
Systematic Matrix Multiplication Codes
Haewon Jeong∗, Yaoqing Yang∗ and Pulkit Grover

Department of Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The problem of computing distributed matrix mul-
tiplication reliably has been of immense interest for several
decades. Recently, it was shown that Polynomial codes achieve
the theoretically minimum recovery bandwidth. However, existing
constructions for Polynomial codes are nonsystematic, which
can impose substantial overhead in distributed computing. In
this paper, we propose two different systematic code construc-
tions that achieve the same recovery bandwidth as Polynomial
codes. First uses a random coding argument, and the second is
polynomial-based, but uses bivariate instead of originally used
univariate polynomials. We show that the proposed constructions
are communication optimal with high probability.

I. INTRODUCTION

There has been a surge of interest in coded computing [1]–
[10], and especially in coded matrix multiplication [11]–
[16]. Recently, two optimal points on the trade-off between
storage and communication for coded matrix multiplication
were identified: MatDot codes [11], that are storage optimal,
and Polynomial codes, that are communication optimal [12,
Theorem 3]. Recent work also developed a systematic ver-
sion of MatDot codes [11], but a systematic counterpart for
Polynomial codes is so far unavailable. This paper provides a
systematic version of Polynomial codes.

Systematic codes can be a more practical coding solution
for fully-distributed systems that do not have a master node.
Many coded computing strategies proposed in the literature
assume a master-worker setup in which all the worker nodes
send their computation results back to the master node after
each computation. The master node then performs decoding on
the gathered result. This centralized formulation is applicable
in some cases, e.g., distributed machine learning tasks with
a parameter server. However, in many applications, having
a single master node in highly-parallel systems introduces
unnecessary communication overheads. Acknowledging this
issue, recent works (e.g. [2], [5]) have considered masterless
setups where even encoding and decoding are fully-distributed.

To understand the advantages of systematic codes in a
masterless setup, let us consider computing matrix product
C = AB and assume the splitting of matrices as follows:

A =


A1

...

Am

 , B =
[
B1 · · · Bm

]
. (1)

Note that this splitting is same as Polynomial codes [12] and
Product codes [14]. In an uncoded strategy, m2 workers will

∗ joint first authors.

Fig. 1: This diagram shows how we distribute the matrices A
and B over m2 systematic nodes. Nodes are placed on a grid
in the diagram for the sake of illustration.

compute the product:

C = AB =


A1B1 · · · A1Bm

...
. . .

...

AmB1 · · · AmBm

 , (2)

where each worker computes one sub-block of C, i.e., AiBj.
Introducing redundancy for resilience, we add p additional
nodes. When failures happen during the computation, any m2

successful nodes out of m2 + p nodes can reconstruct the
computation output C. In many settings, failures are rare.
Under our masterless setting, if we use a non-systematic
code, m2 nodes have to communicate with each other to
recover the product C even when there is no failure, which
can be extremely expensive. On the other hand, if we use
a systematic code, we do not need any communication to
recover C when all m2 systematic node – nodes that compute
AiBj’s (i, j = 1, · · · ,m) – are successful. Further, even when
there is a failure among the systematic workers, recovering a
failed node only requires communication from m2 nodes to
the failed node. This has a smaller communication complexity
than all m2 nodes communicating with each other. Lastly,
encoding systematic codes is more communication efficient
since we only have to encode p additional nodes as compared
to encoding all m2 + p nodes in non-systematic codes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

The goal is to compute the matrix product given in (2)
where A,B,C ∈ RN×N using m2 + p distributed nodes. It
is assumed that real numbers are stored and processed. The
input matrices are split into m sub-blocks of equal dimensions
(see (1)). Thus, Ai ∈ RN/m×N and Bi ∈ RN×N/m. We

3027978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

assume that each node has enough memory to store one sub-
block of each A and B, and compute their product AiBj .
Nodes can fail during the computation, and the failures-rate is
small. Encoding and decoding are assumed to be failure-free.

B. Problem Statement

Our goal is to construct a systematic Maximum Distance
Separable (MDS) code for matrix multiplication split speci-
fied in (2), where m2 nodes compute each sub-block in C
and p redundant nodes perform computation on the encoded
matrices. To satisfy the MDS property, we require that the
outputs from any m2 nodes out of the total of m2 + p nodes
must be sufficient to recover C. We assume that p < m2 as
the failure rate is small in our model.

