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Abstract

Automatic differentiation (AD) is a technique for augmenting computer programs to compute deriva-
tives. The essence of AD in its forward accumulation mode is to attach perturbations to each number,
and propagate these through the computation by overloading the arithmetic operators. When deriva-
tives are nested, the distinct derivative calculations, and their associated perturbations, must be
distinguished. This is typically accomplished by creating a unique tag for each derivative calcu-
lation and tagging the perturbations. We exhibit a subtle bug, present in fielded implementations
which support derivatives of higher-order functions, in which perturbations are confuseddespitethe
tagging machinery, leading to incorrect results. The essence of the bug is as follows: a unique tag is
needed for each derivative calculation, but in existing implementations unique tags are created when
taking the derivative of a function at a point. When taking derivatives of higher-order functions, these
need not correspond! We exhibit a simple example: a higher-order functionfwhose derivative at
a pointx, namelyf1pxq, is itself a function which calculates a derivative. This situation arises natu-
rally when taking derivatives of curried functions. Two potential solutions are presented, and their
deficiencies discussed. One uses eta expansion to delay the creation of fresh tags in order to put them
into one-to-one correspondence with derivative calculations. The other wraps outputs of derivative
operators with tag substitution machinery. Both solutions seem very difficult to implement without
violating the desirable complexity guarantees of forward AD.

1 Introduction

The classical univariate derivative of a functionf:RÑRis a functionf1:RÑR

(Leibniz,1684;Newton,1704). Multivariate or vector calculus extends the notion of

derivative to functions whose domains and/or ranges are aggregates, that is vectors,

introducing notions like gradients, Jacobians, and Hessians. Differential geometry further
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2 O. Manzyuk et al.

extends the notion of derivatives to functions whose domains and/or ranges are—or can

contain—functions.

Automatic differentiation(AD) is a collection of methods for computing the derivative

of a function at a point when the function is expressed as a computer program (Griewank &

Walther,2008). These techniques, once pursued mainly by a small quiet academic com-

munity, have recently moved to the forefront of deep learning, where more expressive

languages can spawn new industries, efficiency improvements can save billions of dollars,

and errors can have far-reaching consequences.

From its earliest days, AD has supported functions whose domains and/or ranges are

aggregates. There is currently interest from application programmers (machine learning

in particular) in applying AD to higher-order functions. Here, we consider extending AD

to support functions whose domains and/or ranges are functions. This is natural: we wish

AD to be completely general and apply in an unrestricted fashion to correctly compute

the derivative of all programs that compute differentiable mathematical functions. This

includes applying to functions whose domain and/or ranges include the entire space of

data types supported by programming languages, including not only aggregates but also

functions. In doing so, we uncover a subtle bug. Although for expository purposes we

present the bug in the context of forward AD (Wengert,1964), the underlying issue can

also manifest itself with other AD modes, including reverse AD (Speelpenning,1980)of

higher-order functions. The bug is insidious: it can lead to production of incorrect results

without warning. We present and discuss the relative merits of two fixes, and exhibit code

implementing them.

Our solutions are not ideal. While we believe that the solutions will always produce the

correct result, they can foil both the space and time complexity guarantees of forward AD

described in the next section.

LetDdenote the true mathematical derivative operator.Dis classically defined for first-

order functionsRÑRin terms of limits, and thus this classical definition does not lend

itself to direct implementation.

Df“f1 wheref1pxq“lim
Ñ0

fpx̀ q f́pxq
(1)

We seek to materialize Das a program constructD. We can view this classical limit

definition as aspecificationofDand proceed to develop animplementationofD. Below,

we use“to denote mathematical equality,
Ÿ
“to denote definition of program constructs,

andùñto denote evaluation.

One can extendDto functionsRÑα, where:

α::“R|α1Ñα2 (2)

We first focus on this extension inSections 2–8. We consider further extension to func-

tionsα1Ñα2inSection 9. Since by (2) any typeαmust be of the formα1Ñ̈¨̈ ÑαnÑ

R, functionsRÑαcan be viewed as multivariate functionsRÑα2Ñ̈¨̈ ÑαnÑ

Rwhose first argument domain isRand whose range isR. We takeDfwhere

f:RÑα2Ñ̈¨̈ ÑαnÑRto be the partial derivative with respect to the first argument.

Df“
Bfpx1,x2,...,xnq

Bx1
(3)
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Perturbation confusion in forward AD of higher-order functions 3

We will see below that past work has implemented aDthat appears to coincide with the

specificationDin (1) for functionsRÑR, but this past implementation fails to coincide

with the specificationDin (3) for functionsRÑα. We then proceed to demonstrate two

new implementations ofDthat do appear to coincide.

2 Forward AD as differential algebra

Forward AD can be formulated as differential algebra (Karczmarczuk,2001). Its essence

is as follows.

The purely arithmetic theory of complex numbers as pairs of real numbers was intro-

duced byHamilton(1837). These form an algebra over two-term polynomialsà bi where

i2“ 1́. Arithmetic proceeds by simple rules, derived algebraically.

pà biq p̀c̀ diq“pà cq p̀b̀ dqi (4a)

pà biqpc̀ diq“ac̀ pad̀ bcqì bdi2“pać bdq p̀ad̀ bcqi (4b)

Complex numbers can be implemented in a computer as ordered pairspa,bq, sometimes

called Argand pairs. Since arithmetic over complex numbers is defined in terms of arith-

metic over the reals, the above rules imply that computation over complex numbers is

closed.

Clifford(1873) introduceddual numbersof the formà b. In a dual number, the coef-

ficient of is called a perturbation or atangent. These can similarly be viewed as an algebra

over two-term polynomials where2“0 but‰0. Arithmetic over dual numbers is again

defined by simple rules derived algebraically.

pà bq p̀c̀ dq“pà cq p̀b̀ dq (5a)

pà bqpc̀ dq“ac̀ pad̀ bcq b̀d2“ac̀ pad̀ bcq (5b)

Again, dual numbers can be implemented in a computer as ordered pairspa,bq. Again,

since arithmetic over dual numbers is defined in terms of arithmetic over the reals, the

above rules imply that computation over dual numbers is closed.

The essence of forward AD is viewing dual numbers as truncated two-term power series.

Since, followingTaylor(1715),fpx0`x1`Op
2qq “fpx0q x̀1f

1px0q`Op
2q, apply-

ingfto a dual numberà 1will yield a dual numberfpaq f̀1paq. This leads to the

following method for computing derivatives of functionsf:RÑRexpressed as computer

programs.

