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Abstract—We develop a theoretical framework for defining and
identifying flows of information in computational systems. Here,
a computational system is assumed to be a directed graph, with
“clocked” nodes that send transmissions to each other along the
edges of the graph at discrete points in time. We are interested
in a definition that captures the dynamic flow of information
about a specific message, and which guarantees an unbroken
“information path” between appropriately defined inputs and
outputs in the directed graph. Prior measures, including those
based on Granger Causality and Directed Information, fail to
provide clear assumptions and guarantees about when they
correctly reflect information flow about a message. We take
a systematic approach—iterating through candidate definitions
and counterexamples—to arrive at a definition for information
flow that is based on conditional mutual information, and
which satisfies desirable properties, including the existence of
information paths. Finally, we describe how information flow
might be detected in a noiseless setting, and provide an algorithm
to identify information paths on the time-unrolled graph of a
computational system.

I. INTRODUCTION

A. Motivation

Neuroscientists often seek an understanding of how in-
formation flows in the brain while it performs a particular
task [2]–[6]. As a concrete example, consider the experiment
performed by Almeida et al. [2], where they examine how
images of common handheld tools are processed in the brain.
In simple terms, the question they investigate is this: when
attempting to identify a handheld tool, does one make use of
knowledge of how to manipulate it? Two hypotheses present
themselves: (i) the answer to the above question is yes, so
we should expect that information about a tool’s identity first
flows from visual cortex to motor cortex (the area responsible
for processing manipulation), before synthesis of visual and
motor information occurs at the area of the brain responsible
for object recognition; (ii) alternatively the answer to the
aforementioned question is no, so we should expect that the
information about tools’ identities first flows from visual cor-
tex to the area responsible for object recognition, after which
this information arrives at motor cortex. Thus, distinguishing
between these hypotheses is equivalent to determining the path
along which information about a tool’s identity flows in the
brain. What methods can neuroscientists use to gain such an
understanding? What formal theory underlies such an anal-
ysis? How does one mathematically define colloquially-used

A short version of this paper has appeared in the 2019 IEEE International
Symposium on Information Theory [1].

terms such as “information flow”? These are the fundamental
questions we try to answer in this paper.

As another example, consider the work of Hong et al. [3],
who show that mice can detect the presence of an object
with their whiskers, even without their “barrel cortex”, the
primary sensory area of the brain responsible for this task. It
is hypothesized that information about the object’s presence
passes from neurons at the whiskers through an alternative
pathway involving deeper brain regions that add redundancy to
the system. How is sensory information about the presence of
external objects encoded between the cortex and these deeper
regions? How much of the information flow is expressed
uniquely in each area, and how much of it is redundant? And
once again, how do we systematically discuss the measurement
of information flow along each of these pathways?

Information flow is a concept that appears in several con-
texts, across fields ranging from communication systems [7],
[8], control theory [9], [10] and neuroscience [2]–[6] to
security [11], algorithmic transparency [12], [13], and deep
learning [14]–[16]. While our primary motivation comes from
neuroscience, the theory that we develop is broadly applicable
to any system which can be modeled in the form of a directed
graph, with nodes that communicate functions of their inputs
to other nodes, and where transmissions are observable. For
example, several kinds of social networks readily fit this bill,
and one might wish to analyze the spread of (mis)information
or infectious disease in such networks [17, Ch. 16]. Our
framework is also general enough to analyze information flow
in various kinds of Artificial Neural Networks: this could be
useful for identifying specific paths that carry information
distinguishing two or more classes, or for intelligently pruning
an Artificial Neural Network post-training [18], [19].

In the field of neuroscience, studying the paths along
which information flows could be essential for understanding,
diagnosing and treating brain diseases [20]–[23]. For example,
understanding information flow pathways is essential when
considering principled approaches for intervening to affect the
output of a computational system, as is done in Responsive
Neurostimulation in Epilepsy [24] or Deep Brain Stimulation
in Parkinson’s Disease [25], or for complementing dysfunc-
tional aspects of the nervous system, such as in cochlear [26]
and retinal implants [27].

B. Our Goal and Approach

Our overarching goal in this paper is develop a formal
theory for understanding information flow in neuroscientific
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experiments. Based on the examples highlighted in the previ-
ous section, we can summarize the key aspects of what we
mean by “information flow”. We want to capture:

1) information flow between distinct nodes, representing
different brain regions at some scale;

2) information about a specific message, i.e., the stimulus;
3) specific paths along which information flows;
4) dynamics, i.e., there may be information flow at one time

instant, but not at a later instant; and
5) feedback, i.e., information about a message may flow

back and forth between two areas.

In what follows, we expand upon some of these points, and
outline our methodology for designing a computational model
and providing a definition of information flow that addresses
these issues.

In order to properly scope our task, we choose to restrict
our attention to “event related experimental paradigms” [28].
These are a set of standard neuroscientific experimental pro-
tocols where a timed stimulus is presented to an animal
subject or human participant over multiple trials, while their
brain signals are being recorded. Restricting ourselves to
such experiments allows us to decide precisely what kind of
information flow we are interested in, since in general, the
phrase “information flow” can refer to more than one notion
in neuroscience. We identify two dominant interpretations of
“information flow”: (i) the first refers to information about a
specific quantity or variable that is of interest to the experimen-
talist, which in this paper we refer to as the “message”; (ii) the
second refers to information in the abstract, and is usually
used to describe the fact that one area of the brain “drives”
or “influences” another area through the transmission of some
information: in this interpretation, one is not interested in what
is being communicated, only that the communication is occur-
ring. In this paper, we focus only on the first interpretation of
the phrase, where we are interested in information about a
specific message. This is particularly common in event-driven
paradigms, where the neuroscientist investigates how the brain
responds to a carefully chosen set of stimuli, and examines
the paths along which information contained in these stimuli1

flows through the brain.
We approach our goal of providing a theoretical framework

for information flow by formally defining a computational sys-
tem model. This model is based on a graph consisting of nodes,
representing distinct computational areas of the brain, and
edges, representing the connections between them. The nodes
of this graph can potentially represent the brain at any scale:
single neurons, groups of neurons, or even whole brain re-
gions, depending on the measurement modality and the kind of
experiment being performed. These nodes compute stochastic
functions of transmissions received from their incoming edges,
and send the results of these computations on their outgoing
edges. The idea of the computational graph is inspired from
Thompson’s work on VLSI complexity theory [29], while the
model for stochastic computation is derived from Structural
Causal Models in the field of Causality [30], [31].

1or alternatively, information contained in the response

Next, we find a formal definition for information flow that
satisfies the requirements listed above. In order to attain a
dynamic picture of information flow on the edges of the
computational graph, and to deal with feedback in the flow
of information, we use the idea of time-unrolling the compu-
tational graph (taking inspiration from Network Information
Theory [7]). Principal among our requirements is that we must
be able to track, using an unbroken path, how information
about the message flows through the system. Imposing this
requirement as a desired property, we iterate through a series
of candidate definitions and counterexamples, finally arriving
at a definition based on conditional mutual information, which
satisfies the aforementioned requirements.

Given that we are interested in information about a message,
we rely on information-theoretic measures to define infor-
mation flow. Furthermore, we restrict ourselves to “observa-
tional” measures, which can be computed from a sample of
all random variables described in the model. We deliberately
eschew interventional and counterfactual measures: the former
require the capability to intervene on the system and change
the distributions of the random variables involved; meanwhile
the latter are usually theoretical, and can only be applied in
situations where one can ask what might have occurred if a
specific variable had been different on a particular trial (while
keeping the realizations of all unobserved private sources of
randomness fixed).

The approach of building a rigorous theoretical framework
that we have adopted in this paper is inspired by two works
from biologists titled “Can a biologist fix a radio?” [32] and
“Could a neuroscientist understand a microprocessor?” [33].
Both these works point to the lack of formal methods, i.e.,
systematic theory, that could help biologists understand the
limitations of their tools and test their assumptions. It is our
belief that information theory can help provide the formal
methods that are sought in biology, and make an impact in
fields such as neuroscience and neuroengineering [34]–[36].
In particular, information theory can play an important role
in advancing how we understand large computational systems
through external measurements and interventions. While de-
veloping an understanding of information flow in such systems
may not be sufficient for providing a complete description of
the nature of computation itself, we believe that it forms an
integral component. Providing a formal theoretical framework
for information flow is but a small part of several broader the-
oretical questions that are yet to be properly posed: questions
such as how one might formalize “reverse engineering” the
brain, or formalize the notion of “understanding computation”.

C. Related Work

Prior work on statistically inferring flows of information
in the brain appears under the umbrella of “functional” or
“effective connectivity” [37]–[39]. These efforts have largely
relied on measures of statistical2 causal influence such as
Granger Causality [40], [41], Massey’s Directed Informa-
tion [42]–[45], Transfer Entropy [46] and Partial Directed

2We borrow the use of the term “statistical” from Pearl [30, Sec. 1.5], who
contrasts and differentiates “statistical” concepts from (strictly) “causal” ones.
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Coherence [47]. Despite widespread use, these measures
have frequently been a subject of debate and disagreement
within the neuroscientific community [48]–[54]. In part, these
disagreements stem from the widely-acknowledged fact that
under non-ideal measurement conditions (e.g. in the presence
of hidden variables [30, p. 54], asymmetric noise [55], [56],
or limited sampling [57]), estimation of these quantities may
be erroneous. While these non-idealities may eventually be
overcome through improvements in technology, we believe
that more fundamental issues still remain. For instance, one
basic question that has remained unanswered is: when can
statistical causal influence be interpreted as information flow
about a message? In previous work, we demonstrated that even
under ideal measurement conditions, the direction of greater
Granger causal influence can be opposite to the direction in
which the message is being communicated in certain kinds of
feedback communication networks [58]. This example points
to a more general issue with the use of statistical causal
influence measures: there is no direct way to interpret what
the influence is “about”. While it is understood in certain
settings that “information flow” refers to information contained
in a particular set of “stimuli” (as mentioned in the previous
section), the aforementioned measures do not incorporate the
effect of the stimulus.

The existence of such fundamental issues can be traced
back to the fact that there is no underlying model that links
information flow (of some message of interest) with the signals
that are actually measured. This leads to a lack of separation
between the problems of defining information flow and of
estimating it, while also making it hard to test assumptions and
draw the right interpretations from experimental analyses. We
believe that, just as Shannon provided a theoretical foundation
for information transmission [59], a solid theoretical treatment
of information flow is needed. Such a treatment would begin
with a model of the underlying system, give a definition for
information flow and describe its properties, and finally end
with a suitable estimator. Adopting Shannon’s approach of
defining entropy by stating a set of properties that such a
measure must satisfy, we attempt to define information flow
by putting forward an intuitive property that we believe is
desirable for such a quantity. It is our hope that, by providing a
theoretical foundation that separates definition and estimation,
along with a concrete model and explicitly-stated assumptions,
we can avoid many of the pitfalls encountered by previous
approaches to understanding information flow in the brain.

It is useful at this point to mention the key differences
between our measure of information flow, and measures based
on Granger Causality and its generalizations:

1) Our measure depends on a message, M , that is related
to the stimulus or the response in a neuroscientific task,
whereas tools based on Granger Causality do not.

2) Since Granger Causality-based tools use time series
modeling to compute an estimate of information flow,
they are unable to provide a dynamic, evolving picture
of information flow between different areas over time
(although we must acknowledge that there have been
recent efforts towards bridging this gap [60]).

3) Since we start with a computational framework, our

model provides a direct way to connect information flow
with the underlying computation. On the other hand,
Granger Causality-based tools start with a probabilistic
graphical model of the observed nodes, and do not tie
the analysis to computation in any way.

While our proposed definition of information flow will also
suffer from performance degradation under non-ideal measure-
ment conditions, we believe that it overcomes the fundamen-
tal difficulty faced by Granger Causality-based tools: when
measurements are ideal, our definition provides a clear and
consistent way to interpret information flow about a message,
as we illustrate through several examples in Section VI.

Another line of work that appears within the functional and
effective connectivity literature is Dynamic Causal Modeling
(DCM) [38], [61]. This methodology is, in spirit, much more
closely aligned with what we propose here. However, our
framework differs from DCM in a few important ways: (i) our
underlying framework and model is based on Structural Causal
Models rather than dynamical systems, and (ii) we seek to
formalize the notion of information flow, not just of effective
connectivity. However, the style of thinking, which involves
starting from theoretical models and incorporating the stimulus
and experimental design, is common to both DCM and our
approach.

D. Outline of the Paper

In this paper, we start by giving a mathematical description
of a generic computational system, about which inferences
are being drawn (Section II). We then formally define what
it means for information about some message to flow on a
single edge or on a set of edges in the computational system
(Section III). This is done by proposing an intuitive property
that we would like such flows to satisfy, along with some can-
didate definitions, and then examining which candidates satisfy
the property. The intuitive property we desire is: information
flow about a message may not completely disappear from
the system at a certain time, only to spontaneously reappear
at a later point (formalized in Property 1). It emerges that
simple and intuitive definitions actually fail to satisfy this basic
property, and so a more sophisticated definition is needed.
We then show how our definition for information flow about
the message satisfies several desirable properties, including
guarantees for the existence of “information paths” between
appropriately defined input and output nodes (Section IV).
We also show how our definition has a very non-intuitive
property—information about a message may flow out of a
node despite not flowing into it—and justify why this might be
reasonable for an observational definition. After that, we sug-
gest how one might detect which edges of the computational
system have information flow, and provide an “information
path algorithm”, which identifies the aforementioned infor-
mation paths (Section V). We also introduce and discuss the
concepts of derived information, redundant transmissions and
hidden nodes, which allow one to obtain a more fine-grained
understanding of information structure in the computational
system. To show that our definition of information flow
agrees with intuition, we give several canonical examples of
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computational systems and depict the information flow in each
case (Section VI). Finally, we conclude with discussions on
connections with neuroscience, issues related to the difficulty
of estimating information flow (along with possible remedies),
comparisons with the existing statistical causal influence liter-
ature, connections with fields such as probabilistic graphical
models and causality, and a discussion on information volume
(Section VII).

II. THE COMPUTATIONAL SYSTEM

Our goal is to develop a rigorous framework for understand-
ing how information about a message flows in a computational
system. To do this, we first need to define the terms “compu-
tational system”, “message”, “information about a message”
and “flow”. In this section, we start with the first two terms,
defining the model of the computational system that is used
throughout this paper, and explicitly defining the message.

Our model is based on prior art in the information theory
literature [7], [29], and consists of nodes communicating to
each other at discrete points in time on a directed graph. At
every time instant, each node receives transmissions on its
incoming edges and computes a function of these transmis-
sions to send out on its outgoing edges. This function can
be random and time-dependent, and can be different for every
outgoing edge. We will be interested in the flow of a particular
random variable called the “message”, which will be defined
shortly. Since the directed graph forming the computational
system may have cycles, the message may flow along a cyclic
path. To deal with this possibility while capturing the fact that
nodes must be causal,3 we define a “time-unrolled” graph (in
a manner similar to Ahlswede et al.4 [7]), which describes
how nodes communicate to each other over time. We define
a random variable model for the nodes’ transmissions, and
demonstrate how each node computes these variables. We also
formally define the input nodes of the computational system,
through their relationship with the message.

Definition 1 (Complete directed graph): A complete directed
graph G∗ = (V∗, E∗) is described by a set of nodes and the
set of all edges between those nodes (including self-edges). We
denote the set of nodes by their indices, V∗ = {1, 2, . . . , N},
where N is a positive integer denoting the number of nodes
in the graph. The set of edges in the graph is the set of all
ordered pairs of nodes, E∗ = V∗ × V∗.

Note that (i) edges are directed, so the edge (A,B) ∈ E∗

describes an edge from node A to node B; and (ii) nodes have
self-edges. For every A ∈ V∗, there is an edge (A,A) in E∗.

Moving forward, nodes shall be thought of as performing
computations and possessing local memories. We shall inter-

3Causal in the “Signals and Systems” sense of the word, where a node
cannot make use of future transmissions [62].

4Although the work of Ahlswede et al. (2000) is titled “Network Informa-
tion Flow”, it actually addresses a different problem: one of the achievable rate
region of a broadcast network and the optimal coding strategy that achieves
this rate. In contrast to their work, which concentrates on characterizing and
achieving the optimal rate, our focus is on understanding how information
about a known message flows in an existing computational system.

pret the transmission of a node to itself as the variable it stores
within its memory.5

Definition 2 (Time-unrolled graph): In order to allow nodes
to have different transmissions at every time instant, we must
provide for the progression of time. Let T= {0, 1, . . . , T} be
a set of time indices, where T is a positive integer representing
the maximum time index. Then, a time-unrolled graph G =
(V, E) is constructed by indexing a complete directed graph
G∗ using the time indices T as follows:

1) The nodes V consist of all nodes V∗ in G∗, subscripted
by time indices in T,

V= {At : A ∈ V∗, t ∈ T};

2) The edges E connect nodes of successive times in V, so
they can be written in terms of the edges in E∗ as

E=
{
(At, Bt+1) : (A,B) ∈ E∗, t ∈ T\{T}

}
.

For brevity, we denote the set of all nodes at time t by Vt,
and the set of all (outgoing) edges at time t by Et. So, for
example, we will have A1 ∈ V1 and (A1, B2) ∈ E1. All of
the notation in this section can be visualized in Figure 1 and
is summarized in Table I.

Once again, note that (i) edges at time t connect nodes at
time t to nodes at time t+1; and (ii) since the original graph
G∗ had self-edges, there will always be an edge (At, At+1)
in Et for every node At ∈ Vt.

Also note, we have only presented the complete directed
graph in Definition 1 in order to explicitly define the process
of time-unrolling. We do not expect the time-unrolled graph to
be “rolled back” into a complete directed graph at the end of
an information flow analysis. Since we seek a time-evolving
picture of information flow between different computational
nodes, we will directly view and interpret information flow
on the time-unrolled graph. This is illustrated later, through
several examples, in Section VI.

Definition 3 (Computational System): A computational sys-
tem C = (G, X,W, f) is a time-unrolled graph G that has
transmissions on its edges which are constrained by compu-
tations at its nodes. The input to the computational system
includes a message,6 M . We now elaborate upon these terms:

3a) Transmissions on Edges

We begin by defining a function which maps every edge
of G to a random variable. Let X be the set of all random
variables in some probability space.7 Then, let X : E→ X

be a function that describes what random variable is being
transmitted on a given edge, i.e., X(E) is the random variable
corresponding to the transmission on the edge E.

5Instances of directed graphs that are not complete and of nodes possessing
no memory are merely special cases of our model, where the respective edges’
transmissions can simply be set to zero.

6The message is the random variable whose “information flow” we will
seek to identify.

7We assume that all probability distributions are such that the mutual
information and conditional mutual information between any sets of random
variables is well-defined [63, Sec. 2.6].
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Figure 1: A diagram showing an example of a how a complete directed graph is unrolled to create a time-unrolled graph. On the left, we show a complete
directed graph G∗ that has three nodes, V∗ = {A,B,C}. These nodes are fully connected to each other via edges E∗, including self-edges.
On the right, we show how G∗ has been unrolled using time indices T= {0, 1, 2} to obtain a time-unrolled graph G. The set of all nodes at time t = 0 is V0
and the set of all (outgoing) edges at time t = 0 is denoted E0. As an example, we have shown an arbitrary edge E0 ∈ E0 (here, E0 = (C0, B1)) and the
transmission on that edge, X(E0). As another example, we show a “self-edge” in the time-unrolled graph, E1 ∈ E1, which in this case is E1 = (A1, A2).
Also depicted is the transmission X(E1) on this self-edge, which is interpreted as the contents of the memory of node A from t = 1 to t = 2. The message
M arrives at the input node A0, but could in general be available at more than one node at t = 0.
In subsequent illustrations, we do not depict all edges at every time step, even though they are present. This is done only for the sake of clarity.

