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Nuclear quadrupole resonance (NQR) is commonly used to characterize solid materials containing
quadrupolar nuclei. For example, NQR is a promising technique for detecting plastic explosives and other
forbidden substances as well as for authenticating pharmaceutical products. Spatially-resolved NQR mea-
surements are of particular interest for enabling automated sample positioning, evaluation of sample
heterogeneity, and chemometric authentication of objects. This paper proposes a rapid “single-shot”
method for spatially-resolved NQR with the potential to benefit such applications. The proposed method
takes advantage of the fact that certain NQR relaxation rates are field-dependent: the observed field
dependence is used to convert relaxation time distributions measured in a static field gradient (estimated
via Laplace inversion of time-domain data) into spatial distributions. The method was validated using
35Cl and 37Cl NQR of sodium chlorate and other compounds. Effective spatial resolution was also
improved by using machine learning (ML) to classify the measured spatial distributions. In particular,
experimental results demonstrate accurate ML-based classification of 3D-printed objects containing arbi-
trary binary distributions of sodium chlorate. Such distributions can thus be used as NQR-based “embed-
ded barcodes” for authenticating high-value objects.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

NQR is a non-destructive, non-contact, and chemically-specific
spectroscopic method that requires no sample preparation, which
makes it an ideal candidate for distinguishing between different
chemical species and even polymorphic forms of the same species
[1,2]. In particular, NQR has attracted a lot of attention for detect-
ing (i) illicit substances such as bulk narcotics, and (ii) explosives
within buried landmines and baggage [3,4]. Moreover, it is a quan-
titative technique: the magnitude of received NQR signals can be
directly converted to the number of quadrupolar nuclei of a partic-
ular isotope that are present within the sample. As a result, NQR is
also emerging as a powerful method for authentication of pharma-
ceutical products [5,6].

Despite the advantages discussed above, there are practical dif-
ficulties in applying NQR to field applications, i.e., outside of labo-
ratory environments. For example, NQR spectra of common nuclei
such as "N and 3°Cl suffer from inherently low sensitivity, so rel-
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atively large sample volumes (typically, several grams) are
required to obtain sufficient signal-to-noise ratio (SNR) at room
temperature. The signal is also easily corrupted by external radio
frequency (RF) interference. In addition, it is important to note that
NQR cannot be used for analyzing liquids, for which the signal is
averaged out due to random molecular motion. Various
approaches have proposed to address the specific issues of low
sensitivity and external interference. These include improvements
to the RF pulse sequences [7], hardware designs [8], and signal pro-
cessing algorithms [9], as well as several cross polarization tech-
niques [10,11].

Solid-state NMR imaging plays an important role in biomedical
engineering and material science. In particular, it is a valuable tool
for studying the local dynamics, kinetics, and thermodynamics of a
variety of complex samples. However, it is generally only applied
to spin-1/2 nuclei such as 'H and '3C. Spatially-resolved NQR
(i.e.,, NQR imaging) would greatly expand the applications of mag-
netic resonance imaging (MRI) by enabling the characterization of
solid materials containing quadrupolar nuclei. One potential appli-
cation is to obtain information on the heterogeneity of blister
packs containing multiple dose units (pills or capsules), particu-
larly ones placed within sealed packets or bottles that are opaque
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to optical scanners. Dose units in a single pack may have different
active pharmaceutical ingredients (APIs) and impurities, and the
presence of placebo dose units may generate false negative screen-
ing results from volumetric measurements [12]. Moreover, previ-
ous research has shown that the spatial position and distribution
of such pills or capsules can result in significant changes in
detected NQR signal amplitude [13]. Thus, spatially-resolved NQR
measurements are important for obtaining quantitative results
from both homogeneous and heterogeneous samples.

Standard NMR-based imaging approaches cannot be directly
applied to NQR, since there is excessive line broadening due to
the spatially-varying Zeeman splitting caused by magnetic field
gradients. Alternatively, Matsui et al. proposed to utilize the
Zeeman-perturbed NQR power pattern. The width of the pattern
is proportional to the Zeeman field applied across the test object
if the zero-field NQR line is sufficiently narrow. Therefore, a one-
dimensional (1D) spatial spin density distribution can be obtained
by measuring spectra at different zero-field points in the sample
[14]. Another NQR imaging technique is based on a rotating frame
method. In this “pNQRI” approach, the spatial information is
encoded using gradients in the RF amplitude of the excitation
pulse. The projection of spin density of the sample along the gradi-
ent direction can then be reconstructed by applying a deconvolu-
tion algorithm [15]. There is no static magnetic field applied,
therefore no Zeeman splitting effects have to be taken into account.
However, relatively short RF pulses have to be applied, which
places design constraints on the peak transmit power level, recei-
ver recovery time, and other parameters of the front-end electron-
ics [16]. Also note that NQR imaging research has generally been
limited to 3°Cl due to its relatively high resonant frequency (and
thus high sensitivity), with pNQRI of N being proposed only
recently [17].

The idea of using NQR spectra to provide a chemical “finger-
print” unique to a product’s active ingredients has been developed
over the years [18-20]. Adding spatial information effectively adds
another dimension to such bulk fingerprints, which significantly
improves their uniqueness and unclonability. It is possible to use
available imaging techniques such as rotating-frame NQR to obtain
such spatial information. However, current methods are time-
consuming and instrumentation-unfriendly. Thus, there is a need
to develop spatially-resolved NQR measurement techniques that
are (i) rapid, and (ii) simple to implement. In this paper, we pro-
pose a simple but novel approach to spatially-localized NQR that
relies on field-dependent relaxation rates. We observe that the
relaxation rate T,,5 of certain compounds increases monotonically
with Zeeman splitting, and thus with the magnitude of a static field
(Bo) applied to the sample. Therefore, field-dependent 1D localiza-
tion information can be encoded into relaxation rates. The theoret-
ical feasibility of the approach is discussed in detail. In addition to
the basic NQR setup, the proposed method also requires a static By
gradient. However, the resulting experimental setup is still simple
and does not place any additional constraints on the front-end
electronics. Moreover, the whole experiment can be completed in
a single scan once calibration has been performed. This “single-
shot” advantage can significantly accelerate NQR imaging com-
pared to earlier methods, thus making it suitable for (i) rapidly
detecting sample position within the detector, and (ii) characteriz-
ing the heterogeneity of pharmaceutical samples. Furthermore, we
demonstrate that the effective spatial resolution of the proposed
approach can be improved by combining it with machine learning
(ML)-based classification techniques. Finally, we demonstrate that
the classification results can be used to decode 1D binary patterns
that function as “embedded NQR barcodes”. This working example
demonstrates the feasibility of our approach in practical
applications.

