

# Simultaneous Diophantine approximation: sums of squares and homogeneous polynomials

Dmitry Kleinbock  
Brandeis University  
Waltham MA, USA 02454-9110  
E-mail: kleinboc@brandeis.edu

Nikolay Moshchevitin  
Moscow State University  
Lenlnskie Gory 1, Moscow, Russia, 1119991  
and Astrakhan State University  
Tatishcheva 20a  
Astrakhan, Russia, 414056  
E-mail: moshchevitin@gmail.com

## Abstract

Let  $f$  be a homogeneous polynomial with rational coefficients in  $d$  variables. We prove several results concerning uniform simultaneous approximation to points on the graph of  $f$ , as well as on the hyper-surface  $\{f(x_1, \dots, x_d) = 1\}$ . The results are first stated for the case  $f(x_1, \dots, x_d) = x_1^2 + \dots + x_d^2$ , which is of particular interest.

## 1 Diophantine exponents

Let  $\Theta = (\theta_1, \dots, \theta_m)$  be a collection of real numbers. The *ordinary Diophantine exponent*  $\omega = \omega(\Theta)$  for simultaneous rational approximation to  $\Theta$  is defined as the supremum over all real  $\gamma$  such that the inequality

$$\max_{1 \leq j \leq m} |q\theta_j - a_j| < q^{-\gamma}$$

---

2010 *Mathematics Subject Classification*: Primary 11J13; Secondary 11J54.

*Key words and phrases*: simultaneous approximation, Diophantine exponents, intrinsic approximation, simplex lemma.

has infinitely many solutions in integer points  $(q, a_1, \dots, a_m) \in \mathbb{Z}^{m+1}$  with  $q > 0$ .

The *uniform Diophantine exponent*  $\hat{\omega} = \hat{\omega}(\Theta)$  for simultaneous approximation to  $\Theta$  is defined as the supremum over all real  $\gamma$  such that the system of inequalities

$$\max_{1 \leq j \leq m} |q\theta_j - a_j| < Q^{-\gamma}, \quad 1 \leq q \leq Q$$

has a solution  $(q, a_1, \dots, a_m) \in \mathbb{Z}^{m+1}$  for every large enough real  $Q$ . It immediately follows from Minkowski's convex body theorem that  $\hat{\omega}(\Theta) \geq \frac{1}{m}$  for any  $\Theta \in \mathbb{R}^m$ . Furthermore, let us say that  $\Theta$  is *totally irrational* if  $1, \theta_1, \dots, \theta_m$  are linearly independent over  $\mathbb{Z}$ . For such  $\Theta$  it was first observed by Jarník [J38, Satz 9] that

$$\hat{\omega}(\Theta) \leq 1.$$

(See also [M10, Theorem 17], as well as [W04, Theorem 5.2] for a proof based on homogeneous dynamics.) In particular for  $m = 1$  one has

$$(1.1) \quad \hat{\omega}(\theta) = 1 \quad \text{for all } \theta \in \mathbb{R} \setminus \mathbb{Q}.$$

On the other hand, for  $m \geq 2$  it is known that for arbitrary  $\lambda$  from the interval  $[\frac{1}{m}, 1]$  there exists  $\Theta \in \mathbb{R}^m$  with  $\hat{\omega}(\Theta) = \lambda$ .

Moreover it is clear from the definition that

$$\omega(\Theta) \geq \hat{\omega}(\Theta)$$

for any  $\Theta \in \mathbb{R}^m$ . Here we should mention that in [J54] Jarník gave an improvement of this bound for the collection of  $\Theta$  such that there are at least two numbers  $\theta_i, \theta_j$  linearly independent over  $\mathbb{Z}$  together with 1. In this case he proved the inequality

$$\frac{\omega}{\hat{\omega}} \geq \frac{\hat{\omega}}{1 - \hat{\omega}}.$$

This inequality is optimal for  $m = 2$ . For arbitrary  $m$  the optimal inequality was obtained recently by Marnat and Moshchevitin [MM18].

**Theorem A.** [MM18, Theorem 1] Let  $\Theta \in \mathbb{R}^m$  be totally irrational, and let  $\omega = \omega(\Theta)$  and  $\hat{\omega} = \hat{\omega}(\Theta)$ . Denote by  $G_m$  the unique positive root of the equation

$$(1.2) \quad x^{m-1} = \frac{\hat{\omega}}{1 - \hat{\omega}}(x^{m-2} + x^{m-3} + \dots + x + 1).$$

Then one has

$$\frac{\omega}{\hat{\omega}} \geq G_m.$$

In the present paper we study the bounds for the uniform exponent  $\hat{\omega}$  for special collections of numbers. Theorem A will be an important ingredient of our proofs.

## 2 Approximation to several real numbers and sums of their squares

In [DS69] Davenport and Schmidt proved the following theorem:

**Theorem B.** [DS69, Theorem 1a] Suppose that  $\xi \in \mathbb{R}$  is neither a rational number nor a quadratic irrationality. Then the uniform Diophantine exponent  $\hat{\omega} = \hat{\omega}(\Xi)$  of the vector  $\Xi = (\xi, \xi^2) \in \mathbb{R}^2$  satisfies the inequality

$$\hat{\omega} \leq \frac{\sqrt{5} - 1}{2}.$$

Here we should note that  $\frac{\sqrt{5} - 1}{2}$  is the unique positive root of the equation

$$x^2 + x = 1.$$

It is known due to Roy [R03] that the bound of Theorem B is optimal. Davenport and Schmidt proved a more general result [DS69, Theorem 2a] involving successive powers  $\xi, \xi^2, \dots, \xi^m$ . However in the present paper we deal with another generalization.

