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Contactless ultrasound energy transfer from a piezoelectric cylinder or disk subjected to
forced vibrations to a piezoelectric receiver offers the capability of safely transferring energy
to sensors and devices, which is of great interest in different applications. Physical processes
supporting ultrasonic energy transfer include piezoelectric-generated vibrations at a trans-
mitting element, piezoelectric transduction of elastic vibrations at a receiving element, acous-
tic wave propagation, and acoustic-structure interactions at the surfaces of the transmitting
and receiving elements. Considering these processes, we present an experimentally-validated
multi-physics model that fills a knowledge gap in terms of accurately representing the fluid-
loaded response of piezoelectric disks, usually used in ultrasonic energy transfer as a cylin-
drical transmitting source-cylindrical receiver combination. First, we derive the governing
equations using the generalized Hamilton’s principle and solve them using the finite ele-
ment method. Second, we compute the surface pressure distribution due to acoustic-structure
interactions under resonance conditions. We then use the mode shapes and surface pres-
sure distributions obtained from the finite element model in conjunction with the matrix
governing equations to develop a reduced-order model with quantified reactive and resis-
tive parts of the acoustic radiation impedance. The developed reduced-order model is then
experimentally validated by comparing the electrical impedance of four different piezoelec-
tric disks having various aspect ratios. We also discuss how the proposed approach should be
utilized to develop reduced-order model for piezoelectric receivers. The presented approach
and reduced-order model allow for accurate identification of critical parameters that govern
acoustic energy transfer between piezoelectric disks, which is crucial for designing efficient
ultrasonic acoustic energy transfer systems.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasound acoustic energy transfer (UAET) is an emerging contactless energy transfer (CET) technology that offers the capa-
bility to safely power sensors and devices while eliminating the need to replace batteries, which is of interest in many appli-
cations. This technology provides efficient power transfer with deeper penetration depths and lower operating frequencies in
comparison to the widely used electromagnetic CET technologies [1], particularly inductive coupling [2-9]. Recent investiga-
tions have suggested that UAET could be effectively used in biomedical applications to recharge low-power implanted medical
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Fig. 1. (a) Snapshot of UAET with cylindrical transmitter and receiver and (b) piezoelectric disk with free-free boundary conditions showing the coordinate axes, (x,y, z)
(r,0,z), considered for the analysis.

devices (e.g., 1yW-10mW [10-12]), potentially eliminating the need for surgical procedures for battery replacement. These
implanted medical devices can be designed for health monitoring, assisting in treatment, or improving the function of partic-
ular organs in the host’s body [12-18]. For instance, transcutaneous UAET can be used to wirelessly power and communicate
with neural interface systems providing a useful toolset to build long-lasting and reliable neural recording systems [14].

UAET is a multiphysics process that involves the domains of structural dynamics, piezoelectricity, and acoustic-structure
interaction. In UAET systems, acoustic waves generated by a transmitter cause a piezoelectric receiver to vibrate and generate
electrical power, thereby transferring energy from the transmitter to the receiver. As such, a typical UAET system consists of a
transmitter, an acoustic medium that supports acoustic wave transmission, and a receiver with its electrical circuit (see Fig. 1
of Roes et al. [1]). Despite recent advances in UAET, the modeling efforts are lagging, and the current state-of-the-art exper-
iments are mostly designed using primal understanding of underlying physics with a demonstrated low power-transfer effi-
ciency [1,19]. In particular, the modeling challenges have limited the capability to obtain accurate solutions for the fluid-loaded
vibrations of the receiver or transmitter and induced surface pressure distributions. The challenges can be better illustrated by
considering a finite transversely isotropic piezoelectric disk, which is often used in proof-of-concept experiments [20-25]. Par-
ticularly, the equations governing the vibrations of the piezoelectric disk do not possess a closed-form solution without imposing
assumptions or limitations on the dimensions of the disk [26-30]. One of these assumptions is the “piston-like” deformation
assumption of the thickness mode, which converts the two-dimensional problem to a one-dimensional one and significantly
simplifies the model. However, this assumption is satisfied only when the diameter to thickness ratio is more than twenty,
D/t > 20 [31-33]. Moreover, the surface pressure distribution of an unbaffled non-planar structure, such as a thick disk, for
a given deformation doesn’t have an analytic closed-form expression, and one has to rely on the boundary element or finite
element methods [34-40]. Finally, the reflected, scattered and blocked pressure distributions of the acoustic pressure field, that
arise from the acoustic boundary conditions at the interfaces [41], should be accurately represented in any model to be used in
optimizing the system’s performance.