‚Arrange for the programming language to support dual numbers and arithmetic

thereupon.

‚To computef1at a pointa,

1. formà 1,

2. applyftoà 1to obtain a resultfpaq f̀1paq, and

3. extract the tangent,f1paq, from the result.

Step2constitutes a nonstandard interpretation of the arithmetic basis functions with

(5a) and (5b). This can be implemented in various ways, for example, overloading or

source-code transformation. Further, dual numbers can be represented in various ways,
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4 O. Manzyuk et al.

for example, as unboxed flattened values or as boxed values referenced through point-

ers. These different implementation strategies do not concern us here. While different

implementation strategies have different costs, what we discuss applies to all strategies.

It is convenient to encapsulate steps1–3as a higher-order functionD:fÞÑf1. Indeed,

that seems to be one of the original motivations for the development of the lambda calculus

(Church,1941, ¶ 4). We can do this with the following code that implementsD.

tga
Ÿ
“0 a:R (6a)

tgpà bq
Ÿ
“b (6b)

Dfx
Ÿ
“tgpfpx̀ 1qq (6c)

Here,x̀ 1denotes step1above, that is, constructing a dual number, andtgpà bq

denotes step3above, that is, extracting the tangent of a dual number. Equation (6a) handles

the case where the output offis independent of the inputx.

Forward AD provides certain complexity guarantees. Steps1and3take unit time. Step2

introduces no more than a constant factor increase in both the space and time complexity

of executingfunder a nonstandard interpretation. Thus computingfxandDfxhave the

same space and time complexity.

3 Tagging dual numbers to avoid perturbation confusion

Siskind & Pearlmutter(2008) discuss a problem with the above. It is natural to nest appli-

cation ofD. Doing so would allow taking higher-order derivatives and, more generally,

derivatives of functions that take derivatives of other functions.

Dpλx....Dpλy....q...q... (7)

This can lead toperturbation confusion(Siskind & Pearlmutter,2005, Section 2, Eqs. (4)–

(11)), yielding an incorrect result. The essence of perturbation confusion is that each

invocation ofDmust perform its computation over a distinct differential algebra. While it

is possible to reject programs that would exhibit perturbation confusion using static typing

(Buckwalter,2007;Kmett,2010), and static typing can be used to yield the desired correct

result in some cases with some user annotation (Shan,2008), no static method is known

that can yield the desired correct result in all cases without any annotation. It is possi-

ble,however, to get the correct result in all cases (except, as we shall see, when taking

derivatives of functions whose ranges are functions) without user annotation, by redefin-

ingtgandDtotagdual numbers with distincts to obtain distinct differential algebras (or

equivalently, distinct generators in a differential algebra) introduced by different invoca-

tions ofD(Lavendhomme,1996). We will indicate different tags by different subscripts

on, and useεto denote a variable that is bound to an.

tgεa
Ÿ
“0 a:R (8a)

tgεpà bεq
Ÿ
“b (8b)

tgε1pà bε2q
Ÿ
“ptgε1aq p̀tgε1bqε2 ε1‰ε2 (8c)

Dfx
Ÿ
“freshεin tgεpfpx̀ 1εqq (8d)
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Perturbation confusion in forward AD of higher-order functions 5

These redefine (6a)–(6c). Here, the tags are generated dynamically. Many systems employ

this approach.1Many of these systems are implemented in “mostly functional languages,”

like SCHEME,ML,F7,PYTHON,LUA, and JULIA, and are intended to be used with pure

subsets of these languages.

Prior to this change, that is with only a single, the valuesaandbin a dual number

à bwould be real numbers. With this change, that is with multiple s, the valuesa

andbin a dual numberà b1can be dual numbers over2where 2‰1. Such a tree of

dual numbers will contain real numbers in its leaves and will contain a given only once

along each path from the root to the leaves. Equation (8c) provides the ability to extract

the tangent of anthat might not be at the root of the tree.

4 Extending to functions whose range is a function

If one appliesDto a functionfwhose range is a function,fpx̀ 1εqin (8d) will yield a

function. In this higher-order case, whenfreturns a functiong, an invocationDfxyields

a function̄gwhich performs a derivative calculation when invoked. It will not be possible

to extract the tangent of this withtgas implemented by (8a)–(8c). The definition oftgcan

be augmented to handle this case by post-composition.2

tgε̄g
Ÿ
“ptgεq̋ ḡ ḡis a function (8e)

However, this extension (alone) is flawed, as we proceed to demonstrate.

5 A bug

Consider the following commonly occurring mathematical situation. We define an offset

operator:

s:RÑpRÑRqÑRÑR

suf x
Ÿ
“fpx̀ uq (9)

The derivative ofsat zero should be the same as the derivative operator, that is,Ds0“D,

since:

p@fqp@yqDs0fy“ B
Bu
rsuf ysu“0“

B
Bu
rfpỳ uqsu“0“f

1pyq“Dfy (10a)

ðñ tetau

p@fqDs0f“Df (10b)

ðñ tetau

Ds0“D (10c)

1For example,SCMUTILS(Sussmanet al.,1997b,a), a software package that accompanies a textbook on
classical mechanics (Sussmanet al.,2001) as well as a textbook on differential geometry (Sussmanet al.,
2013), the systems ofFarr(2006),Siskind & Pearlmutter(2005,2008),Pearlmutter & Siskind(2007,2008),
R6RS-AD(https://github.com/qobi/R6RS-AD), DIFFSHARP(Baydinet al.,2016),HIPSAUTOGRAD
(Maclaurinet al.,2015a), TORCHAUTOGRAD(https://github.com/twitter/torch-autograd), and
JULIADIFF(http://www.juliadiff.org/ForwardDiff.jl/stable/user/api.html).

2Justification of this post-composition is given inSection 9which describes the relevant constructs from
differential geometry.
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6 O. Manzyuk et al.

Thus, if we define

D̂
Ÿ
“Ds0 (11)

we would hope thatD̂“D. However, we exhibit an example where it does not.