For convenience, we define X applied to a set of edges as
the set of random variables produced by applying X to each
of those edges individually, i.e., for any set E′ ⊆ E,

X(E′) = {X(E) : E ∈ E′}. (1)

We extend the use of this notation to other functions of nodes
and edges that we define, going forward.
3b) Computation at a Node

Let At ∈ Vt be a node in the time-unrolled graph G,
at some time t ≥ 1 (recall that t ∈ {0, 1, . . . , T}). Let
P(At) be the set of edges entering At, and Q(At) be the
set of edges leaving At. Further, let us suppose that At is
able to intrinsically generate the random variable8 W (At)
at time t, where W (At) ⊥⊥ W (V\ {At}) ∀ At ∈ V,
W (Vt) ⊥⊥ {M} ∪ {X(Et′) : t

′ ∈ T, t′ < t} and the symbol
“⊥⊥” stands for independence between random variables. Then,
the computation performed by the node At (for t ≥ 1) is a
deterministic function9 fAt that satisfies

fAt
(
X(P(At)),W (At)

)
= X(Q(At)). (2)

Here, X(Et−1), W (V \ {At}), W (Vt), X(P(At)) and
X(Q(At)) all make use of the notation described in (1).

Note that the definition above does not apply when t = 0;
this is a special case which is discussed below. Also, for
convenience, where A is an arbitrary set of nodes, we will use
fA to denote the “joint function” mapping the incoming trans-
missions of all nodes in A (along with their intrinsic random
variables W (A)) to their respective outgoing transmissions.

8X(Et) and W (At) may also be random vectors instead of random
variables, i.e., an edge may transmit a vector. This does not affect the
theoretical development presented here; all of our proofs remain unchanged.

9This kind of model is not new. For instance, in the causality literature,
it is known by a few different names: Pearl refers to it as a “Structural
Equation Model” [30, Sec. 1.4.1], while Peters et al. refer to it as a “Structural
Causal Model” [31]. We prefer the latter terminology, which makes explicit
the connection to causality.

3c) The Message and the Input Nodes

The message is a random variable M , which is of interest
to the experimentalist observing the computational system,
and for which we shall define information flow. For now, we
assume that we are interested in a single message.10 We also
assume that the message enters the computational system only
at time t = 0, and at no later time instant.

We formally define the input nodes of the system as those
nodes of G, at time t = 0, whose transmissions statistically
depend on the message M :

Vip := {A0 ∈ V0 : I
(
M ;X(Q(A0))

)
> 0}, (3)

where Q(A0) represents the set of edges leaving the node A0.
To remain consistent with Definition 3b, we define the

computation performed by an input node A0 ∈ Vip as a
function fA0

that satisfies

fA0

(
M,W (A0)

)
= X(Q(A0)), (4)

and the computation performed by a non-input node at time
t = 0, A0 ∈ V0\Vip, as a function fA0

that satisfies

fA0

(
W (A0)

)
= X(Q(A0)). (5)

As before, W (A0) ⊥⊥ W (V0 \{A0}) for all A0 ∈ V0 and
W (V0) ⊥⊥M .
Remarks:

1) Informally speaking, Definition 3 is designed to allow
each node to generate a randomized function of its incom-
ing transmissions for each of its outgoing transmissions.

2) The randomization at each node is explicitly captured by
its intrinsic random variable W (·), and is assumed to be
independent across all nodes of the system.

3) Furthermore, each node is allowed to send a different
transmission on each of its outgoing edges.

10That is, we assume that the message is a single random variable or vector.
It is possible to simultaneously examine the information flows of several
(possibly dependent) messages, or of sub-messages within a single message.
These cases are examined in Section V-F.
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TABLE I
SUMMARY OF NOTATION

Variable(s) Meaning

G∗ = (V∗, E∗) The original complete directed graph, prior to time-
unrolling

G= (V, E) The time-unrolled graph making up the computa-
tional system

T The set of all time points, {0, 1, . . . , T}
V The set of all nodes in the computational system
Vt The subset of nodes at time t

Vt, At, Bt, Ct, Dt A node in the graph at time t

V,A,B,C,D,E A node in the original complete directed graph
G∗, or a node in the computational system at an
unspecified time point

A,B Some subset of nodes in V

E The set of all edges in the computational system

Et The set† of all edges at time t

E′t Some subset‡ of edges in Et

Et, Pt, Qt, Rt, St An edge in the computational system at time t

E, P,Q,R, S An edge in the original complete directed graph
G∗, or an edge in the computational system at an
unspecified time point

X(Et) The random variable representing the transmission
on the edge Et

X({E(1), E(2)}) Short-hand notation for {X(E(1)), X(E(2))} (re-
fer Equation (1))

P(Vt) The set of all incoming edges of Vt (= Vt−1 ×
{Vt} ⊆ Et−1)

Q(Vt) The set of all outgoing edges of Vt (= {Vt} ×
Vt+1 ⊆ Et)

W (Vt) The intrinsically generated random variable at the
node Vt

M The “message”, a random variable that enters the
system at time t = 0, and whose information flow
we seek to understand (refer Definition 3c)

Vip The input nodes: the subset of nodes at time 0
whose outgoing transmissions depend on the mes-
sage M (refer Definition 3c)

fVt The function computed by the node Vt (refer
Definition 3b)

†Script forms typically denote sets
‡Primed script forms typically denote subsets

4) Note that the condition imposed by Equation (2) intro-
duces dependence between the random variables in the
set X(E).

5) For the most part, we will not be concerned with the
precise form of the computation being performed by
every node. We will only make use of information-
theoretic measures applied to the message and to the
random variables in the computational system.

Throughout the paper, we use the variables U , V , A, B,
C and D to refer to nodes and E, P , Q, R and S to refer
to edges. We use their script forms, e.g. R, when referring
to sets of nodes and edges, and primed script forms, e.g. R′,
when referring to subsets thereof. Once again, the notation
we use is summarized in Table I, and depicted in Figure 1 for
convenience.

Having defined what we mean by the terms “computational
system” and “message”, in the following sections we proceed

to find a definition for “information flow” and identify proper-
ties that this definition satisfies in any computational system.

III. DEFINING INFORMATION FLOW

Before one can speak of detecting information flow in a
network, it is first important to define what it is that we seek
to detect.11 In this section, we focus on arriving at a definition
for information flow.

Our goal is to formalize how information about a message
flows in a computational system. Ultimately, we expect to find
the path that the message takes while being processed by the
system. Towards this, we start by trying to formally define
what it means for information about the message to flow on
a given edge. This section concludes with a proposal for such
a definition: one based on strict positivity of a conditional
mutual information. But to provide the intuition behind this
choice of definition, we start with several simpler candidate
definitions, and show how they fail to satisfy an intuitive
property using counterexamples.

After proposing a definition for information flow, in Sec-
tion IV, we discuss the properties satisfied by our definition.
Then, in Section V, we specify how the transmissions of
the computational system are observed, and describe how
information flow might be inferred in a real computational
system.

A. An intuitive property

To concretely define what it means for information about
a message to flow on an edge, we need some way to assess
competing candidate definitions and choose one among them.
Towards this goal, we state a straightforward and intuitive
property, which we would want any definition of information
flow to satisfy.

Suppose that, at a given point in time, there is no flow
of information about the message across any edge of a
computational system. Note that this includes self-edges, so
no node “carries” information about the message within its
memory either. Then, we expect that information about the
message has ceased to persist in the system, so the information
flow about the message must be zero on all edges of the
computational system, at all future points in time.

Property 1 (The Broken Telephone12): Let C be a compu-
tational system, and let FM : E→ {0, 1} be an indicator of
the presence of information flow about M on an edge. That
is, FM (E) = 1, if information about M flows on the edge
E ∈ E and FM (E) = 0, otherwise. The Broken Telephone
Property states that if, at some time t ∈ T, we have

FM (Et) = 0 ∀ Et ∈ Et, (6)

then

FM (Et′) = 0 ∀ Et′ ∈ Et′ ∀ t′ ∈ T, t′ > t. (7)

11In essence, “causal influence” measures such as Granger Causality and
Directed Information, while intuitively quantifying transferred information,
fail to lay down what aspect of computation they actually capture. This is,
in part, a result of conflating the stages of defining a quantity we want to
understand, and prescribing an estimator for it.

12https://en.wikipedia.org/wiki/Telephone_game
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M A0 A1 A2

B0 B1 B2

C0 C1 C2

M

M

Z

Z

Z

M⊕Z

Figure 2: The computational system for Counterexample 1. We only depict
edges relevant to the counterexample here. All other edges in the underlying
complete directed graph are still present, but are not shown; their transmissions
are assumed to be zero. Observe that no edge at time t = 1 has information
flow as per Candidate Definition 1, yet the message reappears at time t = 2.

B. Intuiting Information Flow through Counterexamples

We now propose four candidate definitions, beginning with
the simplest. We then construct counterexamples to show how
the first three candidate definitions do not satisfy Property 1.

Candidate Definition 1: A simplistic and intuitive definition
for information flow might simply stem from dependence. We
say that information about the message M flows on an edge
Et if

I
(
M ;X(Et)

)
> 0.

Counterexample 1: Consider the computational system de-
picted in Figure 2 (note that, in order to avoid unnecessary
clutter, only edges with non-zero transmissions are shown in
the figure). A0 is the input node, which has the message
M ∼ Ber(1/2) at time t = 0. The system is designed to
communicate13 M to the node B using the following strategy:
at t = 0, A0 “transmits” M to A1 (i.e., node A stores M in
its memory). C0 independently generates a different random
number, W (C0) = Z ∼ Ber(1/2), Z ⊥⊥ M , and sends this
message to A1, while also storing it in memory it until t = 1.
A1 then computes M ⊕ Z and passes the result to B2, while
C1 sends Z to B2. Here, the symbol “⊕” stands for XOR, the
exclusive-OR operator on two bits. B2 is thus able to recover
M by once again XOR-ing its inputs, (M ⊕ Z) and Z.

Note that the output of B2 depends on M , even
though none of its inputs individually depends on M .
That is, I

(
M ;X((A1, B2))

)
= I(M ;M ⊕ Z) = 0, and

I
(
M ;X((C1, B2))

)
= I(M ;Z) = 0, so by Candidate

Definition 1, information about the message flows on no edge
at time t = 1. However, information about the message does
flow out of node B2 at time t = 2. This violates Property 1.
Thus, mere dependence on the message cannot be a valid
definition for flow of information on a single edge.

Communication strategies such as the one in Counter-
example 1 frequently arise in cryptography [64], to prevent
an eavesdropper from reading confidential information, and in
network coding [7], for achieving the communication capacity
of a network. Furthermore, a complex computational network
may have smaller sub-networks with such topologies. For
instance, we observe such a sub-network in the canonical

13This communication can be thought of as computing the identity function,
and making the output available at the node B.

M A0 A1 A2

B0 B1 B2

C0 C1 C2

D0 D1 D2

M

M

Z1

Z1

Z2

Z2

M⊕Z1⊕Z2

Z1

Z2

Figure 3: The computational system for Counterexample 2. Once again,
observe that no edge at time t = 1 has information flow as per Candidate
Definition 2, yet the message reappears at time t = 2. Note that only edges
relevant to the counterexample are depicted in the figure. All other edges of the
underlying complete directed graph are still present, and their transmissions
are assumed to be zero.

example for network coding: the butterfly network [7, Fig. 7b]
(this particular example is discussed in detail in Section VI-A).
Optimal communication in such a network requires the use of
such topologies, so Counterexample 1 is far from obscure.
In fact, central to the idea of Counterexample 1 is a concept
known as “synergy”, which is well-studied in the literature
on Partial Information Decomposition [65]–[67] (see [68] for
a recent review). This is discussed at length in Section III-E.
Even in neuroscience, the concept of synergy is recognized and
well-understood [69]–[71], and some experimental evidence
has appeared in the literature [72].

Counterexample 1 demonstrates that the information nec-
essary to recover the message (or a function of it) is not
necessarily transmitted through individual edges, but jointly
across edges. So, we might instead seek to define the “smallest
set of edges” along which information about the message
flows, for every point in time. But if we ultimately wish
to isolate paths along which information about the message
flows, we require an understanding of which edges specifically
the information flows upon. We therefore continue to think of
information as flowing on individual edges.14

We can now update our naïve definition to counter the
previous counterexample. We start by noting that in Counter-
example 1, although the transmission on edge (A1, B2) is
independent of M , it is not conditionally independent of M
when given the transmission on (C1, B2).

Candidate Definition 2: We say that information about the
message M flows on an edge Et ∈ Et if at least one of the
following holds:

1) I
(
M ;X(Et)

)
> 0, or

2) ∃ E′t ∈ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0.

Counterexample 2: Consider a modified version of Counter-
example 1 in which we XOR M with two random variables,

14It should be noted that the two views—information flowing on individual
edges, versus sets of edges—are compatible with each other if we use
Definition 5 (which will appear shortly) to describe information flow on a
set of edges. This equivalence is elaborated upon in Section III-D. Later, in
Section IV-D, we attempt to refine our understanding of the aforementioned
“smallest set of edges” along which information about the message flows.
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M A0 A1 A2

D0 D1 D2

B0 B1 B2

C0 C1 C2

M

M

M

Z

Z

Z

M⊕Z

M⊕Z

Z

Z

Figure 4: The computational system for Counterexample 3. Just as in the
previous counterexamples, no edge at time t = 1 has information flow as per
Candidate Definition 3, yet the message is reconstructed at time t = 2. Note
that only edges relevant to the counterexample are depicted in the figure. All
other edges of the underlying complete directed graph are still present, and
their transmissions are assumed to be zero.

Z1 and Z2, where M,Z1, Z2 ∼ i.i.d. Ber(1/2) (as shown in
Figure 3). Now, since there are two noise terms, no single one
of them may be conditioned upon to have non-zero information
flow at time t = 1. That is, I(M ;M ⊕ Z1 ⊕ Z2 |Z1) = 0
and I(M ;M ⊕ Z1 ⊕ Z2 |Z2) = 0. The same holds true of
Z1, conditioned on either M ⊕ Z1 ⊕ Z2 or Z2, and for Z2,
conditioned on either M ⊕ Z1 ⊕ Z2 or Z1. So, Candidate
Definition 2 also fails to satisfy Property 1.

It might seem that a possible rectification is to condition on
all other edges at time t, but we can show that this also fails
the test.

Candidate Definition 3: We say that information about the
message M flows on an edge Et ∈ Et if at least one of the
following holds:

1) I
(
M ;X(Et)

)
> 0, or

2) I
(
M ;X(Et)

∣∣X(Et\{Et})
)
> 0.

Counterexample 3: Consider the computational system
shown in Figure 4. Once again, we have an input node A0

which possesses the message at time t = 0, and wishes
to send this message to node B. It does so by mixing M
with an independent random variable Z generated at C0, so
that the scenario described in Counterexample 1 still holds.
But additionally, A communicates to B along a redundant
path, through D1. Now, if E is any incoming edge of B2,
it is still true that I

(
M ;X(E)

)
= 0. So none of the inputs

of B2 individually depends on M , thus eliminating the first
condition in Candidate Definition 3. Furthermore, checking
each incoming edge of B2 reveals that the second condition
also fails to hold. If we take E1 = (A1, B2), we get

I
(
M ;X(E1)

∣∣X(E1\{E1})
)
= I(M ;M⊕Z |M⊕Z,Z) = 0.

(8)
The same holds true when E1 = (D1, B2) since the transmis-
sions on both edges are identical by construction. Likewise, if
we take E1 = (C1, B2), we have

I
(
M ;X(E1)

∣∣X(E1\{E1})
)
= I(M ;Z |M⊕Z,Z) = 0, (9)

with the same holding true when E1 = (C1, C2). Therefore,
no edge at time t = 1 has any information flow about the

message M , as per Candidate Definition 3. Nevertheless, B2

is able to recover the message at time t = 2, proving that
Property 1 fails to hold for Candidate Definition 3.

C. Information Flow on a Single Edge

The counterexamples presented in the previous section mo-
tivate a new definition for when information about the message
can be said to flow on a given edge. Neither dependence of
M on the transmission of an edge, nor conditional dependence
given one or all other edges, satisfy Property 1.

However, in all these counterexamples, given an edge
Et upon which we expect to have non-zero information
flow, we observe: there is at least one subset of edges
E′t ⊆ Et \ {Et}, such that when given X(E′t), X(Et) is
conditionally dependent15 on M . In Counterexample 1, the
edge (A1, B2), carrying M ⊕ Z, is conditionally dependent
on M , given X

(
(C1, B2)

)
= Z. In Counterexample 2,

X
(
(A1, B2)

)
= M ⊕ Z1 ⊕ Z2 is conditionally dependent

on M , given {X
(
(C1, B2)

)
, X
(
(D1, B2)

)
} = {Z1, Z2}. And

finally, in Counterexample 3, X
(
(A1, B2)

)
= M ⊕ Z is

conditionally dependent on M , given X
(
(C1, B2)

)
= Z; note

that we do not condition on X
(
(D1, B2)

)
= M ⊕ Z. Thus,

conditioning on a subset of the other edges’ transmissions
creates dependence between M and the transmission on an
edge of interest.

We will shortly prove that Property 1 holds when infor-
mation flow is defined as below, so we directly state it as a
definition, skipping its candidacy status.

Definition 4 (M -information Flow on a Single Edge): We
say that information about the message M flows on an edge
Et ∈ Et if

∃ E′t ⊆ Et \ {Et} s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (10)

Henceforth, we refer to “information flow about the message
M” as M -information flow, and use the phrase “the edge
Et has M -information flow” or “the edge Et carries M -
information flow” to mean that information about M flows
on Et per this definition.

Note that if I
(
M ;X(Et)

∣∣X(E′t)
)
> 0, then we must have

I
(
M ;X({Et} ∪ E′t)

)
> 0. In other words, there exists a set

of edges that includes Et, whose transmissions depend on M .
This is why it is important to condition on all possible subsets
of Et. It is not immediately clear, however, whether every edge
in {Et}∪ E′t has M -information flow. We return to this point
in Section IV-D.

Also, this definition implies that certain edges, such as
(C1, B2) in Counterexample 1, may have M -information flow,
which may seem counter-intuitive. This is discussed further
and justified in Section IV-B.

D. Information Flow on a Set of Edges

The definition of M -information flow for a single edge
naturally generalizes to one for a set of edges, at a given time.

15Equivalently, we could say that there exists at least one sub-
set of edges E′t ⊆ Et, without explicitly excluding Et, since
I
(
M ;X(Et)

∣∣X(Et), X(E′t)
)
= 0.
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Definition 5 (M -information Flow on a Set of Edges): We
say that information about the message M flows on a set of
edges E′t ⊆ Et if

∃ R′t ⊆ Et s.t. I
(
M ;X(E′t)

∣∣X(R′t)
)
> 0. (11)

The definition of M -information flow on a set of edges is
nearly identical to its single-edge counterpart. Indeed, they are
closely related, as the following proposition shows.

Proposition 1: A set E′t ⊆ Et has M -information flow (per
Definition 5) if and only if there exists an edge E′t ∈ E′t that
has M -information flow (per Definition 4).
A proof of this proposition can be found in Appendix A.

It should be noted that although the counterexamples in this
section all employed computational systems which recovered
the message M at a new node at a later time, a computational
system will in general compute some function of the message.
For instance, see the example in Section VI-B.

E. The Connection with Synergistic Information

This section connects our definition of M -information flow
with recent developments on a subject known as “Partial Infor-
mation Decomposition” (PID). Our definition is closely related
to the concept of “Synergistic Information” that appears in this
field. This section exists only for the purpose of providing
a deeper intuition for our definition of M -information flow,
and does not affect the rest of the paper in any significant
way. We have attempted to explain this intuition in a way
that is accessible to readers unfamiliar with the PID literature.
However, readers may feel free to skip this section, if desired.