In the sequel we will consider  $m = d$  or  $m = d + 1$  numbers. Namely, take

$$\boldsymbol{\xi} = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$$

and introduce the vector

$$(2.1) \quad \Xi = (\xi_1, \dots, \xi_d, \xi_1^2 + \dots + \xi_d^2) \in \mathbb{R}^{d+1}.$$

Also let  $H_d$  be the unique positive root of the equation

$$(2.2) \quad x^{d+1} + x^d + \dots + x = 1.$$

Note that  $\frac{1}{2} < H_d < 1$ , and  $H_d \rightarrow \frac{1}{2}$  monotonically when  $d \rightarrow \infty$ .

In the present paper we prove the following two theorems dealing with sums of squares.

**Theorem 2.1.** *Let  $d \geq 1$  be an integer. Suppose that  $\Xi$  as in (2.1) is totally irrational. Then the uniform Diophantine exponent of  $\Xi$  satisfies the inequality*

$$\hat{\omega}(\Xi) \leq H_d.$$

Note that in the case  $d = 1$  Theorem 2.1 coincides with Theorem B. The next theorem can be proved by a similar argument.

**Theorem 2.2.** *Let  $d \geq 2$ . Suppose that  $\xi = (\xi_1, \dots, \xi_d)$  is totally irrational and*

$$(2.3) \quad \xi_1^2 + \dots + \xi_d^2 = 1.$$

*Then the uniform Diophantine exponent of  $\xi$  satisfies the inequality*

$$\hat{\omega}(\xi) \leq H_{d-1}.$$

Theorems 2.1 and 2.2 are particular cases of more general Theorems 1a and 2a, which we formulate in Section 4.

**Remark 2.3.** It is worth comparing Theorems 2.1 and 2.2, as well as their more general versions, with a lower bound obtained using the methods of [KW05, §5]. It is not hard to derive from [KW05, Corollary 5.2] that for any real analytic submanifold  $M$  of  $\mathbb{R}^m$  of dimension at least 2 which is not contained in any proper rational affine hyperplane of  $\mathbb{R}^m$  there exists totally irrational  $\Theta \in M$  with

$$\hat{\omega}(\Theta) \geq \frac{1}{m} + \frac{2}{m(m^2 - 1)}.$$

It would be interesting to see if the above estimate could be improved, thus shedding some light on the optimality of our theorems.

### 3 Intrinsic approximation on spheres

Our study of vectors of the form (2.1) was motivated by problems related to intrinsic rational approximation on spheres. In [KM15] Kleinbock and Merrill proved the following result.

**Theorem C.** [KM15, Theorem 4.1] Let  $d \geq 2$ . There exists a positive constant  $C_d$  such that for any  $\xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$  satisfying (2.3) and for any  $T > 1$  there exists a rational vector

$$(3.1) \quad \alpha = \left( \frac{a_1}{q}, \dots, \frac{a_d}{q} \right) \in \mathbb{Q}^d$$

such that

$$|\alpha|^2 = \left( \frac{a_1}{q} \right)^2 + \dots + \left( \frac{a_d}{q} \right)^2 = 1$$

and

$$(3.2) \quad |\xi - \alpha| \leq \frac{C_d}{q^{1/2} T^{1/2}}, \quad 1 \leq q \leq T.$$

Here and hereafter by  $|\cdot|$  we denote the Euclidean norm of a vector. In particular Theorem C implies that in the case  $\xi \notin \mathbb{Q}^d$  the inequality

$$|\xi - \alpha| \leq \frac{C_d}{q}$$

has infinitely many solutions in rational vectors (3.1).

See [M16, M17] for effective versions of Theorem C, and [FKMS14, Theorem 5.1] for generalizations. Note that the formulation from [M16] involves sums of squares, while an effective version for an arbitrary positive definite quadratic form with integer coefficients can be found in [M17]. It is also explained in [FKMS14] how the conclusion of Theorem C can be derived from [SV95, Theorem 1] via a correspondence between intrinsic Diophantine approximation on quadric hypersurfaces and approximation of points in the boundary of the hyperbolic space by parabolic fixed points of Kleinian groups; see [FKMS14, Proposition 3.16].

In this paper we prove a result about uniform intrinsic approximation on the unit sphere. We need some notation. First of all, note that the inequality (3.2) can be rewritten as

$$\frac{|q\xi - \mathbf{a}|^2}{q} \leq \frac{C_d^2}{T}, \quad \mathbf{a} = (a_1, \dots, a_d) \in \mathbb{Z}^d, \quad a_1^2 + \dots + a_d^2 = q^2.$$

Now let us define the function

$$\Psi_\xi(T) = \min_{(q, a_1, \dots, a_d) \in \mathbb{Z}^{d+1}: 1 \leq q \leq T, a_1^2 + \dots + a_d^2 = q^2} \frac{|q\xi - \mathbf{a}|^2}{q}.$$

Theorem C states that for any  $\xi \in \mathbb{R}^d \setminus \mathbb{Q}^d$  under the condition (2.3) one has

$$T \cdot \Psi_\xi(T) \leq C_d^2 \quad \text{for } T > 1.$$

**Theorem 3.1.** *Let  $d \geq 2$ . Let  $\xi \in \mathbb{R}^d \setminus \mathbb{Q}^d$  be such that (2.3) is satisfied. Then for any  $\varepsilon > 0$  there exists arbitrary large  $T$  such that*

$$T \cdot \Psi_\xi(T) \geq \frac{1}{4} - \varepsilon.$$

Theorem 3.1 is an analog of Khintchine's lemma on rational approximations to one real number (see [K26, Satz 1]). It admits the following corollary. One can try to define the *uniform Diophantine exponent* of  $\xi$  for the intrinsic approximation on the unit sphere as

$$\hat{\omega}_d^i(\xi) = \sup \left\{ \gamma \in \mathbb{R} \left| \begin{array}{l} \text{the inequalities } |\xi - \alpha| \leq \frac{1}{q^{1/2} T^{\gamma/2}}, \quad 1 \leq q \leq T \\ \text{are solvable in } \alpha \text{ of the form (3.1) for large enough } T \end{array} \right. \right\}.$$

Then for all vectors  $\xi \notin \mathbb{Q}^d$  satisfying (2.3) we have

$$\hat{\omega}_d^i(\xi) = 1$$

by Theorem 3.1. So here we have an equality similar to (1.1) for the case of approximation to one real number. See also [BGSV16, Theorem 2], where a similar observation was made in the context of Kleinian groups. Theorem 3.1 follows from a more general Theorem 3a which we formulate in Section 4.

