JFP 29, el2, 24 pages, 2019. (€ The Author(s) (2019). This is an Open Access article, distributed under the 1
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/5095679681900008X

Perturbation confusion in forward automatic
differentiation of higher-order functions

OLEKSANDR MANZYUK!,BARAK A. PEARLMUTTER,
ALEXEY ANDREYEVICH RADUL?>and DAVID R. RUSH?
Department of Computer Science and Hamilton Institute,

Maynooth University, Co. Kildare, Ireland

(e-mails: manzyuk@gmail . com, barak@pearlmutter.net, axch@alum.mit.edu,
kumoyuki@gmail . com)

JEFFREY MARK SISKIND

School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-2035, USA
(e-mail: qobi@purdue . edu)

Abstract

Automatic differentiation (AD) is a technique for augmenting computer programs to compute deriva-
tives. The essence of AD in its forward accumulation mode is to attach perturbations to each number,
and propagate these through the computation by overloading the arithmetic operators. When deriva-
tives are nested, the distinct derivative calculations, and their associated perturbations, must be
distinguished. This is typically accomplished by creating a unique tag for each derivative calcu-
lation and tagging the perturbations. We exhibit a subtle bug, present in fielded implementations
which support derivatives of higher-order functions, in which perturbations are confused despite the
tagging machinery, leading to incorrect results. The essence of the bug is as follows: a unique tag is
needed for each derivative calculation, but in existing implementations unique tags are created when
taking the derivative of a function at a point. When taking derivatives of higher-order functions, these
need not correspond! We exhibit a simple example: a higher-order function f whose derivative at
a point x, namely f”(x), is itself a function which calculates a derivative. This situation arises natu-
rally when taking derivatives of curried functions. Two potential solutions are presented, and their
deficiencies discussed. One uses eta expansion to delay the creation of fresh tags in order to put them
info one-to-one correspondence with derivative calculations. The other wraps outputs of derivative
operators with tag substitution machinery. Both solutions seem very difficult to implement without
violating the desirable complexity guarantees of forward AD.

1 Introduction

The classical univariate derivative of a function f:R— R is a function f/:R—R
(Leibniz, 1684; Newton, 1704). Multivariate or vector calculus extends the notion of
derivative to functions whose domains and/or ranges are aggregates, that is vectors,
introducing notions like gradients, Jacobians, and Hessians. Differential geometry further

! Current affiliation: Facebook.
2Current affiliation: Google Al
3Current address: Dunlavin, Ireland.

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S095679681900008X
https://orcid.org/0000-0003-0521-4553
mailto:manzyuk@gmail.com
mailto:barak@pearlmutter.net
mailto:axch@alum.mit.edu
mailto:kumoyuki@gmail.com
https://orcid.org/0000-0002-0105-6503
mailto:qobi@purdue.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

2 O. Manzyuk et al.

extends the notion of derivatives to functions whose domains and/or ranges are—or can
contain—functions.

Automatic differentiation (AD) is a collection of methods for computing the derivative
of a function at a point when the function is expressed as a computer program (Griewank &
Walther, 2008). These techniques, once pursued mainly by a small quiet academic com-
munity, have recently moved to the forefront of deep learning, where more expressive
languages can spawn new industries, efficiency improvements can save billions of dollars,
and errors can have far-reaching consequences.

From its earliest days, AD has supported functions whose domains and/or ranges are
aggregates. There is currently interest from application programmers (machine learning
in particular) in applying AD to higher-order functions. Here, we consider extending AD
to support functions whose domains and/or ranges are functions. This is natural: we wish
AD to be completely general and apply in an unrestricted fashion to correctly compute
the derivative of all programs that compute differentiable mathematical functions. This
includes applying to functions whose domain and/or ranges include the entire space of
data types supported by programming languages, including not only aggregates but also
functions. In doing so, we uncover a subtle bug. Although for expository purposes we
present the bug in the context of forward AD (Wengert, 1964), the underlying issue can
also manifest itself with other AD modes, including reverse AD (Speelpenning, 1980) of
higher-order functions. The bug is insidious: it can lead to production of incorrect results
without warning. We present and discuss the relative merits of two fixes, and exhibit code
implementing them.

Our solutions are not ideal. While we believe that the solutions will always produce the
correct result, they can foil both the space and time complexity guarantees of forward AD
described in the next section.

Let I denote the true mathematical derivative operator. D) is classically defined for first-
order functions R — R in terms of limits, and thus this classical definition does not lend
itself to direct implementation.

Df=f where () = fim? T =)

i . (D
We seek to materialize 1) as a program construct . We can view this classical limit
definition as a specification of % and proceed to develop an implementation of %. Below,
we use = to denote mathematical equality, = to denote definition of program constructs,
and = to denote evaluation.

One can extend D to functions R — «, where:
a:=R|a—>a (2)

We first focus on this extension in Sections 2-8. We consider further extension to func-
tions a¢; — a; in Section 9. Since by (2) any type & must be of the forma; — -+ — @, —
R, functions R — a can be viewed as multivariate functions R — oy — -+ — ap —
IR whose first argument domain is R and whose range is R. We take D f where
f:R—a;— - -— a,— R to be the partial derivative with respect to the first argument.

- af (1,235 0. 5%5)

D
f é‘xl

(3)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 3

We will see below that past work has implemented a & that appears to coincide with the
specification I in (1) for functions R — R, but this past implementation fails to coincide
with the specification ID in (3) for functions R — «. We then proceed to demonstrate two
new implementations of & that do appear to coincide.

2 Forward AD as differential algebra

Forward AD can be formulated as differential algebra (Karczmarczuk, 2001). Its essence
is as follows.

The purely arithmetic theory of complex numbers as pairs of real numbers was intro-
duced by Hamilton (1837). These form an algebra over two-term polynomials a + bi where
iZ = —1. Arithmetic proceeds by simple rules, derived algebraically.

(a+ bi) + (c+di) = (a+c) + (b+d)i (4a)
(a+ bi)(c+di) = ac + (ad + bc)i + bdi> = (ac — bd) + (ad + bc)i (4b)

Complex numbers can be implemented in a computer as ordered pairs (a, b), sometimes
called Argand pairs. Since arithmetic over complex numbers is defined in terms of arith-
metic over the reals, the above rules imply that computation over complex numbers is
closed.

Clifford (1873) introduced dual numbers of the form a + be. In a dual number, the coef-
ficient of e is called a perturbation or a tangent. These can similarly be viewed as an algebra
over two-term polynomials where e2= 0 but ez 0. Arithmetic over dual numbers is again
defined by simple rules derived algebraically.

(a+be) + (c+de)=(a+c)+ (b+d)e (5a)
(a + be)(c + de) = ac + (ad + be)e +bde’= ac + (ad + be)e (5b)

Again, dual numbers can be implemented in a computer as ordered pairs (a, b). Again,
since arithmetic over dual numbers is defined in terms of arithmetic over the reals, the
above rules imply that computation over dual numbers is closed.

The essence of forward AD is viewing dual numbers as truncated two-term power series.
Since, following Taylor (1715), f(xo + x1€ + O(€?)) = f(x0) + x1.f' (x0)e + O(€2), apply-
ing f to a dual number a + 1e will yield a dual number f(a) + f(a)e. This leads to the
following method for computing derivatives of functions f : R — R expressed as computer
programs.

e Arrange for the programming language to support dual numbers and arithmetic
thereupon.
¢ To compute f* at a point a,

1. forma + le,
2. apply f to a + le to obtain a result f(a) + f(a)e, and
3. extract the tangent, f’(a), from the result.