We can computeD̂p̂Dhqyforh:RÑRwith simple reduction steps:

D̂

ùñ tby (11)u

Ds0 (12a)

ùñ tby (8d)u

freshεin tgεpsp0̀ 1εqq (12b)

ùñ tallocate a fresh tag0; this is problematic; see discussion belowu

tg0psp0̀ 10qq (12c)

ùñ tby (9)u

tg0pλf.λx.pfpx̀ 10qqq (12d)

ùñ tby (8e)u

ptg0q̋ pλf.λx.pfpx̀ 10qqq (12e)

ùñ tpostcomposeu

λf.λx.tg0pfpx̀ 10qq (12f)

D̂p̂Dhqy

ùñ tsubstitute (12f)forD̂u

pλf.λx.tg0pfpx̀ 10qqq ppλf.λx.tg0pfpx̀ 10qqqhqy (12g)

ùñ tbeta reduceu

pλf.λx.tg0pfpx̀ 10qqq pλx.tg0phpx̀ 10qqqy (12h)

ùñ tbeta reduceu

pλx.tg0ppλx.tg0phpx̀ 10qqq px̀ 10qqqy (12i)

ùñ tbeta reduceu

tg0ppλx.tg0phpx̀ 10qqq pỳ 10qq (12j)

ùñ tbeta reduceu

tg0ptg0phppỳ 10q 1̀0qqq (12k)

ùñ tadd dual numbersu

tg0ptg0phpỳ 20qqq (12l)

ùñ tapplyhto a dual numberu

tg0ptg0phpyq 2̀h1pyq0qq (12m)

ùñ tby (8b)u

tg0p2h
1pyqq (12n)

ùñ tby (8a)u

0 (12o)
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Perturbation confusion in forward AD of higher-order functions 7

This went wrong, yielding 0 instead ofh2pyq.

D̂p̂Dhqyùñ0‰DpDhqy“h2pyq (13)

The process of allocating a fresh tag in step (12d) was problematic. The proper way to

handle such fresh tag allocation might be to use nominal logic (Pitts,2003), perhaps in a

dependent-type-theoretic variant (Cheney,2012). Below, we offer alternate mechanisms

that are suitable for use in programming-language implementations that lack type systems

that support first class names and binding.

This is not an artificial example. It is quite natural to construct anx-axis differential

operator and apply it to a two-dimensional function twice, along thexand thenyaxis

directions, by applying the operator, flipping the axes, and applying the operator again,

thus creating precisely this sort of cascaded use of a defined differential operator.

6 The root cause of the bug

This incorrect result was due to the tag 0being generated exactlyonce,in(12b), whenD̂

was calculated fromDs0as(12a)–(12f) using the definition (11). The invocationDs0

is the point at which a fresh tag is introduced; early instantiation can result in reuse of

the same tag in logically distinct derivative calculations. Here, the first derivative and the

second derivative become confused at (12l). We have two nested applications oftgfor0,

but for correctness these should be distinctly tagged:0versus1.

This can be accomplished by making two copies ofD̂ by evaluatingDs0 twice.

Performing an analogous computation with two copies ofD̂yields the correct result.

D̂0

ùñ trepeat (12a)u

Ds0 (14a)

ùñ trepeat (12b)u

freshεin tgεpsp0̀ 1εqq (14b)

ùñ trepeat (12c)u

tg0psp0̀ 10qq (14c)

ùñ trepeat (12d)u

tg0pλf.λx.pfpx̀ 10qqq (14d)

ùñ trepeat (12e)u

ptg0q̋ pλf.λx.pfpx̀ 10qqq (14e)

ùñ trepeat (12f)u

λf.λx.tg0pfpx̀ 10qq (14f)

D̂1

ùñ trepeat (12a)u

Ds0 (14g)

ùñ trepeat (12b)u

freshεin tgεpsp0̀ 1εqq (14h)
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8 O. Manzyuk et al.

ùñ trepeat (12c)u

tg1psp0̀ 11qq (14i)

ùñ trepeat (12d)u

tg1pλf.λx.pfpx̀ 11qqq (14j)

ùñ trepeat (12e)u

ptg1q̋ pλf.λx.pfpx̀ 11qqq (14k)

ùñ trepeat (12f)u

λf.λx.tg1pfpx̀ 11qq (14l)

D̂0p̂D1hqy

ùñ tsubstitute (14f) and (14l)forD̂u

pλf.λx.tg0pfpx̀ 10qqq ppλf.λx.tg1pfpx̀ 11qqqhqy (14m)

ùñ tbeta reduceu

pλf.λx.tg0pfpx̀ 10qqq pλx.tg1phpx̀ 11qqqy (14n)

ùñ tbeta reduceu

pλx.tg0ppλx.tg1phpx̀ 11qqq px̀ 10qqqy (14o)

ùñ tbeta reduceu

tg0ppλx.tg1phpx̀ 11qqq pỳ 10qq (14p)

ùñ tbeta reduceu

tg0ptg1phppỳ 10q 1̀1qqq (14q)

ùñ tapplyhto a dual numberu

tg0ptg1phpỳ 10q h̀1pỳ 10q1qq (14r)

ùñ tapplyhto a dual numberu

tg0ptg1pphpyq h̀1pyq0q h̀1pỳ 10q1qq (14s)

ùñ tapplyhto a dual numberu

tg0ptg1pphpyq h̀1pyq0q p̀h1pyq h̀2pyq0q1qq (14t)

ùñ tby (8b)u

tg0ph
1pyq h̀2pyq0q (14u)

ùñ tby (8b)u

h2pyq (14v)

Here, (14r) corrects the mistake in (12l).

However, this is tantamount to requiring the user to manually write

letD̂0
Ÿ
“Ds0

in letD̂1
Ÿ
“Ds0

inD̂0p̂D1hqy

(15)

instead of:

letD̂
Ÿ
“Ds0

inD̂p̂Dhqy

(16)
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Perturbation confusion in forward AD of higher-order functions 9

This should not be necessary since ifDcorrectly implementedD,D̂0andD̂1should be

equivalent.

The essence of the bug is that the implementation ofDin (8d) generates a distinct

for each invocationDfx, but a distinctis needed for each derivative calculation. In the

first-order case, whenf:RÑR, these are equivalent. Each invocationDfxleads to a

single derivative calculation. But in the higher-order case, whenfreturns a functiong,an

invocationDfxyieldsḡwhich performs a derivative calculation when invoked. Sinceḡ

can be invoked multiple times, each such invocation will perform a distinct derivative

calculation and needs a distinctε. The implementation in the Appendix illustrates the bug

when setting*eta-expansion?*and*tag-substitution?*to#fto use the definitions

in (8d) and (8e).

7 A first solution: Eta expansion

One solution would be to eta expand the definition ofD. Such eta expansion would need

to be conditional on the return type off.

