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Abstract

Quantification of microtubule (MT) dynamic instability (DI) is essential to mechanistic dis-
section of MT assembly and the activities of MT binding proteins. Typical methods for quan-
tifying MT dynamics assume that MT behavior consists of growth and shortening phases, with
instantaneous transitions (rescues and catastrophes) in between. However, examination of DI
data at high temporal and spatial resolution reveals the presence of ambiguous behaviors that
cannot easily fit into these categories. Failure to objectively recognize and quantify these be-
haviors could reduce the reproducibility of DI data and impact attempts to dissect mechanisms.
To address these problems, we recently developed STADIA (Statistical Tool for Automated
Dynamic Instability Analysis), a MT analysis software package that uses length-history data as
input and is (presently) implemented in MATLAB. STADIA uses machine learning methods
to objectively analyze and quantify macro-level DI behaviors exhibited by MTs, including var-
iable rates of growth and shortening and a newly quantified DI phase: stutter. Here we over-
view the process of using STADIA to quantify MT dynamics and provide a set of concrete
protocols for using STADIA to process and analyze MT length history data.

Introduction

Microtubules (MTs) are cytoskeletal biopolymers that are characterized by a behav-
ior known as dynamic instability (DI) (Desai & Mitchison, 1997; Mitchison &
Kirschner, 1984). In typical methods for measuring MT DI, researchers quantify four
“DI parameters”: the rates of growth and shortening (V, and V) and the frequencies
of catastrophe and rescue (F. and F) (e.g., Walker et al., 1988). An often-
employed approach is to capture MT dynamics via kymographs (see, e.g.,
Lawrence, Arpag, Norris, & Zanic, 2018); the rates of growth and depolymerization
and the frequencies of transitions are then determined by fitting lines (perhaps by
hand) to the kymographs. Implicit in this approach is the assumption that MT dynam-
ics are biphasic (i.e., MTs are either growing or shortening), with instantaneous tran-
sitions between phases. However, there are two problems with this view. First, recent
experiments and simulations have indicated that these assumptions may not be valid;
periods of sustained behaviors that do not resemble classically recognized growth or
shortening can be observed in data acquired at high temporal resolution (Fig. 1)
(Duellberg, Cade, Holmes, & Surrey, 2016; Duellberg, Cade, & Surrey, 2016;
Maurer et al., 2014; Rickman et al. 2017). In addition, the subjective nature of typical
MT dynamics quantification can cause problems with comparability between
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experiments and reproducibility across labs. These considerations led us to develop
an analysis software STADIA (Statistical Tool for Automated Dynamic Instability
Analysis), which was designed to quantify and characterize this DI behavior in a
more objective, precise, and reproducible way.

The goal of this article is to provide an overview of the STADIA program and
how to use it. The software code, example input files, and an accompanying tutorial
(“Modeling microtubule mechanisms of dynamic instability”, available as either a
PowerPoint™ program or a PDF) are available in a GitHub repository (GoodsonLab
GitHub STADIA Repository 2019). The tutorial provides examples of how to run
STADIA, including initial conditions and parameters that need to be input for the
software and the corresponding results as graphs and figures. The example data an-
alyzed in this paper and tutorial were obtained from our detailed model of MT dy-
namics (Margolin et al. 2012). For an illustration of how STADIA can be used to
analyze in vitro MT dynamics, please see (Mahserejian et al., 2019); this paper
and its supplementary materials also contain additional information regarding the
theory behind the development of STADIA. At the time of this paper’s release, STA-
DIA was developed in MATLAB; thus a STADIA user should be reasonably familiar
with how MATLAB operates, though it is not necessary to know how to write code.

Methods

STADIA employs statistical and machine learning methods to impartially charac-
terize behavior and calculate quantities associated with DI. STADIA accomplishes
unbiased characterization and quantification of MT dynamics by creating an itera-
tively improved approximation of MT length history data that detects moments of
significant changes in MT behavior. This improved approximation enables STADIA
to perform unbiased classification of macro-level dynamic changes, because behav-
iors intermediate to growth and shortening can be considered. Previous approaches
limit analysis by assuming that only two phases exist in MT dynamics, whereas
STADIA allows for more complex behaviors, including additional phases and phase
transitions.

STADIA works in three main stages: segmentation, classification, and phase and
transition analysis (Mahserejian et al., 2019). The tasks for these stages are carried
out after an initialization process, during which user-defined parameters are speci-
fied and the MT length history data are loaded from an input file.

+ Insegmentation, a piecewise linear approximation of the data is created, with the
length history data segmented into regions separated by endpoints that mark
significant changes in microtubule dynamics (Fig. 1A).

» Inthe classification stage, STADIA separates the segments into clusters based on
their segment characteristics (time duration, length change, and slope) using
unsupervised machine learning; cluster metrics are then used to further define DI
phase classes.
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 Finally, in the phase and transition analysis stage, STADIA analyzes segments in
each DI phase, and uses them to calculate classical DI parameters (e.g., frequency
of rescue, velocity of growth, etc.), as well as new parameters for transitions
involving a DI phase intermediate to growth and shortening called “stutter”
(Mabhserejian et al., 2019).

STADIA builds upon traditional DI analysis methods since it not only calculates
parameters classically used to characterize DI behavior, but now also considers
additional behaviors previously ignored when restricting DI behavior to only growth
and shortening.

The remainder of this section details the methodology associated with each of the
three STADIA stages and discusses the user-defined parameters that control
STADIA.