Step 2 constitutes a nonstandard interpretation of the arithmetic basis functions with
(5a) and (5b). This can be implemented in various ways, for example, overloading or
source-code transformation. Further, dual numbers can be represented in various ways,

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

4 O. Manzyuk et al.

for example, as unboxed flattened values or as boxed values referenced through point-
ers. These different implementation strategies do not concern us here. While different
implementation strategies have different costs, what we discuss applies to all strategies.

It is convenient to encapsulate steps 1-3 as a higher-order function & :f — f’. Indeed,
that seems to be one of the original motivations for the development of the lambda calculus
(Church, 1941, §4). We can do this with the following code that implements Z.

tg a2 a:R (6a)
tg(a+be)=b (6b)
Pfx=tg(f(x+ 1¢)) (6¢)

Here, x + le denotes step 1 above, that is, constructing a dual number, and tg (a + be)
denotes step 3 above, that is, extracting the tangent of a dual number. Equation (6a) handles
the case where the output of f is independent of the input x.

Forward AD provides certain complexity guarantees. Steps 1 and 3 take unit time. Step 2
introduces no more than a constant factor increase in both the space and time complexity
of executing f under a nonstandard interpretation. Thus computing f x and & f x have the
same space and time complexity.

3 Tagging dual numbers to avoid perturbation confusion

Siskind & Pearlmutter (2008) discuss a problem with the above. It is natural to nest appli-
cation of Z. Doing so would allow taking higher-order derivatives and, more generally,
derivatives of functions that take derivatives of other functions.

D(Ax. ... D(Ay....)..) ... (7)

This can lead to perturbation confusion (Siskind & Pearlmutter, 2005, Section 2, Egs. (4)—
(11)), vielding an incorrect result. The essence of perturbation confusion is that each
invocation of % must perform its computation over a distinct differential algebra. While it
is possible to reject programs that would exhibit perturbation confusion using static typing
(Buckwalter, 2007; Kmett, 2010), and static typing can be used to yield the desired correct
result in some cases with some user annotation (Shan, 2008), no static method is known
that can yield the desired correct result in all cases without any annotation. It is possi-
ble, however, to get the correct result in all cases (except, as we shall see, when taking
derivatives of functions whose ranges are functions) without user annotation, by redefin-
ing tg and % to fag dual numbers with distinct es to obtain distinct differential algebras (or
equivalently, distinct generators in a differential algebra) introduced by different invoca-
tions of % (Lavendhomme, 1996). We will indicate different tags by different subscripts
on ¢, and use ¢ to denote a variable that is bound to an e.

tgca=0 a:R (8a)

tg e(a+be)=b (8b)
tg £ (a+bey) = (tg €1 a) + (tg &1 b)e; g1 #6& (8¢)
P fx=freshein tg ¢ (f (x+ lg)) (8d)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 5

These redefine (6a)—(6c¢). Here, the tags are generated dynamically. Many systems employ
this approach.! Many of these systems are implemented in “mostly functional languages,”
like SCHEME, ML, Fff, PYTHON, LUA, and JULIA, and are intended to be used with pure
subsets of these languages.

Prior to this change, that is with only a single e, the values @ and b in a dual number
a + be would be real numbers. With this change, that is with multiple es, the values a
and b in a dual number a + be; can be dual numbers over e; where e;7#€,. Such a tree of
dual numbers will contain real numbers in its leaves and will contain a given € only once
along each path from the root to the leaves. Equation (8c) provides the ability to extract
the tangent of an e that might not be at the root of the tree.

4 Extending to functions whose range is a function

If one applies 2 to a function f whose range is a function, f (x + 1¢) in (8d) will yield a
function. In this higher-order case, when f returns a function g, an invocation Z f x yields
a function g which performs a derivative calculation when invoked. It will not be possible
to extract the tangent of this with tg as implemented by (8a)—(8c). The definition of tg can
be augmented to handle this case by post-composition.>

tgeg=(tge)og 2 is a function (8e)

However, this extension (alone) is flawed, as we proceed to demonstrate.

5 A bug

Consider the following commonly occurring mathematical situation. We define an offset
operator:

s:R>(R->R)-R->R
sufx;f(xwi—u) (9)

The derivative of s at zero should be the same as the derivative operator, that is, D s 0 =D,
since:

() (W)Ds0fy=L[suf ylu—o=2[f(y+u) Juo=f"(»)=Dfy (10a)

P {eta}
(V)Ds0f=Dyf (10b)
P {eta}
Ds0=D (10c)

! For example, SCMUTILS (Sussman ef al., 1997b,a), a software package that accompanies a textbook on
classical mechanics (Sussman ef al.,, 2001) as well as a textbook on differential geometry (Sussman et al.,
2013), the systems of Farr (2006), Siskind & Pearlmutter (2005, 2008), Pearlmutter & Siskind (2007, 2008),
RO6RS-AD (https://github.com/qobi/R6RS-AD), DIFFSHARP (Baydin ef al, 2016), HIPS AUTOGRAD
(Maclaurin ef al., 2015a), TORCH AUTOGRAD (https://github.con/twitter/torch- autograd), and
JULIADIFF (http://www.juliadiff.org/ForwvardDiff.j1/stable/user/api.html).

2 Justification of this post-composition is given in Section 9 which describes the relevant constructs from
differential geometry.

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://github.com/qobi/R6RS-AD
https://github.com/twitter/torch-autograd
http://www.juliadiff.org/ForwardDiff.jl/stable/user/api.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

6 O. Manzyuk et al.

Thus, if we define
92950 (11)

we would hope that 9=9. However, we exhibit an example where it does not.
We can compute & (2 h) y for h : R — R with simple reduction steps:

-

2
=5 {by (11)}

Ps0 (12a)
=5 {by (8d)}

freshcin tg ¢ (s (0 + 1g)) (12b)
—_ {allocate a fresh tag e; this is problematic; see discussion below}

tg e (s (0+ lgp)) (12c¢)
= {by (9}

tg &0 (Af . Ax.(f (x+ leo))) (12d)
= {by (8¢)}

(tg e0) o (Af . Ax. (f (x + le))) (12e)
e {postcompose}

M . Ax. tg e (f (x+ le)) (12f)

D (Dh)y
— {substitute (12f) for &}

(A .Ax.tg e (f(x+1e))) ((Af . Ax. tg e (f (x+ leo))) h) y (12g)
—— {beta reduce}

(Af . Ax. tg €0 (f (x+ 1e0))) (Ax. tg €0 (A (x+ l€o)))y (12h)
—— {beta reduce}

(Ax. tg eg ((Ax. tg eg (h(x+ lep))) (x + 1eg))) ¥ (12i)
— {beta reduce}

tg o ((Ax. tg & (h(x+1€))) (¥ + leg)) (12))
— {beta reduce}

tg e (tg 0 (h((y+ leo) + 1eg))) (12k)
s {add dual numbers}

tg e (tg ¢ (h(y+2¢))) (121)
—— {apply h to a dual number}

tg eo (tg eo (h(y) + 2k (y)eo)) (12m)
= {by (8b)}

tg eo (2K (y)) (12n)
= {by (8a)}

0 (120)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 7

This went wrong, yielding 0 instead of 4”(y).
D (P h)y=0«D[Dh)y=H(») (13)

The process of allocating a fresh tag in step (12d) was problematic. The proper way to
handle such fresh tag allocation might be to use nominal logic (Pitts, 2003), perhaps in a
dependent-type-theoretic variant (Cheney, 2012). Below, we offer alternate mechanisms
that are suitable for use in programming-language implementations that lack type systems
that support first class names and binding.

This is not an artificial example. It is quite natural to construct an x-axis differential
operator and apply it to a two-dimensional function twice, along the x and then y axis
directions, by applying the operator, flipping the axes, and applying the operator again,
thus creating precisely this sort of cascaded use of a defined differential operator.

