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Abstract
Let f be a homogeneous polynomial with rational coefficients in d
variables. We prove several results concerning uniform simultaneous
approximation to points on the graph of f, as well as on the hyper-
surface {f(x1,...,24) = 1}. The results are first stated for the case
flwy, .. zq) =22+ + x?l, which is of particular interest.

1 Diophantine exponents

Let © = (04,...,0,,) be a collection of real numbers. The ordinary Dio-
phantine exponent w = w(©) for simultaneous rational approximation to ©
is defined as the supremum over all real v such that the inequality

. . -y
max gt — aj| < q
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has infinitely many solutions in integer points (¢, ai, ..., a,) € Z™ with
q > 0.

The uniform Diophantine exponent w = w(0) for simultaneous approxi-
mation to © is defined as the supremum over all real « such that the system
of inequalities

. - < g<
1r§n%>7<n!f19] ajl <77, 1<q¢<Q

has a solution (q,ay,...,a,) € Z™" for every large enough real Q. It
immediately follows from Minkowski’s convex body theorem that &(©) > -+
for any © € R™. Furthermore, let us say that © is totally irrational if
1,6q,...,0,, are linearly independent over Z. For such © it was first observed
by Jarnik [J38, Satz 9] that

&(0) < 1.

(See also [M10, Theorem 17|, as well as [W04, Theorem 5.2| for a proof
based on homogeneous dynamics.) In particular for m = 1 one has

(1.1) w(@) =1 foralld e R\ Q.

On the other hand, for m > 2 it is known that for arbitrary A from the
interval [, 1] there exists © € R™ with &(©) = A.
Moreover it is clear from the definition that

w(©) = w(®)

for any © € R™. Here we should mention that in [J54| Jarnik gave an
improvement of this bound for the collection of © such that there are at
least two numbers 0;, 0, linearly independent over Z together with 1. In this
case he proved the inequality

w
>

&l e

1—w
This inequality is optimal for m = 2. For arbitrary m the optimal inequality
was obtained recently by Marnat and Moshchevitin [MM18].

Theorem A. [MM18, Theorem 1] Let © € R™ be totally irrational, and
let w=w(O) and w = W(O). Denote by G,, the unique positive root of the
equation

(1.2) " = (@™ 242" x4 1).

Then one has
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In the present paper we study the bounds for the uniform exponent w for
special collections of numbers. Theorem A will be an important ingredient

of our proofs.

2 Approximation to several real numbers and
sums of their squares

In [DS69] Davenport and Schmidt proved the following theorem:

Theorem B. [DS69, Theorem la|] Suppose that £ € R is neither a ratio-

nal number nor a quadratic irrationality. Then the uniform Diophantine

exponent & = @(Z) of the vector = = (&,£?) € R? satisfies the inequality
V-1

w < .
2

Here we should note that @ is the unique positive root of the equation
2?4z =1

It is known due to Roy [R03] that the bound of Theorem B is optimal.
Davenport and Schmidt proved a more general result [DS69, Theorem 2a]
involving successive powers &, &2, ..., ™. However in the present paper we
deal with another generalization.

In the sequel we will consider m = d or m = d + 1 numbers. Namely,
take

E=(&,...,&) eR?
and introduce the vector
(2.1) E= (6, &0, &l +---+ &) e R
Also let H; be the unique positive root of the equation
(2.2) g4t =1,
Note that % <H;<1, and H; — % monotonically when d — oo.

In the present paper we prove the following two theorems dealing with
sums of squares.

Theorem 2.1. Let d > 1 be an integer. Suppose that = as in (2.1) is
totally irrational. Then the uniform Diophantine exponent of = satisfies the
inequality

w(E) < Hy.
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Note that in the case d = 1 Theorem 2.1 coincides with Theorem B. The

next theorem can be proved by a similar argument.

Theorem 2.2. Let d > 2. Suppose that & = (&1, ...,&q) is totally irrational
and

(2.3) G4+ +&=1
Then the uniform Diophantine exponent of & satisfies the inequality
w(§) < Ha-1.

Theorems 2.1 and 2.2 are particular cases of more general Theorems 1la

and 2a, which we formulate in Section 4.

Remark 2.3. It is worth comparing Theorems 2.1 and 2.2, as well as their
more general versions, with a lower bound obtained using the methods of
[KWO05, §5]. It is not hard to derive from [KWO05, Corollary 5.2| that for
any real analytic submanifold M of R™ of dimension at least 2 which is not
contained in any proper rational affine hyperplane of R™ there exists totally
irrational © € M with

. 1 2

“(0) 2 m o m(m?—1)
It would be interesting to see if the above estimate could be improved, thus

shedding some light on the optimality of our theorems.