STADIA Setup

Users need a copy of MATLAB and the files that compose the STADIA program.
The user is responsible for providing the user input parameters in the Input_and_
Run.m script (suggestions for determining appropriate values can be found in
Section 2.3).

Seven files should be in the current folder tab:

Length history data input file (either .dat, .txt, or .csv)
Input_and_Run.m

Loop_Thru_Inputs.m
PieceWiseLinearApproximation.m
DIphaseClassification.m

ExtractDIparameters.m

Findjobj.m

NogapwdN=

While the length history file can be located elsewhere (with the path name specified
in the Input_and_Run.m file), it is simpler if the length history file is in the same
directory as the other six STADIA .m files listed above. In brief, here is a description
of each file:

o The length history data input file contains the microtubule length history data;
one column of data should correspond to time step values, and the remaining
column(s) to MT lengths (the unit for length must be in subunits). Input data can
represent length history as a single long time series format in a single file,
multiple columns for multiple MTs in a single file, or multiple files of one of
these formats. STADIA can analyze data that has been generated from any
source, including in vitro or in silico MTs, provided the input data collectively
belongs to the same experimental conditions. Acceptable file formats include
.dat, .txt, and .csv.

e Input_and Run.m is the only STADIA script that a user will need to
interact with when using the program. User-defined terms can be edited in
this file, including the filename corresponding to the length history data to
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be analyzed, the threshold and tolerance levels to conduct the desired
analysis, and options for results that are to be displayed and saved.
Details for user-defined terms and how they relate to corresponding
STADIA stages are described in Sections 2.2 and 2.3.

* Loop Thru_Inputs.m is called by Input_and_Run.m and initializes analysis by
reading in the MT length history data and calling the remaining modularized
scripts to conduct the procedures in STADIA.

» PieceWiseLinearApproximation.m creates a continuous piecewise linear
approximation of the microtubule length history data as part of the segmentation
stage.

» DliphaseClassification.m conducts the classification stage procedures using
the segments identified in the previous stage. This script relies on k-means
clustering, an unsupervised machine learning approach that requires a priori
knowledge of the k-values (number of clusters to separate the data). Additionally,
this script handles the options involved with running STADIA in Diagnostic
Mode, which provides useful information to the user for selecting the optimal
k-values to be used in the automated mode of the classification stage.

o ExtractDIparameters.m is responsible for analysis of the data within each phase
class associated with the phase and transition analysis stage of STADIA.

 findjobj.m is required for running STADIA to optimize the aesthetics of the
display of the figures and tables. The functions in this script are not provided by
MATLAB by default.

Once the script Input_and_Run.m is opened and the desired parameters are entered
into the script, simply running Input_and_Run.m will begin analysis of the input file
with the chosen parameters. For a quick overview of how to run STADIA and inter-
pret its output, see the tutorial provided in the corresponding GitHub repository.
More in-depth discussion is provided below.

Initialization

In the initialization process, STADIA loads the input data as well as the user-defined
parameters necessary for analysis. In this section, we describe the terms and options
available to the user in the Input_and_Run.m file that contributes to initialization
steps associated with reading in the input file.

The parameters that must be set by the user to conduct initialization include:

« SKIP_FILE_READ: in the case where a user is conducting several run-throughs
of the same data, this parameter gives the option to skip reading the data file, thus
speeding up the time it takes to complete one run of STADIA. The possible
choices for this term include:

o SKIP_FILE_READ = 1; this will skip reading the input file and will keep any
previously created variables in the workspace.

o SKIP_FILE_READ =0; will clear all previously created variables, close
figures, and read in the data from the specified input file. This is the required
choice if STADIA is being run on a data file for the first time.
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» FILE_NAME_INPUT: defines the input filename(s) containing the length
history data to be analyzed by STADIA. The length history data can come from
multiple files, as long as the data are organized in a consistent manner for all
files used (i.e., the time column and MT length data column numbers should
be the same for all files). The allowable data file types include those with a .dat,
.txt, or .csv extension. The file names should be listed using quotes (* *) and
brackets ({ }). Here are some examples of indicating the input file names:

o FILE_NAME_INPUT = {‘MyLengthHistory.dat’}; indicates that a single
input file should be used.

o FILE_NAME_INPUT = {‘length_history_1.txt’, ‘length_history_2.txt’,
‘length_history_3.txt’, ‘length_history_4.txt’}; indicates that multiple (four)
input files should be used.

» FIRST_DATA_ROW: indicates the first row of the input file with MT length
history data that will be analyzed. In cases where the input file has column
headers with strings, this can ensure STADIA does not try to read them as MT
data. Common choices for this parameter include 1 (if there is no header) or 2 (if
there is a header).

« MT_LENGTH_COLUMN_INDICES: indicates which column(s) contain the
MT length values. Note that it is possible for multiple columns to hold this data,
provided that for each row of data, MT lengths correspond to the same time value.
For MT lengths contained in a single column, define this parameter using a single
integer value. For MT lengths in multiple columns, define this parameter using an
array of integers. Also note that for instances where multiple data files are being
used, the length column numbers must be the same for all data files. Some
examples include the following:

o MT_LENGTH_COLUMN_INDICES =2; where the second column contains
the MT length data.

o MT_LENGTH_COLUMN_INDICES =[2:5, 8, 11:18]; where columns 2-5,
8, and 11-18 contain the MT length data to be analyzed.