6 The root cause of the bug

This incorrect result was due to the tag ey being generated exactly once, in (12b), when 9
was calculated from % s 0 as (12a)(12f) using the definition (11). The invocation % s0
is the point at which a fresh tag is introduced; early instantiation can result in reuse of
the same tag in logically distinct derivative calculations. Here, the first derivative and the
second derivative become confused at (121). We have two nested applications of tg for e,
but for correctness these should be distinctly tagged: ey versus €.

This can be accomplished by making two copies of 17 by evaluating 50 twice.
Performing an analogous computation with two copies of 7% yields the correct result.

Do
S {repeat (12a)}

P50 (14a)
S {repeat (12b)}

freshein tg ¢ (s (0 + 1)) (14b)
S {repeat (12¢)}

tg e (s(0+ leg)) (14c)
—— {repeat (12d)}

tg o (A . 2x.(f (x+ leg))) (14d)
—— {repeat (12e)}

(tg €0) o (Af . Ax. (f (x+ 1&9))) (14e)
—— {repeat (12f)}

M .dx. tg e (f (x+ le)) (149

7
—— {repeat (12a)}

P50 (14g)
—— {repeat (12b)}

freshein tg & (s (0 + 1g)) (14h)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

8 O. Manzyuk et al.

S {repeat (12¢)}

tg) (s(0+ 1¢y)) (141)
— {repeat (12d)}

tg ey (M. Ax.(f (x+1e))) (14§)
— {repeat (12e)}

(tg 1) o (M . dx. (f (x+ ley))) (14k)
— {repeat (12f)}

M. Ax.tg e (f (x+ 1e)) (141)

Do (D)y
ey {substitute (14f) and (141) for 2}

(A dx.tg e (fx+1e))) (A -2x-tg e (f(x+1e))) h)y (14m)
— {beta reduce}

(Af . Ax. tg eo (f (x+ leg))) (Ax. tg e (h(x+ ler)))y (14n)
— {beta reduce}

(Ax.tg ep (Ax. tg e (h(x+1€))) (x+ 1g))) ¥ (140)
— {beta reduce}

tg 6o ((Ax. tg ey (h(x+ lep))) (¥ + leg)) (14p)
— {beta reduce}

tg e (tg & (h((y+ le) + 1e1))) (14q)
— {apply h to a dual number}

tg e (tg € (A(y+ leo) + H (y+ leg)ey)) (14r)
— {apply h to a dual number}

tg e (tg e1 ((A(y) +H (p)eo) +H (y+ leo)er)) (14s)
— {apply h to a dual number}

tg o (tg e ((A(y) +H (y)eo) + (K (¥) + 1" (y)eo)er)) (141)
= {by (8b)}

tg €0 (A (¥) +H'(¥)eo) (14u)
= {by (8b)}

() (14v)

Here, (14r) corrects the mistake in (121).
However, this is tantamount to requiring the user to manually write

let 7= P50 (15)
inlet 7, = 750
in @D (@1 h)y
instead of:
let =P s0 (16)
in9 (Jh)y

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 9

This should not be necessary since if & correctly implemented I, Do and 9, should be
equivalent.

The essence of the bug is that the implementation of 2 in (8d) generates a distinct e
for each invocation Z f x, but a distinct € is needed for each derivative calculation. In the
first-order case, when f :R — R, these are equivalent. Each invocation & f x leads to a
single derivative calculation. But in the higher-order case, when f returns a function g, an
invocation & f x yields g which performs a derivative calculation when invoked. Since g
can be invoked multiple times, each such invocation will perform a distinct derivative
calculation and needs a distinct . The implementation in the Appendix illustrates the bug
when setting *eta-expansion7# and *tag-substitution?* to#f to use the definitions
in (8d) and (8e).

7 A first solution: Eta expansion

One solution would be to eta expand the definition of &. Such eta expansion would need
to be conditional on the return type of f.

2 :(R—R)>R—R
P\ f x) =freshein tg e (f (x; + 1¢)) (17a)

D (Roay—R)»R-ay—R
D f x1xy=freshein tg e (f (x; + le) x2) (17b)

%:(R—Paz-—ra3—#R)—>R—#a‘2—"a‘3—+R
Dy f x1 x,x3 = freshein tg e (f (x; + 1£) xp x3) (17¢)

With such eta expansion conditioned on the return type of £, (8¢) is not needed, because the
appropriate variant of & should only be invoked in a context that contains all arguments
necessary to subsequently allow the call to tg in that invocation of & to yield to a non-
function-containing value. This seemingly infinite set of %; and associated definitions can
be formulated as a single & with polymorphic recursion.

Dfx=xy. (2 (Ax.(fxy))x) (f x) is a function (18a)
D fx=1reshein tg & (f (x+ 1g)) (f x) is not a function (18b)

We can see that this resolves the bug in (12a)-(120) and accomplishes the desiderata in
(14a)—(141) without making two copies of .

D
= {by (1D}

P50 (19a)
== {by (18a)}

2. (2 (xx.(sxy))0) (19b)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

10 O. Manzyuk et al.

2(Zh)y
= {substitute (19b) for &}

(- (@ (. (5%3)) 0)) (b (2 (Ax. (5x7)) 0)) h) y (19)
S {beta reduce}

(Ay. (2 (Ax.(sx)) 0)) (Z (Ax.(sxh)) 0) ¥ (19d)
— {beta reduce}

(Z2(Ax.(sx(Z(Ax.5xh)0)))0) y (19e)
= {by (8d)}

(freshein tg e (Ax. (sx(Z (Ax.(sxh))0))) (0+ 1)) » (19)
— {allocate a fresh tag €}

(tg c0 ((Ax- (sx(2 (Ax.(sxh)) 0))) (0+ 1e0))) ¥ (19g)
— {beta reduce}

(tg €0 (s (0+ 1) (Z (Ax. (sxh))0))) y (19h)
= {by (8d)}

(tg €0 (s(0+ leg) (freshein tg & ((Ax. (sxh)) (0+ 1£)))))» (19i)
— {allocate a fresh tag €}

(tg €0 (s (0+ leo) (tg €1 ((Ax.(sxh)) (0+ ler)))))y (19j)
S {beta reduce}

(tg €0 (s(0+ leg) (tg €1 (s(0+ 1ey))y (19k)
= {by 9}

(tg €0 (s(0+ leo) (tg €1 (Ax.(h(x+ (0+ 1€1))))))) ¥ (191)
= {by (8e)}

(tg € (s (0 + leo) (tg 1) o (Ax. (A (x+ (0 + 1€1)))))) » (19m)
—— {postcompose}

(tg €0 (s(0+1ep) (Ax.(tg & (h(x+ (0+ 1))y (19n)
= {by (9)}

(tg eo (Ax.((Ax.(tg &1 (h(x+(0+ 1€1))))) (x+ (0+ 1&))))) ¥ (190)
—— {beta reduce}

(tg € (Ax.(tg & (A((x+(0+16)) +(0+ 1€1)))))) ¥ (19p)
= {by (8¢)}

(tg co) o (Ax.(tg & (A((x+(0+ 1)) + (0 + 161))))) ¥ (199)
= {postcompose}

(Ax.(tg eo (tg e (A((x+ (0+ 1)) + (0+ 1)) ¥ (19r)
= {beta reduce}

tg e (tg & (A ((y+(0+16)) + (0 + 1¢1)))) (19s)
= {add dual numbers}

tg e (tg &1 (2 ((y+ leo) + (0 + 1e1)))) (19t)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 11

— {add dual numbers}

te € (tg €] (h ((y+ lfu) + 161))) (1911)
S {same as (14r)}

te € (tg €] (h(y+ lfu) +h'(y+ 160)61)) (19\-")
S {same as (14s)}

tg €0 (tg €1 ((2(y) + K (y)eo) + K (y + leo)er)) (19w)
S {same as (14t)}

tg e (tg &1 ((A(y) + K (y)eo) + (K (¥) + £ (¥)eo)er)) (19x)
- {same as (14u)}

tg e (K'(y) +H'(y)eo) (19y)
- {same as (14v)}

H'(y) (192)

Here, the allocation of a fresh tag is delayed from (19b) and is performed twice, in (19g)
and (19j), allowing (19v) to correct the mistake in (121), just like (14r). The implementation
in the Appendix illustrates that this resolves the bug when setting *eta-expansion?* to
#t to use the definition in (18a) and (18b) instead of that in (8d).