2. Theory
2.1. Resonant frequencies

NQR spectra are generated by resonant transitions between
nuclear energy levels of an atomic ground state. The energy levels
are created by interactions between nuclear quadrupolar moments
and local electric field gradients (EFGs). The nuclear Hamiltonian
relevant for zero-field NQR is given by

HQ:%[315—1(1“)%(11“3)], 1)
where wjq is the quadrupolar coupling constant, # is the asymmetry
parameter of the EFG tensor in the principal axis system fixed on
the nucleus, and I, 1, and I are spin operators. In particular, there
are two doubly-degenerate levels for nuclei with I =3/2 (such as
35Cl and 37Cl), which are given by

1 2 1 2
Eisp = 0o\ 1+ 5 Eapp = — 00y [1+ 1 2)

Thus, there is only one (non-zero) transition frequency

w 2
w0y =22 1+%. 3)

Note that the presence of only one transition (i.e., resonance) fre-
quency means that one cannot determine both wq and # within
one NQR measurement. The most common solution is to apply a
small magnetic field to break the degeneracy, thus resulting in four
resonance frequencies. In this case, the strength of each transition is
a function of the relative orientations of the static magnetic field, RF
magnetic field, and local EFGs, thus allowing # to be calculated
accordingly [21]. The energy levels with and without a magnetic
field are qualitatively shown in Fig. 1.

2.2. Pulse sequences

By default, we utilize (i) single spin echoes, and (ii) the classical
spin-lock spin-echo (SLSE) pulse sequence for data collection. The
SLSE sequence consists of an initial excitation pulse and a long
train of refocusing pulses separated by the echo period t¢, as shown
in Fig. 2.

2.3. Effects of Zeeman splitting

Zeeman-perturbed NQR (ZP-NQR) was first observed by Hahn
and Herzog. In [22], they reported that the relaxation time constant
T, of 33Cl spin echoes in single-crystal sodium chlorate (NaClOs)
is a function of the magnitude and direction of an external static
magnetic field By, i.e., is modified by the Zeeman splitting. Here
T, is determined by the dynamic components of relaxation pro-
cesses, as opposed to the static components that determine the
relaxation time constant T;, for free-induction decays and individ-
ual echo envelopes (see Fig. 2). Thus, T, .5 excludes the effects of
spin-lattice coupling (i.e., T; relaxation) but includes due to (i)
time-varying EFGs and external fields, and (ii) spin-spin coupling.
Interestingly, the value of T, was found to increase with the
magnitude of the applied field By and approach a constant at large
field strengths. On the other hand, T; (which is generally much
smaller than T,.y) is dominated by dephasing due to static inho-
mogeneities in both the EFG and the By field across the sample that
is removed (i.e., refocused) at the peak of each spin echo. Unlike for
T, ¢, the value of T; tends to decrease with By since the field seen
by the nuclei becomes more inhomogeneous [23].
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Fig. 1. Energy levels of an I = 3/2 nucleus subject to a strong quadrupolar interaction and a weak magnetic field. The energy level splitting due to the magnetic field is greatly
exaggerated. The lower row shows (i) the resulting spectral lines, and (ii) the spectrum of a typical RF excitation pulse used to measure them.
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Fig. 2. Basic spin-locked spin echo (SLSE) pulse sequence used for pulsed NQR experiments, and the resulting received signal s(t). Here A is the initial signal amplitude, T> s;s¢
is the decay time constant, T; is the echo width, and Af ~ 1/T; is the measured NQR line width.
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Fig. 3. Measured relaxation curves of a series of SE sequences (left) and a SLSE sequence (right) for NaClO; powder as a function of static field strength when B is parallel to
B;. The data was measured at 20 °C. The pulse length was 50 ps in both cases for a nominal flip angle of 120° (which corresponds to B; = 16.0 G), while t = 600 ps for the
SLSE sequence. Note that the first two points were removed from the SLSE sequence data in order to obtain a better fit.
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The NQR signal for a crystalline powder is related to that for a
single crystal by a powder average, i.e., an integral over all possible
random orientations of the EFG tensor with respect to the RF coil
axis [24]. As an example, we studied the field-dependent relax-
ation of NaClO; powder. Fig. 3 shows decay curves obtained at dif-
ferent magnetic fields B, using (i) a series of spin echo (SE)
experiments with different delay times, and (ii) a SLSE pulse
sequence. In both cases, By was kept parallel to the RF field B;
applied to the sample, and the amplitude of B; was kept fixed at
~16.0 G. An decrease in relaxation rate with increasing magnetic
field is observed for both pulse sequences. For convenience, we
continue to denote the corresponding time constant by T, ., when
the discussion is applicable to both SE and SLSE sequences. How-
ever, when referring specifically to either sequence, we replace
T, With T, or T, g5, respectively, to avoid confusion. In partic-
ular, Fig. 3 shows that (i) the SE relaxation curves are well-fit by
Gaussian functions s(t) = s(0) exp (7 2 ); and (ii) the SLSE relax-

2
2T2 SE

ation curves are well-fit by mono-exponentials
s(t) = s(0) exp (—t/T,sise)- As an example, the dashed lines in the
figure show best-fitting decay curves for both sequences when
By = 8 G. These results are in general agreement with earlier work
[23,25]. They suggest that SE relaxation is dominated by spin-spin
dipole coupling, some of which is refocused by the SLSE sequence
(thus explaining why T ssg > Tose).