Acoustic-structure interaction models employed in the UAET can be classified into two main representations making differ-
ent approximations. The first representation makes use of the symmetric nature of the “piston-like” deformation to approximate
the acoustic structure interaction of an incoming plane wave as the sum of pressures due to the incident wave and radiated pres-
sure from a baffled piston [20,21,24,25]. Such an approximation neglects the blocked pressure due to reflection and scattering.
In the second representation, the boundary conditions are formulated by approximating the radiation pressure due to the vibra-
tion of the top and bottom surfaces of the disk to that of an infinite plate [22,23]. The experiments and experimentally-validated
multiphysics reduced-order model (ROM), presented in this paper, aim at filling a knowledge gap in terms of accurately mod-
eling resonant vibration modes associated with different UAET phenomena. Furthermore, the developed model captures the
acoustic loading effects on piezoelectric disks submerged in a fluid by quantifying the resistive and reactive components of
acoustic radiation impedance of the surrounding medium. The presented model enables the identification of critical parame-
ters such as the radiation mass and radiation resistance which impact the energy transfer capabilities. As such, we investigate
the effects of acoustic loading on a finite transversely isotropic piezoelectric disk that is submerged in a fluid. In particular, we
develop an axisymmetric finite element method (FEM) model by using the generalized Hamilton’s principle followed by con-
densation technique [31,42,43]to incorporate the radiation pressure of the disk in the surrounding fluid. Using the FEM model,
we obtain a reduced-order model that accurately predicts the response near the resonant frequency of any relevant mode under
electrical actuation. We hypothesize that the surface pressure distribution at the resonant frequency is sufficient to investigate
the resonant response of the disk in a fluid medium. We then show that the surface pressure distribution in the FEM model
corresponds to two parameters in the reduced-order model, R;o4e, and X,40, that respectively represent the resistive and
reactive parts of acoustic radiation impedance. The efficacy of the proposed reduced-order model is experimentally demon-
strated for the length expander mode of four disks differing in their dimensions under electrical actuation. This mode is the first
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axisymmetric vibrational mode exhibited by a piezoelectric disk [33]. We also discuss how the presented modeling approach
to develop a reduced-order model can be utilized in the case of receivers. The approach involving the development of finite
element-augmented reduced-order model is presented in Section 2 where we give details of the derivation of the governing
equations for the vibrations of a piezoelectric disk. The developed FEM model to solve the governing equation is presented in
Section 2.1. In Section 2.2, the challenge in determining the acoustic loading is highlighted, which is followed by details on the
solution approach undertaken in this effort. The reduced-order model is then derived from the FEM model using the mode pro-
jection technique, which concludes the mathematical modeling framework. The versatility and accuracy of the FEM model in
predicting the response characteristics of the disk including surface deformation, and electrical impedance are assessed through
comparison with results from in-air experimental measurements as presented in Section 3.1. The reduced-order model of the
acoustic structure interaction, which includes the acoustic loading effects, is validated with experimental results obtained from
electrical impedance measurements for four different disks in deionized (DI) water in Section 3.2. A discussion of the advantages
and shortcomings of the reduced-order model is also given in Section 3.2. The conclusions are summarized in Section 4.

2. Governing equations and reduced-order model

A schematic of a UAET system setup with cylindrical transmitter and receiver is shown in Fig. 1a. A transversely isotropic
cylindrical disk of diameter D, and thickness t, with electrodes on top and bottom surfaces suspended freely in a fluid, as shown
in Fig. 1b, is considered for the analysis and development of a reduced-order model. A general linear constitutive relation of
piezoelectric material is used to investigate the response of the disk and is written in matrix form as

o =CES —eE (1a)

D =e'S+ &E (1b)

where ¢ and S are respectively the mechanical stress, and strain vectors; and D and E are respectively the associated electrical
displacement and field vectors. The parameters CE, e, and &5 are respectively the stiffness at constant electric field, coupling
parameter, and permittivity at constant strain matrices; and the superscript t is used to denote the transpose of the associated
matrix.

A Cartesian coordinate system (x, ¥, z), with the z—axis along the thickness direction as shown in Fig. 1b is defined with the
assumption that the material is isotropic in the xy plane, thereby allowing the assumption of axisymmetric response. As such,
we solve only for variables in the radial r, and thickness z, directions in a cylindrical coordinate system, as shown in Fig. 1b.
Further, considering a meridional plane (@ = constant) of the disk, the linear strain S and stress ¢ are written in matrix notation
as

v [0 T -
— 0
S, ar o,
T
Sg r Og
S 0 9 u o
S=4q 7 L= 0z , 6=4 %% (2a)
2S,9 0 0 w O
ZSTZ i i o-TZ
28 0z or c
ro i 0 0 ] ro

where u(= u(r,z)) and w(= w(r, z)) are respectively the displacement components in the r, and z directions. The associated
electric field is written as

9
E=—19 o (2b)
oz

where @(= ¢(r, 2)) is the electric potential, and CE, e, and €° in Voigt notation are written as

Chq GGy GCG3 O 0 0

CE

(3a)
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where Cgg = % (Ci1 = Ciz)s

0 0 0 0 0 0
el = €24 Pl and 5= |1 (3b)
€31 €31 €33 0 0 0 0 €33

The dynamic governing equations of the disk are derived using the generalized Hamilton’s principle for electromechanical
systems, written as [44,45].

t
/ (8T — 81T + 8W,e + W) dt = 0 (4)
0

with the variation of kinetic energy 8T, given by

8T = ///VsUprdv, (5)

t
where U = {u w} is the displacement field. The variation of potential energy due to strain is given by 8§11 = f//VSSfo-dV
and is rewritten using Eq. (1a) as

81T = ///v (88'CEs — 8S'eE) dV, (6)

The variation of electrical energies given by W, = [ VSEthVis rewritten using Eq. (1b) as

W, = ///V (SE'e'S + SE'&°E) dV, (7)

The variational work done by external forces including structural damping and pressure distribution due to the acoustic struc-
ture interaction with the surrounding fluid is written as