7.1 Issues with eta expansion

This solution presents several problems.

e First, this manuscript only considers a space of types that includes scalar reals and
functions but not aggregates (exclusive of dual numbers). Complications arise when
extending the space of types to include aggregates. The Appendix illustrates that the
above mechanism works with functions that return Church-encoded aggregates.

(a.dym=mad (20a)

fst c=c(ra.(Ad.a)) (20b)

snd ¢ =c(Aa.(Ad.d)) (20c)

tu= (e, (M . (Ax.(f x+u)))) (20d)
Zt1=1(1) (20e)
p=9t0 (20f)

fst p=—0 (20g)

2 Zsnd p (20h)

P (P exp) | =>e (20i)

With a function that returned native aggregates, one would need to emulate the
behavior that occurs with Church-encoded aggregates on native aggregates by
delaying derivative calculation, with the associated tag allocation and tg applied to
the native returned aggregate, until an accessor is applied to that aggregate. Consider
210 where t:R— (R x ((R—R) —R)) as above. One could not perform the
derivative calculation when computing the value p returned by % ¢0. One would

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

12 O. Manzyuk et al.

have to delay until applying an accessor to p. If one accessed the first element of p,
one would perform the derivative calculation, with the associated tag allocation, at
the time of access. But if one accessed the second element of p, one would have
to further delay the derivative calculation, with the associated tag allocation, until
that second element was invoked. This could require different amounts of delay that
might be incompatible with some static type systems.

e Second, with a type system or other static analysis mechanism that is unable to
handle the unbounded polymorphism of (17a), (17b), (17¢), ... or infer the “is [not] a
function” side conditions of (18a) and (18b), achieving completeness might require
run-time evaluation of the side conditions. This could involve calling f twice, once
to determine its return type and once to do the eta-expanded derivative calculation,
and lead to exponential increase in asymptotic time complexity.

e Third, the solution can break sharing in curried functions, even with a type system
or other static analysis mechanism that is able to eliminate the run-time evaluation
of *“is [not] a function” side conditions. Consider

gx=lett=fxinip.pt (21)
invoked in:
hx=letc=gxin(c(rt.t)) + (c(At.(Au.tx u))) (22)

The programmer would expect 4 8 to call f once in the calculation of the temporary
t =/ 8. And indeed this is what would occur in practice. Now consider % h 8. The
strategy discussed above would (in the absence of memoization or similar heroic
measures) end up calculating f 8 twice, as the delayed tag allocation would end
up splitting into two independent tag allocations with each independently redoing
the calculation. This violates the constant-factor-overhead complexity guarantee of
forward AD, imposing, in the worst case, exponential overhead.

8 A second solution: Tag substitution

Another solution would be to wrap g with tag substitution to guard against tag collision,
replacing (8e) with:

tg &, gy =freshein ([e;/c] o (tg &1) ogo[e/er]) y g is a function (23)

Here [£ /5] x substitutes & for &, inx. In a language with opaque closures, tag substitution
must operate on functions by appropriate pre- and post-composition.

[e1/e2] a=a a:R (24a)
[e1/2] (a+ bey) = a+ be, (24b)
[e1/22] (a+ be) = ([1/22] @) + ([e1/22] b)e e#e& (24c)

[e1/82) gy =freshein ([ez/g] o [e1/e2] oo [e/e2])y g isafunction (24d)

The intent of (24d) is to substitute £, for &, in values closed-over in g. An ¢ in the output
of g can result either from closed-over values and/or input values. We want to substitute
for instances of &, in the output that result from the former but not the latter. This is

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 13

accomplished by substituting a fresh tag for instances of £, in the input and substituting
them back at the output to preserve the extensional behavior of g. Equation (23) operates
in a similar fashion. The intent of (23) is to extract the coefficient of instances of ; in the
output of g that result from closed-over values, not input values. This is accomplished by
substituting a fresh tag for instances of g; in the input and substituting them back at the
output to preserve the extensional behavior of g.

We can see that this also resolves the bug in (12a)—(120) and accomplishes the desiderata
in (14a)—(14l) without making two copies of 2.

-

9
== {by (1)}
G50 (253}
== {by (8d)}
freshein tg e (s (0 + lg)) (25b)
— {allocate a fresh tag ey}
tg e (s (0+ 1gp)) (25¢)
— {by (9)}
tg eg (Af . Ax.(f (x+ 1e))) (25d)
== {by (23)}
Ay. (freshein ([eg/e] o (tg €) o (M . Ax. (f (x+ 1&))) o [£/e0])) (25¢)
P (9h)y
= {substitute (25¢) for &}
Ay.(freshein ([ep/c] o (tg €) o (Af . Ax. (f (x+ leo))) o [£/e0]) ») (259)
(Ay.(freshein ([eg/c] o (tg) o (Af . Ax. (f (x+ leg))) o [e/€0]) ¥) B)
¥
S {beta reduce}
Ay.(freshein ([eo/e] o (tg e0) o (Af . Ax.(f (x+ leo))) o [e/e0]) ¥) (25¢2)
(fresh e in ([eg/e] o (tg €o) o (Af . Ax. (f (x+ leo))) o [e/€0]) k)
¥y
e {beta reduce}
(fresh ¢ in ([eg/e] o (tg eo) o (Af - Ax. (f (x + leg))) e [e/€n]) (25h)
(fresh e in ([ep/e] o (tg €o) o (Af . Ax. (f (x+ leo))) o [e/€0]) R))
¥
S {allocate a fresh tag e}
(([eo/e1] o (tg €0) o (Af . Ax. (f (x+ 1€0))) o [€1/€0]) (251)
(fresh e in ([ep/2] o (tg €) o (Af . Ax. (f (x+ leo))) o [¢/e0]) h))
¥y
S {allocate a fresh tag e;}
(([eo/e1] o (tg €0) o (Af . Ax. (f (x + 1€0))) o [€1/€0]) (25)
(([eo/€2] © (tg €0) o (Af - Ax. (f (x + 1€0))) © [e2/e0]) B))
¥