D1:pRÑRqÑRÑR

D1fx1
Ÿ
“freshεin tgεpfpx1`1εqq (17a)

D2:pRÑα2ÑRqÑRÑα2ÑR

D2fx1x2
Ÿ
“freshεin tgεpfpx1`1εqx2q (17b)

D3:pRÑα2Ñα3ÑRqÑRÑα2Ñα3ÑR

D3fx1x2x3
Ÿ
“freshεin tgεpfpx1`1εqx2x3q (17c)

...

With such eta expansion conditioned on the return type of f,(8e) is not needed, because the

appropriate variant ofDshould only be invoked in a context that contains all arguments

necessary to subsequently allow the call totgin that invocation ofDto yield to a non-

function-containing value. This seemingly infinite set ofDiand associated definitions can

be formulated as a singleDwith polymorphic recursion.

Dfx
Ÿ
“λy.pDpλx.pfxyqqxq pfxqis a function (18a)

Dfx
Ÿ
“freshεin tgεpfpx̀ 1εqq pfxqis not a function (18b)

We can see that this resolves the bug in (12a)–(12o) and accomplishes the desiderata in

(14a)–(14l) without making two copies ofD̂.

D̂

ùñ tby (11)u

Ds0 (19a)

ùñ tby (18a)u

λy.pDpλx.psxyqq0q (19b)
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10 O. Manzyuk et al.

D̂p̂Dhqy

ùñ tsubstitute (19b)forD̂u

pλy.pDpλx.psxyqq0qq ppλy.pDpλx.psxyqq0qqhqy (19c)

ùñ tbeta reduceu

pλy.pDpλx.psxyqq0qq pDpλx.psxhqq0qy (19d)

ùñ tbeta reduceu

pDpλx.psxpDpλx.sxhq0qqq0qy (19e)

ùñ tby (8d)u

pfreshεin tgεppλx.psxpDpλx.psxhqq0qqq p0̀ 1εqqqy (19f)

ùñ tallocate a fresh tag0u

ptg0ppλx.psxpDpλx.psxhqq0qqq p0̀ 10qqqy (19g)

ùñ tbeta reduceu

ptg0psp0̀ 10qpDpλx.psxhqq0qqqy (19h)

ùñ tby (8d)u

ptg0psp0̀ 10qpfreshεin tgεppλx.psxhqq p0̀ 1εqqqqqy (19i)

ùñ tallocate a fresh tag1u

ptg0psp0̀ 10qptg1ppλx.psxhqq p0̀ 11qqqqqy (19j)

ùñ tbeta reduceu

ptg0psp0̀ 10qptg1psp0̀ 11qhqqqqy (19k)

ùñ tby (9)u

ptg0psp0̀ 10qptg1pλx.phpx̀p0̀ 11qqqqqqqy (19l)

ùñ tby (8e)u

ptg0psp0̀ 10qptg1q̋ pλx.phpx̀p0̀ 11qqqqqqy (19m)

ùñ tpostcomposeu

ptg0psp0̀ 10qpλx.ptg1phpx̀p0̀ 11qqqqqqqy (19n)

ùñ tby (9)u

ptg0pλx.ppλx.ptg1phpx̀p0̀ 11qqqqq px̀p0̀ 10qqqqqy (19o)

ùñ tbeta reduceu

ptg0pλx.ptg1phppx̀p0̀ 10qq ̀ p0̀ 11qqqqqqy (19p)

ùñ tby (8e)u

ptg0q̋ pλx.ptg1phppx̀p0̀ 10qq ̀ p0̀ 11qqqqqy (19q)

ùñ tpostcomposeu

pλx.ptg0ptg1phppx̀p0̀ 10qq ̀ p0̀ 11qqqqqqy (19r)

ùñ tbeta reduceu

tg0ptg1phppỳp0̀ 10qq ̀ p0̀ 11qqqq (19s)

ùñ tadd dual numbersu

tg0ptg1phppỳ 10q p̀0̀ 11qqqq (19t)
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Perturbation confusion in forward AD of higher-order functions 11

ùñ tadd dual numbersu

tg0ptg1phppỳ 10q 1̀1qqq (19u)

ùñ tsame as (14r)u

tg0ptg1phpỳ 10q h̀1pỳ 10q1qq (19v)

ùñ tsame as (14s)u

tg0ptg1pphpyq h̀1pyq0q h̀1pỳ 10q1qq (19w)

ùñ tsame as (14t)u

tg0ptg1pphpyq h̀1pyq0q p̀h1pyq h̀2pyq0q1qq (19x)

ùñ tsame as (14u)u

tg0ph
1pyq h̀2pyq0q (19y)

ùñ tsame as (14v)u

h2pyq (19z)

Here, the allocation of a fresh tag is delayed from (19b) and is performed twice, in (19g)

and (19j), allowing (19v) to correct the mistake in (12l), just like (14r). The implementation

in the Appendix illustrates that this resolves the bug when setting*eta-expansion?*to

#tto use the definition in (18a) and (18b) instead of that in (8d).

7.1 Issues with eta expansion

This solution presents several problems.

•First, this manuscript only considers a space of types that includes scalar reals and

functions but not aggregates (exclusive of dual numbers). Complications arise when

extending the space of types to include aggregates. The Appendix illustrates that the

above mechanism works with functions that return Church-encoded aggregates.

pa,dqm
Ÿ
“mad (20a)

fstc
Ÿ
“cpλa.pλd.aqq (20b)

sndc
Ÿ
“cpλa.pλd.dqq (20c)

tu
Ÿ
“peû u,pλf.pλx.pfx̀ uqqqq (20d)

Dt1ùñt1p1q (20e)

p
Ÿ
“Dt0 (20f)

fstpùñ0 (20g)

D
Ÿ
“sndp (20h)

DpDexpq1ùñe (20i)

With a function that returned native aggregates, one would need to emulate the

behavior that occurs with Church-encoded aggregates on native aggregates by

delaying derivative calculation, with the associated tag allocation andtgapplied to

the native returned aggregate, until an accessor is applied to that aggregate. Consider

Dt0 wheret:RÑpR p̂pRÑRqÑRqqas above. One could not perform the

derivative calculation when computing the valuepreturned byDt0. One would
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12 O. Manzyuk et al.

have to delay until applying an accessor top. If one accessed the first element ofp,

one would perform the derivative calculation, with the associated tag allocation, at

the time of access. But if one accessed the second element ofp, one would have

to further delay the derivative calculation, with the associated tag allocation, until

that second element was invoked. This could require different amounts of delay that

might be incompatible with some static type systems.

