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Abstract
Classifying multivariate time series (MTS), which
record the values of multiple variables over a con-
tinuous period of time, has gained a lot of attention.
However, existing techniques suffer from two ma-
jor issues. First, the long-range dependencies of the
time-series sequences are not well captured. Sec-
ond, the interactions of multiple variables are gen-
erally not represented in features. To address these
aforementioned issues, we propose a novel Cross
Attention Stabilized Fully Convolutional Neural
Network (CA-SFCN) to classify MTS data. First,
we introduce a temporal attention mechanism to ex-
tract long- and short-term memories across all time
steps. Second, variable attention is designed to se-
lect relevant variables at each time step. CA-SFCN
is compared with 16 approaches using 14 different
MTS datasets. The extensive experimental results
show that the CA-SFCN outperforms state-of-the-
art classification methods, and the cross attention
mechanism achieves better performance than other
attention mechanisms.

1 Introduction
Classifying multivariate time series (MTS), which record the
values of multiple variables over a continuous period of time,
has recently gained a lot of attention [Yang et al., 2015;
Karim et al., 2018; Karim et al., 2019]. In analyzing time se-
ries data, it is important to utilize the dependencies of values
in the series. A value that happened at a time step t may de-
pend on its immediate historical values or the historical values
that happened far before t. Such dependencies are denoted as
short-term and long-term dependencies respectively.

For MTS data, which contains multiple variables, the anal-
ysis needs to further consider the relationships among these
variables. Let us use an example to illustrate the need. Given
two words in the Australian sign language: “suffer”i and
“arithmetic”ii. If we consider either the left hand or the right
hand or both hands (without synchronizing two hands) to-
gether using Dynamic Warping distance (which captures the

ihttp://www.auslan.org.au/dictionary/words/suffer-1.html
iihttp://www.auslan.org.au/dictionary/words/arithmetic-1.html

shape similarity), the hand movement for these two words is
similar. However, if we consider the two hands together and
their movement dependency, the hand movement for these
words is different: “arithmetic” is represented by moving
both hands towards the same direction (upward or down-
ward), while the word “suffer” is expressed by moving the
two hands in opposite directions (one moves upward and the
other moves downward). The two words can be differentiated
when we consider the two hands’ interaction.

Most recent models of classifying MTS data are Convo-
lutional Neural Networks (CNN) or Recurrent Neural Net-
works (RNN) based. These models have two major limi-
tations. First, these models can not effectively capture and
utilize long-term dependencies. Second, the interactions of
multiple variables are not well studied.

CNN-based models generate features by combining local
neighborhood information. The long-term dependencies can-
not be captured in shallow CNN networks. RNN-based mod-
els calculate the features at a time step by using the hidden
states at the previous time step. The long-term memories can
be captured by late CNN layers in deep CNN models or RNN-
based methods. However, experiments show that both CNN
and RNN based approaches still have problems with captur-
ing dependencies to very long historical data. Furthermore, it
is computationally very inefficient to train such deep neural
networks [Zhang et al., 2019].

Traditional feature extraction methods, such as principal
component analysis [Yoon et al., 2005], Random forest [Ho,
1995], support vector machine [Boser et al., 1992], treat the
time series data as order-free vectors. Experiments show that
simply applying those techniques on MTS misses informa-
tion [Hao et al., 2019].

Another everlasting challenge in the design of neural net-
works (in particular deep network) models is their efficient
training. More recently, CNN-based models gain more inter-
est than RNN-based models. RNN-based models generally
require sequential loops in its training because, to calculate
the hidden state at each time step t, the model first needs to
calculate the hidden state before t. Such sequential loops can-
not be easily parallelized to improve the training efficiency.
However, CNN-based models can be better trained in parallel
and accelerated using GPU.

To address these aforementioned two limitations and the
computational challenges on MTS classification, we propose
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a novel Cross-Attention (CA) based Stabilized Fully Convo-
lutional Network (CA-SFCN) to better classify MTS data.
The design of the new cross attention is inspired by the at-
tention mechanism, which was introduced in [Bahdanau et
al., 2015] to encode dependencies between two sequences in
Natural Language Processing (NLP). CA consists of tempo-
ral attention (TA) and variable Attention (VA) to capture the
long- and short-term memories in time series, and the interac-
tion of multiple variables. Our newly designed CA is very dif-
ferent from other attention mechanisms, which is explained in
the next section.