At its core, Counterexample 1 relies on a concept known
as “synergy”, which is described explicitly in the literature on
Partial Information Decomposition (PID) [65]–[67] (see [68]
for a recent review, and Appendix C for a brief introduc-
tion). Essentially, this body of literature seeks to decompose
the mutual information that two or more variables share
about a message, I

(
M ; (Y1, Y2, . . .)

)
, into several individually

meaningful, non-negative components. In particular, when
discussing the bivariate case—i.e., the case of two variables,
I
(
M ; (Y1, Y2)

)
—it is understood what the terms in this de-

composition should be: (i) information about the message
that each variable carries uniquely, and which cannot be
inferred from the other; (ii) information about the message that
the variables share redundantly, and which can be extracted
from either; (iii) and information about the message that
the variables convey synergistically, which is revealed only
when both variables are taken together, and cannot be inferred
from either variable individually. Counterexample 1 is the
canonical example for synergy, and is known simply as the
“XOR” example in the PID literature. While M ⊕ Z and
Z are individually independent of M , when taken together,
I
(
M ; (M ⊕ Z,Z)

)
= H(M). This suggests that M ⊕ Z and

Z have no unique or shared information about M , but convey
information synergistically.

While the field has not yet arrived at a consensus on the
most appropriate definitions for unique, redundant and syner-
gistic information [68], it is well-understood what properties
these quantities must satisfy, at least in the bivariate case

(see Appendix C, specifically, Equations (94), (95) and (97)).
Therefore, even without formal definitions, we can rely on
the intuition provided by these properties to understand the
implications of PID for M -information flow. If a particular
edge’s transmission contains unique or redundant information
about the message (with respect to some other subset of edges
at that point in time), then that information will manifest itself
in the form of strictly positive mutual information. However,
in the absence of positive mutual information between the
message and the transmission on a given edge, we need to
consider whether said transmission synergistically interacts
with another subset of transmissions at that point in time,
as this could potentially create dependence with the message
through the kind of “recombination” described in Counter-
example 1. We then need to decide whether such synergistic
interactions ought to be considered to constitute information
flow. As we show below, our definition of M -information flow
does consider instances of purely synergistic information to
constitute information flow.

Indeed, it is possible to formulate a definition for informa-
tion flow based on synergy, which is completely equivalent
to Definition 4. The definition below makes use of the PID
preliminaries given in Appendix C.

Definition 6 (M -synergistic information flow): We say that
an edge Et has M -synergistic information flow if at least one
of the following holds:

1) I
(
M ;X(Et)

)
> 0, or

2) ∃ E′t ⊆ Et \ {Et} s.t. SI
(
M : X(Et);X(E′t)

)
> 0,

where SI(M : X;Y ) represents the synergistic information
between X and Y about M .

Proposition 2 (Equivalence of Information Flow Defini-
tions): An edge Et has M -information flow if and only if
it has M -synergistic information flow. Furthermore, suppose
Et is an edge which satisfies I

(
M ;X(Et)

)
= 0. Then,

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0 (12)

for some set E′t ⊆ Et \ {Et}, if and only if

SI
(
M : X(Et);X(E′t)

)
> 0. (13)

That is, the set E′t upon whose transmissions we need to
condition is the same as the one responsible for providing
synergy in the alternate definition.
A proof of this proposition is given in Appendix C.

We should also mention here that it may be possible
to leverage specific definitions of synergistic information to
supply an intuitive measure of the volume of information flow;
we discuss this in Section VII-E.

IV. PROPERTIES OF INFORMATION FLOW

Having defined what it means for information about a
message to flow on an edge, we demonstrate that Defini-
tion 4 satisfies several intuitively desirable properties, includ-
ing Property 1.
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A. The Broken Telephone Property

Theorem 3: M -information flow satisfies the Broken Tele-
phone Property, i.e., Definition 4 satisfies Property 1.

Before we prove this theorem, we prove a simpler lemma
which directly falls out of Definition 4 and the properties of
mutual information.

Lemma 4: There is no edge in Et that carries M -
information flow if, and only if, X(Et) is independent of M .
In other words,

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0 ∀ Et ∈ Et, E′t ⊆ Et\{Et} (14)

if and only if
I
(
M ;X(Et)

)
= 0. (15)

Equivalently, we can state the opposite: X(Et) depends on M
if and only if at least one edge in Et carries M -information
flow.

Proof: (⇒) Suppose that the condition in (14) holds. Let
Et =

{
E

(1)
t , E

(2)
t , . . . , E

(N2)
t

}
be any ordering of the edges

in Et. Then,

I
(
M ;X(Et)

)
(a)
= I

(
M ;X(E

(1)
t )
)
+ I
(
M ;X(E

(2)
t )

∣∣X(E
(1)
t )
)

(16)

+ I
(
M ;X(E

(3)
t )

∣∣X(E
(1)
t ), X(E

(2)
t )
)
+ · · ·

=

N2∑
i=1

I

(
M ;X(E

(i)
t )
∣∣∣ i−1⋃
j=1

{
X(E

(j)
t )
})

(17)

(b)
=

N2∑
i=1

I

(
M ;X(E

(i)
t )
∣∣∣X(i−1⋃

j=1

{E(j)
t }

))
(c)
= 0, (18)

where (a) follows from the chain-rule of mutual information
[73, Ch. 2], (b) is simply the application of Equation (1), and
(c) follows from the fact that each term in the summation is
zero, by (14). This proves the forward implication.

(⇐) Next, suppose I
(
M ;X(Et)

)
= 0. Let Et be any edge

in Et and let E′t be any subset of Et \ {Et}. Also, let E′′t =
Et \

(
E′t ∪ {Et}

)
. Then,

0 = I
(
M ;X(Et)

)
(19)

= I
(
M ;X(E′t)

)
+ I
(
M ;X(Et)

∣∣X(E′t)
)

+ I
(
M ;X(E′′t )

∣∣X(E′t), X(Et)
)

(20)

by the chain rule. Since (conditional) mutual information is
always non-negative [73, Ch. 2], all three terms on the right
hand side must be zero. So in particular,

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0. (21)

Since Et and E′t are arbitrary, this proves the converse.
Proof of Theorem 3: We need to prove that M -

information flow, as given by Definition 4, satisfies Property 1.
Explicitly stated, we need to show that if every edge at some
time t has zero M -information flow, then every edge at all
future times t′ > t must also have zero M -information flow.
So suppose that, at time t, for every Et ∈ Et we have

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0 ∀ E′t ⊆ Et \ {Et}. (22)

By Lemma 4, this implies that

I
(
M ;X(Et)

)
= 0. (23)

Now, consider the first future time instant, t′ = t + 1. For
every node At+1 ∈ Vt+1, the definition of computation at a
node (Definition 3b) states that

X(Q(At+1)) = fAt+1

(
X(P(At+1)),W (At+1)

)
, (24)

where the reader may recall, P(At+1) and Q(At+1) are the
edges entering and leaving At+1 respectively. We can collect
the individual functions fAt+1

across all nodes in Vt+1 into a
single joint function fVt+1

, as described in Definition 3b, to
obtain

X(Et+1) = fVt+1

(
X(Et),W (Vt+1)

)
. (25)

Therefore,

0
(a)

≤ I
(
M ;X(Et+1)

)
= I

(
M ; fVt+1

(
X(Et),W (Vt+1)

))
(26)

(b)

≤ I
(
M ;X(Et),W (Vt+1)

)
(27)

= I
(
M ;X(Et)

)
+ I
(
M ;W (Vt+1)

∣∣X(Et)
)

(28)
(c)
= I

(
M ;X(Et)

) (d)
= 0, (29)

where (a) follows from the non-negativity of mutual infor-
mation, (b) is an application of the Data Processing Inequal-
ity [73, Ch. 2], (c) follows from the fact that W (Vt+1) ⊥⊥
{M,X(Et)}, as stated in Definition 3b, and (d) follows
from (23). So, we must have that I

(
M ;X(Et+1)

)
= 0. Ap-

plying Lemma 4 once again, we find that for t′ = t+ 1,

I
(
M ;X(Et′)

∣∣X(E′t′)
)
= 0 ∀ Et′ ∈ Et′ , E

′
t′ ⊆ Et′ \{Et′}

(30)
We have shown that (22) implies (30), so induction on t′ yields
that (30) holds for all future times t′ > t, completing the
proof.

B. The Existence of Orphans

M -information flow (Definition 4) also has a very non-
intuitive property: an edge leading out of a node may have
M -information flow, even though no edge leading into that
node has M -information flow.

Definition 7 (M -information Orphan): In a computational
system C, a node Vt is said to be an M -information orphan
if Q(Vt) has M -information flow (as per Definition 5), but
P(Vt) has no M -information flow.

Property 2: M -information orphans may exist in a compu-
tational system.

Proof: Consider the computational system in Figure 2
from Counterexample 1. The node C1 is an M -information or-
phan, since its outgoing edge (C1, B2) carries M -information
flow, whereas none of its incoming edges carries M -
information flow.

The existence of M -information orphans, along with the
presence of M -information flow on (C1, B2) in Counter-
example 1, may not be expected, since Z was never computed
from M . Indeed, M -information flow appears to emerge from
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“nowhere” at the node C1, leaving it orphaned in a view
of the graph that contains only edges having M -information
flow (hence the name). But closer inspection reveals that in
this example, the transmissions arriving at B2 from A1 and
C1, i.e. M ⊕ Z and Z, are statistically identical: they are
both individually independent of M , but when XOR’ed, are
fully dependent on M . In other words, any purely observa-
tional measure16 defined on the transmissions at time t that
assigns M -information flow to M ⊕ Z, must also assign M -
information flow to Z.

Note that, just as M -information flow can originate at an M -
information orphan, M -information flow may also terminate
at a node—either by simple omission, or as a result of some
computation (see Section VI for such instances). Likewise,
multiple outgoing edges of a given node may transmit re-
dundant copies of the same information. Ultimately, we see
that there is no “law of conservation” for M -information
flow. In this sense, “information flow” is not a typical kind
of “flow” that is defined on graphs (see, for example, [74,
Sec. 26.1]), and well-known results such as the Max-flow
Min-cut Theorem [74, Thm. 26.6] do not apply as-is to M -
information flow.

It is worthwhile to note at this point that the existence of
M -information orphans such as C1 in Counterexample 1 is not
inconsistent with the Data Processing Inequality [73, Ch. 2]. In
fact, a clear example of the Data Processing Inequality is seen
at the network-level, wherein M—X(Et)—X(Et+1) form a
Markov Chain for any time 0 ≤ t < T , and so the information
content about M present collectively in all transmissions at
time t+1 must be no more than that present at time t. We call
this Global Markovity, and state it formally for completeness.

Corollary 5 (Global Markovity): At any given time t, the
following Markov Chain holds: M—X(Et)—X(Et+1).
In fact, this Markov condition must hold for every subset of
nodes, not just for the entire set of nodes, so it is subsumed
by the following proposition.

Proposition 6 (Local Markovity): At any time t, for any
given subset of nodes V′t ⊆ Vt, the following Markov Chain
holds: M—X(P(V′t ))—X(Q(V′t )).

Proof: Since X(Q(V′t )) = fV′t
(
X(P(V′t )),W (V′t )

)
by

Definition 3b, the tuple
(
X(P(V′t )), X(Q(V′t ))

)
is also a

function of X(P(V′t )) and X(W (V′t )). Hence, the following
Markov chain holds:

M—
(
X(P(V′t )),W (V′t )

)
—
(
X(P(V′t )), X(Q(V′t ))

)
.

By the Data Processing Inequality, this implies that

I
(
M ;X(Q(V′t )), X(P(V′t ))

)
≤ I
(
M ;X(P(V′t )),W (V′t )

)
(31)

(a)
= I
(
M ;X(P(V′t ))

)
+ I
(
M ;W (V′t )

∣∣X(P(V′t ))
)

(32)
(b)
= I
(
M ;X(P(V′t ))

)
+ I
(
W (V′t );M,X(P(V′t ))

)
(33)

− I
(
W (V′t );X(P(V′t ))

)
(c)
= I
(
M ;X(P(V′t ))

)
+ 0− 0, (34)

16i.e., a functional of the joint distribution of X(Et)

where in (a) and (b), we have used the chain rule of mutual
information in two different ways, and in (c) we have used
the fact that W (V′t ) ⊥⊥ {M,X(P(V′t ))}. Therefore,

I
(
M ;X(Q(V′t ))

∣∣X(P(V′t ))
)
= 0, (35)

which implies the Markov chain in Proposition 6.
Since the above also holds for V′t = Vt, wherein Q(Vt) = Et,
Proposition 6 implies Corollary 5.

Given that these Markov conditions arise directly from the
way we have defined the computational system, specifically
Definition 3b, they may not be very surprising (indeed, they
may be considered properties of the computational system
model itself). However, it is worth noting that Proposition 6
holds even at an M -information orphan. Thus, M -information
orphans do not “create” information about M , as we would
rightly expect, given the Data Processing Inequality.

C. The Existence of Information Paths

We now show that if the outgoing transmissions of any given
node depend on the message, then we can find a path leading
to that node from one or more input nodes, along which M -
information flows. Before we demonstrate this property, we
formally define what we mean by the terms “path” and “cut”.

Definition 8 (Path): In any computational system C,
suppose A and B are two disjoint sets of nodes in
V. Then, a path from A to B is any ordered set of
nodes {V (0), V (1), . . . , V (L)} that satisfies (i) V (0) ∈ A;
(ii) V (L) ∈ B; and (iii) (V (i−1), V (i)) ∈ E for every
1 ≤ i ≤ L, where L is a positive integer indicating the length
of the path. We refer to the set {(V (i−1), V (i))}Li=1 as the
edges of the path.

Definition 9 (M -Information Path): Continuing from Defi-
nition 8, we define an M -information path from A to B as any
path from A to B, each of whose edges carries M -information
flow. That is, if (V (i−1), V (i)) = Eti ∈ Eti for some ti ∈ T,
then for every 1 ≤ i ≤ L,

∃ E′ti ⊆ Eti s.t. I
(
M ;X(Eti)

∣∣X(E′ti)
)
> 0. (36)

Definition 10 (Cut): In any computational system C, sup-
pose A and B are two disjoint sets of nodes in V. Then, a cut
separating A and B is any pair of sets (Vsrc, Vsink), such that
(i) Vsrc ∪ Vsink = V; (ii) Vsrc ∩ Vsink = ∅; (iii) A⊆ Vsrc;
and (iv) B⊆ Vsink. We refer to the set of edges going from
Vsrc to Vsink, i.e. E∩ (Vsrc × Vsink), as the edges in the cut
set.17

Definition 11 (Zero–M -information Cut): Continuing from
Definition 10, we say that a cut (Vsrc, Vsink) is a zero–M -
information cut if every edge in its cut set has zero M -
information flow. That is, for every Et ∈ E∩ (Vsrc × Vsink),

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0 ∀ E′t ⊆ Et \ {Et}. (37)

Remark: In Definition 11, we require that Equation (37)
hold for every edge Et in E∩ (Vsrc × Vsink). However, the

17Note that it is not necessary for us to assume that, individually, Vsrc and
Vsink are connected sets of nodes. For instance, there may be an isolated
subset of Vsink, surrounded only by nodes in Vsrc. Our theorems and proofs
remain unaffected, even in such a scenario.
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edges in this set may belong to several different time instants,
since the cut is not restricted to any particular time (e.g.,
see Figure 5). The time t used in Equation (37), therefore,
is determined by the time of the edge Et, and varies for each
Et that we check in E∩ (Vsrc × Vsink).

Property 3 (Existence of an Information Path): In any
computational system C, suppose that at some time top ∈ T,
there is an “output node” Vop ∈ V whose outgoing edges
Q(Vop) satisfy I

(
M ;X(Q(Vop))

)
> 0. Then, there must exist

an M -information path from the input nodes Vip to Vop.
Theorem 7: Definition 4 satisfies Property 3.
Informally put, Theorem 7 states that our definition of

M -information flow (Definition 4) guarantees M -information
paths to every output node whose outgoing transmissions
depend on the message. While the theorem seems obvious
on the surface, the proof is in fact non-trivial because of
the nature of our definition of M -information flow. Due to
Property 2, M -information flowing out of a node does not
imply that M -information must flow into that node. Therefore,
a straightforward application of the Data Processing Inequality
at every node fails to prove the theorem, and we must resort
to a more rigorous cut-set-based approach.

Proof outline: We shall prove the contrapositive of
the theorem, i.e., we will show that if there exists no M -
information path from Vip to Vop, then the outgoing trans-
missions of Vop are independent of M . We first connect the
absence of any M -information path with the presence of a
zero–M -information cut. This is achieved in Lemma 8, which
we present before the proof of Theorem 7.

The proof itself proceeds by induction over time. We divide
the proof into two steps: initialization and continuation. Start-
ing with the first nodes that come after the cut (temporally) in
the initialization step, we systematically show that all nodes
to the right of the cut have outgoing transmissions that are
independent of the message M through induction. In this proof
outline, we show these steps intuitively using Figure 5, where
the dashed black line denotes the cut.

Initialization. Here, node C1 is the first node to the right of
the cut, and all of its incoming edges must come from across
the cut (depicted by lines in red). Because the cut is a zero–
M -information cut, none of its incoming transmissions have
M -information flow. Furthermore, the intrinsically generated
random variable W (C1) is independent of M and all past
transmissions. Using these two facts along with the Data
Processing Inequality, we can show that the transmissions on
C1’s outgoing edges, X(Q(C1)), are also independent of M .

Continuation. At the second time instant to the right of the
cut, nodes B2 and C2 receive their incoming transmissions
from either C1 (shown in orange) or from across the cut
(shown in blue). Once again, the transmissions coming from
across the cut can have no information flow, and we have
shown that the transmissions coming from C1 are independent
of M . Also, W (B2) and W (C2) are independent of M and
all incoming transmissions. This suffices to show that the
outgoing transmissions of B2 and C2, X

(
Q(B2) ∪ Q(C2)

)
,

are independent of M . Applying this argument repeatedly over
time shows that the transmissions of all nodes to the right of
the cut are independent of M .

Therefore, if there is a node Vop whose outputs depend on
M , we can be assured that there exists no zero–M -information
cut separating Vip from Vop. Therefore, by Lemma 8, there
exists an M -information path from Vip to Vop.

A few nuances are omitted in this outline, such as how the
definition of Vip plays a role precisely. These subtleties are
better elucidated in the full proof.

Before proceeding to the formal proof of Theorem 7, we
first state and prove the lemma we alluded to earlier, which
shows how the absence of an M -information path implies the
presence of a zero–M -information cut, and vice versa.

Lemma 8: Let A and B be two disjoint sets of nodes in the
computational system C. There exists no M -information path
from A to B if and only if there is a zero–M -information cut
separating A and B.

Proof: (⇒) Suppose there exists no M -information path
from A to B. Consider the set of all nodes to which there
exists at least one M -information path from A. Let Vsrc be
the collection of all such nodes, along with the nodes in A,
i.e.,

Vsrc := A∪ {Vt ∈ V : ∃ an M -information path
from A to Vt}. (38)

Let Vsink = V \ Vsrc, so that Vsink consists of nodes to
which there is no M -information path from A. Then, we must
have B ⊆ Vsink, since it is known that there are no M -
information paths from A to B. Therefore, (Vsrc, Vsink) is
a cut that separates A and B, such that no edge in the cut
set has M -information flow. In other words, by Definition 11,
this is a zero–M -information cut separating A and B.