•Second, with a type system or other static analysis mechanism that is unable to

handle the unbounded polymorphism of (17a), (17b), (17c),...orinferthe“is[not]a

function” side conditions of (18a) and (18b), achieving completeness might require

run-time evaluation of the side conditions. This could involve callingftwice, once

to determine its return type and once to do the eta-expanded derivative calculation,

and lead to exponential increase in asymptotic time complexity.

•Third, the solution can break sharing in curried functions, even with a type system

or other static analysis mechanism that is able to eliminate the run-time evaluation

of “is [not] a function” side conditions. Consider

gx
Ÿ
“lett

Ÿ
“fxinλp.pt (21)

invoked in:

hx
Ÿ
“letc

Ÿ
“gxinpcpλt.tqq ̀ pcpλt.pλu.t̂ uqqπq (22)

The programmer would expecth8 to callfonce in the calculation of the temporary

t“f8. And indeed this is what would occur in practice. Now considerDh8. The

strategy discussed above would (in the absence of memoization or similar heroic

measures) end up calculating f8 twice, as the delayed tag allocation would end

up splitting into two independent tag allocations with each independently redoing

the calculation. This violates the constant-factor-overhead complexity guarantee of

forward AD, imposing, in the worst case, exponential overhead.

8 A second solution: Tag substitution

Another solution would be to wrapḡwith tag substitution to guard against tag collision,

replacing (8e) with:

tgε1ḡy
Ÿ
“freshεinprε1{εs̋ ptgε1q̋ ḡ̋ rε{ε1sqy ḡis a function (23)

Hererε1{ε2sxsubstitutesε1forε2inx. In a language with opaque closures, tag substitution

must operate on functions by appropriate pre- and post-composition.

rε1{ε2sa
Ÿ
“a a:R (24a)

rε1{ε2spà bε2q
Ÿ
“à bε1 (24b)

rε1{ε2spà bεq
Ÿ
“prε1{ε2saq p̀rε1{ε2sbqε ε‰ε2 (24c)

rε1{ε2s̄gy
Ÿ
“freshεinprε2{εs̋rε1{ε2s̋ ḡ̋ rε{ε2sqy ḡis a function (24d)

The intent of (24d) is to substituteε1forε2in values closed-over in̄g.Anε2in the output

ofḡcan result either from closed-over values and/or input values. We want to substitute

for instances ofε2in the output that result from the former but not the latter. This is
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Perturbation confusion in forward AD of higher-order functions 13

accomplished by substituting a fresh tag for instances ofε2in the input and substituting

them back at the output to preserve the extensional behavior of̄g. Equation (23) operates

in a similar fashion. The intent of (23) is to extract the coefficient of instances ofε1in the

output ofḡthat result from closed-over values, not input values. This is accomplished by

substituting a fresh tag for instances ofε1in the input and substituting them back at the

output to preserve the extensional behavior of̄g.

We can see that this also resolves the bug in (12a)–(12o) and accomplishes the desiderata

in (14a)–(14l) without making two copies ofD̂.

D̂

ùñ tby (11)u

Ds0 (25a)

ùñ tby (8d)u

freshεin tgεpsp0̀ 1εqq (25b)

ùñ tallocate a fresh tag0u

tg0psp0̀ 10qq (25c)

ùñ tby (9)u

tg0pλf.λx.pfpx̀ 10qqq (25d)

ùñ tby (23)u

λy.pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqyq (25e)

D̂p̂Dhqy

ùñ tsubstitute (25e)forD̂u

λy.pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqyq

pλy.pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqyqhq

y

(25f)

ùñ tbeta reduceu

λy.pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqyq

pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqhq

y

(25g)

ùñ tbeta reduceu

pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sq

pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqhqq

y

(25h)

ùñ tallocate a fresh tag1u

ppr0{1s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ r1{0sq

pfreshεinpr0{εs̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ rε{0sqhqq

y

(25i)

ùñ tallocate a fresh tag2u

ppr0{1s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ r1{0sq

ppr0{2s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ r2{0sqhqq

y

(25j)
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14 O. Manzyuk et al.

ùñ tsubstitute2for0, which leaveshunchanged since it can’t close over

the freshly allocated tagsu

ppr0{1s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ r1{0sq

ppr0{2s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqqqhqq

y

(25k)

ùñ tbeta reduce and postcomposeu

ppr0{1s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqq ̋ r1{0sq

pλx.pr0{2sptg0phpx̀ 10qqqqqq

y

(25l)

ùñ tsubstitute1for0u

ppr0{1s̋ ptg0q̋ pλf.λx.pfpx̀ 10qqqq

pλx.pr1{2sptg1phpx̀ 11qqqqqq

y

(25m)

ùñ tbeta reduce and postcomposeu

pλx.pr0{1sptg0ppλx.pr1{2sptg1phpx̀ 11qqqqq px̀ 10qqqqqy (25n)

ùñ tbeta reduceu

r0{1sptg0ppλx.pr1{2sptg1phpx̀ 11qqqqq pỳ 10qqq (25o)

ùñ tbeta reduceu

r0{1sptg0pr1{2sptg1phppỳ 10q 1̀1qqqqq (25p)

ùñ tapplyhto a dual numberu

r0{1sptg0pr1{2sptg1phpỳ 10q h̀1pỳ 10q1qqqq (25q)

ùñ tapplyhto a dual numberu

r0{1sptg0pr1{2sptg1pphpyq h̀1pyq0q h̀1pỳ 10q1qqqq (25r)

ùñ tapplyhto a dual numberu

r0{1sptg0pr1{2sptg1pphpyq h̀1pyq0q p̀h1pyq h̀2pyq0q1qqqq (25s)

ùñ tby (8b)u

r0{1sptg0pr1{2sph
1pyq h̀2pyq0qqq (25t)

ùñ tsubstitute1for2u

r0{1sptg0ph
1pyq h̀2pyq0qq (25u)

ùñ tby (8b)u

r0{1sh
2pyq (25v)

ùñ tsubstitute0for1u

h2pyq (25w)

Steps (25k) and (25m) are abbreviated as they really use (24d). Here, the tag substitution

in (25m) allows (25q) to correct the mistake in (12l), just like (14r). The implementation

in the Appendix illustrates that this resolves the bug when setting*tag-substitution?*

to#tto use the definition in (23) instead of that in (8e).
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Perturbation confusion in forward AD of higher-order functions 15

8.1 Issues with tag substitution

This solution presents several problems, when implemented as user code in a pure lan-

guage. In the presence of aggregates, unless care is taken, the computational burden of tag

substitution can violate the complexity guarantees of forward AD. The call totgin step3

might take longer than unit time as tag substitution must potentially traverse an aggregate

of arbitrary size. When that aggregate shares substructure, a careless implementation might

traverse such shared substructure multiple times, leading to potential exponential growth

in time complexity. Moreover, a careless implementation might copy shared substructure

multiple times, leading to potential exponential growth in space complexity. Laziness,

memoization, and hash-consing might solve this, but it can be tricky to employ such in

a fashion that preserves the requisite time and space complexity guarantees of forward

AD, particularly in a pure or multithreaded context.