3 Intrinsic approximation on spheres

Our study of vectors of the form (2.1) was motivated by problems related
to intrinsic rational approximation on spheres. In [KM15| Kleinbock and
Merrill proved the following result.

Theorem C. [KM15, Theorem 4.1] Let d > 2. There exists a positive
constant Cyy such that for any & = (&1,...,&,) € R? satisfying (2.3) and for
any T > 1 there exists a rational vector

(3.1) a:(@,...,%>e<@d

q q
such that ) )
q q
and
Cq
(3.2) |§—a|ﬁm, 1<q<T
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Here and hereafter by | - | we denote the Euclidean norm of a vector. In
particular Theorem C implies that in the case & ¢ Q7 the inequality

Ié—alsﬁ
q

has infinitely many solutions in rational vectors (3.1).

See |[M16, M17]| for effective versions of Theorem C, and [FKMS14, The-
orem 5.1] for generalizations. Note that the formulation from [M16] involves
sums of squares, while an effective version for an arbitrary positive definite
quadratic form with integer coefficients can be found in [M17]. It is also
explained in [FKMS14] how the conclusion of Theorem C can be derived
from [SV95, Theorem 1] via a correspondence between intrinsic Diophan-
tine approximation on quadric hypersurfaces and approximation of points in
the boundary of the hyperbolic space by parabolic fixed points of Kleinian
groups; see [FKMS14, Proposition 3.16].

In this paper we prove a result about uniform intrinsic approximation on
the unit sphere. We need some notation. First of all, note that the inequality

(3.2) can be rewritten as

2 2
quTl S ?d, az((ll,...,CLd) EZd’ a%++a§:q2
Now let us define the function
2
—a
\Ijﬁ(T) = min M
(9,01,---,00) EZ4+1:1<q<T, a3+-+ad=q2 q

Theorem C states that for any € € R? under the condition (2.3) one has
T -Ue(T)<CF for T>1.

Theorem 3.1. Let d > 2. Let £ € R\ Q? be such that (2.3) is satisfied.
Then for any € > 0 there exists arbitrary large T such that

1
T-We(T) 2 7 —c.

Theorem 3.1 is an analog of Khintchine’s lemma on rational approxi-
mations to one real number (see [K26, Satz 1|). It admits the following
corollary. One can try to define the uniform Diophantine exponent of & for

the intrinsic approximation on the unit sphere as

. o 1
the inequalities |£ —a| < QT 1<¢g<T

wy(§) =sup{ 7 ER
are solvable in a of the form (3.1) for large enough T
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Then for all vectors € ¢ Q¢ satisfying (2.3) we have

by Theorem 3.1. So here we have an equality similar to (1.1) for the case of
approximation to one real number. See also [BGSV16, Theorem 2|, where a
similar observation was made in the context of Kleinian groups. Theorem 3.1

follows from a more general Theorem 3a which we formulate in Section 4.

4 Results on homogeneous polynomials

Given integers s > 2 and d > 1, define Hy 4 to be the unique positive root
of the equation

a 13 ()

Note that for any s and d one has

M:“

s—1

< Hd,s < 1.

Clearly Hyo = Hy, and Hy s monotonically decreases to *—= as d — +o0.

The results of this section deal with a homogeneous polynomlal

(4.2) f(z) = Z forsa®l -y,  where fg o € Q,
(S1yeees sd)EZi: s1++sqg=s
of degree s in variables x4, ..., x4 (here Z, stands for the set of non-negative

integers). Theorem 2.1 from the previous section is a corollary of the fol-

lowing general statement.

Theorem la. Let s > 2 be an integer, and let f as in (4.2) be such that
(4.3) #{x cQ?: f(z) =0} < c0.

Suppose that

(4.4) Zr=(&,.... & f(&, .. &)

is totally irrational. Then w(Z=f) < Hys.