(⇐) Next, suppose that there is an M -information path
{V (i)}Li=0 from A to B. Then, we claim that there can exist no
zero–M -information cut separating Aand B. Let (Vsrc, Vsink)
be any cut separating A and B. By Definitions 8 and 10, we
must have V (0) ∈ A ⊆ Vsrc and V (L) ∈ B ⊆ Vsink. So,
there must be at least one edge going from Vsrc to Vsink

which lies on the path. This implies that at least one edge in
the cut set carries M -information flow. Since the conditions
of Definition 11 are not satisfied, this cut is not a zero–M -
information cut. Since this is true for every cut separating A

and B, the claim holds.
Proof of Theorem 7: As mentioned in the proof outline,

we prove the contrapositive of the theorem. Suppose there
exists no M -information path from the input nodes Vip to
Vop. Then, by Lemma 8, there exists a zero–M -information
cut18 separating Vip and Vop. We use this to prove that the
transmissions of Vop are independent of M .

Setup. Let the zero–M -information cut separating Vip and
Vop be given by (Vsrc, Vsink), so that Vip ⊆ Vsrc and Vop ∈
Vsink. Then, the cut divides E into the following sets:

1) Esrc := E∩ (Vsrc × Vsrc), the edges between the nodes
in Vsrc;

2) Esink := E∩(Vsink×Vsink), the edges between the nodes
in Vsink; and

18Note that, in general, this cut may be arbitrarily complex, spanning several
nodes and multiple time instants.
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A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

}

Q(Vsink
1

)

Pcut
t0−1

Pcut
1

Psink
1

Pcut
2

Psink
2

Figure 5: A generic computational system used in the proof outline and to
explain certain steps in the proof of Theorem 7. For the purposes of the proof
outline, it suffices to note that the black dashed line denotes the cut. All
variable names can be ignored at this point of time.
For the purposes of the formal proof, note that in this figure, Ecut is essentially
the union of the red, blue and purple edges, while Esink is the union of the
orange and green edges. From this, it is evident that P(Vsink

t ) = Pcut
t−1 ∪

Psink
t−1 for any time t, i.e., the incoming edges of Vsink at time t must either

come from nodes in Vsink or from nodes across the cut. Secondly, it should
be clear that Psink

t−1 = Q(Vsink
t−1) ∩ Esink, i.e., the incoming edges of Vsink

t

that originate from nodes in Vsink are simply the outgoing edges of Vsink
t−1

which terminate at nodes in Vsink. This is seen best at time t = 1 in the
graph above, where the orange and grey lines together represent Q(Vsink

1 ),
the orange and green edges together make up Esink, and Psink

1 is given by the
orange edges, which is the intersection of the two sets.

3) Ecut := E∩ (Vsrc× Vsink), the edges going from Vsrc to
Vsink.

(Note that the edges going from Vsink to Vsrc will not
be relevant to our discussion). As stated before, Lemma 8
implies that (Vsrc, Vsink) is a zero–M -information cut, so by
Definition 11, we have that for all Et ∈ Ecut,

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0 ∀ E′t ⊆ Et \ {Et}. (39)

Note that the edges in Ecut may belong to different time
instants. In particular, the time instant t in the equation above
corresponds to the time of the edge Et, whose flow is in
question.19

Order the nodes in Vsink by time, and let Vsink
t be the

subset of nodes in Vsink at time t. Let P(Vsink
t ) and Q(Vsink

t )
respectively be the sets of edges collectively entering and
leaving all nodes in Vsink

t . We shall prove that the outgoing
transmissions of every node in Vsink, including those of Vop,
must be independent of the message, i.e.,

I
(
M ;X(Q(V ))

)
= 0 ∀ V ∈ Vsink. (40)

Initialization. Let t0 be the first time instant t for which
Vsink
t is non-empty. Then, we encounter two cases: either

t0 = 0, in which case the nodes in Vsink
t0 have no incoming

edges, or t0 > 0, and the nodes in Vsink
t0 have incoming

edges. We shall first prove that in both cases, the outgoing

19This is one of the complicating factors that prevents us from recursively
applying the Data Processing Inequality at every node, to trace a path
backwards from Vop to Vip.

transmissions of Vsink
t0 are independent of the message, i.e.

I
(
M ;X(Q(Vsink

t0 ))
)
= 0.

(Case I) When t0 = 0, Vsink
0 ∩ Vip = ∅. This is because the

cut separates Vip from Vop, with Vip ⊆ Vsrc, so no nodes in
Vsink
0 can be input nodes. So, by the definition of (non-)input

nodes (Definition 3c), we must have

I
(
M ;X(Q(Vsink

0 ))
)
= I
(
M ; fVsink

0
(W (Vsink

0 ))
)

(41)
(a)

≤ I
(
M ;W (Vsink

0 )
)

(42)
(b)
= 0, (43)

where step (a) uses the data processing inequality and step (b)
makes use of the fact that W (V0) ⊥⊥M .

(Case II) When t0 > 0, the definition of t0 implies that all
nodes at time t0 − 1 are in Vsrc, so all incoming edges of
Vsink
t0 must lie in the cut set, i.e., P(Vsink

t0 ) ⊆ Ecut. Since the
cut is a zero–M -information cut, we have that for all Et0−1 ∈
P(Vsink

t0 ),

I
(
M ;X(Et0−1)

∣∣X(E′t0−1)
)
= 0 ∀ E′t0−1 ⊆ Et0−1. (44)

By the definition of M -information flow for a set of edges
(Definition 5) and Proposition 1, we have

I
(
M ;X(P(Vsink

t0 ))
∣∣X(E′t0−1)

)
= 0 ∀ E′t0−1 ⊆ Et0−1.

(45)
Once again, considering Q(Vsink

t0 ), we have

I
(
M ;X(Q(Vsink

t0 ))
)

= I
(
M ; fVsink

t0

(
X(P(Vsink

t0 )),W (Vsink
t0 )

))
(46)

(a)

≤ I
(
M ;X(P(Vsink

t0 )),W (Vsink
t0 )

)
(47)

(b)
= I

(
M ;X(P(Vsink

t0 ))
)

+ I
(
M ;W (Vsink

t0 )
∣∣X(P(Vsink

t0 ))
)

(48)
(c)
= 0, (49)

where (a) and (b) follow from the Data Processing Inequality
and the chain rule of mutual information respectively. In step
(c), the first expression in the sum goes to zero by taking
Et0−1 = ∅ in (45) and the second expression is zero since
W (Vsink

t0 ) ⊥⊥ {M,X(Et0−1)}, and P(Vsink
t0 ) ⊆ Et0−1 (refer

Definition 3b). So, from equations (43) and (49), we have that
for all values of t0,

I
(
M ;X(Q(Vsink

t0 ))
)
= 0. (50)

Continuation. Now, suppose that for some t > t0, we have
I
(
M ;X(Q(Vsink

t−1 ))
)

= 0. We shall prove that this implies
I
(
M ;X(Q(Vsink

t ))
)
= 0. First, observe that

P(Vsink
t ) = (P(Vsink

t ) ∩ Ecut) ∪ (P(Vsink
t ) ∩ Esink) (51)

For convenience, let Pcut
t−1 := P(Vsink

t ) ∩ Ecut and Psink
t−1 :=

P(Vsink
t ) ∩ Esink. We have used the subscript t − 1 here to

remind the reader that P(Vsink
t ), which are the incoming edges

of Vsink
t , are a subset of Et−1. Then, we have

P(Vsink
t ) = Pcut

t−1 ∪Psink
t−1. (52)
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Since the cut is a zero–M -information cut, we have that for
every Et−1 ∈ Pcut

t−1,

I
(
M ;X(Et−1)

∣∣X(E′t−1)
)
= 0 ∀ E′t−1 ⊆ Et−1. (53)

Therefore, by Definition 5 and Proposition 1,

I
(
M ;X(Pcut

t−1)
∣∣X(E′t−1)

)
= 0 ∀ E′t−1 ⊆ Et−1. (54)

Secondly, Psink
t−1 = Q(Vsink

t−1 ) ∩ Esink. This is depicted in
Figure 5, and explained in the caption. So,

I
(
M ;X(Psink

t−1)
)
= I

(
M ;X(Q(Vsink

t−1 ) ∩ Esink)
)

(55)
(a)

≤ I
(
M ;X(Q(Vsink

t−1 ))
) (b)
= 0 (56)

where (a) follows from the fact that considering more ran-
dom variables can only increase mutual information, and (b)
follows from the induction assumption. Finally, consider how
X(Q(Vsink

t )) depends on M :

I
(
M ;X(Q(Vsink

t ))
)

= I
(
M ; fVsink

t

(
X(Psink

t−1 ∪Pcut
t−1),W (Vsink

t )
))

(57)
(a)

≤ I
(
M ;X(Psink

t−1), X(Pcut
t−1),W (Vsink

t )
)

(58)
(b)
= I

(
M ;X(Psink

t−1)
)
+ I
(
M ;X(Pcut

t−1)
∣∣X(Psink

t−1)
)

(59)

+ I
(
M ;W (Vsink

t )
∣∣X(Psink

t−1), X(Pcut
t−1)

)
(c)
= 0, (60)

where once again, (a) and (b) follow from the data processing
inequality and the chain rule respectively. In step (c), the
first and second terms go to zero by equations (56) and (54)
respectively, while the third term is zero since W (Vsink

t ) ⊥⊥
{M,X(Et−1)} and Psink

t−1 ∪Pcut
t−1 ⊆ Et−1.

The proof follows from induction on t, so

I
(
M ;X(Q(Vsink

t ))
)
= 0 ∀ t ≥ t0, (61)

which in turn implies that

I
(
M ;X(Q(V ))

)
= 0 ∀ V ∈ Vsink. (62)

If there exists an output node whose transmissions depend
on M , then there can exist no cut consisting of edges with
zero M -information flow, and hence by Lemma 8, there must
be a path consisting of edges that carry M -information flow
between the input nodes and the output node in question.

D. The Separability Property

Finally, we state a property that may be of interest to obtain
a deeper understanding of the nature of M -information flow,
as given by Definitions 4 and 5.

Proposition 9 (Separability): Let C be a computational
system. Then, at any given point in time t, there exist two
sets Rt,St ⊆ Et, such that all of the following conditions
hold:

1) Rt ∪ St = Et
2) Rt ∩ St = ∅
3) Either Rt = ∅, or for every Rt ∈ Rt there exists a subset

R′t ⊆ Rt \ {Rt} such that

I
(
M ;X(Rt)

∣∣X(R′t)
)
> 0. (63)

4) Either St = ∅, or for every E′t ⊆ Et,

I
(
M ;X(St)

∣∣X(E′t)
)
= 0. (64)

A proof of this proposition can be found in Appendix B.
Proposition 9 shows that at any given point in time t, it

is possible to partition Et into two sets: Rt, consisting only
of edges that have M -information flow, and St, comprising
edges that have no M -information flow. Furthermore, when
considering the M -information flow of edges in Rt, it suffices
to condition on the transmissions of edges within Rt to
ascertain the presence of M -information flow. Conditioning
upon the transmissions of edges in St will not change the
mutual information between the message and the transmissions
of edges in Rt.

V. INFERRING INFORMATION FLOW

Having discussed the definition and the properties of M -
information flow, we now consider how these flows of infor-
mation might be inferred in a real computational system. We
first discuss an observation model that describes which random
variables are observed and how they are sampled. Under this
model, we show how existing techniques from the literature
can be used to identify which edges carry M -information
flow. As in previous sections, we restrict our attention to
detecting whether or not a given edge has M -information
flow, relegating quantification of these flows to future work.
Quantification is briefly discussed in the form of an example
in Section VI-C, and again in Section VII-E.

We then describe an algorithm that recovers all M -
information paths between the input nodes and a given output
node, by leveraging the knowledge of which edges have M -
information flow. We also explain how one might attain a
fine-grained characterization of the structure of information
flow, by introducing the concept of “derived information”.
This is useful for understanding which transmissions are
“derived” from others, allowing one to find transmissions that
are redundant and discover the presence of hidden nodes.
Finally, we explain how flows of information about multiple
messages can be inferred in our framework.

A. The Observation Model
Before we can describe how information flow and infor-

mation paths can be identified, we must provide a statistical
description of the random variables that are observed. Let C

be a computational system under observation. We then make
the following assumptions:

1) Transmissions on all edges, including self-edges, are
observed. The random variables that are intrinsically
generated at each node are not observed, unless they are
also transmitted on an edge (which could be a self-edge).

2) Several trials20 are observed, each of which corresponds
to an independent realization of all random variables in

20The word “trial” is borrowed from the neuroscience literature, wherein
a neuroscientist will often conduct multiple trials in a single experiment. In
each trial, a human participant or an animal under study is presented with
one of a set of carefully chosen stimuli (corresponding to a realization of
the message M in our setting), and neural activity is recorded using some
modality. Scientific inferences are then drawn by making use of the activity
from all trials.
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the model.21 Every trial uses a realization of M which
is independently drawn from a distribution determined
by the experimentalist.22 For every node V ∈ V, the
intrinsically generated random variable W (V ) is also
assumed to be independently and identically distributed
across trials.

3) Observations are made noiselessly, in that the realization
of each transmission in every trial is observed as-is,
without being further corrupted by random noise of any
kind. The implications of noisy measurements will be the
subject of future work.

Under these conditions, we discuss statistical tests for informa-
tion flow that are consistent in the asymptotic limit of infinite
trials. It should be noted that these assumptions may be valid to
varying degrees in different contexts. This is discussed further
in Section VII-A.

B. Detecting Information Flow

Given a sample of all random variables described in the
observation model, our next task is to identify which edges
have M -information flow. In other words, we need to describe
how the conditions given by Definition 4 can be rigorously
tested, and how we might assert with some confidence that a
certain set of edges has information flow at each point in time.

According to Definition 4, in order to check whether a
particular edge Et carries M -information flow at time t, we
need to test whether at least one of several conditional mutual
information quantities is strictly positive. The standard statisti-
cal approach for solving this problem is to frame it as a set of
“hypothesis tests”, which in this case is a set of “conditional
independence tests”. In general, a hypothesis test formalizes
the problem of making an informed decision about the value
of some functional of a joint distribution, when observing
a sample of data from it. A good conditional independence
testing procedure will seek to maximize “statistical power”,
i.e. the probability of correctly identifying the presence of
conditional dependence, while keeping the probability of an
incorrect identification fixed below some “level” α that is
picked beforehand. One intuitive way to do this might be to
construct an estimator for the appropriate conditional mutual
information, and “reject” the “null” hypothesis of conditional
independence if the conditional mutual information was suf-
ficiently larger than some threshold, ε > 0. This threshold
would have to be chosen so that, on average, the probability
of falsely rejecting the null hypothesis is at most α. However,
there are usually better ways of performing this test, i.e., it is
often possible to attain higher power at the same level without
actually estimating the conditional mutual information.

While it would be impossible to provide a comprehensive
list of papers that have researched the problem of conditional

21In reality, trials are not independent in neuroscientific experiments.
Indeed, neurons are known to “adapt” their responses from trial to trial, often
showing suppressed activity when presented the same stimulus multiple times.
This, in part, is considered to be evidence of learning in neural circuitry.
However, for simplicity, we restrict our attention here to computational
systems that do not learn or show trial-to-trial adaptation.

22A more detailed discussion of this distribution can be found in Sec-
tion V-F.

independence testing, it has received (and continues to receive)
much attention in the statistics, causality, and information
theory communities [75]–[80]. In its most general form,
conditional independence testing is considered to be a hard
problem for continuous random variables [81]. However, if
we ignore issues associated with the practical difficulty of
estimation (discussed later in Section VII-B), these works
provide consistent tests under reasonable assumptions on the
joint distribution of the variables involved [77]–[79].

Although we mentioned that there are better ways to test
for conditional dependence than to estimate the conditional
mutual information, there may be instances when one might
want to estimate the conditional mutual information anyway.
For instance, in an example that will appear shortly in Sec-
tion VI-C, we rely on an estimate of the conditional mutual
information to quantify the amount of M -information flowing
on a given edge. While our paper has only defined M -
information flow in terms of whether or not it is present at
an edge Et, it is also extremely useful to know how much
M -information flow there is. We defer further discussion of
this topic until Sections VI-C and VII-E. For now, we note
that several papers have considered how to estimate mutual
information and conditional mutual information, both of which
might be essential for an understanding of quantification of
M -information flow [82]–[85].

For completeness, we now present a description of how
we expect information flow will be detected in practice. We
assume that we have a sample of the transmissions from all
edges of the computational system, at every point in time.
If not, appropriate assumptions may need to be made, as
discussed later in Section VII-A. At every instant of time t,
consider the set of all edges Et present in the network. For
every edge Et ∈ Et, use the following process to determine
whether it has M -information flow:

1) First test whether the mutual information between its
transmission and the message is greater than zero, i.e.,
I
(
M ;X(Et)

)
> 0. If so, declare that Et has M -

information flow.
2) If not, test for conditional dependence between its trans-

mission and the message, given each of the other edges
E′t, i.e., test whether I

(
M ;X(Et)

∣∣X(E′t)
)
> 0, for each

E′t ∈ Et \ {Et}. If any of these tests rejects the null
hypothesis, declare that Et has M -information flow.

3) If not, test for conditional dependence between X(Et)
and M , given subsets of other edges, sequentially con-
ditioning on edges taken pairwise, then in threes, etc. If
any of these tests rejects the null, declare that Et has
M -information flow.

4) If none of the above tests rejects the null hypothesis,
declare that Et carries no M -information flow.

Note that we have not discussed the level, α, at which we
should reject the null in each of the above tests. In general,
since we are performing multiple hypothesis tests simultane-
ously, some manner of “correction” is required to ensure that
we do not find, what is effectively, a spurious correlation. This
is discussed at length in Section VII-B.
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C. Discovering Information Paths

Next, we discuss an algorithm that discovers all M -
information paths leading from the input nodes to a given
output node, Vop, in any computational system. As discussed in
Section IV, whenever the transmissions Q(Vop) of the output
node depend on the message, Theorem 7 guarantees that at
least one M -information path exists.

Algorithm 1, which we propose for recovering all M -
information paths, is an adaptation of the well-known Depth-
First Search23 method [74, Sec. 22.3]. It takes as its input
a computational system C in which all edges having M -
information flow have been identified, the output node Vop,
and an empty graph H that is completely devoid of nodes
and edges. The algorithm returns the set of all M -information
paths in the form of a directed subgraph Hof the time-unrolled
graph G. Starting from Vip, following any path in H will lead
one to Vop, provided at least one M -information path exists.

The algorithm works by recursively visiting nodes, starting
from the output node Vop. It traverses only edges that carry
M -information flow, and uses a marking scheme to avoid
revisiting nodes. The same marking scheme is also used to
designate nodes to which there are M -information paths from
Vip. As the algorithm passes through each node, it marks the
node “valid” whenever an M -information path exists between
Vip and that node. If no such path exists, then the node is
marked “invalid”. The objective of the algorithm, therefore,
reduces to one of finding a path of “valid” nodes from Vip
to Vop. The algorithm’s recursive function can be expressed
as follows: A node Vt ∈ V is “valid” if and only if there
exists a node Ut−1 ∈ V such that Ut−1 is valid, and the
edge (Ut−1, Vt) has M -information flow. This is a recursive
expression since checking the validity of a node at time t
involves finding valid nodes at time t−1. The only nodes that
are considered valid by default are the input nodes Vip.

The algorithm sequentially checks the validity of nodes
Vt ∈ V, starting from the output node Vop. The function
FINDINFOPATHS, when called on any given node Vt, checks
the validity of Vt. This involves checking each of the incoming
edges of Vt for M -information flow. If Ut−1 is a node
from which M -information flows to Vt, then the algorithm
immediately checks the validity of Ut−1 by calling the func-
tion FINDINFOPATHS again. Eventually, if in this recursive
process, we arrive at an input node in Vip, then that node is
marked “valid”, and added to the output subgraph H. Once
every node Ut−1 from which M -information flows to Vt has
been marked “valid” or “invalid”, the validity of Vt can be
ascertained. For every “valid” node Ut−1 from which M -
information flows to Vt, the edge (Ut−1, Vt) and the node Vt
are added to the output subgraph H, and Vt is marked “valid”.
If there are no such nodes leading to Vt, then Vt is marked
“invalid” and does not fall on an M -information path.