## 4 Results on homogeneous polynomials

Given integers  $s \geq 2$  and  $d \geq 1$ , define  $H_{d,s}$  to be the unique positive root of the equation

$$(4.1) \quad (1-x) = x \cdot \sum_{k=1}^d \left( \frac{x}{s-1} \right)^k.$$

Note that for any  $s$  and  $d$  one has

$$\frac{s-1}{s} < H_{d,s} < 1.$$

Clearly  $H_{d,2} = H_d$ , and  $H_{d,s}$  monotonically decreases to  $\frac{s-1}{s}$  as  $d \rightarrow +\infty$ .

The results of this section deal with a homogeneous polynomial

$$(4.2) \quad f(\mathbf{x}) = \sum_{(s_1, \dots, s_d) \in \mathbb{Z}_+^d : s_1 + \dots + s_d = s} f_{s_1, \dots, s_d} x_1^{s_1} \cdots x_d^{s_d}, \quad \text{where } f_{s_1, \dots, s_d} \in \mathbb{Q},$$

of degree  $s$  in variables  $x_1, \dots, x_d$  (here  $\mathbb{Z}_+$  stands for the set of non-negative integers). Theorem 2.1 from the previous section is a corollary of the following general statement.

**Theorem 1a.** Let  $s \geq 2$  be an integer, and let  $f$  as in (4.2) be such that

$$(4.3) \quad \#\{\mathbf{x} \in \mathbb{Q}^d : f(\mathbf{x}) = 0\} < \infty.$$

Suppose that

$$(4.4) \quad \Xi_f = (\xi_1, \dots, \xi_d, f(\xi_1, \dots, \xi_d))$$

is totally irrational. Then  $\hat{\omega}(\Xi_f) \leq H_{d,s}$ .

We give a proof of Theorem 1a in Section 8.

**Remark 4.1.** Let us consider the case  $d = 1$ . In this case Theorem 1a states that the uniform exponent  $\hat{\omega}$  of  $(\xi, \xi^s)$  is bounded from above by the positive root of the equation

$$x^2 + (s-1)x - (s-1) = 0,$$

that is

$$(4.5) \quad \hat{\omega} \leq \frac{\sqrt{(s-1)(s+3)} - (s-1)}{2}.$$

This result was obtained by Batzaya in [B15] for arbitrary vectors of the form  $(\xi^l, \xi^s)$  with  $1 \leq l < s$ . In the case  $d = 1, s = 3$  much stronger inequality

$$\hat{\omega} \leq \frac{2(9 + \sqrt{11})}{35}$$

is known due to Lozier and Roy (see [LR12] and the discussion therein). In [B17] Batzaya improved (4.5) and showed that for  $(\xi^l, \xi^s)$  with  $1 \leq l < s$  one has

$$\hat{\omega} \leq \frac{s^2 - 1}{s^2 - s - 1}$$

for odd  $s$ . In the case of even  $s$  in the paper [B15] he had a better inequality

$$\hat{\omega} \leq \frac{(s-1)(s+2)}{s^2 + 2s - 1}.$$

Also [B17] contains a better bound for  $\hat{\omega}$  when  $s = 5, 7, 9$ . Thus the inequality of our Theorem 1a is not optimal for  $s \geq 3$ .

Theorem 2.2 from the previous section is a corollary of the following general statement.

**Theorem 2a.** Let  $s \geq 2$  be an integer, and let  $f$  as in (4.2) be such that (4.3) holds. Then

$$(4.6) \quad \xi \in \mathbb{R}^d \text{ is totally irrational and } f(\xi) = 1 \implies \hat{\omega}(\xi) \leq H_{d-1,s}.$$

We give a proof of Theorem 2a in Section 7. To get Theorems 2.1, 2.2 from Theorems 1a, 2a one should put  $s = 2$  and  $f(\mathbf{x}) = x_1^2 + \cdots + x_d^2$ .

**Remark 4.2.** The argument used in the proof of Theorem 2a yields (4.6) for any (not necessarily homogeneous) polynomial  $f$  with rational coefficients such that the number of rational points on the hypersurface  $\{f = 1\}$  is finite. We state it as Theorem 2b in Section 7. For example (cf. (4.5) with  $d = 1$  and  $s = 6$ ) it follows that

$$\hat{\omega}(x, y) \leq \frac{\sqrt{45} - 5}{2}$$

for any  $(x, y) \in \mathbb{R}^2$  such that  $y^2 - x^2 - x^6 = 1$ .

Now for  $\xi \in \mathbb{R}^d$  under the condition  $f(\xi) = 1$  consider the function

$$\Psi_{f,\xi}(T) = \min_{(q,\mathbf{a})=(q,a_1,\dots,a_d) \in \mathbb{Z}^{d+1}: 1 \leq q \leq T, f\left(\frac{a_1}{q}, \dots, \frac{a_d}{q}\right)=1} \frac{|q\xi - \mathbf{a}|^s}{q}.$$

It is clear that  $\Psi_{f,\xi}(T)$  is a non-increasing piecewise constant function. Here we do not suppose that it tends to zero as  $T \rightarrow +\infty$ .