Next, we would like to compare T,. with T; for both
sequences; note that T, is inversely proportional to the
frequency-domain line width of the received echoes. However,
simply adding up the received echoes in Fig. 3 to maximize SNR
prior to estimating T results in T, (z-weighting of the echo ampli-
tudes, which should be removed for clarity. For example, the sum
of the received echoes from a SLSE sequence can be represented as

Stor = S(O) (TZ_SLSE) (1 _ e*NE[E/TZ.SLSE)> (4)

tg

where N is the total number of echoes. A detailed derivation of Eqn.
(4) is available in A. When enough echoes are acquired such that
Ngte > T g, the equation simplifies to Ser ~ S(0)(T2sise/te). To
remove the dependence on T,gs, Wwe therefore plot
5(0) = Stor(te/T2s15)- A similar process can be used to remove T,
weighting from the SE data.

Fig. 4 shows the echo sums for the SE and SLSE sequences mea-
sured at different magnetic fields; T,.r-weighting has been
removed for clarity. Table 1 summarizes the best-fitting values of
T, and T; for both sequences assuming Gaussian echo shapes.

0.6 -

041

Echo signal (a.u.)

Time (us)

For the SE sequence, a wide acquisition window is required to mea-
sure the broad echoes generated at zero magnetic field. As a result,
the measured data after phase cycling still contains a significant
amount of ring-down from the coil, preventing us from accurately
calculating the relaxation times and echo integrals in this case.
Thus, zero-field data from the SE sequence is not shown in the
table. Also note that (i) By was kept parallel to By, and (ii) the spec-
ified values of By do not include the small Earth’s field of 0.53
~0.53 G that was also present during the experiments.

It is interesting to observe from Table 1 that (i) for both
sequences, T; decreases with By, while T, o increases; and (ii) both
these trends are significantly more pronounced for the SLSE
sequence. The fact that T; decreases with B, implies that the spec-
tral linewidth Af (which is approximately proportional to 1/T3) is
broadened by Zeeman splitting and B, inhomogeneity, as expected.
In particular, the spectral width of a Zeeman-perturbed NQR pow-
der pattern is known to be proportional to By if the zero-field line is
sufficiently narrow [14]. On the other hand, the fact that T,
shows the reverse trend, i.e., increases with By, requires more
explanation. While a similar effect was seen by Hahn and Herzog
for the SE sequence using single-crystal NaClOs [22], as far as we
know it has not been well-studied either for powder samples, or
for the SLSE sequence.

The observed behavior of T,.; relaxation in weak magnetic
fields can be qualitatively explained using a model which assumes
that the local magnetic field at a Cl site is due primarily to the dipo-
lar field of the neighboring nuclei. We assume that field-dependent
T, relaxation arises from homonuclear coupling (CI-Cl) rather
than heteronuclear coupling (Na-Cl), since Zeeman splitting of
the Na and Cl resonances should have little effect on the latter.
For By = 0, the coupled pair of Cl spins are in one of two degenerate
energy levels (+3/2 and +1/2), and the resulting relaxation dia-
gram is analogous to that for dipolar coupling in spin-1/2 NMR,
as shown in Fig. 5. The transition rates in this diagram are given
by the well-known expressions for dipolar coupling between iden-
tical (“like”) spins [26]. Once a non-zero By field is applied, the sin-
gle NQR line splits into a quadruplet (see Fig. 1), which is
subsequently further broadened by powder averaging. To first
order, this process can be modeled by assuming that the Cl spins
are divided into four non-equivalent groups. There are 4° = 16 pos-
sible states for pair of spins belonging to these groups, of which
only 4 behave as “like” spins. As a result, most of the resulting tran-
sition rates are given by those for non-equivalent (“unlike”) pairs
of spins. Since transverse cross-relaxation is present for “like”
but not “unlike” pairs of spins [27], the net result for both SE and

0.12
—8G
0.1°f —17G| 4
25G
0.08 —33G ]
=i . — 4G
s
< 0.06 1
c
2
9 004+ .
o
<
[$]
W .02 i
or i
-0.02 : : : : :
-150 -100 -50 0 50 100 150

Time (us)

Fig. 4. Non-T,.; weighted echo sums for the SE (left) and SLSE (right) pulse sequences for the same data shown in Fig. 3.
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Table 1
Best-fitting values of T; and T, for SE and SLSE pulse sequences at different B, fields.
Magnetic field (G) 0 8 16.8 25 33 11
SE T (us) N/A 122.1 85.0 75.4 705 65.4
SE decay time constant T g (ms) N/A 3.9 4.6 5.2 5.5 5.1
SE echo integral (a.u.) N/A 113.31 65.11 42.77 29.19 19.19
SLSE T (us) 373 164 116 90 76 68
SLSE decay time constant T, sisg (ms) @ t; = 600 ps 14 12.0 17.0 213 24.9 28.0
SLSE echo integral (a.u.) N/A 9.38 9.23 7.69 6.92 6.48
Total Here ‘+' and ‘-’ refer to Cl nuclei assigned to the two groups
Energy which correspond to the two non-equivalent directions for Na-Cl
axes (with respect to By) that occur within the crystal [23]. Also
Mp is a constant, wg = yBy and w; = yB; where ) is the gyromag-
netic ratio, ¢ is the angle between By and the < 100 > direction
Tl ;TZ T1 ITZ in NaClOs, 0 is the angle between By, and the Na-Cl bond, and
. = (1 +4tan? Hi)l/z. As mentioned previously, to extend this
result to powder samples, we need to numerically integrate Eqn.
(5) over the angular dependence, i.e., over 0 and ¢. Note that two
assumptions are necessary for this procedure to be valid: (i) the
sample consists of a large number of single crystals which are ori-
ented at random directions; and (ii) the external fields are homo-
geneous over the sample. In this case, the received echo can be
found by assuming that all values of § and ¢ occur with equal prob-
T1 ,Tz T1 ,Tz ability, which results in a weighted average over all orientations:
1 2T T
(s(ts, Bo)) = —— / / S(ts, 0, ¢, By) sin 6d6d.
ar Jo  Jo
Fig. 6 compares the estimated and measured echo amplitudes