This recursive logic yields the set of all M -information
paths leading from the input nodes to Vop. The two lines at
which errors are returned correspond to scenarios that should

23It is also possible to discover all M -information paths using an adaptation
of Breadth-First Search [74, Sec. 22.2], but doing so would require some
mechanism to prune M -information paths that do not lead to the input nodes
Vip. So we prefer to use Depth-First Search for simplicity of exposition.

not occur if the conditions of Theorem 7 hold. In line 12,
we visit a non-input node at time t = 0. But such a node
should never have been reached in the recursion, since we only
followed edges that have M -information flow. Its presence,
therefore, would contradict the computational system model.
In line 4, Vop is marked “invalid”, implying that there is no
path leading to it from the input nodes. Once again, this can
only occur if the computational system model is violated, or
if the conditions of Theorem 7 (and Property 3) do not hold.

On Computational Complexity: The complexity of Algo-
rithm 1 is exactly that of Depth-first Search, O(|V|+ |E|) [74,
Sec. 22.3]. To be precise, we consider the computational
system to extend until the time of the output node, i.e.,
we take T = top. So the complexity of the algorithm is
O(|V∗|top + |E∗|top). This is easily verified from the pseu-
docode listing provided in Algorithm 1: in the worst case, all
edges in the system have M -information flow, so all edges
and nodes must be traversed by the search. By design of the
marking strategy, each node is processed at most once, so we
do not need to account for the recursion in any special way. At
each node, we must execute lines 7 through 14, and 26 through
28, which take a constant amount of time. Since we have |V∗|
nodes over top time points, this adds up to O(|V∗|top) steps.
We also need to execute the loop in lines 15 through 24, which
counts the number of incoming edges at every node. For all
nodes combined, this adds up to O(|E∗|top) steps.

If the graph is fully connected as described in Section II,
then |V∗| = N and |E∗| = N2, so the effective complexity is
just O(N2top). However, if we know that the underlying graph
is sparse (e.g., because of anatomical priors in neuroscience),
then we may have |E∗| = O(N logN), or even |E∗| = O(N),
bringing down the complexity of the search. It should be noted
that in either case, the complexity of identifying which edges
have M -information flow is potentially exponential in N , as
discussed later in Section VII-B. This is much larger than the
complexity of tracing out information paths, so finding edges
with M -information flow is, in fact, the “hard part” of the
problem.

D. Derived Information and Redundancy

The framework we develop for information flow allows
one to obtain a more fine-grained understanding of infor-
mation structure in a computational system, especially when
compared with classical tools such as correlation and phase
synchrony [86], [87]. This allows the experimentalist to better
investigate the nature of the computation being performed. A
concept that we believe will be extremely useful in this regard
is one we call “derived information”, which is defined below.

Definition 12 (Derived M -Information): In a computational
system C, a transmission X(Qt) is said to be derived
M -information of a different transmission X(Pt′) if M—
X(Pt′)—X(Qt) forms a Markov chain. That is, the following
condition must hold:

I
(
M ;X(Qt)

∣∣X(Pt′)
)
= 0, (65)

implying that

H
(
M
∣∣X(Pt′)

)
= H

(
M
∣∣X(Pt′), X(Qt)

)
. (66)
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Algorithm 1 Information Path Algorithm: Finds all paths from Vip to Vop

1: Initialize an empty graph H . H will store valid paths from Vip to Vop
. H currently contains no nodes or edges

2: FINDINFOPATHS(C, Vop, H) . Call a function (defined below) to populate H

3: if Vop is marked “invalid” then
4: raise Error . No path from Vip to Vop was found
5: end if

6: function FINDINFOPATHS(C, Vt, H)
7: if P(Vt) is empty then . Vt has no inputs ⇒ t = 0
8: if Vt ∈ Vip then
9: Mark Vt “valid”

10: Add Vt to H

11: else . We somehow reached a non-input node at t = 0
12: raise Error
13: end if
14: else . Vt has inputs
15: for all (Ut−1, Vt) ∈ P(Vt) do
16: if (Ut−1, Vt) has M -information flow then
17: if Ut−1 is unmarked then
18: FINDINFOPATHS(C, Ut−1, H) . This will mark Ut−1
19: end if
20: if Ut−1 is marked “valid” then
21: Mark Vt “valid”
22: Add Vt and (Ut−1, Vt) to H

23: end if
24: end if
25: end for
26: if Vt is still unmarked then . No input of Vt was “valid”
27: Mark Vt “invalid”
28: end if
29: end if
30: end function

So, X(Qt) adds no new information about M , when given
X(Pt′). The same definition extends to transmissions on sets
of edges. Note that, as far as the definition is concerned, t and
t′ may be any two arbitrary points in time. However, we will
typically consider cases when t ≥ t′.

One potential use-case scenario for derived information
arises in the context of redundant flows. Consider the com-
putational system presented in Figure 4, originally described
under Counterexample 3. We see two edges sending the
same transmission to the node B2. This is an example of
what we call “redundant transmissions”. In general, since we
only consider information about M to be relevant, the exact
transmissions communicated over two edges at a given point in
time may be different. But if they convey the same information
about M to a given node, then we view them as essentially
redundant. Definition 4, when applied to this system, will
detect both these edges as having M -information flow, since
given X((C1, B2)), their transmissions depend on M . In
the notation of the Separability property mentioned earlier
(Proposition 9), both edges (A1, B2) as well as (D1, B2) will
belong in the set R1.

Derived information provides a general methodology to

understand when transmissions on certain edges may be re-
dundant. Naturally, if the transmissions on two edges Qt and
Pt′ are redundant, then they must be derived M -information of
one another. This amounts to checking two more conditional
independence relationships, for which consistent tests exist in
the limit of infinite trials, as discussed in Section V-B.

In the following section, we shall see another application
of derived information; when applied to specific sets, it can
in some cases be used to detect the presence of hidden
(unobserved) nodes. Later, in Section VI-C, we discuss an
example where the notion of derived information helps us
make a new kind of inference about the fine structure of
information flow, one that would not be possible using tools
such as Granger Causality and Directed Information.

E. Hidden Nodes

In Section V-C, we showed how the Information Path
Algorithm may fail to discover M -information paths if one
of the assumptions of the computational system model or
the observation model breaks in some way. Here, we discuss
one specific situation in which the observation model may
break, i.e., when not all nodes are observed. We call these
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Figure 6: Two simple examples showing how hidden nodes may prevent one from being able to discover M -information paths in a computational system. In
both cases shown here, H1 is a hidden node, and we do not observe its incoming or outgoing transmissions. On the left is an example where a transmission
that we might need to condition upon to discover M -information flow passes through the hidden node, and therefore cannot be seen. On the right, the hidden
node itself generates the source of randomness Z.

M = [M1,M2]

H1

A0 A2

B1

M2

Hidden

Observed

M1

M2

M1

M2

Figure 7: A computational system serving as a counterexample to the converse
of Proposition 11. Here, the hidden node H1 is M -relevant because its
outgoing transmission, M1, is not present in any of the observed transmissions
at time t = 1. However, since A2 chooses to ignore M1 at its output, the
Markov chain M—X(Ẽ1)—X(Ẽ2) boils down to M—M2—M2, which
obviously holds. Thus, at least based on our current definitions, there may be
M -relevant hidden nodes in the system even if Global Markovity continues
to hold.

unobserved nodes “hidden nodes”, and assume that we do
not see transmissions on incoming or outgoing edges of these
nodes.

Definition 13 (Hidden nodes): Consider a computational
system C= (G, X,W, f) defined on the time-unrolled graph
G = (V, E) as before. Suppose that only a subset of
nodes in this graph are observed. Specifically, if V∗ was
the original set of nodes in G∗, prior to time-unrolling,
then we observe only the nodes Ṽ∗ = V∗ \ H∗, where
H∗ = {H(0), H(1), . . . ,H(K−1)} is a set of unobserved nodes
called hidden nodes.

To describe the observed component of the computational
system, we define Ẽ∗ = Ṽ∗ × Ṽ∗, Ṽ= {Vt : V ∈ Ṽ∗, t ∈
T} and Ẽ = {(At, Bt+1) : (A,B) ∈ Ẽ∗, t ∈ T}. Also
let H = {Ht : H ∈ H∗, t ∈ T}. Finally, we set up the
observed component of the computational system as before:
C̃ = (G̃, X,W, f). Thus, we only observe the transmissions
on edges in Ẽ. As usual, we denote the set of all hidden nodes
at time t by Ht, and the set of all observed nodes at time t
by Ẽt.

The presence of hidden nodes of this nature implies that
much of the theory we have developed will not apply.
Lemma 4 no longer truly holds, in that information about
M may persist in the system by passing through the hidden
node, even if no observed edge has M -information flow. So,
naturally, Property 1 also fails to hold. Hence, we are not

guaranteed to be able to identify all edges with M -information
flow, and discover all M -information paths as before. For
example, refer to the cases shown in Figure 6, where we no
can longer find M -information paths because of the presence
of a hidden node.

Fortunately, at least in some cases, the concept of derived
information (Definition 12) provides a simple way to tell
whether or not a hidden node exists. Specifically, if at some
time t, a hidden node transmits information about M which
is unavailable within the system at that time, and which is
utilized by some node at the next time instant, then the set
of all observed transmissions X(Ẽt) will not be derived M -
information of the set of all transmissions at time t − 1. In
other words, the Global Markovity condition (Corollary 5)
on the observed graph, M—X(Ẽt−1)—X(Ẽt), will break.
Unfortunately, the notion of “utilization” is difficult to express
mathematically, without resorting to the use of ideas from
causality that are based on intervention. The result we prove,
therefore, is a simpler sufficiency argument, which guarantees
the presence of a hidden node if the aforementioned Markov
condition is observed to break. This result is proved in
Proposition 11, but first, we define some adjectives.

Definition 14 (M -relevant hidden node): A hidden node Ht

is said to be M -relevant if Q(Ht) carries M -information flow
in G. Similarly, a subset of hidden nodes H′t ⊆ Ht is said to
be M -relevant if Q(H′t ) carries M -information flow in G.

Definition 15 (M -derived hidden node): A hidden node Ht

is said to be M -derived if the Markov chain M—X(Ẽt)—
X(Q(Ht)) holds. Similarly, a subset of hidden nodes H′t ⊆ Ht
is said to be M -derived if the Markov chain M—X(Ẽt)—
X(Q(H′t )) holds.

Lemma 10: If a subset of hidden nodes is not M -derived,
then it is M -relevant.24

Proposition 11: In a computational system C with hidden
nodes, if Global Markovity on the observed graph, G̃, fails to
hold from time t to t+1, i.e. if I

(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)
> 0,

then the hidden nodes Ht at time t are not M -derived.
Proofs of Lemma 10 and Proposition 11 are straightforward,

and are provided in Appendix D. As a direct consequence of

24If this lemma appears to be somewhat strong, it is only because of
the nomenclature “M -derived”. For our purposes, a hidden node whose
transmissions are independent of the message is also M -derived, since it
satisfies the aforementioned Markov condition.
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(a) Here, although Global Markovity holds, one could argue that testing for
Local Markovity at each node (or at various subsets of nodes) could help
uncover the presence of a hidden node.
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fA2
(P(A2),W (A2)) = X((H1, A2))⊕X((A1, A2))

(b) In this case, the hidden node breaks neither Global nor Local Markovity.
However, the function computed by A2 makes use of only the hidden node’s
transmission. As a result, the hidden node has a causal effect on the output
of the system, since destroying the outgoing edge of the hidden node would
change the output. Such a hidden node is likely undetectable using only
observational methods.

Figure 8: Examples of computational systems with an M -derived hidden node. In both of these systems, the hidden node’s transmission at time t = 1 has an
effect on the output at A2. However, Global Markovity continues to hold from t = 1 to t = 2, because the observed transmissions, M ⊕ Z and Z, contain
all information necessary to explain the output, M .

these two results, if Global Markovity fails to hold on the
observed nodes from time t to t + 1, then Ht is M -relevant.
By Proposition 1, this simply means that there exists at least
one M -relevant hidden node at time t.

Although Proposition 11 appears to provide a straightfor-
ward mechanism to test whether or not hidden nodes exist, it
does not always work. If a hidden node’s transmissions have
no M -information flow, then the node will not be detected. But
in this case, it could be argued that such a hidden node does
not change whether information paths can be identified, and
so can be subsumed by one or more of the intrinsic random
variables W (·). Such a hidden node is, therefore, classified by
Definition 14 as not M -relevant.

However, to make matters worse, the converse of Proposi-
tion 11 does not hold. In particular, there may exist an M -
relevant hidden node at time t, whose transmission is ignored
by the node that received it, so that the Markov chain M—
X(Ẽt)—X(Ẽt+1) continues to hold (see Figure 7). Such a
hidden node may still be considered largely innocuous.

The most serious case of a hidden node going undetected is
one that contains an M -derived hidden node, whose trans-
mission is used by the receiving node while performing
its computation; however the hidden node’s transmission is
“masked” by a redundant transmission from an observed node
(see Figure 8). In this case, Global Markovity on G̃ will not
break, yet the hidden node’s transmission may be instrumental
in producing a certain output distribution. In some instances,
such hidden nodes can be detected by checking for Local
Markovity (Proposition 6; see Figure 8a). However, there are
still cases where if we were somehow able to intervene and
delete the transmission of the hidden node, then the computa-
tional system’s output may not remain the same, despite the
existence of a redundant transmission from an observed node
(see Figure 8b). Indeed, the presence of redundancy in such
a scenario does not guarantee that the computational system
will actually leverage it.

M1,M2 A1

B2

C2

M1

M2

M1 = [M, M̃ ]

M2 = [M ′, M̃ ]

Figure 9: A simple example demonstrating the importance of having inde-
pendent messages (or sub-messages) when exploring the flows of multiple
messages in a computational system. As M1 and M2 both redundantly contain
information about M̃ , both edges shown here have M1- as well as M2-
information flow. Thus, we are unable to detect the fact that M1 and M2

take different paths in the system, because of our choice of stimuli.

F. On Multiple Messages and the Distribution of the Message

Just as we can infer information flow and information paths
for a single message, we can examine the flows of multiple
messages in the same computational system. Consider a case
where we wish to understand the information flows of two
messages, M1 and M2. An neuroscientific example of this
might be information flow about two independent components
of a visual stimulus, e.g., shape and color (such as in [2]).
If M1 ⊥⊥ M2, then we could separately identify edges and
paths that have M1-information flow and M2-information flow,
by applying the theory and algorithm as-is for each message
individually.

However, if the two messages are dependent on one another,
one could end up conflating their information flows, based on
how they depend on each other, and how the computational
system’s transmissions carry their joint information. As a
simple example, consider the system shown in Figure 9, where
M1 = [M,M̃ ] and M2 = [M ′, M̃ ], with M,M ′, M̃ ∼
i.i.d. Ber(1/2). Clearly, M1 and M2 both share some redun-
dant information in M̃ , and I(M1;M2) = 1 bit. Thus, we will
see M1-information flow as well as M2-information flow on
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both edges, since the transmission of each edge E satisfies
I
(
Mi;X(E)

)
> 0 for i ∈ {1, 2}.

Consider what this means for the aforementioned example
of shape and color of a visual stimulus. If a neuroscientist
expects that the information paths corresponding to shape
and color in the brain are different from each other, what
is the best way to design stimuli so as to bring out this
difference? Suppose they decided to present a total of four
different stimuli, M ∈ {0, 1, 2, 3}, with two different shapes
and two different colors. Let M1 be the first bit of the binary
representation of M , denoting shape, and M2 be the second
bit, denoting color. Now if the neuroscientist chose to present
stimuli with a uniform distribution over M , i.e., if each shape-
color combination was shown for one-quarter of all trials,
then M1 and M2 would be independent of each other, and
their individual flows could be tracked separately. However,
if the neuroscientist chose to present the four possible stimuli
with probabilities {1/2, 1/4, 1/8, 1/8} respectively, then M1

and M2 are no longer independent of each other, and it
may become hard to separate their individual flows as in the
example in Figure 9.

These examples suggest that, when trying to understand
the flows of different messages in a computational system,
it helps if they are independent of one another. So from the
perspective of experiment design in a neuroscientific context,
it is often more sensible to design stimuli so that the two mes-
sages of interest are independent of one another. Even when
considering a single message that takes one of several values,
it becomes important to appropriately choose a distribution
over these values to ensure that any sub-messages that are of
interest remain independent of one another. This would allow
the experimentalist to better understand how “independent
dimensions” of the stimulus are processed in the brain.

However, there are also situations where the experimental
paradigm necessitates a statistical distribution of stimuli that
makes two sub-messages of interest dependent on one another.
For instance, the Posner experimental paradigm for atten-
tion [88] only works when the proportion of “valid” trials (a
certain type of trial specific to this paradigm) is roughly 70%.
Similarly, during data preprocessing, it is common to discard
trials that are excessively noisy, based on some predetermined
metric: this process could skew the distribution of the message,
even if the original distribution was uniform. If it is still of
interest to understand the individual flows of sub-messages
in this case, then a possible solution might then be to sub-
select experimental trials in such a way as to keep the two
sub-messages independent of one another.

VI. CANONICAL COMPUTATIONAL EXAMPLES

In this section, we provide a few canonical examples for
computational systems from various contexts. In each case, we
discuss what the message M is, and identify which edges carry
M -information flow. We also explain how the path recovered
by the information path algorithm might be the intuitive choice
in each example.

A. The Butterfly Network from Network Coding

For our first example, we cover the butterfly network from
the network coding literature [7, Fig. 7b], reproduced here
in Figure 10. In this system, we want to communicate two
independent bits, M1,M2 ∼ i.i.d. Ber(1/2), from C0 to two
output nodes, A4 and B4. In the network coding context,
the butterfly network is the canonical example illustrating
that “coding” is necessary to achieve optimal communication:
when each edge is restricted to have a capacity of 1 bit, it is
not possible to send both M1 and M2 simultaneously to A4

and B4 using routing alone, since we can send only one of M1

or M2 on the middle branch (C2, C3). We must use coding,
i.e., we must compute a function of M1 and M2, in order to
communicate both message bits to A4 and B4.

We examine the individual information flows of M1 and M2

in the maximal-rate setting where the middle branch carries
M1⊕M2. Edges along which information about M1 flows are
colored in blue, while edges along which information about
M2 flows are colored in orange. The reader may identify these
using Definition 4 and the transmission on each edge shown
in Figure 10.

An important feature to observe is that when C2 mixes
information by computing the XOR of M1 and M2, we see
information about M1 spontaneously beginning to flow on
(B2, B3) and similarly, information about M2 beginning to
flow on (A2, A3). This is expected, since M2 is relevant
for decoding M1 at this stage, and indeed, it is exactly this
idea which is used to decode M1 at B4. All of this is true,
despite the fact that M1 ⊕M2 is independent of M1 and M2

individually. This is once again, a prime example of synergy
in action.

Applying the information path algorithm (Algorithm 1)
for the message M1 at A4 will reveal two paths: the
“upper path” (C0, A1, A2, A3, A4), and the “middle path”
(C0, A1, C2, C3, A4). However, applying the information path
algorithm for the other message M2 at the same output
node A4 reveals that M2 exclusively uses the “middle path”,
(C0, B1, C2, C3, A4), to arrive at A4 from the input nodes.