We are unsure, however, that laziness, memoization, and hash-consing completely elim-

inate the problem. First, some languages like PYTHONand SCHEMElack the requisite

pervasive default laziness. Failure to explicitly code the correct portions of user code as

lazy in an eager language can break the complexity guarantees in subtle ways. But there

are subtle issues even in languages like HASKELLwith the requisite pervasive default lazi-

ness, and even when laziness is correctly introduced manually in eager languages. One

is that memoization and hash-consing implicitly involve a notion of equality. But it is

not clear what notion of equality to use, especially with “gensym” and potential alpha

equivalence. One might needeq?, pointer or intensional equivalence, rather thanequal?,

structural or extensional equivalence, and all of the impurity that this introduces. Further,

memoization and hash-consing might themselves be a source of a new kind of perturba-

tion confusion if tags can persist. One would then need to substitute the memoized tags

or the hash-cons cache. Beyond this, memoization and hash-consing could break space

complexity guarantees unless the cache were flushed. It is not clear when/where to flush

the cache, and even whether there is a consistent place to do so. There might be incon-

sistent competing concerns. Finally, many systems don’t provide the requisite hooks to

do all of this. One would need weak pointers and finalization. All of this deserves further

investigation.

The above difficulties only arise when implementing tag substitution as user code in

a pure language. The opacity of closures necessitates implementing tag substitution on

functions via pre- and post-composition (24d). The complexity guarantees of forward AD

could be maintained if the substitution mechanismrε1{ε2sxwere implemented so that it

(a) did not traverse shared substructure multiple times,

(b) copied shared substructure during renaming in a fashion that preserved structure

sharing, and

(c) could apply to closures, by accessing, copying, renaming, and reclosing around the

environments inside closures, without resorting to pre- and post-composition.

This could be accomplished either by including therε1{ε2sxmechanism as a primitive

in the implementation, or by providing other lower-level primitives out of which it could

be fashioned. One such mechanism ismap-closure, the ability to reflectively access and

modify closure environments (Siskind & Pearlmutter,2007).
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16 O. Manzyuk et al.

9 Differential geometry and the push forward operator

The definition (3) only extendsD, and the mechanisms ofSections 7and8only extendD,

to higher-order functionsRÑαwhose ranges are functions. Differential geometry pro-

vides the framework for extendingDto functionsα1Ñα2whose domains too are

functions.

Differential geometry concerns itself with differentiable mappings between manifolds,

where intuitively a manifold is a surface along which points can move smoothly, like the

surface of a sphere or the space ofn̂ nrotation matrices. Given a pointx, called aprimal

(value), on a manifoldα, we can consider infinitesimal perturbations ofx. The space of

such perturbations is a vector space called atangent space, denoted byTxα.Thisisa

dependent type, dependent on the primalx. A particular perturbation, an elementx1of

the tangent space, is called atangent(value). A pairpx,x1qof a primal and tangent value

is called abundle(value), which are members of a bundle spaceTα“
ř
x:αtxu T̂xα.

Bundles generalize the notion of dual numbers. So ifxhas typeα,forsomeα, the tangentx1

has typeTxα, and they can be bundled together aspx̀ x1qwhich has typeTα.

The machinery of differential geometry definesTxαfor various manifolds and spacesα.

For function spacesαÑβ, wherefis of typeαÑβ,TfpαÑβq“pa:αqÑTfpaqβand

TpαÑβq“αÑTβ. The functionbundlepx:αqpx1:Txαq ÞÑpx,x
1q:Tαconstructs a

bundle from a primal and a tangent, and the functiontangentpx,x1q:TαÞÑx1:Txα

extracts a tangent from a bundle. Differential geometry provides apush forwardopera-

tor that generalizes the notion of a univariate derivative from functionsfof typeRÑR

to functionsfof typeαÑβ.

pf:pαÑβqÑpTαÑTβq (26)

This augments the original mappingpa:αqÑβto alsolinearlymap a tangentTaαof the

inputato a tangentTfpaqβof the outputfpaq.

Here we sketch how to materialize differential geometry as program constructs to gen-

eralizeDto functionsα1Ñα2whose domains (and ranges) are functions. A full treatment

is left for future work. We first note that:

Dfx“tangentppffpbundlex1qq (27)

This only applies whenx:Rbecause of the constant 1. We can generalize this to a

directional derivative:

ÝÑ
Jfxx1“tangentppffpbundlexx1qq (28)

This further generalizes toxof any type. With this,Dbecomes a special case of
ÝÑ
J:

Dfx“
ÝÑ
Jfx1 (29)

To materialize
ÝÑ
Jin (28), we need to materializetangent,pf, andbundle. The definition

oftgin (8a)–(8c) and (8e) materializestangentwith the first solution, eta expan-

sion (Section 7), while that in (8a)–(8c) and (23) does so with the second solution, tag

substitution (Section 8). The nonstandard interpretation of the arithmetic basis functions

sketched in (5a) and (5b) materializespfby lifting a computation on real numbers to a

computation on dual numbers. All that remains is to materializebundle. So far, we have
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Perturbation confusion in forward AD of higher-order functions 17

been simply writing this as step2,amapfromatoà 1or a map fromxtox̀ 1εin (8d).