III. MAIN RESULT

A. A General Description of Systematic Matrix Multiplication
Codes for the Specified Matrix Splitting

We first introduce some notations and set up a framework
for systematic matrix multiplication codes under the matrix
splitting speified in (1). We denote the “block-vectorized”
version of the final matrix C by:

block-vec(C) = [A1B1 · · ·A1Bm · · ·AmB1 · · ·AmBm]
T
.

(3)
Let us assume that the matrix blocks Ai’s and Bj’s are scalars
for the ease of explanation. We will first explain how we
encode input matrices A and B and then show how the product
C is encoded as a result.

Systematic encoding matrices for A and B are written as:

GA =



Im×m ⊗ 1m×1

a1,1 · · · a1,m
...

. . .
...

ap,1 · · · ap,m


, (4)

GB =



1m×1 ⊗ Im×m

b1,1 · · · b1,m
...

. . .
...

bp,1 · · · bp,m


. (5)

We will call the bottom submatrices of these matrices as
PA and PB respectively, as they are the parity-generating
parts. Assuming that A1, · · · ,Am,B1, · · · ,Bm are scalars,
our encoding can be written as:



Ã1

...
Ãm2

Ãm2+1

...
Ãm2+p


= GA


A1

...
Am

 =



A1

...
A1

...
Am

...
Am

a1,1A1 + · · ·+ a1,mAm

...
ap,1A1 + · · ·+ ap,mAm



, (6)

[
B̃1 · · · B̃m2 B̃m2+1 · · · B̃m2+p

]
=

[
B1 · · · Bm

]
GT

B

=
[
B1 · · ·Bm · · · B1 · · ·Bm b1,1B1 + · · ·+ b1,mBm · · ·

bp,1B1 + · · ·+ bp,mBm

]
. (7)

Ãi and B̃i represent encoded data the node i receives (i =
1, · · · ,m2 + p).

The final encoded product can now be written as:

C̃ = block-vec(C)GC

=



A1B1

A1B2

...

AmBm

(a1,1A1 + · · ·+ a1,mAm)(b1,1B1 + · · ·+ b1,mBm)
...

(ap,1A1 + · · ·+ ap,mAm)(bp,1B1 + · · ·+ bp,mBm)


(8)

which encodes the block-vectorized form in (3) using an
encoding matrix of the form:

GC =



Im2×m2

PA ? PB


. (9)

The ? denotes “row-wise Kronecker product”, also known as
the Khatri-Rao product [17].

Remark 1. Remember that we used a simplifying assumption
that Ai’s and Bj’s are scalars. To extend this to actual
matrices of dimension N/m × N and N × N/m, we can
treat Ai,Bj’s as elements in the vector space of RN/m×N

3028

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

and RN×N/m. Then, we can think of the matrix


A1

...
Am

 as

an m× 1 column vector with each element in RN/m×N . In a
similar fashion, the matrix

[
B1 · · · Bm

]
can be regarded

as an 1×m row vector with each element in RN×N/m. The

matrix product GA ·


A1

...
Am

 is now a matrix-vector product

where the dimension of the matrix is (m2 + p) ×m and the
length of the vector is m. Each element in the matrix is in
the field R and each element in the vector is in the vector
space RN/m×N . This can be understood as a set of scalar
multiplications on the vectors and vector additions.

While considering the submatrices as vectors is a more
intuitive way to understand our construction, we include a
“non-vectorized” explanation here. Since our multiplications
and additions are performed in a block-wise fashion, the same
number should be multiplied to all the elements in the sub-
matrix. E.g., for encoding the first parity node, a1,1 should be
multiplied with all elements in A1; a1,2 should be multiplied
with all elements in A2, and so on. Since each submatrix Ai

has N/m rows, we have to expand the encoding matrix GA

by N/m as follows:

GA = GA ⊗ IN
m×

N
m
. (10)

Now, GA is a matrix of dimension (m2 + p)Nm ×N , and (6)
can be rewritten as:

Ã1

...

Ãm2+p

 = GA


A1

...

Am

 . (11)

We can construct different codes by choosing different
coefficients in PA and PB. Our code constructions provided
in the following will use this general framework and, we will
highlight only how PA and PB are constructed.

B. Random Code Construction and Probabilistic Guarantees

Construction 1 (Random Code). Following the general
framework given in (9), all entries in PA and PB are drawn
iid from the standard Gaussian distribution N (0, 1).

Theorem 1. Construction 1 provides a systematic MDS
matrix-multiplication code with probability 1, i.e., the results
from any m2 out of the overall m2 + p nodes are sufficient to
reconstruct the final result C.

To prove the theorem, we need two lemmas.