B. The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a well-known computa-
tional network that provides an intuitive setting for examining
information flow. In general, the N -point FFT is an imple-
mentation of the N -point Discrete Fourier Transform (DFT),
given by

Ỹk =
N−1∑
i=0

Yie
−j 2πk

N i, k ∈ {0, 1, . . . , N − 1} (67)

where j is the imaginary unit. The DFT is a basis transforma-
tion of a discrete-time signal Y , which is usually assumed to
be periodic with period N . The N -point DFT represents such
a signal in the complex-exponential Fourier basis, yielding
the Fourier coefficients Ỹ . We consider a simple 4-point DFT,
i.e. N = 4. The FFT implements this transform using the
computational system shown in Figure 11. We refer the reader
to [62, Ch. 9] for details. For notational convenience, we have
set ω = e−j

2π
N = e−j

2π
4 .
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M1,M2

A1 A2 A3 A4

C0 C2 C3

B1 B2 B3 B4

M1,M2

M1,M2

M1

M2

M1

M2

M1 M1 M1

M2 M2 M2

M1⊕M2

M1⊕M2

M1⊕M2

Figure 10: A depiction of the butterfly network discussed in Section VI-A. There are two messages, M1 and M2, each with its own information flow. All
edges with M1-information flow are shown in blue and all edges with M2-information flow are shown in orange. After time t = 2, all edges shown have
both M1- and M2-information flow. Once the system computes M1⊕M2, edges transmitting M1 have information flow about both M1 and M2, since M2

can now be decoded from M1 ⊕M2 and M1. Furthermore, observe the M1- and M2-information paths in this system. In particular, there are two possible
M1-information paths to A4, but only one possible M2-information path, which flows through the middle link. The same applies to the M1-information path
to B4. This may suggest the importance of the middle link in enabling this computation.
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Figure 11: The computational system of the 4-point Fast Fourier Transform.
For brevity, we have set ω := e−j 2π
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M ∈ {0, 1} Yi = M(δi + δi−2)

Figure 12: An example of information flow in the 4-point FFT, when
the message determines which of two signals is supplied to the system:
Y = [0, 0, 0, 0] or Y = [1, 0, 1, 0]. Observe that, since M is encoded in
the even part of Y , only the “even component” of the FFT network is active.
Furthermore, only the DC component, Ỹ0 and the first harmonic, Ỹ2 are active,
as we would expect based on the two input signals.

We use this example to demonstrate how the definition of
the message is important in determining information flow.
First, suppose the message is one of two signals: Y =
[0, 0, 0, 0], or Y = [1, 0, 1, 0]. This can be written as M ∈
{0, 1} and Yi = M(δi + δi−2), where δi = I{i = 0} is the
Kronecker Delta function, and we assume M ∼ Ber(1/2). The
full computational system, along with the random variables
computed on all edges, is shown in Figure 12. The edges that
have M -information flow are highlighted in blue. Since M is
encoded into the even part of Y (observe that Yi = Y−i ∀M ),
we notice that only the “even component” of the FFT system
(corresponding to the 2-point FFT on the even indices of Y ) is
active [62, Sec. 9.3]. Furthermore, only Ỹ0, the DC component,
and Ỹ2, the first harmonic, show variation with M at the
output, as we would expect based on what differs between
the two input signals.

As a second example, consider the case shown in Figure 13.
Here, the message is again one of two signals: Y = [1, 1, 1, 1],
or Y = [1, 1/ω, 1/ω2, 1/ω3]. These signals can be jointly
expressed in terms of the binary message random variable
M ∼ Ber(1/2) as Yi = 1/ωiM . The two signals are flat
in their magnitude spectra and differ only in their phase,
creating δ-functions in the Fourier domain that are frequency-
shifted with respect to one another: Ỹk = δk−M . Once again,
the edges in the network that carry M -information flow are
demarcated in blue. Refer Appendix F-A for a derivation of
the values of the transmissions in the computational system.

These two examples make it clear that, based on how the
message is defined, the M -information paths in the system can
be very different. Indeed, if the message were as general as
possible, by placing a probability distribution over all possible
values of Y in R4, we know that all edges in the computational
system would have M -information flow. However, selectively
restricting M to just a few signals helps reveal some kind of
structure within the FFT network.

Another feature that can be observed in these examples
is how the output of the computational system can be a
function of the message. Although only very simple functions
of the message have been shown at the outputs here, the FFT
demonstrates that, in principle, more complex functions of the
message may also be generated.

21
Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 02,2020 at 17:42:00 UTC from IEEE Xplore.  Restrictions apply. 



0018-9448 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2020.2987806, IEEE
Transactions on Information Theory

1
/4 = Y0

1
/4ωM = Y1

1
/4ω2M = Y2

1
/4ω3M = Y3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3
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Figure 13: Another example of information flow in the 4-point FFT, when the message determines which of two signals is supplied to the system: Y = [1, 1, 1, 1]
or Y = [1, 1/ω, 1/ω2, 1/ω3]. The M -information paths are different from those in Figure 12, showing how the choice of the message can have a strong
impact on the flows within the same computational system.

C. The Schalkwijk and Kailath Scheme

The Schalkwijk and Kailath scheme [89] is an efficient strat-
egy for communicating a message in the presence of a noisy
feedforward channel and a noiseless feedback channel. We
have previously used this scheme as a counterexample [58], to
show that comparing Granger causal influences in forward and
backward directions can lead to erroneous inferences on the
direction in which the message is being sent in this feedback
system. We first provide a brief overview of the scheme, then
recapitulate our previous result, and finally demonstrate what
the information flow framework developed in this paper has
to offer in the case of this example.

Consider the communication system depicted in Figure 14,
which shows the schematic of a simplified version of the
Schalkwijk and Kailath scheme. For convenience, let us denote
the transmitter, A, and receiver, B, by Alice and Bob respec-
tively. Alice is attempting to communicate a message M to
Bob over an additive Gaussian channel, but in the presence of
noiseless feedback. Alice starts by transmitting the message
Y1 = M to Bob, over the noisy feedforward channel. Bob
receives a corrupted version of M , given by Ỹ1 = Y1 + Z1,
and computes an estimate M̂1. He sends this estimate back
to Alice over the noiseless feedback channel. In the iterations
that follow, Alice computes the error in Bob’s most recent
estimate, Yi =M−M̂i−1, and sends this to Bob over the noisy
feedforward channel. Meanwhile, Bob updates his estimate
based on Alice’s noisy transmissions Ỹi = Yi + Zi, using the
following rule:

M̂i = M̂i−1 +
1

i
Ỹi (68)

It can be shown that this rule implies

M̂i =M +
1

i

i∑
j=1

Zj (69)

Thus, this strategy ensures that Bob’s estimate M̂i converges
to M in mean squared sense [58].

Intuitively, one might expect that, since the message M is
being transmitted in the forward direction, the Granger causal
influence from Alice to Bob is greater than that from Bob to
Alice. However, our earlier result [58] showed that, in fact,
the opposite is true. In other words, even though the message
is being communicated from Alice to Bob, the Granger causal
influence from Bob to Alice is greater; in fact, the Granger
causal index from Bob to Alice is infinite. The reason for
this is that, while Alice’s past transmissions do not perfectly
predict Bob’s transmissions (due to the presence of noise in the
feedforward link), Bob’s past transmissions perfectly predict
Alice’s transmissions (since the latter are a simple function
of the former). Therefore, the Granger causal index from
Alice to Bob, which measures the relative predictive gain of
including Alice’s past transmissions in the autoregression for
Bob’s transmissions, remains finite; while the Granger causal
index from Bob to Alice becomes infinite.

Our earlier paper on this subject [58] concluded that the
direction of greater Granger causal influence could be opposite
to the “direction of information flow” in the Schalkwijk and
Kailath scheme. There, “information flow” was being used
purely in an intuitive sense, to mean the direction in which the
message was being communicated in that system. The intent
of our previous paper was to explain that it is not always
possible to interpret a larger Granger causal influence in a
certain direction to mean that a specific message is being
communicated in that direction. In contrast, this paper presents
a refined theoretical framework that defines information flow
about a message M for a specific edge in a computational
system. Now, we no longer speak of one specific direction in
which information flows; rather, we describe which edges carry
information about the message in their transmissions at each
point in time. This leads to a more nuanced understanding of
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Zi
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∼ N (0, σ2)
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Yi

= M−M̂i−1

Ỹi

= Yi+Zi

M̂i = M̂i−1 +
1

i
Ỹi

∼ N (0, 1)

M ⊥⊥ {Zi}

Figure 14: A communication system depicting the Schalkwijk and Kailath scheme. Alice, represented by node A, communicates a message M to Bob,
represented by node B, in the presence of a noisy feedforward channel and a noiseless feedback channel. In the ith iteration, Alice transmits the error in
Bob’s most recent estimate of the message, Yi, but her transmission is corrupted by the noise Zi. Bob updates and transmits his estimate, M̂i, which reach
Alice noiselessly.

information flow in the Schalkwijk-Kailath setting.
Before we can analyze the M -information flows in the

Schalkwijk-Kailath scheme, we need to fit the scheme
within the computational system framework. Figure 15 shows
the time-unrolled computational system corresponding to
two feedforward and feedback iterations of the simplified
Schalkwijk-Kailath scheme described before. In order to trans-
late the communication system into our computational system
model while remaining consistent with our earlier work [58],
we have merged the process of noise addition with the receiver,
i.e., Bob. This exposes the edges with Alice’s and Bob’s
transmissions, making them observable, as was assumed in
our previous paper [58]. This is also consistent with what
would have been observable if A and B were neurons (or
neural populations) whose outputs a neuroscientist were to
measure.25 Note that one full iteration of the Schalkwijk-
Kailath scheme takes two time steps in this model, so the
iteration index i advances once for every two time steps t.
Also, note that merging noise-addition with the receiver does
not make Ỹ or Z “hidden nodes”, since the function computed
at Bt can be defined purely in terms of its inputs, (Yi, M̂i−1),
and its intrinsic random variable, W (Bt) (which absorbs Zi),
as follows:

fB2i−1

(
Yi, M̂i−1,W (B2i−1)

)
= M̂i−1 +

1

i

(
Yi +W (B2i−1)

)
(70)

where W (B2i−1) = Zi takes the role of the noise in the
communication system. Also, to understand the time index for
node B, note that in the first step of iteration i, Alice transmits
to Bob, i.e., node A2i−2 transmits to B2i−1 (see Figure 15).

Now, we first show that all edges depicted in blue in
Figure 15 carry M -information flow, based on Definition 4.
Specifically, both Alice’s feedforward transmissions and Bob’s
feedback transmissions have M -information flow. This should
not be surprising for the following intuitive reasons: Alice’s
transmissions convey information about M which Bob uses
to improve his estimate; meanwhile, Bob’s transmissions are
estimates of M , and therefore must depend on M .

25From a wireless communication system perspective, as well, it is more
reasonable to assume noise to be a part of the receiver’s node, since the
additive noise in a signal is usually considered to be the result of thermal
noise in the receiver’s circuitry.

In fact, we can take this intuitive argument further: sup-
pose we were to quantify M -information flow by using the
following natural extension of our definition,

FM (Et) := max
E′t⊆Et

I
(
M ;X(Et)

∣∣X(E′t)
)
. (71)

Noting that Definition 4 only specified whether or not a given
edge Et had information flow, all that we have now done is to
take the maximum over the subsets of edges used to discover
M -information flow in that definition. This quantification is
fully consistent with our definition of M -information flow,
since it goes to zero if and only if the M -information flow on
an edge goes to zero. Now, using this quantitative notion of
information flow, we can ask how the M -information flow on
a given link—feedforward or feedback—varies with time. In
particular, it should be intuitively clear that the M -information
content in Bob’s transmissions, i.e. M̂i, increases over time as
his estimate improves. This is depicted as an increase in the
thickness of the edges carrying Bob’s transmissions with time.

On the other hand, the information content in Alice’s
transmissions decreases with time. To understand why this
is true, first note that I(M ;Yi) = 0 for i > 1, since
Yi carries only information about the noise in M̂i−1 (after
the first iteration), which is independent of M , as seen in
Equation (69). However, since Alice’s transmissions represent
the noise in Bob’s estimates of M , they depend on the message
when conditioned on Bob’s estimates (this is similar to how
Z carries information about M when conditioned on M ⊕ Z
in Counterexample 1). So the quantified M -information flow
of Alice’s transmissions will be given by:

I(M ;Yi | M̂i−1)

= I(M ;M − M̂i−1 | M̂i−1) (72)
(a)
= H(M | M̂i−1) +H(M |M − M̂i−1, M̂i−1) (73)

= H(M | M̂i−1) (74)

= H(M)− I(M ; M̂i−1) (75)

where in (a), the second term goes to zero because M is a
constant when given M̂i−1 and M − M̂i−1. During the initial
iterations, when Bob’s estimate is poor, we must have that
I(M ; M̂i−1) is very small (as we might expect if the noise
is large, for instance). Hence, for the first few iterations, the
quantified M -information flow of Alice’s transmissions will
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Figure 15: A computational system describing the first few iterations of the Schalkwijk and Kailath scheme. Almost every edge shown here has M -information
flow. However, the quantity of M -information flow (shown using line thickness) reveals the asymmetry between Alice and Bob: Alice has the message to
begin with, and her transmissions have a larger volume of M -information flow. In contrast, Bob’s initial transmissions are poor estimates and have small
volumes of M -information flow, but they get better over a few iterations, and eventually come close to the true message. Furthermore, we also reveal an
asymmetry between Alice and Bob using the concept of derived information: each of Bob’s transmissions is M -derived from Alice’s previous transmissions,
whereas Alice’s transmissions are not M -derived from Bob’s previous transmissions. Both these facts point towards the idea that Alice is slowly sending
information about M to Bob.

be close to H(M), from Equation (75). However, as Bob’s
estimate improves, I(M ; M̂i−1) becomes closer to H(M),
and therefore I(M ;Yi | M̂i−1) becomes close to zero. Thus,
the quantified M -information flow of Alice’s transmissions
decreases over time. Correspondingly, this is depicted using
edges whose thickness decreases over time in Figure 15.
Quantifying the M -information flows of the feedforward and
feedback links thus reveals an asymmetry between Alice
and Bob that strongly suggests that the message is being
transmitted from Alice to Bob.

We can also get a more nuanced understanding of informa-
tion flow in this system by asking whether Bob’s transmissions
are derived from Alice’s, or vice versa. First, consider whether
Bob’s transmissions are derived M -information of Alice’s
previous transmissions: this can be expressed in terms of the
Markov chain M—[M, M − M̂1]—M̂2. Observe that this
Markov chain holds trivially:

I(M ; M̂2 |M, M − M̂1) = 0. (76)

However, if we consider whether Alice’s transmissions are
derived M -information of Bob’s past transmissions, it can be
shown that M—[M̂1, M̂2]—(M −M̂2) is not a valid Markov
chain (see Appendix F-B for a detailed derivation). Hence,
we see that Bob’s transmissions are derived M -information
of all of Alice’s past transmissions, however, Alice’s trans-
missions are not derived M -information of all of Bob’s past
transmissions. In conjunction with the fact that the volume of
M -information flow in Alice’s transmissions slowly decreases
from H(M) with time, while the volume of M -information
flow in Bob’s transmissions slowly increases to H(M) with
time, this suggests that Alice has some information about the
message M that Bob slowly receives from Alice.

This example shows how a measure that quantifies infor-
mation flow, along with derived information, can be used to
understand some finer computational structure present within
the computational system. In general, however, care needs to
be exercised in applying derived M -information: one must
choose what Markov condition to check in a principled man-
ner. In the specific case of the Schalkwijk-Kailath example,
we had the advantage of being in a two-node setting, where
the derived information expressions we examined had clear

interpretations. It may be that analyzing information flow first,
to understand which variables transmit information about M to
one another, can help guide the choice of variables to examine
when applying derived M -information.

D. A Message Defined at the Output of a System

We now describe an example where the message is defined
at the output of a computational system, instead of at the input.
Although Definition 3c defines the message to be a random
variable available at the input nodes, it is also possible to
define the message at the output of the computational system.
In this scenario, the input nodes are no longer well-defined as
per Definition 3c. Instead, we would define output nodes in
the same manner.26

Consider the computational system shown in Figure 16.
The system on the right executes the function depicted by the
boolean circuit shown on the left. Y ∈ {0, 1} is an external
parameter, which is taken to be a fixed constant. When Y = 1,
the AND gate at the top is activated while the AND gate at the
bottom is deactivated, so the message depends only on Z1. In
this case, only the edges shown in blue have M -information
flow. On the other hand, when Y = 0, the opposite happens,
and the message M depends only on Z2. Now, only edges
shown in orange have M -information flow. If Y was not a
deterministic external parameter, but a random variable itself,
then all edges shown in the figure would have M -information
flow, since M would depend on all their values.

So, we see that when the message is defined at the output,
the “origin” of the message may be from within the computa-
tion system itself, in the form of one or more intrinsically
generated random variables: here, either Z1 = W (A0) or
Z2 =W (C0). The notion of information flow and information

26Note, however, that the corresponding “opposite” of Theorem 7 does not
hold in this case. That is, it is not true that if at some previous time instant,
an “input” node’s outgoing transmissions depend on the message, then there
exists an information path connecting that input node to the aforementioned
output nodes. The reason this fails is that there could be a “source” node
at an even earlier time instant, which provides information about M to both
the input node under consideration, and the output nodes, via two separate,
diverging paths. Therefore, there may be no path from said input node to the
output nodes.
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(1⊕Y )·Z2

Z1 = W (A0), Z2 = W (A1), Z1 ⊥⊥ Z2

M = Y · Z1 OR (1⊕ Y ) · Z2

Figure 16: A boolean circuit demonstrating a message defined at the output of the computational system. Note that “⊕” refers to bitwise-XOR, “OR” refers
to bitwise-OR, and “·” refers to bitwise-AND. We see that information paths may lead from an internal node, that generates an intrinsic random variable, to
the output node. Furthermore, this path may change with the “external parameters” of the system.

paths can thus help us identify where the message originates
within the computational system.

Furthermore, just as information paths can change depend-
ing upon how the message is defined (as in Section VI-B),
information paths may also change depending on external
parameters: inputs such as Y that are fed into the compu-
tational system, which are not part of the message. These
inputs essentially shape the nature of the computation being
performed, and so, naturally, they can affect information paths.

VII. DISCUSSION

This paper presented a theoretical framework for defining
and studying information flow about a specific message in a
computational system. The core contribution of our paper was
a definition for information flow that is concretely grounded
in the computational task and intimately tied to a specific
message. This relied on another important contribution: the
development of an underlying computational model, which
enables the interpretation of statistical analyses. After provid-
ing a clearly-defined model for a computational system, we
presented several candidate definitions for information flow
along with counterexamples and showed that our definition,
which is based on positivity of a conditional mutual informa-
tion expression, satisfies several intuitive properties, whereas
other candidate definitions do not. We then examined these
properties in detail and showed, in particular, that our defini-
tion naturally leads to the existence of “information paths”. We
also discussed how information flow can be inferred through
conditional independence testing, and provided an algorithm
for recovering the information paths in a given system. Finally,
we studied some canonical examples of computational systems
from different contexts, and showed that our definition of
information flow is intuitive in each case.

We proceed to discuss several important assumptions and
simplifications in our model. We also discuss existing literature
related to estimation of causal influence in neuroscience, and
how our computational system model leads us to a signif-
icantly different measure of information flow. Similarly, we
discuss how our framework is very different from the field of
Probabilistic Graphical Models.

A. Neuroscientific Concerns

1) Observing edges vs. nodes: The observation model
stated in Section V-A makes a crucial assumption, namely, that
transmissions on each edge can be observed. In neuroscientific
experiments, however, we often record activity from single
neurons (as in the case of electrophysiological recordings),
or aggregate activity from groups of neurons (as with Local
Field Potentials measured in Electrocorticography and Elec-
troencephalography). These neurons, or groups of neurons, are
considered to be nodes communicating to one another in a
network. It may not be known which nodes are connected to
which other nodes, let alone the recipient of each transmission
at every time instant. This is a marked departure from our
assumption that transmissions on edges can be observed. To
some extent, it is possible to incorporate a “node-centric”
model within our computational system by assuming that
all nodes broadcast their transmissions. However, that still
leaves unanswered the question of which nodes actually “hear”
another’s transmissions. A possible resolution to that question
might arise from an understanding of receiver response. That
is, we consider a revised model in which an edge exists if
a receiving neuron uses the information transmitted by some
neuron at the previous time instant. This issue is beyond the
scope of the current work, and will be addressed in subsequent
studies.