+ TIME_COLUMN: indicates which column in the length history data file contains
the time values for the data. Only a single integer value is allowed. Note that for
instances where multiple data files are being used, the time column number must
be the same for all data files.

« TIME_CONVERSION_ FACTOR: indicates how to convert time values from the
data file into seconds. STADIA assumes the data are in seconds unless this
parameter is changed. If the user is using step numbers instead of time, then they
will need to convert the steps to seconds by inputting the frame rate of the input
data. Examples of potential values of time conversion factors include:

o TIME_CONVERSION_FACTOR = 1; if the time unit in the data are in

seconds.

o TIME_CONVERSION_FACTOR =60; if the time unit in the data are in
minutes.

o TIME_CONVERSION_FACTOR =3600; if the time unit in the data are in
hours.

o TIME_CONVERSION_FACTOR =0.5; if the data acquisition rate was 2
frames per second.
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« INPUT_FILE_DELIMITER: indicates the delimiter used to separate terms in the
input file. This parameter is needed for STADIA to know what to look for in order
to correctly identify each data point when it is reading the data file. Common
choices for a delimiter include spaces, tabs, commas, or semicolons. Files with
type .csv (comma separated values) will by default have a comma as the
delimiter. Here are some examples for defining this term:

o INPUT_FILE_DELIMITER = * *; for files using a space to separate terms.
o INPUT_FILE_DELIMITER = “\t‘; for files using a tab to separate terms.
o INPUT_FILE_DELIMITER = “,*; for files using a comma to separate terms.
o INPUT_FILE_DELIMITER = *;*; for files using a semicolon to separate
terms.
STADIA stages

After initialization, STADIA progresses through the analysis of the input file in mul-
tiple stages. Depending on user-defined parameters chosen before running STADIA,
the program will fully analyze the data, or it will run in diagnostic mode, which pro-
vides suggestions for how to perform the analysis (see the diagnostic mode documen-
tation for more information (GoodsonLab GitHub STADIA Repository, 2019)).

2.3.1 Segmentation

During this stage, STADIA generates a continuous piecewise linear approximation
of MT length history data. The segmentation stage approximates microtubule dynam-
ics by first identifying and connecting major peaks and valleys in the length history
data, and makes improvements by iteratively adding new vertices where significant
changes in behavior occur. Thus, the final approximation accurately captures DI
behaviors that can be characterized with linear rates of change. This stage provides
a macro-level representation of microtubule behavior, rather than the finer level
details observed from subunit-level fluctuations. During segmentation, the linear
approximation is controlled by two user-defined error thresholds: the minimum time
step and the maximum error tolerance:

 MIN_TIME_STEP_INPUT: indicates the minimum amount of time that
STADIA will consider when choosing segment vertices to generate the piecewise
linear approximation. In other words, linear segments cannot have a duration less
than the MIN_TIME_STEP_INPUT.

+ ERROR_TOLERANCE_LEVEL.: this parameter controls the level of error
(in units of dimer lengths) that will be tolerated when approximating a line
segment to a period of MT behavior. Errors are measured pointwise (i.e.,
between measured points provided from the input data and the point on the
corresponding line segment approximation).

Users can make changes to these parameters to find values that they believe are
most appropriate for their data. It is important to find the right balance between
the minimum time step input and the margin of error, so that moments representing
significant changes in MT behavior are identified as vertices in the approximation
without capturing noise (Fig. 4).

.
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Note that trying to use a strict (small) value for the maximum error tolerance with
a large value for the minimum time step can lead to an irreconcilable error scenario,
where the algorithm cannot improve the line segment approximation to the user’s
desired error tolerance level. If errors are not resolved after several attempts to find
an alternative vertex to improve the approximation, STADIA is forced to accept an
approximation “as-is,” and reports to the user where the approximation superseded
the user’s desired level of error.

2.3.2 Classification

The classification stage performs the fundamental task of applying DI phase labels to
segments of MT length history data. At this point, the segmentation stage has pro-
duced individual segments representing periods of sustained behavior in the MT
length history data. Each line segment has three features to define points in 3D:
the time duration (change in the horizontal axis, or the run of the segment), overall
height change (change in the vertical axis, or the rise of the segment), and the slope of
the MT length change, which is calculated from the ratio of the segment height
change to the time interval (i.e., rise over run). The classification stage utilizes these
three segment features to distinguish between behaviors that correspond to different
DI phase classes (see (Mahserejian et al., 2019) for more discussion).

STADIA has two modes that can be used together to achieve optimal classifica-
tion of MT length history data: Automated Mode (Section 2.3.2.3) is used if you
already know how many behaviors you expect to detect, and Diagnostic Mode is
used for situations where the number of behaviors is unclear. The Automated Mode
as well as initial classification steps are discussed in detail below. For more infor-
mation regarding the Diagnostic Mode, please refer to (GoodsonLab GitHub
STADIA Repository, 2019).

2.3.2.1 Initial classifications: Identifying nucleation and flat segments
Before moving forward with classification, it is useful to recall that STADIA results
can be used to compare data sets sourced from computational simulations and lab-
oratory experiments. In the latter case, the limitations of light microscopy can make it
impossible to observe short microtubules; such microtubules are described as being
in a nucleation phase. For this reason, STADIA has a user-defined term to represent
the nucleation threshold, such that MT lengths below this level will be removed from
the classification process. Segments that have both endpoints below the nucleation
threshold level are labeled as being in nucleation, and excluded from the remainder
of the classification stage. Doing so allows STADIA to focus the analysis on periods
of MT dynamics that are comparable across data sets from any source, where the
more interesting DI behavior takes place.