This only works for numbers, not functions. With the framework of the first solution, eta

expansion (Section 7), we can extend this to functions:

bunεxx1
Ÿ
“x̀ x1ε xandx1are not functions (30a)

bunεff1y
Ÿ
“bunεpfyqpf1yq fandf1are functions (30b)

Recalling footnote2, the post-composition in (30b) is analogous to that in (8e). With

the framework of the second solution, tag substitution (Section 8), we would need the

alternative:

bunε1ff
1y
Ÿ
“freshε

inrε1{εspbunε1pfprε{ε1syqq pf
1prε{ε1syqqq

fandf1are functions (31)

to (30b). The additional tag substitution in (31) is analogous to that in (23). With this, we

can now materialize
ÝÑ
Jin the framework of the first solution, eta expansion (Section 7):

ÝÑ
J fxx1

Ÿ
“λy.p

ÝÑ
J pλx.pfxyqqxx1q pfxqis a function (32a)

ÝÑ
J fxx1

Ÿ
“freshεin tgεpfpbunεxx1qq pfxqis not a function (32b)

which is analogous to (18a) and (18b), and in the framework of the second solution, tag

substitution (Section 8):

ÝÑ
J fxx1

Ÿ
“freshεin tgεpfpbunεxx1qq (33)

which is analogous to (8d). With this,Dbecomes a special case of
ÝÑ
J:

Dfx
Ÿ
“
ÝÑ
J fx1 (34)

The implementation in the Appendix illustrates this when setting*section9?*to#tto

use (34) instead of either (18a) and (18b)or(8d). Moreover, the implementation in the

Appendix illustrates that:

mapPairfl
Ÿ
“pfpfstlqq,pfpsndlqq (35a)

sqrx
Ÿ
“x̂ x (35b)

ÝÑ
J mapPair sqrpDsqrqp5, 10qùñp10, 20q (35c)

There is a crucial difference, however, betweenbundleandtangentand the correspond-

ing materializationsbunandtg. The former do not takeεas an argument. This allows them

to be used as distinct notational entities. In contrast,bunandtgmust take thesameεas an

argument, this tagmustbe fresh, and it should not be used anywhere else. Thus it should

not escape, except in ways that are protected by tag substitution. This motivates creation of

the
ÝÑ
J construct. There is no corresponding standard

ÝÑ
Jconstruct in differential geometry;

we created it just to describe the intended meaning of
ÝÑ
J.

This generalization still suffers from the poor complexity properties inSections 7.1

and8.1. We do not know how to provide a materialization of differential geometry or

a program construct that can take derivatives of higher-order functions whose domains

and/or ranges include (higher order) functions in a fashion that exhibits the complexity

guarantees of forward AD. Moreover, we don’t even know whether it is possible.
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10 Conclusion

Classical AD systems, such as ADIFOR(Bischofet al.,1992), TAPENADE(Hascoët &

Pascual,2004, andFADBAD̀ `(Bendtsen & Stauning,1996), were implemented for first-

order languages like FORTRAN,C, andC̀ .̀ This made it difficult to formulate situations

like (7) where the kind of perturbation confusion reported bySiskind & Pearlmutter(2005)

can arise. Thus classical AD systems did not implement the tagging mechanisms reported

byPearlmutter & Siskind(2007) andSiskind & Pearlmutter(2008). Moreover, such clas-

sical AD systems do not expose a derivative-taking operator as a higher-order function, let

alone one that can take derivatives of higher-order functions. In these systems, it is difficult

to formulate the bug inSection 5.

Note that the difficulty arises from the nature of the language whose code is differen-

tiated and not the fact that many classical systems like ADIFORand TAPENADEexpose

AD to the user via a source-code transformation implemented via a preprocessor rather

than a higher-order function. Conceptually, both a higher-order function and a preproces-

sor applying a transformation to source code map functions to functions. Thus while one

might write:

letf1
Ÿ
“Df

in...f1pxq...

(36)

in a system that exposes AD to the user with an interface as a higher-order functionD, one

would accomplish essentially the same thing in a system that exposes AD to the user with

a preprocessor that implements a source-code transformation by having the preprocessor

compute the let bindingf1
Ÿ
“Df. The issue presented in this manuscript would arise

even in a framework that exposes AD to the user with a preprocessor that implements a

source-code transformation if one would write

lets1
Ÿ
“Ds

in letD̂
Ÿ
“s10

inD̂p̂Dhqy

(37)

and have the preprocessor compute the let bindings1
Ÿ
“Ds. The difficulty in formulating

the issue presented in this manuscript follows from the fact that classical languages like

FORTRAN,C, andC̀ `lack the capacity for higher-order functions (closures) needed to

perform the let bindingD̂
Ÿ
“s10, not from any aspect of the difference between exposing

AD via an interface via a higher-order function versus a preprocessor that implements a

source-code transformation. Indeed, the issue described here would manifest in a system

that exposed AD via a preprocessor that implements a source-code transformation in a lan-

guage such as PYTHONthat supports the requisite closures and higher-order functions (e.g.,

MYIA,Breuleux & van Merriënboer,2017and TANGENT,van Merriënboeret al.,2018).

Recent AD systems, such as MYIA,TANGENT, and those in footnote1, as well as the

HASKELL ADpackage available on Cabal (Kmett,2010), the “Beautiful Differentiation”

system (Elliott,2009), and the “Compiling to Categories” system (Elliott,2017), have been

implemented for higher-order languages like SCHEME,ML,HASKELL,F7,PYTHON,LUA,

and JULIA. One by one, many of these systems have come to discover the kind of perturba-

tion confusion reported bySiskind & Pearlmutter(2005) and have come to implement the
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tagging mechanisms reported byPearlmutter & Siskind(2007) andSiskind & Pearlmutter

(2008). Moreover, all these recent systems expose a derivative-taking operator as a higher-

order function. However, except forSCMUTILS, none supported taking derivatives of

higher-order functions.

Prior to its 30 August 2011 release,SCMUTILS, the only forward AD system that

supported taking derivatives of higher-order functions, employed the mechanism of (8a)–

(8e) and exhibited the bug inSection 5. An attempt was made to fix this bug in the 30

August 2011 release ofSCMUTILS, using the second solution, tag substitution, discussed

inSection 8, in response to an early version of this manuscript.SCMUTILSwas patched

to include code that is similar to, but not identical to, (23) and (24a)–(24d). Crucially, it

allocates a fresh tag in its implementation of (23) but not in its implementation of (24d);

its implementation of (24d) being

rε1{ε2s̄g
Ÿ
“rε2{ε1s̋ ḡ̋ rε1{ε2s. ḡis a function (38)

This, however, is incorrect, as illustrated by the following variant of the bug inSection 5:

vuf1f2x
Ÿ
“f1f2px̀ uq (39)

ix
Ÿ
“x (40)

Variants of (10a)–(10c) show thatDv0pDv0iqhy“h2pyq. The 27 August 2016 release,

the current release at the time of writing, however, yieldsDv0pDv0iqhyùñ0. Both

solutions presented here yield the correct result.