We also note that, although tools based on Granger Causal-
ity implicitly assume that nodes are measured and not edges,
they do not resolve the issue of which node is “talking” to
which other node. For example, if two different nodes A1 and
B1 communicate the same information to a third node, C2,
any regression based analysis will assign a weight of one-
half to each of A1 and B1. However, the true function, fC2

,
may be using only the information coming from A1, or only
the information coming from B1, or using the two in some
other unequal proportion. Such cases may only be identifiable
through an interventional approach.

Conversely, our work may suggest to neuroscientists that
inferences about information flow are more reliably obtained
if one can measure transmissions on edges in the graph, rather
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than transmissions of nodes. This may call for newer imaging
modalities, or new uses of existing modalities, such as treating
axons as targets for invasive recordings, perhaps at nodes of
Ranvier. Some work along these lines has already appeared:
Patolsky et al. [90] develop new techniques to measure signals
along the length of an axon. Such ideas may need to be
revisited in greater detail, given the importance of measuring
edges.

2) Observing memories: Another important assumption in
the observation model is that memories of nodes are observed
as transmissions on self-edges. If these transmissions are
implemented in the form of some internal state at each node,
then they might be difficult to observe in practice.27

It remains to be fully understood whether one can com-
pensate for not observing memories in some manner, e.g.,
by assuming that the memory of a node is the full history
of its transmissions and receptions. While this means that
intrinsically generated random variables that are not prop-
agated to other nodes will never be observed, it could be
argued that such variables could have no impact on the system
(save for acting as “computational noise”). So perhaps it
suffices to observe only transmissions between different nodes
(and not self-edges). Further work is required to understand
what ramifications such an assumption has on identifying
information flows and information paths.

Alternatively, perhaps if one wishes to observe memories,
it is important to measure not only spikes, but also membrane
voltages (e.g. using voltage-sensitive dyes [91] or, less directly,
through measurements of changes in neurotransmitter concen-
trations outside a cell [92]).

3) Discretization of time: Yet another implicit assumption
in our computational system model is that transmissions occur
at discrete points in time. This assumption is justified for
synchronous digital circuits used commonly today, or if the
computational system of interest is a trained artificial neural
network, for instance. However, this is not a perfect model
of the brain, because neural spiking (among other processes),
does not occur only at multiples of some fundamental unit
of time. The same also holds true of dendritic and axonal
propagation delays, for instance.

This issue might be partially mitigated by assuming that
neural computation happens at a certain time scale, and by
using a sufficiently high sampling rate so that Nyquist-rate–
type arguments apply. However, Nyquist-rate sampling may
not be possible in certain modalities that are inherently slow
(e.g. Calcium imaging and functional Magnetic Resonance
Imaging), so it would be interesting to understand what
inferences we are no longer capable of making. Alternatively,
if the sampling rate is too high, it may be useful to look for
M -information flow within time windows, which could help
increase the sample size for detection. The exact implications
of using such preprocessing methods will also need to be
studied in greater detail, and forms another avenue for future
work.

27If every node represents a group of neurons, however it may just be that
their internal state is represented in the form of communication between these
neurons. In that case, perhaps observing their internal state is just a matter of
having more spatially refined measurements.

4) Message enters at t = 0: Another assumption in our
framework is that the message enters the system at, and only
at, time t = 0. This is essential, given the way we have defined
input nodes: nodes at time t = 0, whose outputs depend
on the message (and which have no other shared source of
randomness). However, this assumption does not allow for
a dynamically evolving stimulus, which is also common in
neuroscientific experiments.

Suppose we allow the message to enter the system at a
later time instant, say at some node Ut, for t > 0, i.e., Ut may
compute a function not just of its inputs, but also of M . Then,
if we want the information path theorem to continue to hold,
we must also add Ut to the set of input nodes.28 Thus, if we
see dependence at some other node Vt′ , at a later time instant
t′ > t, the information paths leading to Vt′ may arise from
the original input nodes or from Ut, or both. As we might
intuitively expect, the more time points we allow the message
to enter at, the more such information paths we will likely
see, making the results of our analysis harder to interpret.

On a related note, recall that the assumption that M enters
only at t = 0 comes from our decision to focus on event related
experimental paradigms [28] (refer Section I-B). However,
although neural responses to event related stimuli are often
time-locked as well, they have considerable variability: i.e., a
neuron may respond at random times in each trial. Apart from
the inherent stochasticity in neural firing, this could happen
for any number of reasons, including the animal’s state of
arousal, its attention levels in each trial, etc. In our framework,
the information flow will be smeared out over the entire time
interval of possible response. A modified computational model
may be needed to address such an issue.

5) Experimental design and the message: An important as-
pect of our work is that it explicitly incorporates the message,
which in neuroscientific experiments is often some information
contained in the stimulus. This aids the neuroscientist in
designing experiments, for example, in understanding what
stimuli will help them make a certain inference about informa-
tion flow. In particular, one needs to use at least two different
stimuli in order to obtain any determination about information
flow. While this is implicitly understood in neuroscience, as
evidenced by comparisons with baselines, or by the use of
permutation tests to scramble stimulus-trial correlations for a
null model, our framework provides a more direct method for
identifying and interpreting stimulus-related information flow.
This could be particularly useful when tracking the flows of
multiple messages individually (see Section V-F).

B. The Difficulty of Estimation

A strategy for detecting edges that have M -information flow
was presented in Section V-B. In practice, however, there are
several issues associated with employing such a strategy. These
are discussed below.

Firstly, we currently assume that observations are noiseless
(see Section V-A, Assumption 3). It is unclear, exactly, to
what extent noisy observations will impact the inference

28We should also expect that any Local Markovity conditions at time t (see
Proposition 6) that involve the node Ut will no longer hold.
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of information flow. In particular, it is worth understanding
whether small amounts of observation noise can be tolerated
if all edges with M -information flow have a sufficiently large
“volume” of information (i.e., the corresponding mutual or
conditional mutual information is sufficiently large). As was
described intuitively in Section V-B, if the information volume
is large, then even under noisy conditions, we might expect
the test statistic to clear the threshold, so the presence of
M -information flow can still be detected consistently. But
small volumes of information that aggregate over time—e.g.
information about M “trickling” over time from one node
to another—could still pose issues. Such M -information flow
could go undetected, as has been shown to occur in other
contexts [55], using a different measure of flow. It is possible
that Derived Information, in particular, is hard to infer in
the presence of noise. This could make the task of detecting
the presence of a hidden node difficult (consider the case
of a “trickling” hidden node), as well as that of identifying
redundant links.

Secondly, detecting whether each edge at time t has in-
formation flow involves checking all subsets of Et. For N
nodes and N2 edges, this implies 2N

2

subsets of edges that
need to be searched. This could be seen as being prohibitively
difficult for N2 ≥ 30, or for N greater than about 5 or
6 nodes. However, in reality, graphs in neuroscience are
often known to be edge-sparse [93]–[95]. For example, in
the brain, a well-established 11-node network is the reward
network [95]. Most nodes in this network typically have just
one incoming and one outgoing connection. The two most
important nodes have five incoming edges each, with two
and four outgoing edges respectively. Further, it is known
which connections are inhibitory and which are excitatory,
which could further help with testing for information flow.
A fully connected network would have had 121 edges, but the
underlying connectivity of the circuit only allows for a total
of 17 edges in this network. So in reality, anatomical priors
help reduce the number of edges to well within the range of
what is computable. Nevertheless, it remains of interest to find
methods by which nodes and/or edges can be excluded from
the search, and this could be another topic for further research.

Another statistical issue that crops up when attempting to
simultaneously perform several conditional independence tests
is the problem of multiple comparisons [96]. Simply put, when
performing a large number of independent hypotheses tests,
say N , at some fixed false alarm rate α, on average, we should
expect αN of these tests to erroneously reject the null. In the
context of information flow, we might wish to set the null
hypothesis to be the absence of M -information flow on a given
edge. Then, to test for M -information flow on this edge, we
need to perform a large number of conditional independence
tests—call this number N—at some false alarm rate α. These
tests are, in fact, not independent of one another; nevertheless,
very loosely put, if we choose a false alarm rate α ≈ 1/N , we
may find that the probability of at least one false alarm is too
high. This would make us erroneously infer that this particular
edge has M -information flow; moreover, since this argument
applies to any edge, if α is not chosen conservatively enough,
we may erroneously infer that all edges have M -information

flow.
This multiple hypothesis testing problem is better posed

as a “Global Null test” (e.g., see [97]), wherein the global
null is the hypothesis that all of the conditional independence
tests are individually null (i.e., that there is no M -information
flow on the given edge), and the global alternative is the
hypothesis that at least one of the conditional independence
tests is non-null (i.e., that there is M -information flow on the
given edge). As mentioned before, however, the conditional
independence tests dictated by Definition 4 are, in general,
dependent on one another. Furthermore, it might not be easy
to describe the manner of dependence, so when choosing
Global Null tests, it is essential to choose those that work
under arbitrary dependence. A simple example of such a test
is the well-known Bonferroni correction, which uses a level
α′ = α/N for each test (where α is the desired false alarm
rate for the overall Global Null test); but we may find that
such methods have insufficient statistical power. A potential
solution to this problem might involve combining multiple
Global Null tests in some meaningful way: for example, one
could imagine designing a procedure that controls the False
Discovery Rate29 [98] on the identification of edges with M -
information flow.30 Another approach might be to find ways
of directly testing information paths, wherein the hypothesis
tested would be that a certain M -information path exists in the
system, rather than requiring every edge with M -information
flow be identified first. All of these ideas are potential avenues
for future work.

C. The Limitations of Granger Causality and Related Tools

Mapping directed functional connectivity and information
flow in the brain has been a hot topic for several years, as
evidenced by the large body of work in this direction [37]–
[39]. Approaches for statistically mapping functional con-
nectivity often rely on variations of Granger Causality [41]
and, more recently, Directed Information [43]–[45], which we
here collectively refer to as “Granger Causality-based tools”.
These approaches lack a systematic framework that ties the
statistical analysis to the underlying computation, however,
and the interpretations drawn from their use have often been
questioned [48], [50], [51], [55]–[58].

In particular, a crucial difference between our approach and
that of Granger Causality-based tools is that the latter do
not have an explicit description of the message. Instead, they
provide mechanisms to condense a pair of time series into a
single statistic. There are no concrete models that can be used
to interpret what this statistic means for the flow of information
about the message. Furthermore, if one is interested in the
information flow of multiple messages, Granger Causality-
based tools do not provide an immediate solution. This is why
a tool that ties information flow directly with a message is of
great interest to practitioners.

29These methods control the expected proportion of false discoveries, i.e.,
the proportion of null hypotheses that are falsely rejected.

30Care is needed when doing this, however, since tests for M -information
flow on different edges at the same time instant are also dependent on one
another.
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The absence of an underlying computational framework
with well-defined assumptions inherently makes it very hard
to draw sound inferences through the application of Granger
Causality-based tools. A striking example of this is a recent
result of ours [58] that shows, using a feedback communication
system, that the direction of greater Granger-causal influence
can be opposite to the direction in which the message is
communicated, even in the absence of hidden nodes and mea-
surement noise. The time-unrolled graph framework presented
here has been specifically designed to address this issue, and
present a clear understanding of information flow, even in the
presence of feedback. The example given in Section VI-C
demonstrates a potential resolution to this issue.

Granger Causality was originally developed for the study of
time-series that occur only once, such as in economics [40].
An artifact of this development is that it was not designed
to incorporate multiple trials of the same process. Instead, it
assumes stationarity to help estimate parameters of the ran-
dom variables that control the process. In the neuroscientific
context, stationarity is often a very poor assumption, since the
segment of time-series data corresponding to each trial may
be short, and often sees some kind of stimulus presentation.
Naturally, presentation of the stimulus changes the underlying
parameters of the time-series and destroys stationarity; indeed,
this is the quintessential aspect of the experiment. Thus, in
order to understand processing in such stimulus-driven tasks,
one needs to be able to infer time-dependent information flows
from data. While information-theoretic extensions of Granger
Causality such as Transfer Entropy and Directed Information
do not assume stationarity, they nevertheless fail to provide a
dynamically evolving picture of information flow. Recently,
some work has started to analyze an “adaptive” form of
Granger Causality computed on windowed time intervals [60];
such ideas may be worth pursuing for attaining a dynamically
evolving picture of Granger causal influence, though they will
still not comprise information flow, due to the absence of a
connection to the computational task and the message.

In Section I-B, we discussed two dominant interpretations
of “information flow” in neuroscience: the first has to do with
information about a specific message and is what we address
in this paper. The second, having to do with information in the
abstract, is more akin to what is done by Granger Causality-
based tools. It may be possible, in some settings and under
suitable assumptions, to unite these two interpretations. For
instance, it would be useful to know under what conditions
(e.g., Gaussianity, linear functions, etc.), Granger causal in-
fluence provides the same inferences as our rigorous notion
of M -information flow. This is a promising future direction,
since it is important to understand in which situations Granger
Causality-based methods recover meaningful flows of informa-
tion, and in which cases we must be careful with interpretation.

D. Probabilistic Graphical Models and Pearl’s Causality

There is one important difference that distinguishes our
work from the perspective adopted in the field of probabilis-
tic graphical models (PGMs) [99], and the representations
therein. In our framework, nodes represent computational

units, whereas in PGMs, nodes represent the random variables
themselves, and edges capture the conditional independence
relationships between these variables. While it might be possi-
ble to construct a PGM that is equivalent to our computational
model, this would likely eliminate any intuitive structure
captured by the computational graph.

It remains to be understood whether and how Pearl’s notions
of causality [30] can be seamlessly merged with the under-
standing of information flow developed here. We expect that
some formal application of causality will be needed in going
from an edge-centric model (as presented here) to a more
node-centric one (discussed in Section VII-A), in order to
identify which transmissions influenced a given node’s output.

There are several works in the literature that discuss mea-
sures of information flow in probabilistic graphical mod-
els [100], [101], but they are heavily inspired by causality and
largely center around an interventionist approach. In contrast,
our definition of information flow is based on a computational
system model that translates more readily to neuroscience, and
we assume that the experimentalist is restricted to making ob-
servations. Nevertheless, it may still be interesting to explore
alternative definitions of information flow, which incorpo-
rate interventional or counterfactual reasoning. Understanding
the connection between information flow and interventional
approaches could be essential for clinical translation, and
constitutes another important direction for future work.

E. Future Directions for Theoretical Development

A natural question that arises from this paper is: how can
our definition of information flow on an edge be extended to
a more generic information measure, which also quantifies
the volume of flow? Finding such a measure will involve
aggregating the conditional mutual information for each subset
of edges into a single value (one example of such a measure
was provided in Section VI-C, though it was not developed
from first-principles). It is as yet unclear how this might be
achieved, while still gelling well with our intuition of what
this information flow volume ought to be. We believe that the
right approach is to start by designating a set of properties
that we would like information flow volumes to satisfy, and
then to propose a measure through the use of representative
examples and counterexamples.

A second direction that emerges is related to Partial Infor-
mation Decomposition (PID) [65]–[67], which was discussed
earlier in Section III-E. M -information flow is very closely
related to the PID: while Candidate Definition 1 checks for
positivity of mutual information between M and X(Et),
and hence implies the presence of unique and/or redundant
information, our definition also detects the presence of purely
synergistic information. Since our definition is closely tied
to computation and is strongly motivated through the goal
of finding unbroken information paths, the close relationship
between PID and our definition suggests that PID might be the
right toolset for obtaining a more fine-grained understanding
of information flow. In particular, it would be useful to know
how our understanding of information representation and com-
putation is enhanced through a PID analysis (we try to take this
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approach in some very preliminary work on error correction in
grid cells [102]). Finally, we note that the PID could also help
inform the discussion on a definition for information volume.
Providing a useful definition of information volume based
on current definitions of unique, redundant and synergistic
information, and asking whether the problem of information
flow can inform the PID literature, will also be the subject of
future research.

A third direction has to do with alternate definitions of in-
formation flow: there might be other definitions of information
about a message, which satisfy the information path property.
These could be arrived at through modifications to our current
definition, or by looking at directions we did not pursue
here, e.g., counterfactual measures. It is worth understanding
whether such definitions can avoid M -information orphans,
or whether there will be more counterexamples to the use of
such measures (we recently made some forays along these
lines [103]). Furthermore, the properties we stated in this
paper are not sufficient to uniquely specify our definition
of information flow. For example, the all-zero function as
well as the all-ones function satisfy the Broken Telephone
property, although they are not particularly useful definitions
of information flow. Thus, it would be useful to understand
what other properties we should impose so as to arrive at
a unique definition of information flow. As a crude and
preliminary example, we demonstrate how this might be done
in Appendix E.

F. Concluding Remarks

We conclude by describing some of our general impressions
in working on the theoretical development presented in this
paper. As such, these points merely highlight some of our
opinions on how theory—and more specifically, information
theory—may be applied in neuroscience.

As mentioned in the introduction, we drew inspiration from
two papers that discuss how experimentalists understand sys-
tems in biology and neuroscience [32], [33]. Both these works
advocate for theory by arguing that we need new analytical
tools, and that the accumulation of empirical knowledge alone
does not constitute understanding. Lazebnik [32], in particular,
mentions how terminology in biology tends to be vague and
non-committal. We feel that an important reason for this
is the absence of concrete underlying models, with clearly-
stated assumptions. In other words, we think that theory and
modeling can go a long way in providing a language that
will enable well-grounded discussions. This language, in turn,
arises through the development of theoretical models and
formal definitions.

Another point made by both the aforementioned papers
is that we should attempt to understand large computational
systems by first examining smaller models, and models in
which the ground truth is already known. This approach allows
us to create new analytical tools that can be thoroughly vetted,
so that the interpretations drawn from their use in experimental
practice is unambiguous and undebated. We also believe that
when trying to understand large computational systems, it is
essential to start with toy models such as Counterexample 1.

This philosophy of starting with toy models, and abstracting
out meaningful ideas that hold more generally in large systems,
is well-entrenched in the field of information theory, and can
become a useful export in fields such as neuroscience.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof of Proposition 1: (⇒) Suppose there exists some
edge E′t ∈ E′t that has M -information flow as per Definition 4.
That is,

∃ E′′t ⊆ Et \ {E′t} s.t. I
(
M ;X(E′t)

∣∣X(E′′t )
)
> 0. (77)

Then,

I
(
M ;X(E′t)

∣∣X(E′′t )
)

= I
(
M ;X(E′t)

∣∣X(E′′t )
)
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+ I
(
M ;X(E′t\{E′t})

∣∣X(E′′t ), X(E′t)
)

(78)
(a)

≥ I
(
M ;X(E′t)

∣∣X(E′′t )
) (b)
> 0 (79)

where (a) follows from the non-negativity of conditional
mutual information and (b) from (77). Taking R′t := E′′t in
Definition 5, we see that the set E′t has M -information flow.

(⇐) Next, suppose that the set E′t has M -information flow,
as per Definition 5. That is, there exists a set R′t ⊆ Et such
that

I
(
M ;X(E′t)

∣∣X(R′t)
)
> 0. (80)

Also, let {E(1)
t , E

(2)
t , . . . E

(K)
t } be any ordering of the nodes

in E′t (where K = |E′t|). Then by the chain rule of mutual
information,

0 < I
(
M ;X(E′t)

∣∣X(R′t)
)

(81)

=
K∑
k=1

I

(
M ;X(E

(k)
t )

∣∣∣X(R′t), X
(k−1⋃
j=1

{E(j)
t }

))
. (82)

By the non-negativity of conditional mutual information, at
least one of the terms in the summation must be strictly
positive. Let the index of this term be k∗. Hence, there exists
E′t := E

(k∗)
t and E′′t := R′t ∪ {E

(1)
t , . . . E

(k∗−1)
t }, such that

I
(
M ;X(E′t)

∣∣X(E′′t )
)
> 0. (83)

In other words, there exists an edge E′t ∈ E′t that has M -
information flow as per Definition 4.