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

14 O. Manzyuk et al.

[{substitute e, for €, which leaves h unchanged since it can’t close over

the freshly allocated tags}

(([eo/€1] o (tg €0) o (Af . Ax. (f (x + 1€0))) o [€1/e0]) (25k)
(([eo/€2] o (tg €0) o (Af . Ax . (f (x + 1€0)))) h))
¥
S {beta reduce and postcompose}
(eo/er] o (t €0) 0 (A - Ax . (f (x+ 10))) o [e1/eo]) (251)
(Ax. ([eo/e2] (tg €0 (A (x+ 1€0))))))
¥
— {substitute €| for e}
(eo/er] o (t €0) o (M - Ax . (f (x+ 1ea)))) (25m)
(Ax. ([er/e2] (tg & (A (x+1€1))))))
B
— {beta reduce and postcompose}
(Ax. ([eo/e1] (t eo ((hx. ([er/e2] (t &1 ((x+ 1e1))))) (x+ 1)) ¥ (250)
— {beta reduce}
[eo/e] (tg 0 ((x- ([er/es] (tg 1 (h (x+ 1er))))) (3+ 1eo))) (250)
. {beta reduce}
[eo/er] (tg <o ([er/e2] (te €1 (B ((y+ 1eo) + 11))))) (25p)
— {apply h to a dual number}
[eo/e1] (tg €0 ([e1/€2] (tg &1 (A(y+ leo) + K (¥ + leo)er)))) (25q)
—— {apply h to a dual number}
[eo/e1] (tg €0 ([e1/€2] (tg €1 ((A(¥) + A ()eo) + K (¥ + leo)er)))) (25r)
—— {apply h to a dual number}
[eo/e1] (tg €0 ([e1/€2] (tg €1 ((A(¥) +H (¥)eo) + (K () + B (¥)e0)e1)))) (25s)
=% {by (8b)}
[eo/e1] (tg €0 ([e1/€2] (K (¥) +H"(¥)e0))) (251)
- {substitute €; for e}
leo/e1] (tg €0 (K (¥) + 1"(¥)eo)) (25u)
=% {by (8b)}
[eo/er] A" (¥) (25v)
e {substitute €, for € }
H'(y) (25w)

Steps (25k) and (25m) are abbreviated as they really use (24d). Here, the tag substitution
in (25m) allows (25q) to correct the mistake in (121), just like (14r). The implementation
in the Appendix illustrates that this resolves the bug when setting *tag-substitution?*
to #t to use the definition in (23) instead of that in (8e).

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 15

8.1 Issues with tag substitution

This solution presents several problems, when implemented as user code in a pure lan-
guage. In the presence of aggregates, unless care is taken, the computational burden of tag
substitution can violate the complexity guarantees of forward AD. The call to tg in step 3
might take longer than unit time as tag substitution must potentially traverse an aggregate
of arbitrary size. When that aggregate shares substructure, a careless implementation might
traverse such shared substructure multiple times, leading to potential exponential growth
in time complexity. Moreover, a careless implementation might copy shared substructure
multiple times, leading to potential exponential growth in space complexity. Laziness,
memoization, and hash-consing might solve this, but it can be tricky to employ such in
a fashion that preserves the requisite time and space complexity guarantees of forward
AD, particularly in a pure or multithreaded context.

We are unsure, however, that laziness, memoization, and hash-consing completely elim-
inate the problem. First, some languages like PYTHON and SCHEME lack the requisite
pervasive default laziness. Failure to explicitly code the correct portions of user code as
lazy in an eager language can break the complexity guarantees in subtle ways. But there
are subtle issues even in languages like HASKELL with the requisite pervasive default lazi-
ness, and even when laziness is correctly introduced manually in eager languages. One
is that memoization and hash-consing implicitly involve a notion of equality. But it is
not clear what notion of equality to use, especially with “gensym™ and potential alpha
equivalence. One might need eq?, pointer or intensional equivalence, rather than equal?,
structural or extensional equivalence, and all of the impurity that this introduces. Further,
memoization and hash-consing might themselves be a source of a new kind of perturba-
tion confusion if tags can persist. One would then need to substitute the memoized tags
or the hash-cons cache. Beyond this, memoization and hash-consing could break space
complexity guarantees unless the cache were flushed. It is not clear when/where to flush
the cache, and even whether there is a consistent place to do so. There might be incon-
sistent competing concerns. Finally, many systems don’t provide the requisite hooks to
do all of this. One would need weak pointers and finalization. All of this deserves further
investigation.

The above difficulties only arise when implementing tag substitution as user code in
a pure language. The opacity of closures necessitates implementing tag substitution on
functions via pre- and post-composition (24d). The complexity guarantees of forward AD
could be maintained if the substitution mechanism [, /e;] x were implemented so that it

(a) did not traverse shared substructure multiple times,

(b) copied shared substructure during renaming in a fashion that preserved structure
sharing, and

(c) could apply to closures, by accessing, copying, renaming, and reclosing around the
environments inside closures, without resorting to pre- and post-composition.

This could be accomplished either by including the [£;/e;] x mechanism as a primitive
in the implementation, or by providing other lower-level primitives out of which it could
be fashioned. One such mechanism is map-closure, the ability to reflectively access and
modify closure environments (Siskind & Pearlmutter, 2007).

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

16 O. Manzyuk et al.

9 Differential geometry and the push forward operator

The definition (3) only extends IJ, and the mechanisms of Sections 7 and 8 only extend &,
to higher-order functions R — « whose ranges are functions. Differential geometry pro-
vides the framework for extending D to functions «; — @; whose domains too are
functions.

Differential geometry concerns itself with differentiable mappings between manifolds,
where intuitively a manifold is a surface along which points can move smoothly, like the
surface of a sphere or the space of n x n rotation matrices. Given a point x, called a primal
(value), on a manifold «, we can consider infinitesimal perturbations of x. The space of
such perturbations is a vector space called a tangent space, denoted by Ty«. This is a
dependent type, dependent on the primal x. A particular perturbation, an element x' of
the tangent space, is called a fangent (value). A pair (x,x’) of a primal and tangent value
is called a bundle (value), which are members of a bundle space Te =} {x} x Tia.
Bundles generalize the notion of dual numbers. So if x has type «, for some «, the tangent x’
has type T.e, and they can be bundled together as (x + x’€) which has type Ta.

The machinery of differential geometry defines T« for various manifolds and spaces a.
For function spaces a — B, where f'is of type a — B, T(a — B) = (a: @) — Ty(4) B and
T(e — B)=a— TB. The function bundle (x:a) (x': Tya) — (x,%') : Ta constructs a
bundle from a primal and a tangent, and the function tangent (x,x’):7Ta—x': Tya
extracts a tangent from a bundle. Differential geometry provides a push forward opera-
tor that generalizes the notion of a univariate derivative from functions f of type R— R
to functions f of type a — B.

pf: (@ —) — (Ta— TP) (26)

This augments the original mapping (a : @) — B to also linearly map a tangent T, of the
input a to a tangent Ty, B of the output f(a).

Here we sketch how to materialize differential geometry as program constructs to gen-
eralize D) to functions @; — a; whose domains (and ranges) are functions. A full treatment
is left for future work. We first note that:

D f x = tangent (pf / (bundle x 1)) (27)

This only applies when x:R because of the constant 1. We can generalize this to a
directional derivative:

T £ xx = tangent (pf f (bundle xx')) (28)
This further generalizes to x of any type. With this, I becomes a special case of T:
Dfx=T fx1 (29)

To materialize J in (28), we need to materialize tangent, pf, and bundle. The definition
of tg in (8a)-(8c) and (8e) materializes tangent with the first solution, eta expan-
sion (Section 7), while that in (8a)—(8c) and (23) does so with the second solution, tag
substitution (Section 8). The nonstandard interpretation of the arithmetic basis functions
sketched in (5a) and (5b) materializes pf by lifting a computation on real numbers to a
computation on dual numbers. All that remains is to materialize bundle. So far, we have

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 17

been simply writing this as step 2, a map from a to @ + 1€ or a map from x to x + 1¢ in (8d).
This only works for numbers, not functions. With the framework of the first solution, eta
expansion (Section 7), we can extend this to functions:

bun exx' =x +x'e x and x’ are not functions (30a)

bun ef f y=bun £ (fy) (' y) fand f" are functions (30b)