) b/2 0
SW = — /// 8U'c,UdV - )’ Q.00 - / 278Uy ) dr
1% 0 Pr
D/2 0 t/2 P,
+ 27r8UY|,__ dr — / DU _ Lz (8)
/0 z=—t/2 {PB} 2 r=D/2 0

where ¢4 and Q, are respectively the damping parameter, and point charges at the electrodes; Pr, Pg, and P¢ are respectively
the pressure on the top surface, bottom surface, and cylindrical boundary of the disk. Substituting Eqs. (5)-(8) into Eq. (4), we
obtain

/// (8U*pU — 8S'CES + 5S'eE + SE'e’S + SE'e°E — 85U U) dV — Z Q¢
\'4

D/2 D/2
_/ ! 277,'1‘6Ut|_ 0 dr+/ ! 27rr6Ut|_ 0 dr
0 z=t/2 PT 0 z=—t/2 PB
t/2
- / wou Pl 420 (9)
—t/2 =D/ 0

2.1. Finite element analysis

Numerical solution of the above problem is obtained by applying the Finite Element Method to the meridional plane of the
disk which constitutes a rectangular domain of 0 < r < D/2,and —t/2 < z < t/2. As suggested by Ragab and Fayed [46],
each element is mapped to a canonical bi-quadratic element in £# space. The displacement vector is rewritten as

U(r,z,t) = U, n,t) = yyU° (10a)
and electric potential is rewritten as
prz,0) = @&, 0.0 =y,0° (10b)

where the y, and y, are respectively the displacement, and electrical potential shape function matrices; U%, and ¢* are the
nodal displacement, and electrical potential vectors of an element. Consequently, Eq. (2a), and (b) are rewritten as

S=BU°, E=-B,¢° (11)
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The complete expressions for yy, Ve U¢, ¢°, B, and B, are presented in Appendix A. Substituting Eq. (11) into the variational
statement presented in Eq. (9), we obtain the elemental matrix governing (actuation) equation as

M°U® + K5, U + DU + K ¢ +F° =0 (12a)

and the corresponding sensing equation as

(4 e e e _ e
—KE,U° + KE, 0 = Q (12b)
where
M¢ = // 2rrylpyydrdz, K, = // 27rBICEBdr dz, (13a)
D¢ =//27rrylijcdyludrdz, KS,, =//27TTB;£SB¢ drdz, (13b)
KS, = // 271BleB,, drdz = K5, (13¢)

D/2 0 D/2 0 t/2 PC
F“’:/ 27y dr—/ 2zryy dr+/ Dy, dz, (13d)
0 Pr 0 Pg —t/2 0

and Q¢ is a vector of net charge at each point in the element. In deriving Eqs. (12a) and (12b), the natural boundary conditions are
applied on the outer surfaces in the variational statement. In particular, the normal stresses are written as the surface acoustic
pressure and zero shear stresses. It should be noted that the acoustic pressures, Pr, P, and P are unknown at the moment. By
assembling all the elemental equations and imposing the symmetry conditions, u = 0 on the axis of the disk, we obtain the
global governing equation as

MU + aMU + Ky U+ Ky @ + F=0 (14a)
and the corresponding global sensing equation as
KouU+ K9 =Q (14b)

In writing Eq. (14a), a proportional damping D = aM is assumed.

The acoustic-structure interaction on the disk’s surfaces due to the surrounding fluid is characterized by the resistive and
reactive components of acoustic radiation impedance which are respectively manifested as radiation damping and radiation
mass effects. These effects can be easily determined by comparing the electrical impedance measurement in air and in water.
The electrical impedance in air is chosen as a reference because of its low relative acoustic impedance (Z,;./Zg;s) and that its
acoustic loading effects on the response of the disk are insignificant. The evaluation of electrical impedance involves determining
the electrical current passing through the disk for an input electric potential difference across the electrodes. We consider the
top and bottom surfaces of the disk as electrodes and define the dynamic potential difference between them as ¢,. Assuming
the bottom electrode as the reference where the electrical potential is zero, the appropriate electrical boundary conditions are
written as

@ =0, Vbottom surface nodes, (15a)

® = @, andz Q =Qp V top surface nodes, (15b)
t

where Q, is the net charge accumulated on the electrode and, by definition, is also the time integral of the current passing
through the disk.

Inspecting Eqgs. (14a), and (b), we note that they contain the electrical potential at all nodes, and that the electrical potential
at the interior nodes is a dependent quantity on the displacement and excitation potential difference (¢g). As such, we further
simplify Eqs. (14a), and (b) by following the condensation technique [42,43] and obtain the final global governing equation as

MU+aMU+RuuU+ﬁuq,<po+F=0 (16a)
and the corresponding sensing equation as
KyuU+ K00 =Q (16b)

The vital steps followed in the condensation procedure and expressions for the coefficient matrices are detailed in Appendix B.
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2.2. Acoustic loading

