-Casado, J. & Garcia-Breijo, E. Textile concentric
371 ring electrodes for ECG recording based on screen-printing technology. *Sensors (Switzerland)* **2018** *18*,

372 29. Makeyev, O., Ding, Q. & Besio, W. G. Improving the accuracy of Laplacian estimation with novel
373 multipolar concentric ring electrodes. *Measurement* **2016** *80*, 44–52

374 30. Makeyev, O. & Besio, W. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-
375 Ring Distances Concentric Ring Electrodes. *Sensors* **2016** *16*, 858

376 31. Makeyev, O. Solving the general inter-ring distances optimization problem for concentric ring electrodes
377 to improve Laplacian estimation. *Biomed. Eng. Online* **2018** *17*, 117

378 32. Makeyev, O., Lee, C. & Besio, W. G. Proof of concept Laplacian estimate derived for noninvasive tripolar
379 concentric ring electrode with incorporated radius of the central disc and the widths of the concentric
380 rings. in *2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society*
381 (EMBC) (IEEE, 2017). 2017, 841–844

382 33. Ye-Lin, Y., Bueno-Barrachina, J. M., Prats-boluda, G., Rodriguez de Sanabria, R. & Garcia-Casado, J.
383 Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a
384 multi-ring electrode. *Meas. J. Int. Meas. Confed.* **2017** *97*, 195–202

385 34. Prats-Boluda, G., Ye-Lin, Y., Pradas-Novella, F., Garcia-Breijo, E. & Garcia-Casado, J. Textile Concentric
386 Ring Electrodes: Influence of Position and Electrode Size on Cardiac Activity Monitoring. *J. Sensors* **2018**
387 2018, 1–9

388 35. Huiskamp, G. Difference formulas for the surface Laplacian on a triangulated surface. *J. Comput. Phys.*
389 **1991** *95*, 477–496

390 36. Hamilton, P. S. & Tompkins, W. J. Quantitative investigation of QRS detection rules using the MIT/BIH
391 arrhythmia database. *IEEE Trans. Biomed. Eng.* **1986** *33*, 1157–1165

392 37. Lu, C. C. & Tarjan, P. P. Pasteless, Active, Concentric Ring Sensors for Directly Obtained Laplacian
393 Cardiac Electrograms. *J. Med. Biol. Eng.* **2002** *22*, 199–203

394 38. Koka, K. & Besio, W. G. Improvement of spatial selectivity and decrease of mutual information of tri-
395 polar concentric ring electrodes. *J. Neurosci. Methods* **2007** *165*, 216–222

396 39. Prats-Boluda, G. et al. Development of a portable wireless system for bipolar concentric ECG recording.
397 *Meas. Sci. Technol.* **2015** *26*, 075102

398 40. Kaufer, M., Rasquinha, L. & Tarjan, P. Optimization of multi-ring sensing electrode set. **1990**

399

400

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

401

402