Fig. 5. Relaxation due to dipole-dipole coupling between pairs of NQR spins
(I'=3/2) in two degenerate states (represented by up and down arrows, respec-
tively) at By = 0. Note that spins are not restricted to these eigenstates, but can also
form superpositions. However, we only show the former for simplicity.

SLSE sequences is a decrease in the transverse relaxation rate (i.e.,
an increase in T, ) as By increases.

It is worth noting that the observed SLSE echo decays are also
dependent on (i) the value of tg, and (ii) the magnitude of B.
Firstly, T, sse decreases as tg increases, as commonly observed for
pulsed spin-locking sequences [25,28]. In order to study the second
effect, we decreased the RF power level while increasing the SLSE
pulse length t, to keep the nominal flip angle constant (data not
shown for conciseness). We found that T, s goes up slightly as
B; decreases, while the initial signal amplitude decreases. Both
results are related to the decrease in RF pulse bandwidth (and thus
refocusing bandwidth) as B; decreases.

For the SE sequence, it is also possible to estimate the relation-
ship between echo amplitude s(t¢) and static magnetic field By for
powder samples; here tg/2 is the time delay between the excita-
tion and refocusing pulses and tg is again the echo period. The SE
amplitude for single-crystal NaClO3 (assuming # = 0 for simplicity)
is given by s =s, +5s_ [23], where

s(tg, 0,0,B0), = —2Vv3Mp(cos 0.)sin(v3wt, cos 0.)
x sin’ [(\/§w1 tp C0S0.)/2

x((%)zcos [wo(cos 0.)(3 + B)(t — te)/2] 5)
+(527)" cos farn(cos 0)(3 — . )(¢ ~ ) /2])

xexp {~[(t— te)? /2157 + /T3, (Bo. )] |.

s(tg) for NaClO; powder as a function of By; all results have been
normalized to those for By = 0. The dependence versus By is gener-
ally similar in the two cases, and is also in agreement with that
presented by Ramachandran et al. [29]. The small but noticeable
differences between the theoretical and measured curves likely
arise from the fact that the actual asymmetry parameter for the
sample may not be zero as assumed in the analysis.

2.4. Laplace inversion

Compared to SE, the SLSE sequence has the advantage of gener-
ating multiple echoes, thus allowing “single-shot” estimation of
Tsise- Thus, we will focus on it for the remainder of the paper.

1¢
() —— Theorectical estimation
§ 0.8 © Measured voltage ]
g
< 0.6
®
NO04
g
5 0.2
=z

0

0 10 20 30 40
BO, Gauss

Fig. 6. Estimated and measured received SE amplitudes for NaClO; powder (after
normalization) as a function of B, for t; = 2200 ps.
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Given the averaged time-domain data s(t) from an SLSE sequence,
we use a regularized inverse Laplace transform (ILT) algorithm to
generate T, distribution functions f(T,sse) [30]. The width of
the distribution is determined by the need to use regularization
to obtain a robust fit to the data. In particular, we minimize a func-
tion of the form

g(K.F) = |M — KF|” + o|[F|]* (7)

where M, K, and F represent the data matrix, measurement kernel
(determined by the pulse sequence), and the T,gse distribution,
respectively.

The first term in g(K, F) measures the mean-squared difference
(Lb-norm) between the data (M) and the fit to it (KF). The second
term provides Tikhonov regularization, and its amplitude is con-
trolled by the so-called regularization parameter «. The effect of
this regularization term is to favor solutions with a small l,-norm

|F||*, i.e., generate distributions that are smooth and hence robust
to noise in the data. As o increases, the overall fitting error remains
nearly constant before starting to sharply increase. Thus, an opti-
mal value of o should be chosen that keeps the fitting error close
to its minimum value while at the same time resulting in relatively
smooth distributions. Several algorithms can be used for this pur-
pose; here we used the well-known Butler-Reeds-Dawson (BRD)
method [31].

2.5. Machine learning for chemical fingerprinting

Chemical fingerprinting or extrinsic tagging is widely applied in
the fields of medicine and chemistry. Moreover, recent work on
identification and quality control of food and pharmaceutical prod-
ucts relies heavily on the development of chemical fingerprint
analysis. In particular, fingerprinting is a very effective method
for detecting counterfeit medicines and adulterated dietary sup-
plements, which are a growing threat all over the world [32].
NQR, as a volumetric measurement, shows excellent performance
in characterizing solid samples. NQR spectra are thus highly suit-
able as chemical fingerprints for medicines and material authenti-
cation; a more detailed discussion is available in [6]. In particular,
the use of embedded NQR-active “tags” for authenticating medici-
nes and dietary supplements has been discussed in our earlier
work [20]. Here we extend the concept of embedded NQR-active
tags to spatially-varying binary tagging patterns (“NQR barcodes”)
that provide improved security.