**Theorem 3a.** Let  $s \geq 2$  be an integer, and let  $f$  as in (4.2) be such that (4.3) holds. Take  $\xi \notin \mathbb{Q}^d$  with

$$f(\xi) = 1,$$

and let  $D = D(f) \in \mathbb{Z}_+$  be the common denominator of all rational numbers  $f_{s_1, \dots, s_d}$ . Also define

$$(4.7) \quad K = K(f) = \sup_{\mathbf{x} \in \mathbb{R}^d: |\mathbf{x}|=1} |f(\mathbf{x})|.$$

Then for any positive  $\varepsilon$  there exists arbitrary large  $T$  such that

$$T^{s-1} \cdot \Psi_{f,\xi}(T) \geq \frac{1}{2^s D K} - \varepsilon.$$

For  $f(\mathbf{x}) = x_1^2 + \dots + x_d^2$  we have  $s = 2$  and  $D(f) = K(f) = 1$ . Thus Theorem 3.1 is a direct corollary of Theorem 3a. We give a proof of Theorem 3a in Section 9.

## 5 The main lemma

The next lemma is a polynomial analogue of the classical simplex lemma in simultaneous Diophantine approximation going back to Davenport [D64]. See also [KS18] for a version for arbitrary quadratic forms, [BGSV16, Lemma 1] for a similar statement in the context of Kleinian groups, and [FKMS18, Lemma 4.1] for a general simplex lemma for intrinsic Diophantine approximation on manifolds.

**Lemma 5.1.** *Let  $s \geq 2$  be an integer, and let  $f$  be as in (4.2). Let  $D = D(f)$  and  $K = K(f)$  be defined as in Theorem 3a, and take two rational vectors*

$$\boldsymbol{\alpha} = \left( \frac{a_1}{q}, \dots, \frac{a_d}{q} \right) \text{ and } \boldsymbol{\beta} = \left( \frac{b_1}{r}, \dots, \frac{b_d}{r} \right)$$

such that

$$(5.1) \quad f(\boldsymbol{\alpha} - \boldsymbol{\beta}) \neq 0.$$

(i) Suppose that

$$f(\boldsymbol{\alpha}) = \frac{A}{q}$$

with an integer  $A$ . Then

$$(5.2) \quad |\boldsymbol{\alpha} - \boldsymbol{\beta}|^s \geq \frac{1}{DKq^{s-1}r^s}.$$

(ii) Suppose

$$f(\boldsymbol{\alpha}) = \frac{A}{q}, \quad f(\boldsymbol{\beta}) = \frac{B}{r}$$

with integers  $A, B$ . Then

$$(5.3) \quad |\boldsymbol{\alpha} - \boldsymbol{\beta}|^s \geq \frac{1}{DKq^{s-1}r^{s-1}}.$$

*Proof.* (i) First of all we observe that

$$(5.4) \quad |f(\boldsymbol{\alpha} - \boldsymbol{\beta})| \geq \frac{1}{Dq^{s-1}r^s}.$$

Indeed, for any  $s_1, \dots, s_d \in \mathbb{Z}_+$  under the condition  $s_1 + \dots + s_d = s$  consider the product

$$\Pi_{s_1, \dots, s_d} = \prod_{k=1}^d \left( \frac{a_k}{q} - \frac{b_k}{r} \right)^{s_k}.$$

It is clear that

$$\Pi_{s_1, \dots, s_d} = \frac{\prod_{k=1}^d a_k^{s_k}}{q^s} + \frac{W_{s_1, \dots, s_d}}{q^{s-1}r^s}$$

with an integer  $W_{s_1, \dots, s_d}$ . Now from (5.1) we see that

$$\begin{aligned} 0 \neq f(\boldsymbol{\alpha} - \boldsymbol{\beta}) &= \sum_{(s_1, \dots, s_d) \in \mathbb{Z}_+^d: s_1 + \dots + s_d = s} f_{s_1, \dots, s_d} \Pi_{s_1, \dots, s_d} \\ &= f(\boldsymbol{\alpha}) + \frac{W}{Dq^{s-1}r^s} = \frac{A}{q} + \frac{W}{Dq^{s-1}r^s} = \frac{W_1}{Dq^{s-1}r^s}, \end{aligned}$$

with  $W, W_1 \in \mathbb{Z}$ , and (5.4) is proved. Then from the definition (4.7) we see that

$$(5.5) \quad |f(\boldsymbol{\alpha} - \boldsymbol{\beta})| \leq K|\boldsymbol{\alpha} - \boldsymbol{\beta}|^s.$$

Now (5.4) and (5.5) give (5.2).

(ii) The proof here is quite similar. From the conditions on  $f(\boldsymbol{\alpha})$  and  $f(\boldsymbol{\beta})$  we see that

$$0 \neq f(\boldsymbol{\alpha} - \boldsymbol{\beta}) = f(\boldsymbol{\alpha}) \pm f(\boldsymbol{\beta}) + \frac{W'}{Dq^{s-1}r^{s-1}} = \frac{A}{q} \pm \frac{B}{r} + \frac{W'}{Dq^{s-1}r^{s-1}} = \frac{W'_1}{Dq^{s-1}r^{s-1}},$$

with  $W', W'_1 \in \mathbb{Z}$ . So we get

$$(5.6) \quad |f(\boldsymbol{\alpha} - \boldsymbol{\beta})| \geq \frac{1}{Dq^{s-1}r^{s-1}}.$$