Recalling footnote 2, the post-composition in (30b) is analogous to that in (8¢). With
the framework of the second solution, tag substitution (Section 8), we would need the
alternative:

bun g, f f’ y= freshe f andf’ are functions (31)
in [&1/¢] (bun &, (f ([¢/e1]¥)) (f" ([¢/21] ¥)))

to (30b). The additional tag substitution in (31) is analogous to that in (23). With this, we
can now materialize J in the framework of the first solution, eta expansion (Section 7);

Zfxxd 20y (F (Ax.(fxy))x¥) (f x) is a function (32a)
ZfxxX Zfreshein tg ¢ (f (bun £xx)) (f x) is not a function (32b)

which is analogous to (18a) and (18b), and in the framework of the second solution, tag
substitution (Section 8):

7 fxxX' =freshein tg ¢ (f (bun £xx')) (33)
which is analogous to (8d). With this, & becomes a special case of ?:

Dfx= Ffxl (34)

The implementation in the Appendix illustrates this when setting *section97* to #t to
use (34) instead of either (18a) and (18b) or (8d). Moreover, the implementation in the
Appendix illustrates that:

mapPair £ = (f (fst). (f (snd 1)) (35a)
SqQr x=x x x (35b)
? mapPair sqr (Z sqr) (5,10) = (10, 20) (35¢)

There is a crucial difference, however, between bundle and tangent and the correspond-
ing materializations bun and tg. The former do not take ¢ as an argument. This allows them
to be used as distinct notational entities. In contrast, bun and tg must take the same ¢ as an
argument, this tag must be fresh, and it should not be used anywhere else. Thus it should
not escape, except in ways that are protected by tag substitution. This motivates creation of
the ? construct. There is no corresponding standard T construct in differential geometry;
we created it just to describe the intended meaning of ?

This generalization still suffers from the poor complexity properties in Sections 7.1
and 8.1. We do not know how to provide a materialization of differential geometry or
a program construct that can take derivatives of higher-order functions whose domains
and/or ranges include (higher order) functions in a fashion that exhibits the complexity
guarantees of forward AD. Moreover, we don’t even know whether it is possible.

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

18 O. Manzyuk et al.

10 Conclusion

Classical AD systems, such as ADIFOR (Bischof ef al, 1992), TAPENADE (Hascoét &
Pascual, 2004, and FADBAD++ (Bendtsen & Stauning, 1996), were implemented for first-
order languages like FORTRAN, ¢, and c++. This made it difficult to formulate situations
like (7) where the kind of perturbation confusion reported by Siskind & Pearlmutter (2005)
can arise. Thus classical AD systems did not implement the tagging mechanisms reported
by Pearlmutter & Siskind (2007) and Siskind & Pearlmutter (2008). Moreover, such clas-
sical AD systems do not expose a derivative-taking operator as a higher-order function, let
alone one that can take derivatives of higher-order functions. In these systems, it is difficult
to formulate the bug in Section 5.

Note that the difficulty arises from the nature of the language whose code is differen-
tiated and not the fact that many classical systems like ADIFOR and TAPENADE expose
AD to the user via a source-code transformation implemented via a preprocessor rather
than a higher-order function. Conceptually, both a higher-order function and a preproces-
sor applying a transformation to source code map functions to functions. Thus while one
might write:

let f'=Pf (36)

|| G o = T
in a system that exposes AD to the user with an interface as a higher-order function &, one
would accomplish essentially the same thing in a system that exposes AD to the user with
a preprocessor that implements a source-code transformation by having the preprocessor
compute the let binding " = @ f. The issue presented in this manuscript would arise
even in a framework that exposes AD to the user with a preprocessor that implements a
source-code transformation if one would write

lets' = P s (37)
inlet 7250
in 7 (9h)y

and have the preprocessor compute the let binding s’ = Z 5. The difficulty in formulating
the issue presented in this manuscript follows from the fact that classical languages like
FORTRAN, C, and c++ lack the capacity for higher-order functions (closures) needed to
perform the let binding 9 =4 0, not from any aspect of the difference between exposing
AD via an interface via a higher-order function versus a preprocessor that implements a
source-code transformation. Indeed, the issue described here would manifest in a system
that exposed AD via a preprocessor that implements a source-code transformation in a lan-
guage such as PYTHON that supports the requisite closures and higher-order functions (e.g.,
My1A, Breuleux & van Merriénboer, 2017 and TANGENT, van Merriénboer et al., 2018).

Recent AD systems, such as MyYIA, TANGENT, and those in footnote 1, as well as the
HASKELL AD package available on Cabal (Kmett, 2010), the “Beautiful Differentiation™
system (Elliott, 2009), and the “Compiling to Categories™ system (Elliott, 2017), have been
implemented for higher-order languages like SCHEME, ML, HASKELL, Fff, PYTHON, LUA,
and JULIA. One by one, many of these systems have come to discover the kind of perturba-
tion confusion reported by Siskind & Pearlmutter (2005) and have come to implement the

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 19

tagging mechanisms reported by Pearlmutter & Siskind (2007) and Siskind & Pearlmutter
(2008). Moreover, all these recent systems expose a derivative-taking operator as a higher-
order function. However, except for SCMUTILS, none supported taking derivatives of
higher-order functions.

Prior to its 30 August 2011 release, SCMUTILS, the only forward AD system that
supported taking derivatives of higher-order functions, employed the mechanism of (8a)—
(8e) and exhibited the bug in Section 5. An attempt was made to fix this bug in the 30
August 2011 release of SCMUTILS, using the second solution, tag substitution, discussed
in Section 8, in response to an early version of this manuscript. SCMUTILS was patched
to include code that is similar to, but not identical to, (23) and (24a)—(24d). Crucially, it
allocates a fresh tag in its implementation of (23) but not in its implementation of (24d);
its implementation of (24d) being

[e1/22] 2= [e2/€1] 0 g 0 [£1/£2]. g is a function (38)

This, however, is incorrect, as illustrated by the following variant of the bug in Section 5:
vuh hx=ff(x+u) (39)

ix=x (40)

Variants of (10a)-(10c) show that D v 0 (D v 04) hy = h"(y). The 27 August 2016 release,
the current release at the time of writing, however, yields 2 v 0(Z v 0i) hy==0. Both
solutions presented here yield the correct result.

In 2019, the authors reached out to Gerald Jay Sussman, one of the authors of scMuU-
TILS, to help fix scMUTILS. He asked whether we could produce an example that
illustrated the necessity of performing substitution on functions (24d) and why an alternate

[er/e)] =2 g is a function (41)

that did not perform substitution on functions wouldn’t suffice. A variant of (9) and (11)
that wraps and unwraps arguments and results in Church-encoded boxes illustrates the
necessity of (24d).

BoX:R—[R

BOXXmM=mx (42a)

UuNBOX: [JR—-R
UNBOX x = x (Ax.x) (42b)

wrAP: (R—R)— (OR—-OR)

WRAP f x = BOX (f (UNBOX x)) (42¢)

UNWRAP: (OR—OR) - (R—R)

UNWRAP f x = UNBOX (f (BOX x)) (42d)

WRAPTWO : (R > R) — (R—R)) » (OR—~OR) —» (OR—~0OR))

WRAPTWO f gx = BOX ((f (UNWRAP g)) (UNBOX x)) (42e)

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

20 O. Manzyuk et al.

WRAPTWORESULT :
(R—((R—R)— (R—R))) - (R— ((OR—-0OR) -~ (OR—0OR)))
WRAPTWORESULT f x = WRAPTWO (fx) (429)
WRAPPEDY = @ (WRAPTWORESULTs) 0 (42g)

The same analysis as (10a)—(10c) shows that:

UNWRAP (D (WRAPTWORESULT 5) 0 (D (WRAPTWORESULT 5) 0 (WRAP /))) = h”

(42h)
While
UNWRAP (Z (WRAPTWORESULT s) 0 (Z (WRAPTWORESULT s) 0 (WRAP h))) = A"
(421)
with both (24d) and (41), with (24d),
UNWRAP (WRAPPEDY (WRAPPEDY (WRAP h))) = h” (42)
but with (41),
UNWRAP (WRAPPEDY (WRAPPEDY (WRAP 4))) # h” (42k)

The authors of SCMUTILS are in the process of fixing it again in response to this updated
manuscript. The tenacity of this bug illustrates its subtlety and cries out for a proof of
correctness.