Lemma 2 (Corollary 3, p.319 in [18]). A matrix G is an
encoding matrix of a systematic MDS code if and only if every
square submatrix of the parity generating submatrix GP is
non-singular.

Lemma 3. If the entries of PA and PB are drawn iid from
the standard Gaussian distribution, every square submatrix of

the parity generating submatrix PA ?PB is non-singular with
probability 1.

Proof. We will first show that the determinants of any r × r
submatrix (r ≤ p) are non-zero polynomials by mathematical
induction. When r = 1, this is trivial. Now, assume that every
(r − 1) × (r − 1) submatrix of PA ? PB has a non-zero
determinant. Let us denote an arbitrary r × r submatrix as:

S =


ai1,j1bi1,k1

ai1,j2bi1,k2
· · · ai1,jrbi1,kr

ai2,j1bi2,k1 ai2,j2bi2,k2 · · · ai2,jrbi2,kr

...
...

. . .
...

air,j1bir,k1 air,j2bir,k2 · · · air,jrbir,kr

 . (12)

The determinant of this matrix can be written as:

det(S) = ai1,j1bi1,k1
D1+ai1,j2bi1,k2

D2+· · ·+ai1,jrbi1,kr
Dr,
(13)

where Di is the determinant of the (r−1)×(r−1) submatrix
without the first row and the i-th column of the matrix S, and
they are non-zero polynomials due to the induction assump-
tion. Because (j1, k1), (j2, k2), · · · , (jr, kr) are all distinct, r
terms in (13) cannot cancel each other out. Hence, det(S) is
not a zero polynomial.

It is easy to see that the set of ai,j , bi,k’s in matrix S such
that det(S) = 0 is a measure-0 subset of the entire space1.
For a given r, there are

(
m2

r

)
·
(
p
r

)
possible submatrices. Let

us call the set of ai,j , bi,k’s that makes any square submatrix
of PA ? PB to have determinant 0, a “bad set”. The bad
set is a union of

∑p
r=1

(
m2

r

)
·
(
p
r

)
measure-0 subsets. Hence,

P (bad set) = 0 when ai,j , bi,k’s are chosen randomly from a
Gaussian distribution.

From Lemmas 2 and 3, Theorem 1 follows.

C. Polynomial-based Code Construction

Let us denote a Vandermonde matrix as follows:

Vandd(u1, u2, · · ·uk) =


1 u1 · · · ud−11

1 u2 · · · ud−12

...
...

. . .
...

1 uk · · · ud−1k

 .

Construction 2 (Bivariate Polynomial Code). Let

A = Vandm(α1, · · · , αm), B = Vandm(β1, · · · , βm),

AP = Vandm(αm+1, · · · , αm+p),

BP = Vandm(βm+1, · · · , βm+p), (14)

where αi’s and βi’s (i = 1, · · · ,m2 + p) drawn iid from the
standard Gaussian distribution.

Following the general framework given in (9), PA and PB

are constructed as follows:

PA = APA−1, PB = BPB−1. (15)

The following lemma explains how Construction 2 is based
on polynomials.

1Depending on which rows and columns are chosen for the submatrix S,
the entire space can be as small as Rr2 and as big as R2r2 .

3029

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

Lemma 4. If α1, · · · , αm and β1, · · · , βm are drawn iid from
the standard Gaussian distribution, with probability 1, there
exists a polynomial of degree 2m− 2, h(x, y) that satisfies

h(αi, βj) = AiBj , (16)

for i, j = 1, · · ·m.

Proof. If αi’s are all distinct, we can construct a polynomial
f(x) as follows:

f(x) =

m∑
i=1

Ai

∏
j 6=i

x− αj

αi − αj
. (17)

Similarly, if βi’s are all distinct, we can construct a polynomial
g(x) as follows:

g(x) =

m∑
i=1

Bi

∏
j 6=i

x− βj
βi − βj

. (18)

Then, if we let h(x, y) = f(x)g(y), (16) is satisfied. For iid
samples from Gaussian distribution, Pr(αi = αj) = 0 for
i 6= j. Hence, the polynomial h exists with probability 1.

Since the degree of the polynomials f and g we constructed
in (17) and (18) is m− 1, let us write them as follows:

f(x) = f0 + f1x+ · · ·+ fm−1x
m−1, (19)

g(x) = g0 + g1x+ · · ·+ gm−1x
m−1. (20)

Because f(αi) = Ai for i = 1, 2, . . . ,m, we have:
f0
...

fm−1

 = A−1


A1

...