Now (5.6) together with (5.5) give (5.3).  $\square$

## 6 Best approximation vectors

If  $\Theta = (\theta_1, \dots, \theta_m) \in \mathbb{R}^m \setminus \mathbb{Q}^m$ , let us say that a vector  $(q, a_1, \dots, a_m) \in \mathbb{Z}^{m+1}$  is a *best simultaneous approximation vector* of  $\Theta$  if

$$\text{dist}(q\Theta, \mathbb{Z}^m) < \text{dist}(k\Theta, \mathbb{Z}^m) \quad \forall k = 1, \dots, q-1,$$

and

$$\text{dist}(q\Theta, \mathbb{Z}^m) = \max_{i=1, \dots, m} |q\theta_i - a_i|.$$

Here ‘dist’ stands for the distance induced by the supremum norm on  $\mathbb{R}^m$ . Best approximation vectors of  $\Theta$  form an infinite sequence  $(q_\nu, a_{1,\nu}, \dots, a_{m,\nu})$ ,  $\nu \in \mathbb{N}$ , and satisfy the inequalities

$$q_{\nu-1} < q_\nu, \quad \zeta_{\nu-1} > \zeta_\nu, \quad \nu \in \mathbb{N},$$

where one defines

$$\zeta_\nu = \max_{i=1, \dots, m} |q_\nu \theta_i - a_{i,\nu}|.$$

It is important that

$$\text{g.c.d.}(q_\nu, a_{1,\nu}, \dots, a_{m,\nu}) = 1, \quad \nu \in \mathbb{N}.$$

So for any two successive rational approximation vectors

$$\boldsymbol{\alpha}_j = \left( \frac{a_{1,j}}{q_j}, \dots, \frac{a_{m,j}}{q_j} \right) \in \mathbb{Q}^m, \quad j = \nu - 1, \nu$$

we have

$$\boldsymbol{\alpha}_{\nu-1} \neq \boldsymbol{\alpha}_\nu.$$

Some detailed information about best approximation vectors may be found for example in papers [C13] and [M10]. In particular, the following property of the uniform exponent  $\hat{\omega} = \hat{\omega}(\Theta)$  is well known (see e.g. [M10, Proposition 1]). Suppose that  $\gamma < \hat{\omega}$ . Then for all  $\nu$  large enough one has

$$(6.1) \quad \zeta_{\nu-1} \leq q_\nu^{-\gamma}.$$

## 7 Proof of Theorem 2a

We take  $m = d$  and consider best approximation vectors

$$\mathbf{z}_\nu = (q_\nu, a_{1,\nu}, \dots, a_{d,\nu}) \in \mathbb{Z}^{d+1}$$

of  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$ , together with distances

$$\zeta_\nu = \max_{1 \leq j \leq d} |q_\nu \xi_j - a_{j,\nu}|,$$

and the corresponding rational approximants

$$\boldsymbol{\alpha}_\nu = \left( \frac{a_{1,\nu}}{q_\nu}, \dots, \frac{a_{d,\nu}}{q_\nu} \right) \in \mathbb{Q}^d.$$

Under the condition  $\gamma < \hat{\omega}(\boldsymbol{\xi})$  we have (6.1) for all large  $\nu$ .

Here we should note that

$$\max_{1 \leq j \leq d} \left| \xi_j - \frac{a_{j,\nu}}{q_\nu} \right| = \frac{\zeta_\nu}{q_\nu}.$$

So for large  $\nu$  we see that

$$(7.1) \quad \left( \frac{a_{1,\nu}}{q_\nu} \right)^{s_1} \cdots \left( \frac{a_{d,\nu-1}}{q_\nu} \right)^{s_d} = \xi_1^{s_1} \cdots \xi_d^{s_d} + O \left( \frac{\zeta_\nu}{q_\nu} \right).$$

We consider two cases.

**Case 1.**  $f(\boldsymbol{\alpha}_\nu) = 1$  for infinitely many  $\nu$ .

Here, since  $\boldsymbol{\alpha}_\nu \neq \boldsymbol{\alpha}_{\nu-1}$ , we may apply Lemma 2.1(i) with  $A = q_\nu$ . Take  $\boldsymbol{\alpha} = \boldsymbol{\alpha}_\nu$ ,  $\boldsymbol{\beta} = \boldsymbol{\alpha}_{\nu-1}$ ; then (5.1) follows from (4.3) when  $\nu$  is large enough, and from (5.2) we deduce that

$$(7.2) \quad \begin{aligned} \frac{1}{(DK)^{\frac{1}{s}} q_\nu^{\frac{s-1}{s}} q_{\nu-1}} &\leq \sqrt{d} \max_{1 \leq k \leq d} \left| \frac{a_{k,\nu}}{q_\nu} - \frac{a_{k,\nu-1}}{q_{\nu-1}} \right| \\ &\leq \sqrt{d} \left( \max_{1 \leq k \leq d} \left| \frac{a_{k,\nu}}{q_\nu} - \xi_k \right| + \max_{1 \leq k \leq d} \left| \frac{a_{k,\nu-1}}{q_{\nu-1}} - \xi_k \right| \right) \\ &\leq \frac{2\sqrt{d}\zeta_{\nu-1}}{q_{\nu-1}} \leq \frac{2\sqrt{d}}{q_{\nu-1}q_\nu^\gamma}. \end{aligned}$$

So with some positive  $c_1$  we have  $q_\nu^\gamma \leq c_1 q_\nu^{\frac{s-1}{s}}$  for infinitely many  $\nu$  and  $\hat{\omega}(\boldsymbol{\xi}) \leq \frac{s-1}{s} < H_{d-1,s}$ .