The electrical impedance can be computed from Eqs. (16a), and (b) once the acoustic loading vector F is determined. From
Eq. (13d), one needs to obtain the pressure pattern generated on the surfaces of the disk to determine F. This involves a signif-
icant effort of solving the mass, and momentum equations of fluid dynamics in conjunction with the equation of state for the
closed-form expression of pressure for a given displacement mode of the disk. Also, there is no closed-form expression to find
pressure distribution on a freely suspended disk (i.e., unbaffled) of arbitrary dimensions. To address this challenge, we hypoth-
esize that the pressure pattern of a particular mode in the fluid, referred to as modal pressure pattern, at the corresponding
resonant frequency can be used to investigate the response characteristics near that frequency. As such, we employed COMSOL
Multiphysics to obtain the pressure pattern in the frequency domain by assuming that the fluid is inviscid. This approach fails
away from the resonant frequency of the considered mode for two main reasons. Firstly, the pressure pattern is a function of
frequency (wavelength), and that it changes with the change in frequency. Secondly, a neighboring mode that possesses a dif-
ferent displacement field and corresponding modal pressure pattern than the mode considered can interfere with the modal
pressure pattern considered to produce erroneous results. Our approach is justified because the disk is most efficient at the res-
onant frequency response and the computational cost can be significantly reduced when using only information at the resonant
frequency to investigate the response near that modal frequency.

To model the effects of radiation damping and mass, we assume small amplitude acoustic waves and consequently, that the
pressure variations on the surface and ultimately F can be represented in terms of the local normal velocity and acceleration.
Also, when solved in the frequency domain, the real part of the velocity is maximum at the resonant frequency (damped resonant
frequency, strictly speaking) and is approximately equal to the absolute value of the velocity. Unlike the velocity, the pressure
manifests itself in a more complicated way with equally crucial real and imaginary parts for representing the acoustic-structure
interaction. Noting these concepts, for a given complex displacement field u and w, and corresponding complex pressure distri-
butions Pr, Pg, and P at the resonant frequency in fluid for a particular mode, say f,, under electrical excitation, we obtain F and
rewrite Eqs. (16a), and (b). First, we represent the surface pressure and displacement fields in the form of transfer functions as
Pr/Re(w)| I for the top surface, Pz /Re(W)| I for the bottom surface, and P /Re(i1)| I3 for the cylindrical boundary of the disk. Next,
using the transfer functions, we rewrite Eq. (13d) as

e / " 2 diag v 0 sar— [ 2urdiag ! 0 yd
F = 2rr diag| y ) U r—/ 2rrdiag | y . Udr
0 Y Pr/Rew)y 0 Y Pp/Re(w)y
t/2 )
+/ D diag <y/; {PC/RZ(”)lfr}>Ue dz (17)
—t/2

where diag({.}), and Re respectively represent the diagonal matrix of vector {.}, and real part of a complex number operator.
Substituting the appropriate transfer functions acquired from COMSOL Multiphysics into Eq. (17), we obtain

F® = R°U° + jX°U° (18a)
where j = 4/—1. For a harmonic excitation with excitation frequency , the above equation is rewritten as

F = RO + X0 (18b)
@

where R¢, and X€ are the elemental diagonal matrices obtained, respectively, from the real and imaginary parts of the right hand
side of Eq. (17). Substituting Eq. (18b) into elemental governing Eq. (14a), assembling all the elemental equations and imposing
the symmetry conditions, we obtain the final global governing equation as

1

<M+ 5x)U+(on+R)U+ﬁ,,,,U+RW,(p0 =0 (19a)

and the corresponding global sensing equation as
KouU + Ky = Qo (19b)

For a harmonic electrical actuation of @, = @el®!, substituting the corresponding response, U = Uei®!, and accumulated
charge, Qy = Ioej“”/(ja)) into Eqs. (19a), and (19b) the electrical impedance is derived as

% ! - (20)
A RPN T PO
jo [—K(pu (Kuu —a? <M + 5x) +jo (aM + R)) Rup + 1<W]

where Iy(= dQq/dt) is the amplitude of the current passing through the piezoelectric disk.
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2.3. Reduced-order model: mode projection

Reduced-order modeling of a continuous vibration system involves determining the of exact solution to the unforced,
undamped, and short-circuited integro-partial differential equations followed by a Galerkin weighted residual method to obtain
an ordinary differential equation of the temporal modal coordinate. The variational statement in Eq. (9) provides the integro-
partial differential governing and sensing equations of the disk. However, in its raw form without imposing any assumptions
on the dimensions of the disk [26-30] it doesn’t possess a closed-form solution, impacting the ability to derive a reduced-order
model. To solve this challenge, we use the matrix equation (19a) and study the free vibration problem MU + IA(uuU = 0 to obtain
the axisymmetric eigenvalues and eigenvectors. The eigenvectors are then used to determine the governing equation of the tem-
poral modes. Further, if the modes are widely spaced, then the displacement vector near the resonant frequency of a particular
mode is approximated by

U ~ q(t)V(r, 2) (21)

where q(t), and V are respectively the temporal coordinate and mass-normalized eigenvector of the considered mode. Multi-
plying the governing equation by V' and using Eq. (21), we obtain the governing equation of the temporal modal coordinate as

. X, . ~

q(l + %“) + (26 @y + Rinoge) 4 + @2q + Bpg = 0 (22a)

-0+ C o = Qo (22b)
where

Xmode = VXV,  Ryo4e = VRV, (22¢)

0=VKyy = —KpuV, 20w, =a, and C =Ky, (22d)