Of the length history data that are observable, there may exist segments that dis-
play ambiguous behavior. In other words, there could exist near-flat segments that do
not resemble either growth or shortening phases typically expected in MT behavior.
Thus, STADIA performs the next step in the classification stage by identifying these
flat segments, where substantial growth and shortening do not take place, according
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to two user-defined thresholds: a slope threshold to indicate segments that are too
flat, and a height threshold to find segments that do not change appreciably in length.
A “flat stutter” phase label is applied to these segments, and they are set aside until
later parts of the classification stage.

The following are the user-defined terms involved with the initial part of the clas-
sification stage:

 NUC_HEIGHT_THRESHOLD_INPUT: defines the nucleation level. Any
segments below this threshold will not be included as part of the DI phase and
transition analysis. This positive value has a unit of subunit-lengths (i.e.,
dimer-lengths, 80A or 8nm units).

 FLATSTUT_MAX_SEGMENTSLOPE_THRESHOLD_INPUT: defines the
maximum magnitude of segment slopes to be considered in the flat stutter phase
class. The continuous positive values have a unit of subunit lengths per second.

* FLATSTUT_MAX_SEGMENTHEIGHT_THRESHOLD_INPUT: defines the
maximum magnitude of segment height change to be considered in the flat stutter
phase class. This continuous positive value has a unit of subunit lengths.

2.3.2.2 Classification using k-means clustering

The next task is to find how the remaining segments from the length history approx-
imation are separated into different DI phase classes. The goal here is to conduct
clustering in the 3D space where data points representing individual segments from
the piecewise linear approximation reside. At the heart of the classification stage lies
the k-means clustering algorithm, an unsupervised machine learning approach that
separates a given data set into k-many clusters. The boundaries of these clusters
are defined by a Voronoi diagram (Lloyd, 1982; Macqueen, 1967). The algorithm
begins by randomly sampling k initial data points to represent the centroid, or mean,
of a cluster defined by the nearest data points. Iteratively, the centroid location is
recalculated, and the cluster is redefined until the clustering results cease to change
appreciably. Since the final centroid locations are sensitive to the random selection at
the first iteration (i.e., k-means clustering is not guaranteed to converge to a global
optimum), this process is repeated 500 times, and the result with centroid locations
that produce the best inter-cluster separation is selected to be used for the final
clustering.

The k-means clustering algorithm is a distance-based method that assumes that
clusters to be identified follow a Gaussian distribution. However, the raw segment
dataset has an inconsistent distribution in each of its three dimensions, with the time
duration values varying over a particularly large range. To aid the analysis, STADIA
uses a pre-processing step to scale and standardize the data. More specifically, each
point in 3D first has a natural logarithm applied to its three components. Then, each
of the data points is standardized with respect to the mean and standard deviation of
the data set. This scaled and standardized dataset is then passed into the clustering
procedure.

More precisely, the pre-processing step applies the following transformation:
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log (Xoa) — log (Yoia) — log(Zoia) —
[Xnew, Y news Znew] = o8 ( ldz) ﬂX > o8 ( ldz) ﬂY ’ o8 ( le) ’uz
S X S Y SZ

where,

o [Xows Yoia»Zoial= the raw data provided from the linear segment features
identified in the segmentation stage (time duration, height change, and slope for
X, Y, and Z, respectively)

» u;= mean of the i-th dimension for the collective data passed into clustering

« 8,2 = standard deviation of the i-th dimension for the collective data passed into
clustering

o [Xuews Ynews Znew]= the scaled and standardized version of the segment data now
centered around the origin in 3D space

The clustering procedures then use the scaled and standardized points to identify how
the data should be separated. Once labels are determined for each point, the cluster
labels are applied to data points in the original space so that the phase and transition
analysis is conducted on observed segment features.

The intention of developing STADIA was to take an automated approach that did
not make assumptions on how the data should be separated. However, the k-means
algorithm requires prior knowledge of the appropriate number of clusters to conduct
the method. To this end, we rely on the gap statistic to aid in selecting the optimal
k-value (Tibshirani, Walther, & Hastie, 2001). In cases where the k-value is not yet
determined, users can run STADIA in the diagnostic mode, where a gap statistic plot
is generated to help compare clustering results using different k-values. Once the user
determines the appropriate k-values to cluster positive and negative slopes, k-values
can be entered into the Input_and_Run.m file, and STADIA can then operate in
automated mode to complete the classification stage.

Below, we assume that users have already chosen a k-value. Users may use
k =3 for both positive and negative slope segments, as was found to be appropriate
for both our simulation data and some related experiments (Mahserejian et al.,
2019). Alternatively, the user may run STADIA in diagnostic mode to determine
the best k-values for their data. Information on running STADIA in diagnostic
mode can be found at (GoodsonLab GitHub STADIA Repository, 2019).