We give a proof of Theorem 1la in Section 8.
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Remark 4.1. Let us consider the case d = 1. In this case Theorem la
states that the uniform exponent @ of (£, &%) is bounded from above by the

positive root of the equation
4+ (s—1)r—(s—1)=0,

that is

—1 3)—(s—1
. o< YEIEFT =y
This result was obtained by Batzaya in [B15| for arbitrary vectors of the

form (£,€%) with 1 < [ < s. In the case d = 1,5 = 3 much stronger

inequality
o< 20+ VID)
- 35
is known due to Lozier and Roy (see [LR12| and the discussion therein). In

[B17] Batzaya improved (4.5) and showed that for (&',£%) with 1 <1 < s

one has )
s“—1

< _ 2
T2 —s5—1

&>

for odd s. In the case of even s in the paper [B15| he had a better inequality
(s—=1)(s+2)

s24+2s—1
Also [B17] contains a better bound for @ when s = 5,7,9. Thus the inequal-
ity of our Theorem 1la is not optimal for s > 3.

w

IA

Theorem 2.2 from the previous section is a corollary of the following
general statement.

Theorem 2a. Let s > 2 be an integer, and let f as in (4.2) be such that
(4.3) holds. Then

(4.6) € € R%is totally irrational and f(§) =1 = &(&) < Hy 1.

We give a proof of Theorem 2a in Section 7. To get Theorems 2.1, 2.2
from Theorems 1la, 2a one should put s =2 and f(z) = z3 + --- + 2.

Remark 4.2. The argument used in the proof of Theorem 2a yields (4.6) for
any (not necessarily homogeneous) polynomial f with rational coefficients
such that the number of rational points on the hypersurface {f = 1} is
finite. We state it as Theorem 2b in Section 7. For example (cf. (4.5) with
d =1 and s = 6) it follows that

V45 =5

2
for any (x,y) € R? such that y? — 22 — 25 = 1.

w(z,y) <
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Now for £ € R? under the condition f(£) = 1 consider the function

—a S
Vye(T) = min o€ —al*
(q’a):(q’al """ [ld)GZd+1; 1SqST7 f(% 77777 M):l q

It is clear that Wy¢(T") is a non-increasing piecewise constant function. Here
we do not suppose that it tends to zero as T' — +o0.

Theorem 3a. Let s > 2 be an integer, and let f as in (4.2) be such that
(4.3) holds. Take & ¢ Q¢ with

f€) =1,

and let D = D(f) € Z, be the common denominator of all rational numbers
fsr...s,- Also define

(4.7) K=K(f)= swp |f@)

zeRe: |z|=1

Then for any positive € there exists arbitrary large 7" such that

T Wpe(T) > E.

2DK

For f(z) = 23 + -+ + 2% we have s = 2 and D(f) = K(f) = 1. Thus
Theorem 3.1 is a direct corollary of Theorem 3a. We give a proof of Theorem
3a in Section 9.

5 The main lemma

The next lemma is a polynomial analogue of the classical simplex lemma
in simultaneous Diophantine approximation going back to Davenport [D64].
See also [KS18| for a version for arbitrary quadratic forms, [BGSV16, Lemma
1] for a similar statement in the context of Kleinian groups, and [FKMS18,
Lemma 4.1] for a general simplex lemma for intrinsic Diophantine approxi-

mation on manifolds.

Lemma 5.1. Let s > 2 be an integer, and let f be as in (4.2). Let D = D(f)
and K = K(f) be defined as in Theorem 3a, and take two rational vectors

a = (ﬂ,...,%) and B = (b—l,...,@>
q q r r

(5.1) fla—B)#0.

such that
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(1) Suppose that

A
fla)=2
(@) .
with an integer A. Then
(52) o B> 5o
’ — Dqu—lrs :
(ii) Suppose
A B
flo) =2, 18) =
with integers A, B. Then
(53) O g
’ — DKQS_1TS_1 :
Proof. (1) First of all we observe that
(54) fla—B) >
’ — Dqs—lrs '
Indeed, for any sq, ..., s; € Z, under the condition s;+---+s; = s consider
the product
ak bk)sk
Hs1 ..... sq — - -
d!}(q r
It is clear that ;
I I YO i Wei,osa
S1s-58d q° qsflrs

-----

O%f(a_ﬂ): Z fs1 ..... sstl ..... Sd
(81,eees sd)EZi: s1+-+sq4=s
w A |74 Wi
o f(a> + DqS_IT’S - E Dqs—lrs - Dqs—lrs’

with W, W; € Z, and (5.4) is proved. Then from the definition (4.7) we see
that

(5.5) |fla=B)| < Kla— B|”.

Now (5.4) and (5.5) give (5.2).
(ii) The proof here is quite similar. From the conditions on f(a) and f(B)

we see that

HI/ A B HH HI/
—B) = + - 4= — 1
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with W/, W{ € Z. So we get

1

(5.6) fla=B)l = g

Now (5.6) together with (5.5) give (5.3).