Am

 . (21)

For the parity nodes, we encode A and B using polynomial
evaluations f(αi) and g(βi), i = m + 1, . . . ,m + p, and let
each parity node compute:

h(αi, βi) = f(αi)g(βi). (22)

Using this, our encoding matrix can be written as:

GA =

 Im×m ⊗ 1m×1

APA−1

 . (23)

The bottom submatrix PA = APA−1 is the result of polyno-
mial encoding at the parity nodes given in (22). PB can be
obtained similarly.

Theorem 5. Construction 2 provides a systematic MDS
matrix-multiplication code with probability 1, i.e., the results
from any m2 out of the overall m2 + p nodes are sufficient to
reconstruct the final result C.

Proof. First, notice that if we can reconstruct the coefficients
fi’s and gj’s in polynomial h(x, y), we can recover C by
evaluating h(x, y) at x = αi, y = βj for i, j = 1, · · · ,m.
Hence, we will prove that we can reconstruct the polynomial

h(x, y) from any m2 nodes with probability 1, i.e., any m2×
m2 submatrix of the following matrix is invertible:

H =

[
A⊗ B
AP ? BP

]
(m2+p)×m2

. (24)

Denote an arbitrary m2 × m2 square submatrix of H by
S. We will show that det(S) is a non-zero polynomial of
the standard Gaussian random variables αi’s and βj’s, and
hence Pr(det(S) = 0) = 0. We will use 0 to denote a zero
polynomial.

Let us rewrite S as:

S =

[
Ssys

Spar

]
,

where Ssys and Spar are from rows of A⊗ B and AP ? BP ,
respectively. Let us denote the number of rows in Ssys and
Spar as σ and ρ.

Case 1: σ = m2 and ρ = 0. In other words, S = A ⊗ B.
Then, from the property of Kronecker product,

det(S) = det(A)m det(B)m

=
∏
i 6=j

(αi − αj)
m
∏
i6=j

(βi − βj)m,

which is a non-zero polynomial.
Case 2: 1 ≤ ρ ≤ p. We will use induction on ρ.
i) ρ = 1.
In this case, Spar is a row vector of the following form:

Spar =
[
Vandm(αk)⊗ Vandm(βk)

]
,

where k > m. Using this row vector, the determinant can be
expanded as follows:

det(S) = det(S1)−βk det(S2)+ · · ·−αm−1
k βm−1

k det(Sm2),
(25)

where Si’s are submatrices of S excluding the i-th column
and the m2-th row. The signs in (25) assume that m is even,
but the proof holds the same for an odd m. Notice that
det(S1), · · · ,det(Sm2) are polynomials only in αi’s and βj’s
for i, j = 1, · · ·m, and they do not have any αk or βk terms
for k > m. Hence, det(S) = 0 only when

det(S1) = · · · = det(Sm2) = 0. (26)

i.e., when all these are zero polynomials.
Let us denote I = {(i, j)|i, j = 1, · · · ,m} and I(S) ⊆ I

as a set of indices of αi, βj that are included in Ssys. In this
case, we have only one element in I \ I(S) and let us denote
the element as (̃i, j̃). Now, let us define another matrix S′ by
replacing Spar with[

Vandm(αĩ)⊗ Vandm(βj̃)
]
.

Notice that the matrix S′ now consists of m2 rows of the
systematic part. Therefore, from Case 1, we get:

det(S′) = det(S1)− βj̃ det(S2) + · · · − αm−1
ĩ

βm−1
j̃

det(Sm2)

=
∏
i 6=j

(αi − αj)
m
∏
i6=j

(βi − βj)m 6= 0.

This contradicts (26). Thus, det(S) 6= 0.

3030

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

ii) Let as assume that det(S) 6= 0 for any ρ ≤ k. Then,
showing that this holds for ρ = k + 1 is similar to what we
did for ρ = 1.

det(S) = det(S1)−βk+1 det(S2)+· · ·−αm−1
k+1 β

m−1
k+1 det(Sm2).

(27)
Now, let us assume that det(S) = 0. This implies that (26)
holds. Let us choose (̃i, j̃) ∈ I \ I(S) and construct S′ by
replacing the last row with[

Vandm(αĩ)⊗ Vandm(βj̃)
]
.

Then S′ has k rows from AP ? BP and m2 − k rows from
A⊗ B. Thus, by inductive assumption,

det(S′) = det(S1)− βj̃ det(S2) + · · · − αm−1
ĩ

βm−1
j̃

det(Sm2)

6= 0.

This contradicts (26). Thus det(S) 6= 0.