2.3.2.3 Running STADIA in automated mode

Once the user has determined the optimal number of clusters to classify the positive
and negative slope segments (e.g., by using external information or by running
STADIA in Diagnostic Mode), STADIA analysis can move forward using the auto-
mated mode. For practical purposes, the user’s choices for k-value are restricted to
the positive integers 1, 2, or 3. With the selected k-values, the classification stage
progresses by conducting 500 iterations of k-means clustering (repeats are done to
increase the chances of encountering the best clustering result). The next step is
to apply relevant labels to the clusters that are identified.
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Selecting k =1 or k =3 for k-means clustering yields scenarios that are straight-
forward for STADIA to automate phase class labeling. For illustration purposes, con-
sider just the positive sloped segments. If £k =1 is selected, then there is only a single
cluster for the positive-sloped segment subset, effectively casting all of those seg-
ments into a single growth phase. If k =3 is selected, all of the observed variations
of cluster labels will be needed to describe these segments: the cluster corresponding
to the centroid that has the lowest slope component is labeled as the up stutter cluster,
and the other two clusters are labeled as brief and sustained growth depending on the
time component of their cluster centroids.

However, if k =2 is selected, further information is needed to determine how to
label the clusters. Having two stutter phases is unlikely, leaving two possible op-
tions: one up stutter phase and one growth phase, or two growth phases. A similar
situation exists for the negative slope segments, but with down stutters corresponding
to the cluster with the highest (lowest absolute value) slope component and with brief
and sustained shortening for clusters with the lower (higher absolute value) slope
components, in the kK =3 case. If k =2 is selected for either the positive or negative
sloped segments, users must also select an additional option for applying phase
labels.

The following user-defined terms control the automated mode of STADIA’s
classification stage:

« KMEANS_NumClust_PosSlope: the k-value used to conduct k-means
clustering on the positive sloped segments. Choices are limited to the integer
choices 1, 2, or 3.

«  KMEANS_NumClust_NegSlope: the k-value used to conduct k-means clustering
on the negative sloped segments. Choices are limited to the integer choices 1, 2,
or 3.

+ KMEANS_Pos2_Option: option for phase labeling if the user sets
KMEANS_NumClust_PosSlope =2. The two possible choices for cluster labels
are the following:

o KMEANS_Pos2_Option = ‘A’; brief growth and sustained growth.
o KMEANS_Pos2_Option = ‘B’; up-stutter and growth.

+ KMEANS_Neg2_Option: option for phase labeling if the user sets
KMEANS_NumClust_NegSlope = 2. The two possible choices for cluster labels
are the following:

o KMEANS_Neg?2 Option = ‘A’; brief shortening and sustained shortening.
o KMEANS_Neg2_Option = ‘B’; down-stutter and shortening.

Before finishing the classification step, the flat stutter segments identified in the

earlier parts of the classification are assembled together with the results of the clus-

tering algorithm. Following the statistical similarities between the clusters, they are
bundled into three phase classes: growth, stutter, and shortening (Mahserejian et al.,

2019). Doing so concludes the classification stage, and the phase segments and their

chronological order can now be analyzed.
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2.3.3 Phase and transition analysis

In the final stage, STADIA uses the segment phase classes to quantify characteristics
of each phase and how phases transition into one another. More specifically, the
values of interest include the rates of change for each phase, and frequencies of
different types of phase transitions.

The rates of MT length changes are obtained simply from the average slope
values for each corresponding phase, which are easily transferable from the fea-
tures created during the segmentation stage, after applying the labels from the
classification stage. The growth and shortening rates are typically close to those
determined by classical methods of characterizing MT DI, whereas the rates of
length change during stutter rates are typically much closer to zero. It is important
to note that segments are now binned into more appropriate phase classes, and so
the rate calculations for each phase are more precise (e.g., after the STADIA clas-
sification stage, flatter stutter segments are identified and excluded when calculat-
ing the average growth rate).

To obtain the frequencies of phase transitions, one must consider the chronolog-
ical order of how growth, stutter, and shortening phase segments are observed. Note
that segments within nucleation thresholds are not considered when calculating
phase transitions. Consistent with classical DI analysis, we are interested in phase
transitions that begin and end only with either growth or shortening phases. Thus
we omit the permutations of phase orderings that start or terminate in a stutter phase.
The first two phase transitions are familiar from standard DI analysis: catastrophe,
where a MT that begins in growth transitions into shortening; and rescue, where a
MT that begins in shortening transitions into growth. However, now that stutter
phase segments are identifiable, we broaden these two classical transitions to include
different variations, abrupt and transitional, depending on whether or not the phase
switch involves a stutter. Additionally, a new type of phase transition should also be
considered, where a stutter phase interrupts an on-going growth or shortening phase.
The complete list of phase transitions and the corresponding order of phases consid-
ered in STADIA are as follows:

» Abrupt catastrophe: growth to shortening

» Transitional catastrophe: growth to stutter to shortening

» Abrupt rescue: shortening to growth

» Transitional rescue: shortening to stutter to growth

» Interrupted growth: growth to stutter to growth
 Interrupted shortening: shortening to stutter to shortening

For each of these types of phase transitions, frequencies are calculated by counting
the number of occurrences, and dividing by the total time spent in the initial phase.
For example, the formula for the frequency of transitional catastrophes is as follows:

# of transitional catastrophe events

TransCat total time spent in growth phase
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Note that the classically recognized DI phase transitions are analogous to the
abrupt catastrophe and abrupt rescue transitions considered here. However, past tran-
sition quantification methods would typically have lumped the transitional catastro-
phe and transitional rescue events in with the catastrophe and rescue measurements.
In order to make direct comparisons of past results to those produced by STADIA, a
user can simply take the sum of the frequencies of the abrupt and transitional vari-
ants. For instance, the following formula can be used to compare frequency of
catastrophe from past approaches to frequencies produced from STADIA results:

Feu= FAhruptCat + Frranscar

STADIA does not automatically compute these types of frequencies, and so the
simple additional step is left to the user for the cases where users are interested in
determining the overall F,,.