One possible implementation is shown in Fig. 7. The applied
detector is a movable solenoid that fits around the sample (i.e., a
standard medicine bottle), thus generating a stronger and more
uniform B; field than small flat surface detectors and resulting in
higher SNR. The operational procedure is based on (i) quickly
extracting the digital data (e.g., NQR signal amplitude) stored
within the sample at each detector position, (ii) combining data
obtained at several positions to generate a multi-bit chemical bar-
code, and (iii) cross-referencing this result with other information
(e.g., product information obtained from an optical barcode) for
verification purposes. Machine learning algorithms running either
locally (on the spectrometer) or on the cloud are well-suited for
extracting digital barcode data by classifying measured NQR sig-
nals into categories.

3. Results

We use NaClO3 as our main experimental sample, since it has (i)
significant field-dependent relaxation (see Table 1), and (ii) well-
studied pressure- and temperature-dependent NQR characteristics
[33-36]. In particular, the observed field-dependent behavior of
Tosise at weak magnetic fields provides us with a straightforward

method to perform spatially-resolved experiments, i.e., NQR imag-
ing. Our approach relies on encoding spatial information within the
values of T, s that result on applying a gradient magnetic field.
An immediate application is to improve the spatial resolution of
the “NQR barcode”-based authentication approach shown in
Fig. 7. In particular, if we can obtain M; > 1 bits of spatial informa-
tion at each detector position with the proposed imaging tech-
nique, then we can combine it with data from M, detector
positions to realize a M;M,-bit barcode with greatly improved
security.

3.1. Basic setup and calibration

Fig. 8 shows the setup used for our imaging experiments. The
probe (solenoid with 10 turns and a length of ~40 mm) and match-
ing network are set up between a pair of large coils on the same
axis. When the radius of these coils is equal to the distance
between them, and they are connected such that their currents
flow in the same direction, a uniform magnetic field By is generated
within the probe. This “Helmholtz coil” configuration was used to
measure the field-dependent relaxation behavior for NaClO3 sum-
marized in Table 1. The strength of the uniform magnetic field can
be estimated as

(4 NI
B (3) 15" ®)

where p, is the permeability, N is the number of turns, I is the coil
current and R is the coil radius. Fig. 9(a) compares the theoretical By
field generated by the Helmholtz coils with its measured value at
the center of the sample volume.

Furthermore, as mentioned in Section 2.3, after averaging over
all orientations of the principal axes, the only part of By which will
remain important in determining T s;s¢ iS its magnitude |Bo|. As a
result, we cannot simply reverse the Helmholtz coils to create a
symmetric gradient field with respect to the middle point between
them (assumed to be x = 0). In this case, we would not be able to
differentiate between samples located at +By, resulting in aliasing
about x = 0 (i.e., the center of the image). We can avoid this issue
by limiting the sample to either positive or negative values of x, but
at the cost of losing half the sample volume. Alternatively, we can
create a monotonically-varying field By(x) that has the same sign
throughout the sample. Here we use two controllable DC power
supplies to create such a gradient field by generating different cur-
rents through the coils. The resulting field strength can be esti-
mated as follows:

1 NI, R? 1 NI,R?
Bo(X) _ HolNIy += HolNI2 (9)

2R+ R2-05"7 2R+ R240D

where I; and I, are the currents generated by the two power sup-
plies. Fig. 9(b) shows the theoretical and measured B, fields across
the sample volume along the z-axis. In practice, there is slight vari-
ance across the detection range because of finite sample volume.
However, the influence is insignificant since the sample volume is
relatively small compared to the size of the Helmholtz coils [37].
The setup described above was placed in a temperature-
controlled oven to reduce fluctuations in the ambient temperature.
The matching network was then connected to a commercial desk-
top MR spectrometer (Kea 2, Magritek) for pulse sequence genera-
tion and data acquisition. The SLSE pulse length t, and echo
spacing t were fixed at 50 ps and 600 s, respectively to eliminate
the observed dependence of T, gs on By and tg. The resulting B,
amplitude was ~16.0 G; this is large enough to ensure that most
of the powder pattern is excited at each point in the sample (max-
imum length = 40 mm), which minimizes image distortion. The
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resulting peak RF power level was ~16 W, and the data points were
averaged over 64 scans.

3.2. Characterization of the NaClOs-based localization system

Fig. 10 summarizes the measured values of T, and T, s ¢ versus
temperature for NaClO; powder at different values of static field
strength By. The figure shows that T; decreases linearly with tem-
perature, while T s;s¢ remains almost constant; moreover, the NQR
resonance frequency is also strongly temperature-dependent (not
shown). The change of T; with temperature is ascribed to random
modulation of the EFG at the locations of resonant nuclei due to the
temperature-dependent rotation of neighboring chlorate ions
about their axis of threefold symmetry [36]. However, T; does
not have an obvious dependence on By field strength. On the other
hand, the Zeeman splitting mechanism described in Section 2.3
significantly alters the value of T, s With By, but not with temper-
ature. As a result, the proposed relaxation-based spatial encoding
mechanism is relatively robust to temperature fluctuations.

In addition to temperature, the angular dependence of T,
relaxation is also of interest for imaging experiments. In general,
it is desirable for B; to be set parallel to By (as in the previous
experiments) to prevent additional powder broadening of the
spectrum [38]. However, even significant deviations in the field
direction from a parallel orientation merely result in decreased sig-
nal intensity. As a result, the uncertainties in determining the
asymmetry parameter # do not greatly increase [39]. More impor-
tantly, the relaxation behavior is also relatively unaffected by ¢,
which is defined as the angle between By and Bj. Fig. 11 shows
measured values of T, for NaClO; powder as a function of By
and ¢ using the SLSE sequence. No statistically significant
¢-dependence is observed, unlike for T, in single crystals [22].

These results verify that relaxation-based spatial encoding and
imaging of NaClO; powder using different static magnetic fields
is robust to both temperature fluctuations and sample orientation.
Hence it is expected to be a stable and experimentally repeatable
technique in practical applications.