Here, Cg is the equivalent capacitance of the piezoelectric disk at constant strain, which cannot be measured by simply
connecting the wires of a freely hanging disk in air to a capacitance meter. This ambiguity is due to the negligible relative
acoustic impedance of air and piezoelectric disk (i.e., Z,;./Zgix << 1) that makes the surfaces of the disk effectively traction-
free. Consequently, the capacitance meter measures the capacitance at a constant stress, Cg(;é Cg). Using Egs. (22a), and (22b),
we derive the electrical impedance as

-1
@ _ S ]/H\zw

Cjw +
Iy p]w —? (] +Xmode/w) +] (24’60,, +Rm°de) a)+a)%

(23)

It is relevant to point out that the electrical impedance derived from the FEM model in Eq. (20), and the one obtained from
ROM mentioned in Eq. (23) can only predict the impedance and, therefore, the response in the fluid with reasonable accuracy
near the resonant frequency of the mode whose transfer functions are acquired from COMSOL Multiphysics. Although FEM
has the capability to predict the impedance for all the vibrational modes of the disk for the case when fluid damping is non-
existent, we note that in deriving Eq. (20), the acoustic-structure interaction was limited to a particular mode, thereby limiting
the FEM model’s capability to model the response at all modes in fluids. Finally, the advantage of the ROM over the FEM is that
the determination of the effect of fluid on the response characteristics of the disk requires estimates of only two parameters,
namely X, ,qe» and R4, instead of diagonal matrices or transfer functions as would be required in the FEM model. In the
following sections, different case studies are presented to validate the FEM method and evaluate the effectiveness of the derived
reduced-order model.

3. Experimental setup, results and validation of the reduced-order model

The acoustic radiation effects on the piezoelectric disk by surrounding fluid are investigated by comparing the disk’s electrical
impedance in air and water.

3.1. Experiments in air

In the first set of experiments, the versatility and accuracy of the FEM model in predicting the response characteristics of the
disk were investigated using both qualitative and quantitative analysis. In the qualitative analysis, the vibrational mode shapes
obtained from experiments in air are compared to those predicted by the FEM model. Whereas in the quantitative analysis,
the electrical impedance in air as determined from the FEM model is validated with the experimentally measured values. The
predicted response for specific electrical actuation is then compared to the measured response. We considered two different
piezoelectric ceramic disks APC760, and APC472 made of Navy type - II (PZT - 5A) material manufactured by APC International,
Ltd for the in-air experiments. The two disks differed primarily in their dimensions. Their material and geometric properties
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Table 1
The list of geometric and material properties of the disks considered. £" is the
permittivity of vacuum.

Parameter APCA72 APC760 APC196 APC1116
D [mm] 11.4 9.5 19 9.9

t [mm] 10.6 3.9 23 1

p [kg/m?] 7700 7700 7700 7700
C,, [GPa] 154.13 172.14 174.05 175.22
C,, [GPa] 105 105 110 110
C;5 |GPa] 93.7 110.1 99.9 99.9
Cy5 |GPa] 115.82 135.6 123 123
C,, [GPa] 23 23 30.1 30.1
ey, [C/m?] -3.86 -3.24 -3.05 -2.8
ey [C/m?] 193 19.04 15.14 147
ey, [C/m?] 11.64 11.64 9.86 9.86
£,/€, 1130 1243 910.8 993.6
£35/€, 914 1005.4 770 840
all/s] 9937.41 18070.99 2581.94 6600

are presented in Table 1. The disks were suspended freely with wires, as shown in Fig. 1b. The vibrational mode shapes were
measured using a Polytec PSV —500 Scanning Vibrometer while the voltage excitation and data acquisition were performed
using the PSV-500 front end interface. The sampling frequency and frequency resolution were respectively set to 5.12 MHz
156.25 Hz. The response to an electrical excitation provided by Keysight 33500B signal generator was measured using Polytech
OFV 5000/505 laser Doppler vibrometer (LDV) in conjunction with NI DAQ system (PCI — 6115 and BNC — 2110). The LDV data
was sampled at 4 MHz.

Fig. 2a, c, e, g and i present the top surface’s mode shape of the first five modes of APC760 disk at two instants with a phase
difference of = as measured by the scanning laser when excited using a periodic chirp voltage signal. The free vibration of Eq.
(16a) (i.e., MU + RuuU = 0) is solved by defining a 10 x 8 mesh, and using the material properties of APC760 disk that are
presented in Table 1 to obtain the mode shapes predicted by the FEM model. The m x n mesh refers to m and n bi-quadratic
elements respectively in the radial and thickness directions. The mesh size is chosen as a compromise between convergence in
eigenvalues (natural frequencies) and computational cost. Moreover, both symmetric and anti-symmetric modes (see Aggarwal
[26,27] for details) were predicted by the FEM. However, only the symmetric nodes participate in the electromechanical coupling
and can be excited with electrical excitation. As such, we consider the top surface’s mode shape of the first five symmetrical
modes predicted by the FEM model presented in Fig. 2b, d, f, h, and j and show the excellent qualitative agreement with their
FEM counterparts that are presented respectively in Fig. 2a, ¢, e, g, and i. From Fig. 2h, we note that the mean displacement of the
top surface of fourth symmetrical mode is non-zero and hence we identify it as a thickness extensional mode [31,32]. Further,
by noting the diameter to thickness ratio of the APC760 disk, D/t = 2.44, the results in Fig. 2g and h reaffirm that the mode
shape of the thickness mode of a disk can be drastically different from a “piston-like” profile. Although none of the mode shapes
resemble a “piston-like” behavior, we note that the first mode which is often referred to as length expander (LE) mode [33]
shown in Fig. 2a and b is closest to “piston-like” deformation. Furthermore, because the LE mode doesn’t posses any nodal rings
or anti-nodes like the higher modes, and that the resonant frequencies are in the ultrasonic range, it is reasonable to assume
that this mode will possess highest radiation efficiency. As such, although the proposed approach can be applied to any mode of
interest, we will focus on the LE mode in the subsequent sections.