**Case 2.**  $f(\boldsymbol{\alpha}_\nu) \neq 1$  for all  $\nu$  large enough.

For such  $\nu$  the difference  $f(\boldsymbol{\alpha}_\nu) - 1$  is a nonzero rational number with denominator  $Dq_\nu^s$ . Therefore we have

$$|f(\boldsymbol{\alpha}_\nu) - 1| \geq \frac{1}{Dq_\nu^s}.$$

Now from (7.1) we see that

$$(7.3) \quad \frac{1}{Dq_\nu^s} \leq |f(\boldsymbol{\alpha}_\nu) - 1| = |f(\boldsymbol{\alpha}_\nu) - f(\boldsymbol{\xi})| = O\left(\frac{\zeta_\nu}{q_\nu}\right)$$

and

$$(7.4) \quad \zeta_\nu \geq \frac{c_2}{q_\nu^{s-1}}$$

with some positive constant  $c_2$  depending on  $f$  and  $\boldsymbol{\xi}$ . As this inequality holds for all large  $\nu$ , we conclude that  $\omega(\boldsymbol{\xi}) \leq s - 1$  and

$$\frac{s-1}{\hat{\omega}(\boldsymbol{\xi})} \geq \frac{\omega(\boldsymbol{\xi})}{\hat{\omega}(\boldsymbol{\xi})} \geq G_d.$$

Recall that  $G_d$  is a root of equation (1.2). This means that the upper bound for  $\hat{\omega}(\boldsymbol{\xi})$  is given by the unique positive root of the equation

$$\left(\frac{s-1}{x}\right)^{d-1} = \frac{x}{1-x} \left( \left(\frac{s-1}{x}\right)^{d-2} + \left(\frac{s-1}{x}\right)^{d-3} + \cdots + \frac{s-1}{x} + 1 \right)$$

which coincides with (4.1) if  $d$  is replaced by  $d - 1$ . □

We close the section by observing that the argument used in the proof of Case 2 above does not rely on the homogeneity of  $f$ . Thus the following result can be established.

**Theorem 2b.** Suppose that  $f$  is an *arbitrary* polynomial of degree  $s$  in  $d$  variables with rational coefficients such that

$$\#\{\boldsymbol{x} \in \mathbb{Q}^d : f(\boldsymbol{x}) = 1\} < \infty,$$

and let  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_d) \notin \mathbb{Q}^d$  be such that  $f(\boldsymbol{\xi}) = 1$ . Then:

- (i)  $\omega(\boldsymbol{\xi}) \leq s - 1$ ;
- (ii) if  $\boldsymbol{\xi}$  is totally irrational, then  $\hat{\omega}(\boldsymbol{\xi}) \leq H_{d-1,s}$ .

The proof is left to the reader. In particular, the conclusion of Theorem 2b holds when  $\{f = 1\}$  is an algebraic curve over  $\mathbb{Q}$  of genus at least 2, such as the one mentioned in Remark 3.1.

## 8 Proof of Theorem 1a

The proof of Theorem 1a is similar to the proof of Theorem 2a. We take  $m = d + 1$  and consider a sequence of best simultaneous approximation vectors

$$\mathbf{z}_\nu = (q_\nu, a_{1,\nu}, \dots, a_{d,\nu}, A_\nu) \in \mathbb{Z}^{d+2}, \quad \nu \in \mathbb{N},$$

of  $\Theta = \Xi_f$  as in (4.4), and the corresponding distances from  $q_\nu \Xi_f$  to  $\mathbb{Z}^{d+1}$ :

$$\zeta_\nu = \max(|q_\nu \xi_1 - a_{1,\nu}|, \dots, |q_\nu \xi_d - a_{d,\nu}|, |q_\nu f(\boldsymbol{\xi}) - A_\nu|).$$

We also need “shortened” rational approximation vectors

$$\boldsymbol{\alpha}_\nu = \left( \frac{a_{1,\nu}}{q_\nu}, \dots, \frac{a_{d,\nu}}{q_\nu} \right) \in \mathbb{Q}^d.$$

Note that now it may happen that

$$(8.1) \quad \boldsymbol{\alpha}_{\nu-1} = \boldsymbol{\alpha}_\nu$$

for some  $\nu$ .

**Lemma 8.1.** *Suppose that (8.1) holds and*

$$(8.2) \quad f(\boldsymbol{\alpha}_\nu) = \frac{A_\nu}{q_\nu}.$$

*Then*

$$(8.3) \quad \Delta = \text{g.c.d.}(q_\nu, a_{1,\nu}, \dots, a_{d,\nu}) = O\left(q_\nu^{\frac{s-1}{s}}\right).$$

*Proof.* We know that

$$\text{g.c.d.}(q_\nu, a_{1,\nu}, \dots, a_{d,\nu}, A_\nu) = 1$$

and thus

$$\text{g.c.d.}(\Delta, A_\nu) = 1.$$

From (8.2) we see that

$$DA_\nu q_\nu^{s-1} = Dq_\nu^s f(\boldsymbol{\alpha}_\nu) \in \mathbb{Z}.$$

But  $\Delta \mid a_{j,\nu}$  for any  $j$ . As  $Dq_\nu^s f\left(\frac{\cdot}{q_\nu}\right)$  is a homogeneous polynomial of degree  $s$  with integer coefficients, we deduce that

$$\Delta^s \mid Dq_\nu^{s-1}.$$

This gives (8.3).  $\square$

To prove Theorem 1a we consider three cases.

**Case 1.1.** For infinitely many  $\nu$  (8.1) and (8.2) hold.

In this case the vectors

$$(q_{\nu-1}, a_{1,\nu-1}, \dots, a_{d,\nu-1}), \quad (q_{\nu}, a_{1,\nu}, \dots, a_{d,\nu})$$

are proportional, but the vectors

$$(q_{\nu-1}, a_{1,\nu-1}, \dots, a_{d,\nu-1}, A_{\nu-1}), \quad (q_{\nu}, a_{1,\nu}, \dots, a_{d,\nu}, A_{\nu})$$

are not proportional. This means that

$$(8.4) \quad \begin{vmatrix} q_{\nu-1} & A_{\nu-1} \\ q_{\nu} & A_{\nu} \end{vmatrix} \neq 0.$$