3.3. Imaging results

Time-domain data in gradient fields was collected using a SLSE
pulse sequence and first converted to a T, distribution via the
regularized inverse Laplace transform (ILT). The distribution was
then referenced to calibrated relationships between (i) the
strength of the uniform field and T s;s¢ (Fig. 10); and (ii) the distri-
bution of the gradient field across the sample (Fig. 9). Using these

Motion
direction

o

Detector

relationships, the measured T, s distribution can be converted to
sample location, resulting in a 1D spin-density NQR image I(x).
Fig. 12 shows two examples in which two slices of sodium chlorate
in a tube are successfully localized using the proposed technique.
Note that the nonlinear nature of the ILT does degrade spatial
resolution compared to linear methods such as the fast Fourier
transform (FFT). Fig. 12 shows that the output of an ILT varies sig-
nificantly for different values of SNR but the same «. Therefore,
sources of uncertainty in the experiments need to be reduced to
a minimum. The sensitivity of the ILT to noise is of particular inter-
est because it determines how reliable f(T5ss¢) is for characteriz-
ing the spatial information within a given sample. In order to
obtain a more straightforward understanding, we simplified the
model to investigate the significance of noise. A single-
exponential decay model s(t) =Aexp(—t/Tosse) is simulated,
where A= 0.1 and T, s = 10 ms. Different levels of white noise
are then added to the simulated decay curve. Furthermore, T sk
distributions are acquired using the ILT with optimized o values.
Two variables are worth investigating for the T, s distribution:
(i) the half-width of the peak, which characterizes the precision
of the distribution: the narrower the peak is, more precisely can
the sample can be localized; and (ii) the log mean value of T;gs.
The reason we use log-mean is that projections usually exhibit
multiple relaxation factors and thus do not have symmetric distri-
bution functions. As a result, their mean values on a linear scale are
not good estimates for the average. Fig. 13 shows the simulated
SNR versus (i) half-width of the peak, and (ii) log mean T, 5. Each
simulation result is averaged 100 times and the optimum o is
selected. As SNR improves, both the peak width and variance grad-
ually decrease, thus improving the spatial resolution. The log mean
of T, 515 is more robust to changes in SNR. In particular, it is more
accurate than peak width when the SNR is relatively low.

3.4. Extrinsic barcode system

The approach discussed in the last section is suitable for identi-
fying a few ILT peaks. However, when detecting complicated tag-
ging patterns that have more than two peaks, the outputs might
be difficult to differentiate using traditional analysis methods
(e.g., peak-finding algorithms). Step (3) in Fig. 14 shows an exam-
ple output distribution that is the combination of three exponen-
tial decay curves. The result is distorted, i.e., the peak locations
don’t match the actual decay constants very well, which results
in a distorted image. This problem is due to the nonlinearity of
the ILT and insufficient SNR of the measurements. Fortunately,
machine learning classifiers can often correctly identify different

Chemical

wf c

Optical

Fig. 7. Proposed approach for using “NQR barcodes” for authenticating medicines and dietary supplements.



C. Chen et al./Journal of Magnetic Resonance 311 (2020) 106660

Helmholtz Coil Temperature Sensor

Aluminum
Shielding

Coil

i

R

——

i
T o, -

N

Sample (sodium
chlorate) and tube

atéhing network

Fig. 8. Experimental setup for spatially-resolved NQR. A pair of Helmholtz-like coils is used to create a static field B, that is parallel to B; by default.
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ILT patterns that are visually indistinguishable. Fig. 14 shows an
overview of a machine learning-based algorithm for increasing
the number of unique patterns that can be distinguished, i.e., the
value of M;. It should be noted that such classification can also
be performed on the raw time-domain data. However, the ILT acts
as a useful data normalization, compression, and feature extraction
step. We thus prefer to invert the data matrices and then perform
classification on the resulting probability distributions, which pro-
vide more physical insight, lower computational complexity, and
higher classification accuracy.

The proposed classification algorithm operates as follows. First
we establish a suitable model and a range of possible system
parameters. In the example described here, the detection area is
segmented into six regions (b;,i= 0~5), each of which can either
contain the tag (‘1’) or not (‘0’). As a result, M; = 6 bits, and there
are 2M' = 64 unique ILT patterns. We encode spatial information
within the values of T, g with the help of a gradient magnetic
field and collect the time-domain data with SLSE sequence, as
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Fig. 11. Measured values of T, 55 in NaClO3 powder as a function of By and also the

angle ¢ between B, and B;. Each point is averaged 128 times. The variance of each
point is around 0.2 ms.
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before. We then create an array that consists of the ILT outputs reg-
ularized with different values of o. Normally, the optimum value of
o is the best solution, but other o values provide (i) robustness to
changes in SNR, and (ii) some insight into the characteristics of
the distributions. For example, when « is closer to zero, the distri-
bution tends to be less smooth and converges to a specific value.
Note that this value is not necessarily equal to the true value of
T,sise due to the numerically ill-posed nature of the ILT in the pres-
ence of noise. As an example, Fig. 15 shows ILT results after regu-
larization with different o values for SLSE data with typical SNR.

Furthermore, the trend of how the distribution converges pro-
vides another dimension of information. Specifically, in our case,
we train the algorithm on distributions generated by the following
values of «: (i) the optimum value obtained from the BRD method,
and (ii) 107, where x represents an integer from 1 to 6. The chosen
machine learning algorithm is trained off-line to recognize a set of
ILT patterns. Prediction accuracy is then evaluated using cross val-
idation. For each pattern, at least 100 sets of data are collected,
where each set has 7000 features: 1,000 1000 points per T, s;s¢ dis-
tribution, times 7 distributions (one for each value of «). After clas-
sification, if the mean value of the distribution within a region of
Tosise space exceeds a threshold value, we consider the corre-
sponding bit to be a ‘1’; otherwise, it is a ‘0’. Here, the regions for
calculating means are carefully chosen based on simulation such
that they can be reliably distinguished from each other after the
ILT. The values chosen for these ranges also ensure that the tagging
pattern is still identifiable when there are slightly offsets in the
gradient field. In the simulated experiment, the mean values of
the ranges are defined as 1, 5, 10, 15, 20, and 25 ms. Note that
the relationship between the B, field and T, is non-linear, so
if more bits is required in the future, a non-uniform value assign-
ment is desired to ensure that the barcode system does not get
easily corrupted. In addition, while we just trained the algorithm
on 20 different 3-peak and 4-peak patterns for demonstration pur-
poses, the approach can be extended to all possible M, -bit patterns
(in this example, M; = 6).