Rates of MT length change, along with other phase segment attributes (e.g., total
number of segments per phase), and the six types of phase transition frequencies are
all automatically computed for the phase classes identified during the classification
stage. There are no user-defined parameters associated with this stage.

Visualizing STADIA results

The final options that remain for users to control are associated with visualizing the
results from each stage. Simply put, the user decides which figures should be cre-
ated, and of these, which should be saved automatically to file. It is important to
note that any figures selected to be saved will automatically close after being writ-
ten to the appropriate file. Otherwise, the MATLAB figure window will remain
open for the user to investigate as desired. Detailed descriptions of figures and
how to generate them can be found in Sections 3 and 4.

STADIA outputs

Once all stages of analysis have been completed, the resulting output for STADIA is
produced in two formats: text files organizing the results, and figures illustrating the
results. Both text files and figures are generated when using STADIA in both diag-
nostic and automated modes, but they consist of different content placed in different
output directories. This section covers the different files and content that are gener-
ated, and where to find them once STADIA procedures are completed. Note that
multiple formats of figures are saved: .fig files allow users to open the original fig-
ures in MATLAB in the event that additional exploration or plot manipulation is
desired, while .png files allow quick access to figures that are compatible with other
word processing and presentation software without requiring MATLAB.
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All outputs discussed here are relevant only for the Automated Mode. For
information regarding Diagnostic Mode outputs, users should refer to the diagnostic
mode documentation that can be found at (GoodsonLab GitHub STADIA
Repository, 2019), where users can find guidance on how to select appropriate
k-values for their data.

STADIA output from automated mode

The output files generated from the automated mode are produced using the user-
defined k-values in the clustering procedures. Since the results will be sensitive to
STADIA’s user-defined parameters, a dedicated directory is created to store the out-
put files using the following naming convention:

“STADIA_Output_for_" + FILE_NAME_INPUT + DATETIMESTAMP

where FILE_ NAME_INPUT is the filename associated with the input file for the
length history data that STADIA analyzed, and DATETIMESTAMP is the date and
time stamp associated with the time that STADIA is executed to prevent overwriting
results from different runs on the same input file. Note that if multiple input files are
provided, only the first one is used to create the directory name.

Recall that the automated mode runs through all the stages of STADIA, which
involve different types of analysis within each stage that produce different types
of results. These results are organized as a combination of figures and text files in
the output directory using the following filenames that correspond to each stage.
The outputs listed under “General STADIA Relevant Values,” “Segmentation
Results,” “Classification Results,” and “Phase and Transition Analysis Results”
are useful for more in depth analysis, but most users will be primarily interested
in the summary figures generated from these outputs, listed below as Figs. 1-7.

* General STADIA relevant values:

o DI_parameters_output.txt: a text file listing user-defined STADIA parameters,
and the resulting DI parameters output from the phase and transition analysis
stage, which include the statistics for the slopes/rates corresponding to DI
phase classes, and frequency of all types of phase transitions.

» Segmentation and classification results:

o DIsegmentPhaseData.txt: a tab delimited text file indicating the following
information for each segment identified during the segmentation stage: starting
time, starting MT length, time duration, height change, and slope.
Additionally, the DI phase class labels from the classification stage are also
included in this file (Phase Label key: —12=Long Shortening, —11 =Brief
Shortening, —1 =Down Stutter, 0 =Flat Stutter, 1 =Up Stutter, 11 =Brief
Growth, 12 = Long Growth).

¢ Phase and transition analysis results:

o Abrupt_Catastrophe_output.txt: text file with information regarding the time
at which each abrupt catastrophe takes place as well as the length of the MT at
the time of each catastrophe.
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o Abrupt_Rescue_output.txt: text file with information regarding the time at
which each abrupt rescue takes place as well as the length of the MT at the time
of each rescue.

o Transitional_Catastrophe_output.txt: text file with information regarding the
start and end times of the stutter phase within each transitional catastrophe as
well as the length of the MT at the start and end of each stutter phase.

o Transitional_Rescue_output.txt: text file with information regarding the start
and end times of the stutter phase within each transitional rescue as well as
the length of the MT at the start and end of each stutter phase.

o Interrupted_Growth_output.txt: text file with information regarding the
start and end times of the stutter phase within each interrupted growth as
well as the length of the MT at the start and end of each stutter phase.

o Interrupted_Shortening_output.txt: text file with information regarding the
start and end times of the stutter phase within each interrupted shortening
as well as the length of the MT at the start and end of each stutter phase.

Figures are generated to visualize the results from running STADIA in the fully au-
tomated mode. The following seven figures have full descriptions that can be found
in Section 4:

(1) Microtubule length history approximation:

FILE_NAME_INPUT + “_PWLinearFit_Tol”+ ERROR_TOLERANCE_LEVEL +
fig (.png). An example output filename would be "filename_PWLinearFit_Tol20.
fig."