There exists a primitive vector

$$(q_*, a_{1,*}, \dots, a_{d,*}) \in \mathbb{Z}^{d+1}, \quad \text{g.c.d.}(q_*, a_{1,*}, \dots, a_{d,*}) = 1, \quad q_* \geq 1,$$

such that  $(q_{\nu}, a_{1,\nu}, \dots, a_{d,\nu}) = \Delta \cdot (q_*, a_{1,*}, \dots, a_{d,*})$  and  $(q_{\nu-1}, a_{1,\nu-1}, \dots, a_{d,\nu-1}) = \Delta' \cdot (q_*, a_{1,*}, \dots, a_{d,*})$ , where

$$\Delta = \text{g.c.d.}(q_{\nu}, a_{1,\nu}, \dots, a_{d,\nu}), \quad \Delta' = \text{g.c.d.}(q_{\nu-1}, a_{1,\nu-1}, \dots, a_{d,\nu-1}).$$

In particular

$$q_{\nu} = \Delta q_*, \quad q_{\nu-1} = \Delta' q_*$$

and

$$\begin{vmatrix} q_{\nu-1} & A_{\nu-1} \\ q_{\nu} & A_{\nu} \end{vmatrix} \equiv 0 \pmod{q_*}.$$

Now from (8.4) we deduce

$$\frac{q_{\nu}}{\Delta} = q_* \leq \left| \begin{vmatrix} q_{\nu-1} & A_{\nu-1} \\ q_{\nu} & A_{\nu} \end{vmatrix} \right| \leq 2q_{\nu} |q_{\nu-1} f(\xi) - A_{\nu-1}| \leq 2q_{\nu} \zeta_{\nu-1} \leq 2q_{\nu}^{1-\gamma}$$

by (6.1). Thus we get

$$q_{\nu}^{\gamma} \leq 2\Delta.$$

We apply Lemma 2.2 to see that  $\gamma \leq \frac{s-1}{s}$ , and hence  $\hat{\omega}(\Xi_f) \leq \frac{s-1}{s} < H_{d,s}$ .

**Case 1.2.** For infinitely many  $\nu$  (8.2) holds with  $\alpha_{\nu-1} \neq \alpha_{\nu}$ .

We proceed similarly to Case 1 from the proof of Theorem 2a by applying Lemma 5.1(i) with  $A = q_{\nu}$  for  $\alpha = \alpha_{\nu} \neq \beta = \alpha_{\nu-1}$ . From (5.2), similarly to (7.2), for large enough  $\nu$  we get

$$\frac{1}{(DK)^{\frac{1}{s}} q_{\nu}^{\frac{s-1}{s}} q_{\nu-1}} \leq \sqrt{d} \max_{1 \leq k \leq d} \left| \frac{a_{k,\nu}}{q_{\nu}} - \frac{a_{k,\nu-1}}{q_{\nu-1}} \right| \leq \frac{2\sqrt{d}}{q_{\nu-1} q_{\nu}^{\gamma}}.$$

Again  $q_\nu^\gamma = O\left(q_\nu^{\frac{s-1}{s}}\right)$  for infinitely many  $\nu$ , and  $\hat{\omega}(\Xi_f) \leq \frac{s-1}{s} < H_{d,s}$ .

**Case 2.**  $f(\boldsymbol{\alpha}_\nu) \neq \frac{A_\nu}{q_\nu}$  for all  $\nu$  large enough.

This case is similar to Case 2 from the proof of Theorem 2a. Now the difference  $f(\boldsymbol{\alpha}_\nu) - \frac{A_\nu}{q_\nu}$  is a nonzero rational number with denominator  $Dq_\nu^s$ . Therefore we have

$$\left|f(\boldsymbol{\alpha}_\nu) - \frac{A_\nu}{q_\nu}\right| \geq \frac{1}{Dq_\nu^s}.$$

Analogously to (7.3) we now get (7.4), which leads to  $\omega(\Xi_f) \leq s-1$ . Then, applying Theorem A to the  $(d+1)$ -dimensional vector  $\Xi_f$ , we obtain

$$\frac{s-1}{\hat{\omega}(\Xi_f)} \geq \frac{\omega(\Xi_f)}{\hat{\omega}(\Xi_f)} \geq G_{d+1}.$$

This shows that the positive root of equation

$$\left(\frac{s-1}{x}\right)^d = \frac{x}{1-x} \left( \left(\frac{s-1}{x}\right)^{d-1} + \left(\frac{s-1}{x}\right)^{d-2} + \cdots + \frac{s-1}{x} + 1 \right)$$

gives an upper bound for  $\hat{\omega}(\Xi_f)$ . Theorem 1a is proved.  $\square$

## 9 Proof of Theorem 3a

Let

$$q_1 < q_2 < \dots < q_\nu < q_{\nu+1} < \dots$$

be the sequence of points where the function  $\Psi_{f,\xi}(T)$  is not continuous. Without loss of generality we may suppose that this sequence is infinite. We consider the corresponding best approximation vectors

$$\boldsymbol{\alpha}_\nu = \left( \frac{a_{1,\nu}}{q_\nu}, \dots, \frac{a_{d,\nu}}{q_\nu} \right) \in \mathbb{Q}^d,$$

where  $a_{j,\nu}$  realize the minima in the definition of the function  $\Psi_{f,\xi}(T)$ . They satisfy  $f(\boldsymbol{\alpha}_\nu) = 1$ . By definition of the function  $\Psi_\xi(T)$  and numbers  $q_\nu$  we see that

$$\Psi_\xi(T) = \Psi_\xi(q_{\nu-1}) \quad \text{for } q_{\nu-1} \leq T < q_\nu.$$