The electrical impedance measurements are preformed for parameter identification and to assess the acoustic loading effects.
Electrical impedance is chosen because it entails the information of all key material parameters that impact the vibrational
response such as, the natural frequency, electromechanical coupling term, and capacitance. Moreover, by matching the electrical
impedance, the corresponding surface velocity response can be accurately predicted. To this end, we validate the fidelity of the
proposed approach and model through comparison with the measured electrical impedance of the APC472 and APC760 disks.
The electrical impedance of the freely-hanging APC472 disk in air was measured using HP4192A impedance analyzer over the
frequency range of 0-300 kHz. By defining a 6 x 10 mesh, the measured impedance was matched with FEM model’s prediction
using Eq. (20) (with X = R = 0, as the medium is air) with emphasis on the length expander mode and adjusted material
properties that are presented in Table 1. From Fig. 3a, we note a discrepancy in the amplitude of the electrical impedance near
the open-circuit frequency of the LE mode as well as the second symmetrical mode. This discrepancy is attributed to the different
damping ratios of the short- and open-circuit conditions of LE mode and second mode. Using Eq. (19a), the velocity of the center
of the disk’s top surface normalized to excitation voltage amplitude is evaluated near the short-circuit resonant frequency of
the LE mode ranging over the frequency range of 110-115 kHz. As shown in Fig. 3b, the results from the FEM model are in
agreement with the measurements made using the scanning laser. A similar procedure was performed on an APC760 disk.
A very close agreement of the electrical impedance and velocity of the center of the disk’s top surface obtained by the FEM
model and determined experimentally are presented, respectively, in Fig. 3c and d. The plots show excellent agreement of the
predicted impedance to the measured one. Based on the plots in Fig. 3a-d, we have experimentally validated that by satisfying
the electrical impedance using the FEM model, the response characteristics are automatically satisfied. We exploit this notion
and investigate only the electrical impedance in the forthcoming case studies.
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Fig. 2. The top surface’s displacement mode shapes of APC760 disk for the first three symmetrical modes obtained from (a,c,e) experiments at 193.4 kHz, 333.1 kHz, and
400.8 kHz respectively, and by (b,d,f) FEM model. The top surface’s displacement mode shapes of APC760 disk for the fourth, and fifth symmetrical modes obtained from
(g.i) experiments at 494.4 kHz and 601.1 kHz respectively, and by (h,j) FEM model.

3.2. Experiments in water

For in-water validation, we consider four different piezoelectric ceramic disks namely APC472, APC760, APC196, and
APC1116, which differ in dimensions, namely the D/t ratio, to investigate the acoustic loading characteristics by water on the
LE mode. The geometric and material properties of the disks are mentioned in Table 1. The electrical impedance measurements
were made using HP4192A impedance analyzer by submerging the disks under deionized water, to avoid electrical shorting, in
a tank of dimensions 615 mm X 318 mm X 325 mm. The inner surfaces of the tank were partially covered with Aptflex F28
acoustic absorbing sheets manufactured by Precision Acoustics Ltd. to minimize surface acoustic reflections from the walls.

Recalling that the approach and reduced-order model presented here are based on the finite element method, which requires
transfer functions, we investigated the disk’s response under water using COMSOL Multiphysics to solve the acoustic structure
interaction problem by imposing pressure and velocity continuity boundary conditions at the interface. We constructed 2—D
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Fig. 2. Continued

axisymmetric cases where the radius is six times the maximum wavelength, 4.,,,. Moreover, to simulate infinite medium condi-
tions, we included a perfectly matched layer of thickness equal to A,,,,. Also, the maximum size of the triangular mesh element
was chosen such that there are at least ten nodes in the minimum wavelength. The material properties were determined by
matching the electrical impedance in the air. It is relevant to point out that, in general, finding the exact set of parameters that
govern the behavior of the piezoelectric disk requires sophisticated optimization schemes. However, the disks were excited
electrically and their functioning frequency can be considered as the short-circuit resonant frequency. As such, we matched
the electrical impedance near the short-circuit frequency. For the open-circuit conditions, we limited the matching only to the
resonant frequency. Following the methodology proposed in Section 2.2, we recorded the complex pressure on the surfaces
of the disk, and the real part of the surface velocities at the resonant frequency of the LE mode in water and determined the
transfer functions. As an example, the pressure and velocity distributions for APC472 disk when actuated with an excitation
voltage of 1 V under water are shown in Fig. 4. In particular, Fig. 4a and d shows the real and imaginary parts of the pressure
for the top and the cylindrical boundary of the disk, respectively, and Fig. 4b and e shows respectively the corresponding real
part of surface velocities at 108.35 kHz, which is the resonant frequency of LE mode in water. The obtained transfer functions
Pr/Re(w), and P./Re(i1) are respectively presented in Fig. 4c and f. It should be noted that for symmetrical modes, Py /Re(w) for
the bottom surface is equal to — P;/Re(w) for the top surface. We used the transfer functions to construct the R and X matrices
as described in Eq. (17) - (19a). Finally, the R,o4e and X,oqe Were determined by using R, and X matrices as outlined in Section
2.3. The procedure mentioned above was repeated for five different diameters using the material properties of each disk and
fixing the D/t ratio. The results of Ryo4e/®;, and Xode/®@;, are respectively summarized in Fig. 5a and b that show a decrease
in the radiation damping and radiation mass when increasing the D/t ratio. Fig. 5a and b also show a trend in the normalized
radiation damping and radiation mass effects with a near-zero slope for a given D/t ratio. The results suggest that the radiation
mass and damping effects in water are independent of the diameter of the disk for a given aspect ratio. The efficacy of proposed
ROM is shown next by presenting the results for APC472 and APC760 disks.