(2) k-Means clustering results:

FILE_NAME_INPUT + “_PosNegSlopClusterResults” +.fig (.png)
(3) DI segment phase classification:

FILE_NAME_INPUT + “_DIPhaseClassification” +.fig (.png)

(4) DI phase classes based on MT length history:
FILE_NAME_INPUT + “_DIPhasesOnLengthHistory” +.fig (.png)
(5) Segment statistics for each DI phase:

FILE_NAME_INPUT + “_AvgDIMeasurements” +.fig (.png)

(6) Total measurements for DI phase segments:
FILE_NAME_INPUT + “_TotDIMeasurements” + .fig (.png)

(7) Resulting measurements for changes in DI phase:

FILE_NAME_INPUT + “_DIPhaseChangeResults” +.fig (.png).
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FIG. 1

STADIA output of MT length history data. (A) Length history plot as traditionally viewed for DI analysis, where STADIA’s piecewise linear approximation (blue) of
the length history is plotted on top of the actual data (red). STADIA identifies points of rescue and nucleation (major valleys, green boxes) and points of
catastrophe (major peaks, orange diamonds). This length-history plot corresponds to a time period between 22,000 and 28,000s of a 10 h simulation. Note that
each line segment in this panel corresponds to a point in the clustering analysis shown in Fig. 2. (B) Close-up of a peak of simulation data (indicated by the
black arrow in panel (A)) showing ambiguous MT behavior leading up to a catastrophe. (C) Linear approximation of peak close-up using classical two-

state analysis, where the black lines indicate the growth and shortening phases identified as part of traditional DI analysis, with an ambiguous area between.
(D) STADIA linear approximation of peak behavior (blue; same line segments as in (A)), which is able to capture the ambiguous behavior. Note that a

more stringent error threshold would allow a closer linear approximation of the ambiguous behavior, but can also capture noise. We have found that an error
threshold of 20 subunits as used here (this corresponds to 160nm) is a reasonable choice for our simulations and experiments.
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FIG. 2

STADIA classifies each line segment from the piecewise linear approximation into clusters using the iterative, k-means clustering algorithm based
on the segment features (height, time duration, and slope). Positive slopes (left) and negative slopes (right) are clustered separately. Line
segments are represented as individual data points and the centroid of each group is represented by an X. The third dimension, slope, is also
present in the .fig version of this output and users may rotate these plots in order to better visualize these clusters in 3-D space. Finally, note that
the line segment data have been log-transformed and standardized in these plots to better suit the k-means clustering algorithm.
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STADIA classification of all line segment clusters in one three-dimensional plot, including near zero slope segments. Each data point is labeled
with the color corresponding to the cluster to which it belongs. Note that in contrast to Fig. 2, data in this figure is no longer log transformed
and standardized (i.e., after classification with k-means is complete, line segment data points are converted back to raw data in all three
dimensions while still retaining the cluster label assigned to them during k-means clustering).
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FIG. 4
Length history data labeled according to the STADIA phase output. (A) STADIA-annotated version of the length-history plot from Fig. 1.

(B) Annotated peak from Fig. 1D, indicating that a stutter (purple) occurs in between a growth phase (green) and a depolymerization phase (red)
(i.e., this is a transitional catastrophe).
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STADIA table listing values and statistics of DI phase behavior with corresponding box and whisker plots to visualize the data for each cluster.
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FIG. 6

STADIA output of statistics of the number and behavior of each DI phase. Different DI phase behaviors are quantified based on their prevalence
(Number of segments and percent time spent in each phase) and the percent of total height change attributed to each phase. Statistics
regarding the average slope values of each phase are provided as well.
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FIG. 7

STADIA output of statistics of the prevalence of specific types of DI transitions. DI transitions with (transitional) and without (abrupt) stutters are
quantified and compared in the pie charts “Abrupt vs. Transitional Catastrophes” and “Abrupt vs. Transitional Rescues.” “DI Changes with
Stutters” provides information about how often the different transitions involving stutters occur. “Pairwise Combinations of DI Changes” visualizes
an analysis of the chronological ordering of consecutive DI transitions to provide information about the pattern of MT behavior on longer
timescales. Finally, frequencies of all transitions considered in this analysis are reported in the table at the bottom left of this figure.
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User-defined inputs for automated mode outputs

In order to activate plots, the command, PLOT_FIG_#, for whichever plot(s) the user
desires to view, must be set equal to 1. If the user does not want to see a specific plot,
they can set the parameter equal to 0. Note: The default mode of the program is set
equal to 1, so STADIA will generate all plots unless the user commands otherwise. In
order to save the plots that will be created, users should set the SAVE_FIG_# param-
eter equal to 1. STADIA will automatically delete the graphs once they are closed, so
to save the files this parameter should be set to 1.

STADIA users can adjust the viewing windows for Figs. 1 and 4. The parameters:

FIG_WINDOW_START =#; and
FIG_WINDOW_END =#;

control the time ranges plotted in these figures. The MT height window is automat-
ically set to the maximum, so there is no need for a parameter to change the y-axis.

Users will also be able to save the date and time in the name of each output file by
setting the parameter:

INCLUDE_DATE _TIME=1;

which is useful when running STADIA on the same data multiple times as a way to
differentiate between each run. The default mode for this parameter is 0, where the
date and time is not saved in each filename.

The variables in the MATLAB workspace can also be saved as a .mat file by
setting the parameter:

SAVE_MATLAB_WORKSPACE =1;

The default mode for this parameter is also 0, so users need to manually change this
parameter to save the workspace variables.