In 2019, the authors reached out to Gerald Jay Sussman, one of the authors ofSCMU-

TILS, to help fixSCMUTILS. He asked whether we could produce an example that

illustrated the necessity of performing substitution on functions (24d) and why an alternate

rε1{ε2s̄g
Ÿ
“ḡ ḡis a function (41)

that did not perform substitution on functions wouldn’t suffice. A variant of (9) and (11)

that wraps and unwraps arguments and results in Church-encoded boxes illustrates the

necessity of (24d).

BOX:RÑlR

BOXxm
Ÿ
“mx (42a)

UNBOX:lRÑR

UNBOXx
Ÿ
“xpλx.xq (42b)

WRAP:pRÑRqÑplRÑlRq

WRAPfx
Ÿ
“BOXpfpUNBOXxqq (42c)

UNWRAP:plRÑlRqÑpRÑRq

UNWRAPfx
Ÿ
“UNBOXpfpBOXxqq (42d)

WRAPTWO:ppRÑRqÑpRÑRqq Ñ pplRÑlRqÑplRÑlRqq

WRAPTWOfgx
Ÿ
“BOXppfpUNWRAPgqq pUNBOXxqq (42e)
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WRAPTWORESULT:

pRÑppRÑRqÑpRÑRqqq Ñ pRÑpplRÑlRqÑplRÑlRqqq

WRAPTWORESULTfx
Ÿ
“WRAPTWO pfxq (42f)

WRAPPEDD̂
Ÿ
“DpWRAPTWORESULTsq0 (42g)

The same analysis as (10a)–(10c) shows that:

UNWRAPpDpWRAPTWORESULTsq0pDpWRAPTWORESULTsq0pWRAPhqqq “h2

(42h)

While

UNWRAPpDpWRAPTWORESULTsq0pDpWRAPTWORESULTsq0pWRAPhqqq “h2

(42i)

with both (24d) and (41), with (24d),

UNWRAPpWRAPPEDD̂pWRAPPEDD̂pWRAPhqqq “h2 (42j)

but with (41),

UNWRAPpWRAPPEDD̂pWRAPPEDD̂pWRAPhqqq ‰h2 (42k)

The authors ofSCMUTILSare in the process of fixing it again in response to this updated

manuscript. The tenacity of this bug illustrates its subtlety and cries out for a proof of

correctness.

Practically all systems that expose a derivative-taking operator as a higher-order func-

tion generalize that operator to take gradients and Jacobians of functions whose domains

and/or ranges are aggregates, and most have come to implement tagging. The current fore-

front of deep learning research often involves nested application of AD and application of

AD to higher-order functions (Maclaurinet al.,2015b;Andrychowiczet al.,2016;Raissi,

2018;Chenet al.,2018;Salmanet al.,2018). This work often combines building custom

frameworks to support the particular derivatives of interest, and performing transforma-

tions (closure conversion or even full AD transforms) manually. Under the pressure of

machine learning programmers’ desire for nesting and for derivatives of higher-order func-

tions, it is reasonable to speculate that many, if not most, of the above systems will attempt

to support these usage patterns. We hope that the awareness provided by this manuscript

will help such efforts avoid this particular subtle bug.

Without formal proofs, we cannot really be sure whether the first solution, eta expansion

((8a)–(8c), (18a), (18b)), or the second solution, tag substitution ((8a)–(8d), (23)), correctly

implements the specification in (3). We cannot even be sure that (8a)–(8d) correctly imple-

ment the specification in (1). These are tricky due to subtleties like nondifferentiability,

nontermination, and the difference between function intensions and extensions pointed out

by Siskind & Pearlmutter (2008, footnote 1).Ehrhard & Regnier(2003), Manzyuk (2012a,

2012b),Kellyet al.(2016), andPlotkin(2018) present promising work in this direction.

Given these sorts of subtle bugs, and the growing interest in—and economic and societal

importance of—complicated software systems driven by nested automatically calculated

derivatives, it is our hope that formal methods can bridge the gap between the Calculus

and the Lambda Calculus, allowing derivatives of interest of arbitrary programs to be not
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just automatically and efficiently calculated, but also for their correctness to be formally

verified.
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Appendix: Minimal implementation

The repositoryhttps://github.com/qobi/amazing,fileimplementation.ss,also

available as supplementary material, contains a minimal implementation. It is not intended

as a full practical implementation but rather has the expository purpose of explaining

the ideas presented in this manuscript. The implementations oflist-real->realand

list-real*real->realare similar to those by Siskind & Pearlmutter (2008,Fig.2).

Setting both*eta-expansion?*and*tag-substitution?*to#fuses the implementa-

tion ofDin (8d), the implementation of
ÝÑ
J in (33), the implementation oftgfor functions

in (8e), and the implementation ofbunfor functions in (30b) and illustrates the bug in

(12a)–(12o) and (13). Setting*eta-expansion?*to#timplements the first solution,

eta expansion, fromSection 7and uses the implementation ofDin (18a) and (18b),

instead of that in (8d), and the implementation of
ÝÑ
J in (32a) and (32b), instead of that

in (33). This resolves the bug and yields the correct result (19a)–(19z). Here,Dand
ÝÑ
J

each use a single side effect to generate s. Instead, setting*tag-substitution?*

to#timplements the second solution, tag substitution, fromSection 8and uses the

implementation oftgfor functions in (23), instead of that in (8e), and the implemen-

tation ofbunfor functions in (31),instead of that in (30b). This resolves the bug

and yields the correct result (25a)–(25w). Here,D,
ÝÑ
J,tg,bun, and tag substitution

for functions each use a single side effect to generates. Setting*section9?*to#t

implements the generalization inSection 9and uses the implementation ofDin (34)

instead of those in (8d)or(18a) and (18b). This works with either solution but exhibits

the bug when both solutions are disabled. In all cases, the function whose derivative

is taken is pure. This illustrates that the bug can be addressed even when an impure
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mechanism is used to generateεs. When setting*tag-substitution?*to#t,set-

ting*function-substitution*toequation-38uses (38) and gives the wrong result

for (39) and (40), setting*function-substitution*toequation-41uses (41) and

illustrates the bug in (42k), while setting*function-substitution*toequation-24d

uses (24d), gives the correct result for (39) and (40), and upholds (42j).
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