APPENDIX B
PROOF OF PROPOSITION 9

Proof of Proposition 9: Consider the set of all Et ∈ Et
that have M -information flow. That is, Et must satisfy

∃ E′t ⊆ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (84)

Define
Rt := {Et ∈ Et : (84) holds},

St := Et \Rt.
(85)

Then, we claim that Rt and St satisfy equations (63) and (64).
First, note that if St 6= ∅, then for every St ∈ St, we must

have that

∀ E′t ⊆ Et, I
(
M ;X(St)

∣∣X(E′t)
)
= 0. (86)

If not, then St ∈ Rt by (85), which implies that St /∈ St,
which is a contradiction. Hence, we see that no edge in St has
M -information flow. Therefore, by Proposition 1, the set St
has no M -information flow. This directly implies the condition
in (64).

Next, we claim that if Rt 6= ∅, then for every Rt ∈ Rt, if
E′t ⊆ Et is a set that satisfies

I
(
M ;X(Rt)

∣∣X(E′t)
)
> 0, (87)

then R′t := E′t ∩Rt satisfies

I
(
M ;X(Rt)

∣∣X(R′t)
)
> 0. (88)

Let S′t := E′t \R′t, so that S′t ⊆ St. Then,

I
(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)
> 0 (89)

by (87). So,

I
(
M ;X(Rt)

∣∣X(R′t)
)

(a)
= I

(
M ;X(Rt), X(S′t)

∣∣X(R′t)
)

− I
(
M ;X(S′t)

∣∣X(R′t), X(Rt)
)

(90)
(b)
= I

(
M ;X(Rt), X(S′t)

∣∣X(R′t)
)

(91)
(c)
= I

(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)

+ I
(
M ;X(S′t)

∣∣X(R′t)
)

(92)
(d)
= I

(
M ;X(Rt)

∣∣X(R′t), X(S′t)
)

(93)
(e)
> 0,

where (a) and (c) follow from the chain rule, (b) and (d) follow
from (64), and (e) follows from (89). Thus, condition (63) also
holds.

APPENDIX C
SYNERGISTIC INFORMATION FLOW

A. Partial Information Decomposition preliminaries

The literature on Partial Information Decomposition seeks
to find a decomposition for the mutual information between a
message, M , and a set of random variables, {X1, X2, . . .} into
several individually meaningful, non-negative terms [68]. For
our purposes, it suffices to consider the bivariate case, i.e., the
decomposition of I(M ;X,Y ) into non-negative components.
In the bivariate case, it is well-understood how many compo-
nents there ought to be, and what these quantities intuitively
represent, but as yet, there is no consensus on a single set of
definitions [68].

There is, however, consensus on a basic set of properties
that we expect these components to satisfy. For our purposes,
we will only make use of the basic properties stated here, so
that any definition of the aforementioned components which
satisfies these properties suffices for our theory.

In the bivariate case, the mutual information between M
and (X,Y ) is decomposed into four components: information
about M which is (i) unique to X and not present in Y ,
(ii) unique to Y and not present in X , (iii) redundantly present
in both X and Y , and (iv) synergistically present in X and
Y . In the notation of [67], the decomposition is written as:

I
(
M ; (X,Y )

)
= UI(M : X \ Y ) + UI(M : Y \X)

+RI(M : X;Y ) + SI(M : X;Y ), (94)

where the components are ordered exactly as stated above.
Note the distinction between the colon and the semicolon in
RI and SI . Also, “\” uses the symbol for set-negation to mean
“not present in”, while also explicitly capturing the asymmetry
between X and Y in UI . However, in what follows, we shall
assume that RI and SI are symmetric in X and Y . This is
usually an additional condition that is imposed when defining
these quantities, but here, we take it as given.

Given what we want the four components to represent, we
would also expect the following to hold:

I(M ;X) = UI(M : X \ Y ) +RI(M : X;Y ),

I(M ;Y ) = UI(M : Y \X) +RI(M : X;Y ).
(95)
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As a natural consequence, this means that the conditional
mutual information will satisfy:

I(M ;X |Y ) = I
(
M ; (X,Y )

)
− I(M ;Y )

= UI(M : X \ Y ) + SI(M : X;Y ),

I(M ;Y |X) = I
(
M ; (Y,X)

)
− I(M ;X)

= UI(M : Y \X) + SI(M : X;Y ).

(96)

Finally, we want each of these components to always be non-
negative:

UI(M : X \ Y ) ≥ 0 RI(M : X;Y ) ≥ 0

UI(M : Y \X) ≥ 0 SI(M : X;Y ) ≥ 0.
(97)

It is not obvious that a consistent definition of these four
quantities which also satisfies the equations stated above
even exists, but in fact, additional properties are required to
obtain a unique definition. For instance, see [67] for one such
development.

As stated before, our theory only relies on the properties
stated in this section. As a result, our theorem on the equiva-
lence of information flow definitions holds irrespective of what
definition is used, exactly, for synergistic information. It only
matters that the definition used satisfies the basic properties
presented here.

B. Equivalence of information flow definitions

Proof of Proposition 2: (⇒) Suppose the edge Et has
M -information flow. Then,

∃ E′t ⊆ Et s.t. I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (98)

If I
(
M ;X(Et)

)
> 0 with E′t = ∅ in (98), then condition 1

in Definition 6 holds, so nothing remains to be shown. If not,
then I

(
M ;X(Et)

)
= 0, so (98) implies that there must exist

some E′t 6= ∅ such that

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0, (99)

which, by (96), is equivalent to
UI
(
M : X(Et) \X(E′t)

)
+ SI

(
M : X(Et);X(E′t)

)
> 0.
(100)

However, since I
(
M ;X(E′t)

)
= 0, we must have UI

(
M :

X(Et) \X(E′t)
)
= 0 by (95) and (97). Hence,

∃ E′t ⊆ Et\{Et} s.t. SI
(
M : X(Et);X(E′t)

)
> 0. (101)

So the implication in the forward direction holds.
(⇐) For the converse, suppose that Et has no M -

information flow. That is,

I
(
M ;X(Et)

∣∣X(E′t)
)
= 0 ∀ E′t ⊆ Et \ {Et}. (102)

By (96), this implies that

UI
(
M : X(Et) \X(E′t)

)
+ SI

(
M : X(Et);X(E′t)

)
= 0 ∀ E′t ⊆ Et \ {Et}. (103)

Since UI and SI are both non-negative by (97), we must have
that

SI
(
M : X(Et);X(E′t)

)
= 0 ∀ E′t ⊆ Et \ {Et}. (104)

This proves the converse.

APPENDIX D
MISCELLANEOUS PROOFS FROM SECTION V

A. Proof of Lemma 10
Proof of Lemma 10: Consider a subset of hidden nodes

H′t ⊆ Ht that is not M -relevant. Then, by Definition 14,
Q(H′t ) carries no M -information flow in G. This means that

∀ E′t ⊆ Et, I
(
M ;X(Q(H′t ))

∣∣X(E′t)
)
= 0. (105)

Specifically, taking E′t = Ẽt, we have

I
(
M ;X(Q(H′t ))

∣∣X(Ẽt)
)
= 0. (106)

Therefore, by Definition 15, H′t is M -derived. Thus, if H′t is
not M -relevant, it is M -derived. Taking the contrapositive, if
Ht is not M -derived, then it is M -relevant.

B. Proof of proposition 11
Proof of Proposition 11: We are given that

I
(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)
> 0, (107)

and must prove that the hidden nodes at time t, Ht, are not
M -derived.

First note that, since Q(Ṽt+1) = Ẽt+1∪ (Ṽt+1×Ht+2), we
must have

I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt)
)

= I
(
M ;X(Ẽt+1), X(Ṽt+1 ×Ht+2)

∣∣X(Ẽt)
)

(108)

= I
(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)

+ I
(
M ;X(Ṽt+1 ×Ht+2)

∣∣X(Ẽt+1), X(Ẽt)
)

(109)

≥ I
(
M ;X(Ẽt+1)

∣∣X(Ẽt)
)

(110)
> 0, (111)

where the last line follows from the fact that conditional
mutual information is non-negative, and from (107).

Next, observe that Local Markovity conditions (Proposi-
tion 6) must hold on the entire graph G, which consists of both
observed and hidden nodes. If we apply the Local Markovity
condition to Ṽt+1, we have M—X(P(Ṽt+1))—X(Q(Ṽt+1)),
or in other words

I
(
M ;X(Q(Ṽt+1))

∣∣X(P(Ṽt+1))
)
= 0. (112)

Note that P(Ṽt+1) = Ẽt∪ Q̃(Ht), where Q̃(Ht) := Ht× Ṽt+1

is the subset comprising outgoing edges of Ht that go to Ṽt+1.
Therefore,

I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt), X(Q̃(Ht))
)
= 0. (113)

Expanding this conditional mutual information, we get

I
(
M ;X(Q(Ṽt+1)), X(Q̃(Ht))

∣∣X(Ẽt)
)

− I
(
M ;X(Q̃(Ht))

∣∣X(Ẽt)
)
= 0. (114)

So we have

I
(
M ;X(Q̃(Ht))

∣∣X(Ẽt)
)

= I
(
M ;X(Q(Ṽt+1)), X(Q̃(Ht))

∣∣X(Ẽt)
)

(115)

= I
(
M ;X(Q(Ṽt+1))

∣∣X(Ẽt)
)

+ I
(
M ;X(Q̃(Ht))

∣∣X(Q(Ṽt+1)), X(Ẽt)
)

(116)
> 0,
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where the final inequality follows from (111) and the fact that
conditional mutual information is non-negative. Finally, since
Q̃(Ht) ⊂ Q(Ht), we have that I

(
M ;X(Q(Ht))

∣∣X(Ẽt)
)
>

0, just as we showed in equations (108)–(111). Hence, the
Markov chain M—X(Ẽt)—X(Q(Ht)) does not hold, so by
Definition 15, Ht are not M -derived.

APPENDIX E
ON THE UNIQUENESS OF OUR DEFINITION OF

INFORMATION FLOW

From the perspective of designing an axiomatic framework,
it is desirable to find a minimal set of properties that gives rise
to a unique definition of information flow. Although Property 1
helped us motivate a definition for information flow, it did not
uniquely specify a definition. Indeed, the all-zero function as
well as the all-ones function also satisfy the property, although
they are not particularly useful definitions of information flow.

In this section, we provide a set of properties that uniquely
leads to our definition of information flow. However, we must
acknowledge that we arrived at these properties with the
benefit of hindsight, after having proved many other properties
of our definition. As such, they are mathematically very similar
to our definition, and one might feel uncomfortable with the
idea of imposing such a set of properties at the very outset.
Our goal here is only to begin a discussion in this direction:
a search for a more abstract set of properties that leads to
a unique definition of information flow would be a worthy
endeavour in future.

Property 4: Let C be a computational system, and let FM :
E→ {0, 1} be an indicator of the presence of information flow
about M on an edge. That is, FM (E) = 1, if information
about M flows on the edge E ∈ E, and FM (E) = 0
otherwise. We now state three conditions FM must satisfy,
which naturally leads to our definition of information flow
(Definition 4):
4a) FM (Et) = 1 if I

(
M ;X(Et)

)
> 0

4b) FM (Et) = 1 if ∃ E′t ⊆ Et\{Et} s.t.
I
(
M ;X(E′t) |X(Et)

)
> I
(
M ;X(E′t)

)
4c) FM (Et) = 0 if I

(
M ;X(Et) |X(E′t)

)
= 0 ∀ E′t ⊆ Et.

Property 4a is a very natural and intuitive requirement for
information flow. Property 4b states that an edge should be
considered to carry information about M , if upon conditioning,
its transmission increases the information that some set X(E′t)
conveys about M . Property 4c is reminiscent of the separabil-
ity property from Proposition 9, and states that if an edge has
no dependence with M , no matter what other transmission is
conditioned upon, then it can carry no information flow about
M .

Effectively, Property 4a states that if an edge has unique or
redundant information about M , then it must carry information
flow, while Property 4b states that if an edge has synergistic
information about M along with some other set of transmis-
sions, then it must carry information flow. Finally, Property 4c
states that if all three of these components are absent, then that
edge carries no information flow. This also explains how, if
any one of these three properties is absent, our definition is
no longer unique.

As we acknowledged previously, some of these properties
could be seen as too restrictive or contrived, and a more
abstract set of properties is certainly desirable. Nevertheless,
these properties do uniquely identify our definition of infor-
mation flow.

Proposition 12 (Uniqueness): If FM is an indicator of
information flow that satisfies the conditions in Property 4,
then FM (Et) = 1 if and only if Et has M -information flow,
per Definition 4.

Proof: (⇒) Suppose the edge Et has no M -information
flow per Definition 4. This directly implies the condition
in Property 4c. Hence, FM (Et) = 0. This proves that if
FM (Et) = 1, the edge Et must have M -information flow.

(⇐) Suppose the edge Et has M -information flow per
Definition 4. Then,

∃ E′t ⊆ Et\{Et} s.t I
(
M ;X(Et)

∣∣X(E′t)
)
> 0. (117)

If E′t = ∅, I
(
M ;X(Et)

)
> 0, so by Property 4a, FM (Et) =

1. If I
(
M ;X(Et)

)
= 0, then (117) guarantees the existence

of some E′t 6= ∅ such that

I
(
M ;X(Et)

∣∣X(E′t)
)
> 0 (118)

I
(
M ;X(E′t)

)
+ I
(
M ;X(Et)

∣∣X(E′t)
) (a)
> I

(
M ;X(E′t)

)
(119)

I
(
M ;X(Et), X(E′t)

) (b)
> I

(
M ;X(E′t)

)
(120)

I
(
M ;X(Et)

)
+ I
(
M ;X(E′t)

∣∣X(Et)
) (c)
> I

(
M ;X(E′t)

)
(121)

I
(
M ;X(E′t)

∣∣X(Et)
) (d)
> I

(
M ;X(E′t)

)
,

(122)

where in (a), we simply added I
(
M ;X(E′t)

)
to both sides; in

(b) and (c), we used the chain rule in two different ways;
and in (d), we used the fact that I

(
M ;X(Et)

)
= 0. So,

by Property 4b, we have that FM (Et) = 1. This proves the
converse.

Remark: It should be noted that Definition 4 only specifies
whether or not a given edge has M -information flow. It does
not quantify this flow. So Proposition 12 demonstrates the
uniqueness of our definition up to an unspecified information
volume. If we require that the conditions in Property 4 hold,
then any quantitative definition of information flow will go to
zero at an edge if and only if the M -information flow carried
by that edge is zero.

APPENDIX F
MISCELLANEOUS DERIVATIONS FROM SECTION VI

A. Derivation of Expressions in the Second FFT Example from
Section VI-B

Here, we derive the expressions used in Figure 13. Recall
that Yi = ω−iM/4, where ω = e−j2π/4 = −j.

Y02 = Y0 + Y2

=
1

4
+
ω−2M

4
=

1

4
(1 + ω−2M ) (123)
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Y13 = Y1 + Y3

=
ω−M

4
+
ω−3M

4
=
ω−M

4
(1 + ω−2M ) (124)

Y ′02 = Y0 + ω2Y2

=
1

4
+ (−1)ω

−2M

4
=

1

4
(1− ω−2M ) (125)

Y ′13 = Y1 + ω2Y3

=
ω−M

4
+ (−1)ω

−3M

4
=
ω−M

4
(1− ω−2M ) (126)

Next, we show that these intermediate values actually yield
the expected values of Ỹ .

Ỹ0 = Y02 + Y13

=
1

4
(1 + ω−2M + ω−M + ω−3M ) (127)

=

{
1
4 (1 + 1 + 1 + 1), M = 0
1
4 (1 + j + j2 + j3), M = 1

(128)

= 1−M (129)

Ỹ1 = Y ′02 + ωY ′13

=
1

4
(1− ω−2M + ω1−M − ω1−3M ) (130)

=

{
1
4 (1− 1 + ω − ω), M = 0
1
4 (1− j

2 + 1− j2), M = 1
(131)

=M (132)

Ỹ2 = Y02 + ω2Y13

=
1

4
(1 + ω−2M + ω2−M + ω2−3M ) (133)

=
1

4
(1 + ω−2M − ω−M − ω−3M ) (134)

=

{
1
4 (1 + 1− 1− 1), M = 0
1
4 (1− 1− ω−1 + ω−1), M = 1

(135)

= 0 (136)

Ỹ3 = Y ′02 + ω3Y ′13

=
1

4
(1− ω−2M + ω3−M − ω3−3M ) (137)

=
1

4
(1− ω−2M + ω3(ω−M − ω−3M )) (138)

=

{
1
4 (1− 1− ω(1− 1)), M = 0
1
4 (1− (−1)− ω(ω−1 + ω−1)), M = 1

(139)

= 0 (140)

B. Derivation of the Markov Chain Failure in Section VI-C

We wish to show that in the canonical example from
Section VI-C, M—[M̂1, M̂2]—(M − M̂2) is not a valid
Markov chain. Recall that Z1, Z2, Z3 ∼ i.i.d. N(0, σ2) and
M ∼N(0, 1). Let h(·) denote differential entropy. Then,

I(M ;M − M̂2, M̂2)

≥ I(M ; M̂3)

= h(M̂3)− h(M̂3 |M) (141)

=
1

2
log

(
2πe
(
1 +

σ2

3

))
− 1

2
log

(
2πe
(σ2

3

))
(142)

=
1

2
log
(
1 +

3

σ2

)
. (143)

Here, we started with the Data Processing Inequality, and
then used the fact that if Y ∼ N(0, σ2) is a zero-mean
scalar Gaussian random variable with variance σ2, then its
differential entropy is given by [73, Thm. 8.4.1]

h(Y ) =
1

2
log(2πeσ2) nats. (144)

Next, note that since M̂1 =M+Z1 and M̂2 =M+ 1
2 (Z1+

Z2), M̂1 has no extra information about M , given M̂2. This
is obvious when we think of M̂1 as being M̂1 = M̂2 + Z ′,
where Z ′ = 1

2 (Z1 −Z2), and it can be shown that Z ′ ⊥⊥ M̂2:

E[M̂2Z
′] = E

[(
M +

1

2
(Z1 + Z2)

)
Z ′
]

(145)

= E[MZ ′] +
1

4
E
[
(Z1 + Z2)(Z1 − Z2)

]
(146)

= 0 +
1

4
E[Z2

1 − Z2
2 ] (147)

=
1

4
(σ2 − σ2) = 0. (148)

Since all variables involved are zero-mean Gaussians, this
naturally implies that M̂2 ⊥⊥ Z ′. Thus, from our previous
argument, M̂1 has no extra information about M when given
M̂2, or in other words, M—M̂2—M̂1 is a valid Markov chain.
Therefore,

I(M ; M̂1, M̂2) = I(M ; M̂2) + I(M ; M̂1 | M̂2) (149)

= I(M ; M̂2) + 0 (150)

=
1

2
log
(
1 +

2

σ2

)
, (151)

derived in the same way as (143). From (143) and (151), we
can conclude that I(M ; M̂3) > I(M ; M̂2), and therefore

I(M ;M − M̂2, M̂2) > I(M ; M̂1, M̂2) (152)

⇒ I(M ;M − M̂2, M̂2, M̂1) > I(M ; M̂1, M̂2) (153)

⇒ I(M ;M − M̂2, M̂2, M̂1)− I(M ; M̂1, M̂2) > 0 (154)

⇒ I(M ;M − M̂2 | M̂1, M̂2) > 0. (155)

Thus, the stated Markov chain, M—[M̂1, M̂2]—(M − M̂2),
cannot hold.
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