A generalized version of the proposed authentication procedure
can be briefly summarized as follows:

1. Segment the detection space b;.
2. Encode spatial information within the values of T, and col-
lect time-domain data with the SLSE sequence.
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Fig. 12. Measured data from a sample consisting of two slices of sodium chlorate: (a) placed close to each other (separation ~ 18 mm), (b) placed far away from each other
(separation ~ 36 mm). Each slice has a diameter of 10 mm and is about 1 cm long, resulting in a mass of ~2.5 gm.
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Fig. 16. Prediction accuracy for a subset of classification algorithms tested on
barcode patterns obtained from simulated SLSE data with realistic SNR.

3. Generate a test array that consists of the ILT outputs regularized
with different values of o.

4. Feed the array into a trained model and identify the corre-
sponding pattern.

5. Transform the pattern into spatial information and retrieve the
barcode.

Fig. 16 summarizes the prediction accuracy of a subset of clas-
sification algorithms for simulated data with similar SNR as in the
experiments. We also show a full summary of the results in C.
Some of the algorithms have shown a prediction accuracy of above
95%. Linear SVM is the most efficient algorithm with 96.6%
accuracy.

3.5. Experimental verification of NQR-based barcodes

The simulation model was further verified by using customized
3D-printed prototypes, one of which is shown in Fig. 17. The parts
are designed in commercial computer-aided design software
(SolidWorks from Dassault Systémes) and then fabricated on a
commercial 3D printer (Xinkebot). They consist of cylinders con-
taining multiple uniformly-spaced slots that can be filled with an
NQR-active compound in powder form. Therefore, each slot is able
to encode one-bit information: the ones filled with powder encode
‘1, while the rest encode ‘0. This procedure effectively turns the

Fig. 17. A 3D-printed model of an NQR-tagged object with 32 slots. Each slot is about 4 mm wide. The gap between slots is about 3 mm. Some of the slots are selectively filled
with pure sodium chlorate powder and can be considered as ‘1’ bits; the rest are ‘0’ bits. After filling, the slots are sealed with Parafilm to block moisture. Each slot can contain

about 0.8 gm of the sample.
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Fig. 18. Prediction accuracy for a subset of classification algorithms tested on the
3D-printed part (32-bit version).

prototype into an “embedded barcode” system as described above.
Furthermore, the prototype is carefully designed so that it fits
within the setup mentioned in Section 3.1. At the moment, pure
sodium chlorate powder is used to fill the slots in order to obtain
good SNR. Eventually the parts can be redesigned to be directly
printed out on a dual-filament printer in which one filament con-
tains a small fraction of the NQR-active compound. In this way, the
printed structure would be convenient for NQR detection while
ensuring that the tags are difficult to detect, which would in turn
increase the difficulty of counterfeiting and thus the security of
NQR-based authentication.

We followed the proposed approach as described above by fill-
ing a random subset of slots on the 32-bit prototype. Then the part
was fed inside the coil and scanned through. Note that the detec-
tion area for the coil can only contain six slots (6 bits) for a single
scan. Therefore, in order to complete the analysis of entire encoded
information in the prototype, at least six scans have to be con-
ducted. Fig. 18 shows the prediction accuracy for the scanning
results. The prediction accuracy drops compared to the simulation
results. There are several possible reasons for the degradation,
including: (i) The gradient magnetic field is not linear enough, thus
causing spatial distortion artifacts due to errors in the encoding
relaxation rates. (ii) The finite width of each slot results in a

multi-exponential decay curve for the sample within that slot.
(iii) There is some variation between the amounts of sample con-
tained in each slot due to the manual filling procedure. This results
in variable SNR for different slots, which in turn creates classifica-
tion errors by distorting the inverted distributions.

In spite of these experimental challenges, the “ensemble” clas-
sifier available in MATLAB, which attempts to meld results from
many weak learners into one high-quality ensemble predictor, pro-
vides good classification accuracy of 93.3%. As a result, the embed-
ded barcode can be read with 100% accuracy by adding a small
number of extra bits for digital error-correction. In addition, the
raw error rate can be reduced by using a dual-filament 3D printer
to manufacture tagged parts with high repeatability, as described
earlier.

3.6. Other chlorine compounds

In Fig. 19, we show that the T, g values of two other chlorine
compounds (hydrochlorothiazide and furosemide) also increase
with By, although not as strongly as for sodium chlorate. In NaClOs,
each chlorine nucleus is located at the apex of a chlorate anion
(which has a trigonal pyramidal structure), and its ionic bond with
the nearest sodium nucleus is aligned with the axis of this pyra-
mid. As a result, the local EFG tensor is axisymmetric, with a low
value for the asymmetry parameter #. By contrast, the chlorine
nuclei in hydrochlorothiazide and furosemide are covalently
bound to a benzene ring, as shown in Fig. 19. Such molecular
structures are non-planar and have low symmetry, which results
in larger values of # for the local EFG tensor. Earlier work on
Zeeman-perturbed NQR has shown that there is less Zeeman split-
ting (i.e., a narrower powder pattern) as # increases [40]. Thus, we
expect a less significant increase of T, g With By for nuclear sites
with higher 7, in agreement with our experimental results. The
weaker field-dependence of T,sse also leads to degraded spatial
resolution. As a result, we limited our imaging experiments and
simulations to NaClOs. Nevertheless, the results in Fig. 19 indicate
that the proposed technique is applicable to other chlorine com-
pounds as well.