Practically all systems that expose a derivative-taking operator as a higher-order func-
tion generalize that operator to take gradients and Jacobians of functions whose domains
and/or ranges are aggregates, and most have come to implement tagging. The current fore-
front of deep learning research often involves nested application of AD and application of
AD to higher-order functions (Maclaurin ef al., 2015b; Andrychowicz et al., 2016; Raissi,
2018; Chen ef al., 2018; Salman ef al., 2018). This work often combines building custom
frameworks to support the particular derivatives of interest, and performing transforma-
tions (closure conversion or even full AD transforms) manually. Under the pressure of
machine learning programmers’ desire for nesting and for derivatives of higher-order func-
tions, it is reasonable to speculate that many, if not most, of the above systems will attempt
to support these usage patterns. We hope that the awareness provided by this manuscript
will help such efforts avoid this particular subtle bug.

Without formal proofs, we cannot really be sure whether the first solution, eta expansion
((8a)—(8c), (18a), (18b)). or the second solution, tag substitution ((8a)—(8d), (23)), correctly
implements the specification in (3). We cannot even be sure that (8a)—(8d) correctly imple-
ment the specification in (1). These are tricky due to subtleties like nondifferentiability,
nontermination, and the difference between function intensions and extensions pointed out
by Siskind & Pearlmutter (2008, footnote 1). Ehrhard & Regnier (2003), Manzyuk (2012a,
2012b), Kelly et al. (2016), and Plotkin (2018) present promising work in this direction.
Given these sorts of subtle bugs, and the growing interest in—and economic and societal
importance of—complicated software systems driven by nested automatically calculated
derivatives, it is our hope that formal methods can bridge the gap between the Calculus
and the Lambda Calculus, allowing derivatives of interest of arbitrary programs to be not

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 21

just automatically and efficiently calculated, but also for their correctness to be formally
verified.

Acknowledgments

We would like to thank Gerald Jay Sussman for wrestling at our side in the search for
correctness. We also appreciate the efforts of Olivier Danvy in helping improve an earlier
version of this manuscript, and Jeremy Gibbons for helping to improve this version. This
work was supported, in part, by Science Foundation Ireland (SFI) Principal Investigator
grant 09/IN.1/12637, by the Army Research Laboratory (ARL) accomplished under
Cooperative Agreement Number W91 1NF-10-2-0060, by the National Science Foundation
(NSF) under Grants 1522954-1IS and 1734938-IIS, and by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior/Interior Business Center
(DOI/IBC) contract number D17PC00341. Any opinions, findings, views, and conclusions
or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views, official policies, or endorsements, either expressed or implied,
of SFI, ARL, NSF, IARPA, DOI/IBC, or the Irish or the U.S. Governments. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation herein.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/
10.1017/5095679681900008X.

References

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M. W., Pfau, D., Schaul, T. &
de Freitas, N. (2016) Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates.

Baydin, A. G., Pearlmutter, B. A. & Siskind, J. M. (2016) DiffSharp: An AD library for .NET
languages. arXiv:1611.03423.

Bendtsen, C. & Stauning, O. (1996) FADBAD, A Flexible C++ Package for Automatic
Differentiation. Technical Report IMM-REP-1996-17. Department of Mathematical Modelling,
Technical University of Denmark, Lyngby, Denmark.

Bischof, C. H., Carle, A_, Corliss, G. F., Griewank, A. & Hovland, P. D. (1992) ADIFOR: Generating
derivative codes from Fortran programs. Sei. Program. 1(1), 11-29.

Breuleux, O. & van Merriénboer, B. (2017) Automatic differentiation in Myia. In AutoDiff
Workshop at Neural Information Processing Systems Conference.

Buckwalter, B. (2007) Safe Forward-Mode AD in Haskell? https://mail.haskell.org/
pipermail/haskell-cafe/2007-May/025274 . html.

Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. (2018) Neural ordinary differential
equations. arXiv:1806.07366.

Cheney, J. (2012) A dependent nominal type theory. arXiv:1201.5240.

Church, A. (1941) The Calculi of Lambda Conversion. Princeton, NJ: Princeton University Press.

Clifford, W. K. (1873) Preliminary sketch of bi-quaternions. Proc. London Math. Soc. 4, 381-395.

Ehrhard, T. & Regnier, L. (2003) The differential lambda-calculus. Theor. Comput. Sci. 309(1-3),
1-41.

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
htps:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

http://dx.doi.org/10.1017/S095679681900008X
http://dx.doi.org/10.1017/S095679681900008X
arXiv:1611.03423
https://mail.haskell.org/pipermail/haskell-cafe/2007-May/025274.html
https://mail.haskell.org/pipermail/haskell-cafe/2007-May/025274.html
arXiv:1806.07366
arXiv:1201.5240
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

22 O. Manzyuk et al.

Elliott, C. M. (2009) Beautiful differentiation. In International Conference on Functional
Programming (ICFP). New York, NY, USA: Association for Computing Machinery (ACM).

Elliott, C. M. (2017) Compiling to categories. International Conference on Functional Programming
(ICFP) New York, NY, USA: Association for Computing Machinery (ACM).

Farr, W. M. (2006) “Automatic Differentiation” in OCaml. http://wnfarr.blogspot.com/
2006/10/automatic-differentiation-in- ocaml .html.

Griewank, A. & Walther, A. (2008) Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Philadelphia, PA: Society for Industrial and Applied Mathematics.
Hamilton, W. R. (1837) Theory of conjugate functions, or algebraic couples; with a preliminary and

elementary essay on algebra as the science of pure time. Trans. R. Ir. Acad. 17, 293-422.

Hascoét, L. & Pascual, V. (2004) TAPENADE 2.1 user’s guide. Rapport technique 300. INRIA,
Sophia Antipolis.

Karczmarczuk, J. (2001) Functional differentiation of computer programs. Higher-Order Symbolic
Comput. 14, 35-57.

Kelly, R., Pearlmutter, B. A. & Siskind, J. M. (2016) Evolving the incremental A calculus into a
model of forward AD. Extended abstract presented at the AD 2016 Conference, Oxford, UK,
arXiv:1611.03429.

Kmett, E. (2010) ad: Automatic Differentiation. https://hackage .haskell.org/package/ad.

Lavendhomme, R. (1996) Basic Concepts of Synthetic Differential Geometry. Kluwer Academic.

Leibniz, G. W. (1684) Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas
nec irrationales quantitates moratur, et singulare pro illis calculi genus (A new method for maxima
and minima, and for tangents, that is not hindered by fractional or irrational quantities, and a
singular kind of calculus for the above mentioned). Acta Eruditorum.

Maclaurin, D., Duvenaud, D. & Adams, R. P. (2015a) Autograd: Effortless gradients in NumPy. In
Paper presented at International Conference on Machine Learning AutoML Workshop.

Maclaurin, D., Duvenaud, D. & Adams, R. P. (2015b) Gradient-based hyperparameter optimization
through reversible learning. arXiv:1502.03492.

Manzyuk, O. (2012a) A simply typed A-calculus of forward automatic differentiation. In Proceedings
of the 28th Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXVIII), Electronic Notes in Theoretical Computer Science, vol. 286, pp. 257-272.