Fig. 6a shows the electrical impedance measured in air and underwater for APC472 disk. A significant variation in the ampli-
tude and a slight leftward shift in the resonant frequencies are noted. By inspecting Eqs. (20), and (23) we relate the variation
in amplitude to radiation damping (i.e., R, and R,4e), and leftward shift in resonant frequencies to the radiation mass (i.e.,
X, and X4 )- The FEM model’s and the ROM'’s predictions of the electrical impedance in the air using the identified material
parameters are presented in Fig. 6b along with the experimental measurement, which shows agreement near the short-circuit
resonant frequency of the LE mode. However, the ROM doesn’t accurately predict the response at the open-circuit resonant
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Fig. 3. Comparison between the experimental data and FEM model’s predictions of the absolute value of electrical impedance and frequency response function (FRF) of
normalized velocity of the disk’s center for (a,b) APC472 and (c,d) APC760 disks. The normalization is done using the excitation voltage amplitude,and R = D/2.

frequency of the LE mode and completely misses the second symmetric mode exhibited by APC472 disk highlighting the impor-
tant anticipated shortcomings of the ROM. The two main reasons for the shortcomings are (a) the ROM was provided only with
the eigenvalues of the LE mode corresponding to short-circuit frequency, and moreover (b) the mode shape is not conserved
between short and open-circuit resonant frequencies for a given mode [33], which results in improper estimation of modal

electromechanical coupling, 0. But, nevertheless, the ROM is able to accurately predict the behavior at the short-circuit resonant
frequency, which in turn, is the application frequency for electrical actuation, which is the focus of the current investigation.
Fig. 6¢c shows excellent agreement between the measured electrical impedance and that predicted from COMSOL Multiphysics,
FEM model, and ROM for a considerably broad range near the short-circuit resonant frequencies. This is a remarkable result as
the ROM is a single DOF system using only two parameters to obtain the same result by COMSOL Multiphysics which is com-
putationally costly by several orders. We also note from Fig. 6¢ that there is a reasonable discrepancy in the predictions made
by COMSOL Multiphysics at the open-circuit resonant frequencies. The reasons for this discrepancy are multifold. It could have
been manifested due to non-uniqueness of the adjustments made to the material parameters, to the shortcoming of proportional
damping as discussed earlier, or due to neglecting the viscous effects.

The results of the investigation performed on APC760 disk are presented in Fig. 7a - c. The plots in these figures were obtained
using the same approach used for Fig. 6a, b, and c. Once again, the emphasis was on the short-circuit range while correcting
the material properties provided by the manufacturer through matching with the FEM model’s predictions of the electrical
impedance in air to that obtained from experiments. Due to the absence of any nearby mode in APC760 disk, the agreement
of prediction of the electrical impedance in DI water by COMSOL Multiphyics solver, FEM model, and ultimately ROM to that
obtained from experiments is much better than that of APC472 disk which is shown in Fig. 7c. We found that the results of
investigating APC196 and APC1116 disks presented respectively in Figs. 8a-8c and 9a-9c are very similar to the results of the
APC472, and APC196 disks. They are presented in Appendix C.

The emphasis in this work has been on electrical actuation of the piezoelectric disk, which best represents the transmitter
in UAET systems. We note that the electrical impedance doesn’t include the effects of reflection and diffraction of the incident
acoustic field which manifest in the case of a receiver. Moreover, in a general piezoelectric system, the resonant frequency
corresponding to the global optimum load resistance occurs between short and open-circuit resonant frequencies [47]. The
approach presented in this paper utilizes the eigenvalues (or modeshapes), and pressure distributions at short-circuit resonant
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Fig. 4. The pressure distribution, real part of normal velocity, and their transfer function, respectively, of (a,c,e) top and (b,d,f) cylindrical surfaces.

frequency. To analyze the performance of a receiver one needs to account for different physics and make the following changes.
The first change is that the acoustic loading vector F, should be determined using the surface pressure distributions associated
with a given source at the resonant frequency corresponding to the optimum load resistance. Also, F is now the sum of excitation
force due to the incident acoustic field, blocked pressure (reflection and diffraction), and acoustic loading effects due to self
radiation pressure of the receiver. If one assumes an acoustic source facing the top surface of the receiver, then the self radiation
pressure can be differentiated from incident pressure field, reflections, and scattering by inspecting the pressure fields on the top
and bottom surfaces. This assumption is justified because, in an infinite medium, there would be no reflections on the bottom
surface of the receiver. Now, if the ROM obtained using eigenvalues at short-circuit resonant frequency is not accurate, one can
use the eigenvalues at the open-circuit resonant frequency. The eigenvalues for open-circuit conditions in the air are determined
by recasting Eqs. (19a), and (b) as [42].