Now, since  $\boldsymbol{\alpha}_\nu \neq \boldsymbol{\alpha}_{\nu-1}$ , we may apply Lemma 5.1(ii) with  $A = q_\nu$  and  $B = q_{\nu-1}$ . Indeed,  $\boldsymbol{\alpha} = \boldsymbol{\alpha}_\nu$  and  $\boldsymbol{\beta} = \boldsymbol{\alpha}_{\nu-1}$  satisfy (5.1) for large enough  $\nu$ , and from (5.3) we have

$$\frac{1}{DKq_{\nu-1}^{s-1}q_\nu^{s-1}} \leq |\boldsymbol{\alpha}_{\nu-1} - \boldsymbol{\alpha}_\nu|^s \leq (|\boldsymbol{\alpha}_{\nu-1} - \boldsymbol{\xi}| + |\boldsymbol{\alpha}_\nu - \boldsymbol{\xi}|)^s \leq 2^s |\boldsymbol{\alpha}_{\nu-1} - \boldsymbol{\xi}|^s,$$

since  $|\alpha_\nu - \xi| \leq |\alpha_{\nu-1} - \xi|$ . Thus

$$\frac{1}{2^s DK} \leq q_\nu^{s-1} q_{\nu-1}^{s-1} |\alpha_{\nu-1} - \xi|^s \leq q_\nu^{s-1} \Psi_{f,\xi}(q_{\nu-1}).$$

This means that

$$\lim_{T \rightarrow q_\nu - 0} T^{s-1} \cdot \Psi_{f,\xi}(T) = q_\nu^{s-1} \Psi_{f,\xi}(q_{\nu-1}) \geq \frac{1}{2^s DK}.$$

Theorem 3a is proved.  $\square$

## Acknowledgements

The authors were supported by NSF grant DMS-1600814 and RFBR grant No. 18-01-00886 respectively. This work was started during the second-named author's visit to Brandeis University, whose hospitality is gratefully acknowledged. Thanks are also due to David Simmons, Barak Weiss and the anonymous referee for useful comments.

## References

- [B15] G. Batzaya, *On simultaneous approximation to powers of a real number by rational numbers*, J. Number Theory **147** (2015), 144–155.
- [B17] G. Batzaya, *On simultaneous approximation to powers of a real number by rational numbers II*, J. Number Theory **179** (2017), 268–298.
- [BGSV16] V. Beresnevich, A. Ghosh, D. Simmons and S. Velani, *Diophantine approximation in Kleinian groups: singular, extremal, and bad limit points*, preprint available at [arXiv:1610.05964](https://arxiv.org/abs/1610.05964).
- [C13] N. Chevallier, *Best simultaneous Diophantine approximations and multidimensional continued fraction expansions*, Mosc. J. Comb. Number Theory **3** (2013), no. 1, 3–56.
- [D64] H. Davenport, *A note on Diophantine approximation. II*, Mathematika **11** (1964), 50–58.
- [DS69] H. Davenport and W.M. Schmidt, *Approximation to real numbers by algebraic integers*, Acta Arith. **15** (1969), 393–416.

- [FKMS14] L. Fishman, D. Kleinbock, K. Merrill and D. Simmons, *Intrinsic Diophantine approximation on quadric hypersurfaces*, preprint available at [arXiv:1405.7650](https://arxiv.org/abs/1405.7650).
- [FKMS18] L. Fishman, D. Kleinbock, K. Merrill and D. Simmons, *Intrinsic Diophantine approximation on manifolds: general theory*, Trans. Amer. Math. Soc. **370** (2018), no. 1, 1577–599.
- [J38] V. Jarník, *Zum Khintchineschen “Übertragungssatz”*, Trav. Inst. Math. Tbilissi **3** (1938), 193–212.
- [J54] V. Jarník, *Contribution à la théorie des approximations diophantiennes linéaires et homogènes*, Czechoslovak. Math. J. **4** (1954), 330–353.
- [K26] A. Ya. Khintchine, *Über eine Klasse linearer Diophantischer Approximationen*, Rend. Circ. Math. Palermo **50** (1926), 170–195.
- [KM15] D. Kleinbock and K. Merrill, *Rational approximation on spheres*, Isr. J. Math. **209** (2015), no. 1, 293–322.
- [KS18] D. Kleinbock and N. de Saxce, *Rational approximation on quadrics: a simplex lemma and its consequences*, preprint available at [arXiv:1808.07070](https://arxiv.org/abs/1808.07070).
- [KW05] D. Kleinbock and B. Weiss, *Friendly measures, homogeneous flows and singular vectors*, in: Algebraic and Topological Dynamics, Contemp. Math. **211**, Amer. Math. Soc., Providence, RI, 2005, pp. 281–292.
- [LR12] S. Lozier and D. Roy, *Simultaneous approximation to a real number and its cube by rational numbers*, Acta Arith. **156** (2012), 39–73.
- [MM18] A. Marnat and N. Moshchevitin, *An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation*, preprint available at [arXiv:1802.03081](https://arxiv.org/abs/1802.03081).
- [M10] N. Moshchevitin, *Khintchine’s singular Diophantine systems and their applications*, Russian Math. Surveys **65** (2010), no. 3, 433–511.
- [M16] N. Moshchevitin, *Über die rationalen Punkte auf der Sphäre*, Monatsh. Math. **179** (2016), no. 1, 105–112.

- [M17] N. Moshchevitin, *Eine Bemerkung über positiv definite quadratische Formen und rationale Punkte*, Math. Z. **285** (2017), 1381–1388.
- [R03] D. Roy, *Approximation simultanée d'un nombre et de son carré*. C. R. Math. Acad. Sci. Paris **336** (2003), no. 1, 1–6.
- [SV95] B. O. Stratmann and S. L. Velani, *The Patterson measure for geometrically finite groups with parabolic elements, new and old*, Proc. Lond. Math. Soc. (3) **71** (1995), 197–220.
- [W04] B. Weiss, *Divergent trajectories on noncompact parameter spaces*, Geom. Funct. Anal. **14** (2004), no. 1, 94–149.