4. Summary and conclusions

We have presented a relaxation-based approach to spatially-
resolved NQR. The feasibility of the approach has been proven both
theoretically and experimentally. Existing results on field-

25

H
O Hydrochlorothiazide . Cl N
O Furosemide - 35 Cl ﬁ
*  Furosemide - 37 CI -
2r P B H2N\ NH
- S
_- * /7N /7N
) -
£ PR .
P - Hydrochlorothiazide
S L P - il
|_:l{1 5 - - * _ ,O‘ - o
. - ° _-- - Qo Furosemide
* - - - - - O CI
.- HN s\/
_ -
& NH,
L L L L L L o
0 8 17 25 33 41 o
By, Gauss H

Fig. 19. Measured T, 55 values of hydrochlorothiazide (blue) and furosemide (red) as a function of field strength B,. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)



C. Chen et al./Journal of Magnetic Resonance 311 (2020) 106660 13

dependent SE relaxation of single-crystal sodium chlorate have
been extended to SLSE relaxation of powder samples. The results
have been used to improve the security of NQR-based authentica-
tion tags by enabling single-shot readout of spatially-resolved tag-
ging patterns (“NQR barcodes”). The spatial resolution of
relaxation-based imaging is limited by the nonlinear nature of
the ILT, so the proposed method is only capable of extracting spa-
tial features rather than generating true images. However, the use
of a machine learning algorithm can significantly improve the
effective resolution, making our approach promising for various
authentication applications.

The proposed authentication method can be improved in sev-
eral ways. The first is “grey scale” encoding, in which each spatial
region of the barcode can store multiple bits to further improve
security. However, the quantity of sodium chlorate tag in each
region needs to be carefully controlled in order to realize such a
grey scale code, which presents fabrication challenges. The second
is an automated motion control system for the detection coil (i.e.,
probe) to eliminate the need for manual scanning. The third is
closed-loop temperature compensation. While the SLSE relaxation
rates are relatively temperature-insensitive, the resonant frequen-
cies are not. As a result, it is desirable for long experiments to
include continuous tracking of the sample temperature such that
the resulting shifts in resonant frequency can be automatically
compensated.
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Appendix A. Estimation of average echo amplitudes

The amplitude of the average echo shape (without noise)
obtained by adding up a series of N echoes generated by an SLSE
sequence can be written as follows:

1 — e Nete/Tasise

Ne
)Ze*ktE/TZ.SLSE — S(O) =
k=1 -

It is generally safe to assume that t; < Tgse. In this case

Seor = (0 (A1)

te/Tosise

Note that matched filtering can be used to maximize SNR; in
this case each received echo is weighted by its expected SNR before
summation [41]. For the k-th echo, the additional weighting factor
is e /T2 since the signal decays exponentially while the noise
remains constant. If used, it is desired that the influence of this
weighting factor is removed as well. It is easy to do this by modi-
fying Eqn. (A.1).

Similarly, for a SE sequence, the average echo shape (obtained
by adding up echoes from Ng scans with linearly-increasing values
of tg) is given by

22

Ng ; E
Stor = S(O)ZEZTZ-SE. (A3)
k=1

There is no closed-form expression for this result, but it is easy to
evaluate numerically.

Appendix B. Summary of machine learning algorithm

Recent advancements in machine learning suggest its impor-
tance in interpreting and classifying complex datasets for decision
analysis. In particular, machine learning algorithms are effective
for authentication and discrimination of food items and pharma-
ceutical products [42,20]. Here we utilized the MATLAB Classifica-
tion Learner application (Mathworks, Natick, MA) to test a variety
of modern machine learning algorithms on f(T,s.s¢) distributions
generated by Laplace inversion of SLSE data. We then used 10-
fold validation to test the accuracy of each algorithm. We focus
on four different categories of algorithms: decision trees, discrim-
inants, support vector machines (SVMs), and k-nearest neighbors
(KNNs). These methods are briefly introduced below. A more
detailed description is available in [43].

Decision trees uses tree-like models of decisions and their possi-
ble consequences. It classifies instances by sorting them down the
tree by branches based on attribute values tests. Decision trees are
often used because they are easily comprehensible.

Discriminant analysis methods find a set of prediction equations
based on independent variables. It reduce dimensionality by
selecting data labels that maximize the separation between train-
ing sets. They can be good candidates to address supervised learn-
ing problems where the goals are to find the directions along

1—et/Tasise &1 — 1+ tp/Tasise = tr/Tasise, SO We get which the data is best separable.
SVMs try to separate the data into classes by drawing a hyper-
Stor = S(0) (@) (1 — e Nete/Tosise ), (A2) plane between training set categories. These algorithms build
te models such that each instance behaves as a non-probabilistic bin-
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Fig. C.20. Prediction accuracy of all classification algorithms tested on the barcode patterns.
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Fig. C.21. Prediction speed of all classification algorithms tested on the barcode patterns.
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Fig. C.22. An example of selected features used for mapping of different barcode patterns.

ary linear classifier. Multiple SVM instances can be combined
together to handle any number of classes.

KNNs are non-parametric methods that rely on the assumption
that data classified with the same label will have features that lie
near each other when plotted. They are simple but lazy learning
algorithms with relatively high computational costs.

Appendix C. Summary of classification data

For completeness, this appendix summarizes classification
results obtained using all 20 algorithms available in the MATLAB
Classification Learner application. Figs. C.20 and C.21 respectively
summarize prediction accuracy and prediction speed for the peak
patterns.

Fig. C.22 shows an example of visualizing a high-dimensional
feature map for different ILT patterns using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE). In the map, the majority of the
features are well separated, resulting in high classification accu-
racy. There are 7000 features in total.
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