MU + (ﬁuu — RupKopu /Ew) U=0 (24)
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4. Conclusions

A mathematical framework was presented to evaluate the response of resonant vibration modes of piezoelectric disks in
UAET systems. Particular attention was paid for developing a reduced-order model (ROM) that can capture the acoustic loading
effects on the piezoelectric disk submerged in a fluid domain under electrical actuation. In order to accurately model the under-
lying physics, we presented a formulation that determines the ROM from a finite element model (FEM). The acoustic loading
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effects were modeled in the ROM as the two parameters, namely Ro4e and X0q4e that respectively quantify radiation damping,
and mass radiation effects. With the knowledge of R,;,qe and X4, the need for computationally expensive numerical solvers
is eliminated. Parameter identification was done by matching the electrical impedance measurements in air with the FEM’s
predictions, which satisfied the vibration response of the disk, as well. We then examined the efficacy of the proposed ROM
by comparing the electrical impedance of four piezoelectric disks that have different aspect ratios as predicted by the ROM to
that obtained from experiments near the short-circuit resonant frequency. We found that the normalized radiation mass, and
damping effects for a given diameter to thickness ratio, and material properties of the transmitter disk have a very weak depen-
dence on the variation of the diameter. However, the acoustic structure interaction effects are different for the receiver disk,
which is excited by an incident acoustic field generated by a transmitter. The proposed ROM in this paper can be modified for
the receiver disk in the case of acoustic excitation. This work paves the way to develop ROMs that provide closed-form expres-
sions for the vibration responses and electrical power output, which are crucial for the design and performance optimization of
UAET systems. This research improves the understanding of the fundamental aspects of the UAET process. The results can be
successfully applied towards the development of new and disruptive UAET technologies with a significant impact on the overall
energy efficiency of UAET systems.

5. Compliance with ethical standards - conflict of interest

The authors declare that they have no conflict of interest.

CRediT authorship contribution statement

Vamsi C. Meesala: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writ-
ing - original draft, Visualization. Saad Ragab: Writing - review & editing, Methodology. Muhammad R. Hajj: Conceptualiza-
tion, Writing - review & editing, Supervision, Funding acquisition. Shima Shahab: Conceptualization, Writing - review & editing,
Supervision, Funding acquisition, Project administration.



V.C. Meesala et al. / Journal of Sound and Vibration 475 (2020) 115255 15

Acknowledgements

This work was supported by the National Science Foundation Grant No. ECCS —1711139, which is gratefully acknowledged.
The authors express their gratitude to Dr. Prashant Kumar for his cordial assistance with the scanning laser vibrometer.

Appendices A. Matrices

W 0 0 .. v 0 0
wy= | ’ (25)
0 ywy; 0 ... 0 wyg O
t
Uf = {ulw1 ugwg} (26)
t
o = {01 0} (28)
(v g W g ]
/PR
r r
o AL
B= oz 0z (29)
0 0 0 0
o o oy Wy
0z or ' oz or
_O 0 0 0_
9w 7
) o 7 or
Po=Vow  dws G0
oz ' oz

Appendices B. Condensation

The condensation procedure employed to simplify governing Eq. (14a), and corresponding sensing Eq. (14b), respectively, to
Egs. (16a),and (b) is presented in this Appendix. From the boundary conditions mentioned in Eq. (15a), the potential on bottom
surface is zero, and hence the corresponding row in Kug and K, are deleted in further analysis. We then relate the unknown
potential of internal nodes to their corresponding displacements. To this end, Eq. (14a) is rewritten as

MU + Ky U + aMU + Ky i @; + Kyp @ + F=0 (31a)
and Eq. (14b) is rewritten as

_Ki(puU + anqaii(pi + anqaii¢t =0 (31b)

_I(thuU + Kq;q;tiq’i + K(pg)ttq’t =Q (31¢)

where the subscripts i, and t, respectively, stand for interior, and top nodes. From Eq. (31b), the potential of internal nodes is
rewritten as

Pi = _K;}rpii (K(p(pitq’t - Ki(puU) (32)
By adding all the rows in Eq. (31c) and from the electrical boundary conditions mentioned in Eq. (15b), we obtain
_z Kt(puU + Z K(p(pti¢i + z Kq;quﬂo = QO (33)
row row row

where I is a unit column vector. Eq. (33) is further simplified using Eq. (32) to obtain the sensing Eq. (16b) as

KpuU +Kpp@0 = Q (34)

where

e _ —1
Kpu =~ Kigu + (Z Kwﬁ> Kb Kigu:

row row
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and
T — -1
Koo = (Z Koot — Z Koo [l(¢¢iil(¢¢it])l
row row
By using Eq. (32), Eq. (31a) is rewritten to obtain the governing Eq. (16a) as
MU + oMU + K, U + ﬁuq,(po +F=0
where
Ky = Ky + l(u(pil(;}piil(iq,u,
and

Rup = (Kugt ~ Kugily i Kpgi ) 1

Appendices C. More results
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