6 Best approximation vectors

IfO = (64,...,0,) € R™" Q" let us say that a vector (q,as,...,a,) €
Z™*! is a best simultaneous approximation vector of © if

dist(¢0,Z™) < dist(k©,Z™) Yk=1,...,q— 1,

and
dist(¢©,Z™) = max |q0; — a;|.

ey

Here ‘dist’ stands for the distance induced by the supremum norm on R™.
Best approximation vectors of © form an infinite sequence (g,, a1, - .., mp),

v € N, and satisfy the inequalities

qv—1 < qu, Cz/fl > Cua S N7

where one defines

gl/ = '_IIlaX |qy91 - ai,u|-

=1,...,

It is important that
g.C.d.((],,, A1y - - - aam,u) =1, vel

So for any two successive rational approximation vectors
al’j am’j m N
o = (—,...,— eQm, j=v—1v
qj 4qj
we have
a, 1 #a,.

Some detailed information about best approximation vectors may be
found for example in papers [C13] and [M10]. In particular, the following
property of the uniform exponent @ = w(©) is well known (see e.g. [M10,
Proposition 1]). Suppose that v < @. Then for all v large enough one has

(61) Cu—l S QV_’Y'
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7  Proof of Theorem 2a

We take m = d and consider best approximation vectors
Z, = (qya A1,y - - - ,CLd’V) < Zd+1
of € = (&,...,&) € RY, together with distances

G = g?gd |qufj - a’j,V’u

and the corresponding rational approximants

a a
a,,:< S d’”)e(@d.
Qv qv

Under the condition 7 < w(§) we have (6.1) for all large v.
Here we should note that

3
qv

v

qu

max
1<j<d &

So for large v we see that

(7.1) (aql) .

We consider two cases.

54

Qd,y—1 st sS4 (CI/)

— =& EA+O0 = ).
( G ) b G

Case 1. f(a,) =1 for infinitely many v.

Here, since a, # a,,_1, we may apply Lemma 2.1(i) with A = ¢,. Take
o =a,, f=a, ;; then (5.1) follows from (4.3) when v is large enough, and
from (5.2) we deduce that

15,1 < vd max Dew _ D1
(DK)rq," gq SOl O o
(7.2) <V (1%?22 a;;,, - fk‘ + max a;;yll — & )
2V/d¢, < 2V/d
T Q1 T @

s—1
So with some positive ¢; we have ¢) < ¢1¢,° for infinitely many v and

C:)(é.) = s;_l < Hd—l,s-
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Case 2. f(a,) # 1 for all v large enough.

For such v the difference f(a,) — 1 is a nonzero rational number with
denominator Dg;. Therefore we have

(o) 11> o

Now from (7.1) we see that

13 pe <l -1l =Ifle) - £9] =0 (%)
and
(7.4 G2

with some positive constant ¢, depending on f and £. As this inequality
holds for all large v, we conclude that w(§) < s — 1 and

-1 wlE)
a® ~ oy -

Recall that G4 is a root of equation (1.2). This means that the upper bound
for w(€) is given by the unique positive root of the equation

s—1\%! T s—1\%?2 s—1\%° s—1
—_ —|— +...+ +1
T 11—z T T T

which coincides with (4.1) if d is replaced by d — 1. O

We close the section by observing that the argument used in the proof
of Case 2 above does not rely on the homogeneity of f. Thus the following
result can be established.

Theorem 2b. Suppose that f is an arbitrary polynomial of degree s in d

variables with rational coeflicients such that

#{z € Q?: f(z) =1} < o0,
and let £ = (&1, ...,&) € Q¢ be such that f(£) = 1. Then:
(i) w@) =s- 1L
(ii) if £ is totally irrational, then w(§) < Hy_1 5.
The proof is left to the reader. In particular, the conclusion of Theorem

2b holds when {f = 1} is an algebraic curve over Q of genus at least 2, such
as the one mentioned in Remark 3.1.
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8  Proof of Theorem 1a

The proof of Theorem 1la is similar to the proof of Theorem 2a. We take
m = d + 1 and consider a sequence of best simultaneous approximation
vectors

2, = (q, a1, a4, A,) €272 v EN,

of © = =; as in (4.4), and the corresponding distances from ¢,Z; to Z4:

oo laéa — aayl, la f(€) — AVD'

CV = max (‘%/51 — Q1

We also need “shortened" rational approximation vectors

a Qq
a,,:<1’”,..., ’”)e@d.
Qv Qv

Note that now it may happen that
(8.1) a, | =aq,
for some v.