Manzyuk, O. (2012b) Tangent bundles in differential A-categories. arXiv:1202.0411.

Newton, 1. (1704) De quadratura curvarum. In Opticks: or, A Treatise of the Reflexions, Refractions,
Inflexions and Colours of Light, also Two Treatises of the Species and Magnitude of Curvilinear
Figures, London: Printed for Sam Smith and Benjamin Walford, printers to the Royal Society, at
the Prince’s Arms in St. Paul’s Churchyard. Appendix.

Pearlmutter, B. A. & Siskind, J. M. (2007) Lazy multivariate higher-order forward-mode AD. In
Symposium on Principles of Programming Languages, New York, NY, USA: Association for
Computing Machinery (ACM), pp. 155-160.

Pearlmutter, B. A. & Siskind, J. M. (2008) Using programming language theory to make AD sound
and efficient. In International Conference on Automatic Differentiation, SIAM, pp. 79-90.

Pitts, A. M. (2003) Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2),
165-193.

Plotkin, G. (2018) Some principles of differential programming languages. POPL 2018 Keynote talk,
Jan 11, Los Angeles, CA, USA.

Raissi, M. (2018) Deep hidden physics models: Deep learning of nonlinear partial differential
equations. J. Mach. Learn. Res. 19(25), 1-24.

Salman, H., Yadollahpour, P., Fletcher, T. & Batmanghelich, K. (2018) Deep diffeomorphic
normalizing flows. arXiv:1810.03256.

Shan, C.-c. (2008) Differentiating Regions. http://conway.rutgers.edu/ ccshan/wiki/
blog/posts/Differentiation/.

Siskind, J. M. & Pearlmutter, B. A. (2005) Perturbation confusion and referential transparency:
Correct functional implementation of forward-mode AD. In Implementation and Application of
Functional Languages, pp. 1-9. Trinity College Dublin Computer Science Department Technical
Report TCD-CS-2005-60.

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
httpsi/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

http://wmfarr.blogspot.com/2006/10/automatic-differentiation-in-ocaml.html
http://wmfarr.blogspot.com/2006/10/automatic-differentiation-in-ocaml.html
arXiv:1611.03429
https://hackage.haskell.org/package/ad
arXiv:1502.03492
arXiv:1202.0411
arXiv:1810.03256
http://conway.rutgers.edu/~ccshan/wiki/blog/posts/Differentiation/
http://conway.rutgers.edu/~ccshan/wiki/blog/posts/Differentiation/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

Perturbation confusion in forward AD of higher-order functions 23

Siskind, J. M. & Pearlmutter, B. A. (2007) First-class nonstandard interpretations by opening
closures. In Symposium on Principles of Programming Languages, New York, NY, USA:
Association for Computing Machinery (ACM), pp. 71-76.

Siskind, J. M. & Pearlmutter, B. A. (2008) Nesting forward-mode AD in a functional framework.
Higher-Order Symbolic Comput. 21(4), 361-376.

Speelpenning, B. (1980) Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign.

Sussman, G. J., Abelson, H., Wisdom, J., Katzenelson, J., Mayer, M. E., Hanson, C. P., Halfant, M.,
Siebert, B., Rozas, G. ., Skordos, P., Koniaris, K., Lin, K. & Zuras, D. (1997a) Scheme Mechanics
Installation for GNU/Linux or Mac OS X. http://groups.csail .mit.edu/mac/users/
gjs/6946/1linux- install .htm. http://groups.csail.mit.edu/mac/users/gjs/6946/
scmutils-tarballs/.

Sussman, G. J., Abelson, H., Wisdom, J., Katzenelson, J., Mayer, M. E., Hanson, C. P., Halfant,
M., Siebert, B., Rozas, G. J., Skordos, P., Koniaris, K., Lin, K. & Zuras, D. (1997b) SCMUTILS
Reference Manual. http: //groups.csail .mit.edu/mac/users/gjs/6946/refman. txt.

Sussman, G. J., Wisdom, J. & Mayer, M. E. (2001) Structure and Interpretation of Classical
Mechanics. Cambridge, MA: MIT Press.

Sussman, G. J., Wisdom, J. & Farr, W. M. (2013) Functional Differential Geometry. Cambridge,
MA: MIT Press.

Taylor, B. (1715) Methodus incrementorum directa et inversa. London: Typis Pearsonianis.

van Merriénboer, B., Moldovan, D. & Wiltschko, A. (2018) Tangent: Automatic differentiation using
source-code transformation for dynamically typed array programming. In Advances in Neural
Information Processing Systems, Red Hook, New York, USA: Curran Associates, pp. 6259-6268.

Wengert, R. E. (1964) A simple automatic derivative evaluation program. Commun. ACM 7(8),
463464,

Appendix: Minimal implementation

The repository https://github.com/qobi/amazing, file implementation.ss, also
available as supplementary material, contains a minimal implementation. It is not intended
as a full practical implementation but rather has the expository purpose of explaining
the ideas presented in this manuscript. The implementations of 1list-real->real and
list-real*real->real are similar to those by Siskind & Pearlmutter (2008, Fig. 2).
Setting both *eta-expansion7* and *tag-substitution?* to#f uses the implementa-
tion of & in (8d), the implementation of ? in (33), the implementation of tg for functions
in (8e), and the implementation of bun for functions in (30b) and illustrates the bug in
(12a)—(120) and (13). Setting *eta-expansion?* to #t implements the first solution,
eta expansion, from Section 7 and uses the implementation of & in (18a) and (18b),
instead of that in (8d), and the implementation of? in (32a) and (32b), instead of that
in (33). This resolves the bug and yields the correct result (19a)-(19z). Here, & and ?
each use a single side effect to generate es. Instead, setting *tag-substitution?#
to #t implements the second solution, tag substitution, from Section 8 and uses the
implementation of tg for functions in (23), instead of that in (8e), and the implemen-
tation of bun for functions in (31), instead of that in (30b). This resolves the bug
and yields the correct result (25a)(25w). Here, 2, ?, tg, bun, and tag substitution
for functions each use a single side effect to generate es. Setting *section97* to #t
implements the generalization in Section 9 and uses the implementation of & in (34)
instead of those in (8d) or (18a) and (18b). This works with either solution but exhibits
the bug when both solutions are disabled. In all cases, the function whose derivative
is taken is pure. This illustrates that the bug can be addressed even when an impure

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
httpsi/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

http://groups.csail.mit.edu/mac/users/gjs/6946/linux-install.htm
http://groups.csail.mit.edu/mac/users/gjs/6946/linux-install.htm
http://groups.csail.mit.edu/mac/users/gjs/6946/scmutils-tarballs/
http://groups.csail.mit.edu/mac/users/gjs/6946/scmutils-tarballs/
http://groups.csail.mit.edu/mac/users/gjs/6946/refman.txt
https://github.com/qobi/amazing
https://github.com/qobi/amazing/blob/master/implementation.ss
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

24 O. Manzyuk et al.

mechanism is used to generate es. When setting *tag-substitution?* to #t, set-
ting *function-substitution#* to equation-38 uses (38) and gives the wrong result
for (39) and (40), setting *function-substitution* to equation-41 uses (41) and
illustrates the bug in (42k), while setting *function-substitution* to equation-24d
uses (24d), gives the correct result for (39) and (40), and upholds (42j).

Downloaded from https://www.cambridge.org/core. IP address: 69.174.156.120, on 30 Jul 2020 at 15:43:42, subject to the Cambridge Core terms of use, available at
https:/fwww.cambridge.org/core/terms. https://doi.org/10.1017/5095679681900008X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681900008X
https://www.cambridge.org/core