Additionally, since Fig. 3 displays a 3-D scatter plot that has features that are
typically difficult to display to audiences, an option to save an animated spinning
version is offered by assigning a 1 value to SAVE_FIG_3_movie, which will gen-
erate an animated GIF in a .gif file format.

For examples of all possible figures generated by STADIA using an analysis of
simulated MTs, readers are encouraged to refer to Section 4.

Data analysis

In order to illustrate the process of performing an analysis of MT DI with STADIA,
we first ran a simulation using our detailed model of MT DI (Margolin et al. 2012).
The simulation parameters were identical to those used in (Mahserejian et al.,
2019), except that the simulation was initiated from a different random number
seed. One output file from the simulation contains the MT length values at each
time interval throughout the duration of the simulation. This file can be obtained
from GitHub along with the STADIA software if users would like to replicate the
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process shown below. The file was copied into the same directory as the remaining
STADIA files, and the filename was copied into the FILE_NAME_INPUT field.
After STADIA finished running in automated mode with £ =3 for both positive
and negative slopes, the following seven plots were generated:

Microtubule length history (Fig. 1)

This plot illustrates the MT length history by mapping the actual lengths in red and
the linear approximations in blue. With this input file, the plot reflects the behavior of
one MT over 10h, but in cases where there are multiple input files, the plot will
“stitch” together the length history of multiple MTs onto a single plot, representing
the behavior as one long MT. Major peaks and valleys are also plotted to help the user
more clearly identify events of dynamic behavior. The linear approximations of the
MT length should look similar to the actual length. When examined in closer detail,
subtle differences between the approximation and the actual data should be visible.
Examination of these differences is important when choosing values for the MIN_-
TIME_STEP_INPUT and ERROR_TOLERANCE_LEVEL parameters because
these determine the level of accuracy in the approximation.

k-means classification (Fig. 2)

As discussed above, STADIA uses k-means clustering to classify the MT length
history line segments from the segmentation stage (Fig. 1) into groups that share
similar characteristics. Before clustering, the length segments identified during the
segmentation phase are log-transformed and standardized, then plotted in 3-D
space, with the dimensions corresponding to height change, slope, and time (each
point corresponds to a single line segment). In the graphs created during this step,
colors indicate the different clusters, and a set of black X’s indicate the location of
the mean of each cluster.

DI segment phase classification (Fig. 3)

This figure shows the results of line segment classification, mapped in 3-D space;
note that data points in this plot have been converted back to raw data in all three
dimensions (i.e., all features have been un-standardized and un-log-transformed).
The user can rotate the graph to view it as desired.

MT length history plot labeled with colors corresponding to DI
phases (Fig. 4)
In this figure, the length history is color-coded according to the assigned DI phase.
Growth phases are variants of green, depolymerization phases are variants of red, and
stutters are intermediate colors.
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Segment statistics for each DI phase (Fig. 5)

This figure presents a summary of the statistics for each detected behavior phase,
including the mean and standard deviation of the length change, time duration,
and slope of each cluster. At the top of the figure is a table listing these values;
box and whisker plots in the lower half of the figure illustrate how these data are
distributed for each phase class.

Total measurements for DI phase segments (Fig. 6)

This figure compares the characteristics of the individual clusters, comparing the rel-
ative time, height changes, and number of individual segments for each phase. This
figure also represents the average of the slope of each cluster as an arithmetic mean,
median, and weighted average.

Resulting measurements for changes in DI phase (Fig. 7)

The last figure that STADIA produces in automated mode quantifies the transitions
between phases. In addition to the classically recognized rescue and catastrophe tran-
sitions, STADIA has the capability of detecting newly identified DI phases called
stutters, where a MT has little length change over a significant period of time. This
figure presents the prevalence of stutters in various types of transitions by classifying
DI transitions as abrupt (i.e., no stutter) catastrophes/rescues, transitional (i.e., occur-
ring with a stutter) catastrophes/rescues, or interrupted growth/shortening (e.g.,
growth to stutter to growth, or short to stutter to short). Frequencies are calculated
and reported for each type of transition.

Future developments

We will continue to develop STADIA and the associated tutorials (both found on
GitHub, see (GoodsonLab GitHub STADIA Repository, 2019)) in response to user
input and our own ideas for improvements. In addition, because STADIA is recently
developed software, it is likely that bugs exist. Please submit comments about sug-
gested improvements and/or bugs by creating an issue on the Github repository
(GoodsonLab GitHub STADIA Repository, 2019).

Conclusion

The dynamic behavior of microtubules has been a focus of research in cell biology
for three decades. This behavior has generally been described as consisting of
growth and depolymerization phases, with instantaneous transitions (catastrophe
and rescue) separating them. However, with the advent of technical improvements
in acquiring DI data, it has become apparent that this traditional approach to
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quantifying DI is not sufficient because ambiguous behaviors exist that do not fit
neatly into this framework. This manuscript provides detailed instructions on how
to use a new software tool called STADIA (Statistical Tool for Automated Dy-
namic Instability Analysis) to quantify microtubule DI in a more objective, precise,
and reproducible way. STADIA does not employ arbitrary criteria or subjective
input from the user, but rather engages machine learning and statistical methods
to read and analyze MT length history data gathered in vitro or in silico. As long
as researchers are careful to run the program correctly and are mindful of the pos-
sible discrepancies that can occur, STADIA can generate more detailed, objective,
and precise quantitative analysis of MT dynamic instability behavior than is pos-
sible using classical approaches.
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