Lemma 8.1. Suppose that (8.1) holds and

A,
(8.2) fla,) =—.
qv
Then
(8.3) A=gcd(q,a1p,...,a04,) =0 (QVE ) '

Proof. We know that
g.cd (g, a1y, 04,,A,) =1

and thus
g.cd.(AA) =1

From (8.2) we see that
DA,¢¢ ' = D¢ fla,) € Z.

But A |a;, for any j. As D¢} f (q—u) is a homogeneous polynomial of degree
s with integer coefficients, we deduce that

A% | Dgst.

This gives (8.3). O
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To prove Theorem la we consider three cases.

Case 1.1. For infinitely many v (8.1) and (8.2) hold.

In this case the vectors
(QI/—h a1p—1,--- 7ad,u—1)7 (QV, A1y - ,Cld,u)
are proportional, but the vectors
(%—1, A1 p—1y---,0dv—1, Ay—1), (qw A1 yy .-y Ady, Au)
are not proportional. This means that

(84) ‘ qv—1 Allfl ?é 0.

% A

There exists a primitive vector
(Guy @1y - 0g) € ZY gcd (e, @1, .- ya04.) =1, g >1,

such that (g,, a1, ..., aa0) = A-(qe, @14, - - -, Ga) a0 (@1, Q1 01, ..., Qdp—1) =
A" (qu, @14y -+ -, Qg), Where

A= g'c'd'<ql/7 A1y - - - >ad,l/)7 A, = g'C'd'<ql/715 A1 p—1y--- aad,ufl)'

In particular
Qv = AQ*a qv—1 = AIQ*
and

‘q”l v =0 (mod g,).

@ A

Now from (8.4) we deduce

qv-1

= {x S | ‘ q :1_1 | S 2q11‘ql/—1f(§) - Au—1| S 2qZ/Cl/—1 S QQi_7

by (6.1). Thus we get

)
IA
DO

q A.

We apply Lemma 2.2 to see that v < %, and hence w(=y) < % < Hgys.
Case 1.2. For infinitely many v (8.2) holds with a, 1 # a,..

We proceed similarly to Case 1 from the proof of Theorem 2a by applying
Lemma 5.1(i) with A = ¢, for & = @, # B = a,_1. From (5.2), similarly to
(7.2), for large enough v we get

2V/d

a QV—lq;/ .

1
— < Vd max

(DK)*qu" ¢y 1<ksd

(0787 . Ak p—1
Qv dv-1
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s—1

Again ¢} = O (q,ﬁ ) for infinitely many v, and w(Zy) < % < Hgs.

Case 2. f(a,) # % for all v large enough.

This case is similar to Case 2 from the proof of Theorem 2a. Now the
difference f(a,) — % is a nonzero rational number with denominator Dg;.
Therefore we have A .

‘f(a”) |~ D
Analogously to (7.3) we now get (7.4), which leads to w(Zy) < s —1. Then,
applying Theorem A to the (d + 1)-dimensional vector Z¢, we obtain

s—1 _ w(Ey)
w(Ey)

This shows that the positive root of equation

s—1\° T s—1\¢! s—1\97? s—1
= + 4+ 4 +1
x 1—=x x x T

gives an upper bound for &(=Zy). Theorem la is proved. ]

9 Proof of Theorem 3a

Let
G <q@<...<q@<qQa<...
be the sequence of points where the function W;¢(T') is not continuous.

Without loss of generality we may suppose that this sequence is infinite.

We consider the corresponding best approximation vectors

a, Ad, d
aV:< y?"'a U)eQa
Qv 4y

where a;, realize the minima in the definition of the function W;¢(7"). They
satisfy f(a,) = 1. By definition of the function W¢(7) and numbers g, we
see that

Ve(T) = We(qy—1) for q,1 <T <q,.

Now, since e, # a,_1, we may apply Lemma 5.1(ii) with A = ¢, and
B = q,_1. Indeed, @ = @, and B = a,,_; satisfy (5.1) for large enough v,
and from (5.3) we have

1
——— < a,_1 —Q B S a,_1 — a, — B S 2° Q,_1 — Sa

v
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since |a, — €| < |a,_1 —&|. Thus

1 S— S— S S—
i SO Goilen =€ <@ Wre(gn).

This means that

1
: s—1 | — s—1 > )
Theorem 3a is proved. O]
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