D. Why univariate polynomials do not yield systematic MDS
codes

Finally, we want to make a remark on why univariate
polynomial structure of Polynomial codes [12] does not easily
yield a systematic code construction. We follow the univariate
polynomial construction in [12] and assume that the matrices
A and B are encoded using the polynomials pA(x) and pB(x):

pA(x) =

DA∑
d=1

fd(A1, . . . ,Am)xd, (28)

and

pB(x) =

DB∑
d=1

gd(B1, . . . ,Bm)xd, (29)

for some (possibly linear) functions fd(·)’s and gd(·)’s.
Let us assume that we use polynomial pA(x) and pB(x)

and the first m2 workers compute AiBj’s (i, j = 1, · · · ,m).
This implies the following:

pA(αn)pB(αn) = AiBj , (30)

for n = m · (i − 1) + j. Then, ignoring constant factors, the
following should be satisfied:

pA(αn) = Ai, pB(αn) = Bj . (31)

This imposes m2 evaluation points on both pA and pB. Hence,
the degree of the polynomials pA and pB should be at least
m2−1. Their product, pC(x) = pA(x)·pB(x), thus has degree
at least 2m2− 2. This makes the recovery threshold 2m2− 1,
instead of m2.
E. Encoding and Decoding Complexity Analysis

For encoding, we have to generate p different linear combi-
nations of Ai’s and Bj’s which has computational complexity
of O(pN2). For decoding, unlike Polynomial codes that can
be decoded using fast polynomial interpolation algorithms,
we need to invert the encoding matrix in a brute-force way.
The computational complexity of inverting an m2 × m2

matrix is O(m6). For recovering one failed node, it will take
O(m2 ·N2/m2) = O(N2). In the worst case scenario where

p out of the m2 systematic nodes fail, the total decoding
complexity will be O(m6 + pN2) complexity.

IV. DISCUSSION AND FUTURE WORK

Algorithm-Based Fault Tolerance (ABFT) codes [19] follow
the same matrix splitting as in (1), and they are systematic.
However, ABFT codes are suboptimal for this split in recovery
threshold sense (and hence require more redundant nodes for
same fault-tolerance): ABFT codes have a recovery threshold
of 2(m − 1)(m +

√
p), p is perfect square to make

√
p an

integer. For any m > 1, this is always greater than Polynomial
codes recovery threshold, m2.

Generalized PolyDot codes [2] interpolate between MatDot
and Polynomial codes to gracefully tradeoff between storage
and communication. Finding systematic versions of General-
ized PolyDot codes remains an open question.

REFERENCES

[1] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse
problems,” in Advances in Neural Information Processing Systems, 2017,
pp. 709–719.

[2] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized polydot
codes,” in 2018 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2018, pp. 1585–1589.

[3] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016.

[4] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” arXiv preprint arXiv:1802.03475, 2018.

[5] H. Jeong, T. Low, and P. Grover, “Masterless coded computing: A
fully-distributed coded fft algorithm,” Communication, Control, and
Computing (Allerton), 2018.

[6] Y. Yang, P. Grover, and S. Kar, “Coding for a single sparse inverse
problem,” in 2018 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2018, pp. 1575–1579.

[7] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint arXiv:1806.00939, 2018.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,” in
Communication, Control, and Computing (Allerton), 2015 53rd Annual
Allerton Conference on. IEEE, 2015, pp. 964–971.

[9] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 1, pp. 141–150, 2019.

[10] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
2018 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2018, pp. 1620–1624.

[11] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” arXiv preprint arXiv:1801.10292, 2018.

[12] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” arXiv
preprint arXiv:1705.10464, 2017.

[13] ——, “Straggler mitigation in distributed matrix multiplication: Fun-
damental limits and optimal coding,” arXiv preprint arXiv:1801.07487,
2018.

[14] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, 2017.

[15] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Information Theory (ISIT), 2017 IEEE International
Symposium on. IEEE, 2017, pp. 2418–2422.

[16] T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: A coding
scheme for distributed computation of approximated matrix multipli-
cations,” arXiv preprint arXiv:1812.10460, 2018.

[17] S. Liu and G. Trenkler, “Hadamard, khatri-rao, kronecker and other
matrix products,” Int. J. Inf. Syst. Sci, vol. 4, no. 1, pp. 160–177, 2008.

[18] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977.

[19] K. H. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” IEEE Transactions on Computers, vol. 100, no. 6,
pp. 518–528, 1984.

3031

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 03,2020 at 08:11:06 UTC from IEEE Xplore. Restrictions apply.