Multivariate time series (MTS) data records values
for multiple variables. One MTS instance is denoted as
(v1, v2, · · · , vV ), where vi = (v1i , v

2
i , · · · , vmi ) is one time

series for the i-th variable, V is the number of variables and
m is the time series length. Each MTS instance has one cor-
responding label. Later on, we will use superscript t to rep-
resent a time step. Our research problem is to accurately
predict the correct class label of an MTS.

The paper is organized as follows. Section 2 discusses the
literature. Section 3 explains our proposed approaches. Sec-
tion 4 presents our experiments and shows the effectiveness
and efficiency of our proposed approaches. Finally, Section 5
concludes our work.

2 Related Works
Time series classification has been extensively studied in
the literature. Most of these methods (e.g., [Baydogan and
Runger, 2015; Schäfer and Leser, 2017; Pei et al., 2018;
Tuncel and Baydogan, 2018]) extract features from the time
series and utilize these features to classify the instances.

Recently, neural network-based approaches have achieved
great success in MTS classification. In particular, CNN mod-
els can be used to capture short-term dependencies because
convolutional operators in CNN process the information in a
neighborhood (e.g., continuous sub-sequences in a time se-
ries). Deep CNN models can also capture long-term depen-
dencies, but not effectively [Zhang et al., 2019]. RNN models
can represent the temporal dependencies in time series [Pas-
canu et al., 2014]. We have seen successful stories of using
such models to classify time series data [Yang et al., 2015;
Karim et al., 2018].

More recent works use attention mechanisms because the
attention idea represents the human intuition that some por-
tion of data is given more emphasis when we look at a
large dataset. Long Short-Term Memory Fully Convolu-
tional Networks (LSTM-FCN) and Attention LSTM-FCN
(ALSTM-FCN) [Karim et al., 2018] have shown to be suc-
cessful to classify uni-variate time series. They are recently
adapted to classify MTS, denoted as Multivariate LSTM-
FCN (MLSTM-FCN) and Multivariate Attention LSTM-
FCN (MALSTM-FCN) [Karim et al., 2019]. These two mod-
els can learn combined features by applying convolution op-
erations on all variables [Karim et al., 2019]. However, the
combined features do not consider the pair-wise dependen-
cies between two variables. When the variable number is
large, it is hard to emphasize the interactions of a small group
of variables. Also, these models cannot efficiently and effec-

tively capture the long-term dependencies.
A recent Global Attention (GA) strategy is presented in

[Zhang et al., 2019] to extract the long-range dependencies
from convolutional features of images. GA calculation ig-
nores the order of the convolutional features in both image
axes. The temporal dependencies can be captured by apply-
ing attention mechanisms on the hidden states of an RNN-
based model [Qin et al., 2017], which predicts the future val-
ues based on the historical values of a series. We call this
mechanism Recurrent Attention (RA) in this paper. All the
existing attention mechanisms can not be to directly applied
to MTS data for their classification.

3 Our Approach: New Cross Attention (CA)
Enabled Stabilized Fully Convolutional
Networks (SFCN)

In this section, we introduce a new attention mechanism,
cross attention (CA), and present a CA-based Stabilized
Fully Convolutional Networks (CA-SFCN) to efficiently
model historical (including long-term) dependencies and the
complex interactions of the multiple variables.

Figure 1 shows the architecture of the newly proposed CA-
SFCN. This architecture consists of (i) a component of sev-
eral fully connected convolutional layers, (ii) a newly de-
signed cross attention (CA) block, and (iii) a global pool-
ing layer. The use of the fully connected convolutional lay-
ers are inspired by the design of Fully Convolutional Net-
works (FCN). FCN is first introduced in [Long et al., 2015]
for effective semantic segmentation of images. It is further
used as a feature extractor in MTS classification [Wang et al.,
2017]. Different from traditional Convolutional Neural Net-
works (CNNs), FCN uses a global pooling layer to replace
the fully connected layers before the output. FCN does not in-
clude a pooling layer after each convolutional layer. FCN has
shown superior performance on MTS classification [Wang et
al., 2017]. To implement the fully convolutional networks,
we use 2D convolutional filters. This is different from other
FCN approaches (e.g.,[Karim et al., 2019]), which use 1D
convolutional filters. Using 1D convolutional filters combine
all the variables at the first convolutional layer. The pair-wise
dependencies among different variables can not be captured
anymore since all variables are combined into one feature
space.

The CA block includes two major modules to implement
our cross attention mechanism, temporal attention (TA) mod-
ule and variable attention (VA) module. The CA block first
runs the TA module. TA module uses the output of the
last convolutional layer X to calculate the features OTA that
leverage temporal attention. Then,OTA is combined with the
X again to get hidden states Y (Eq. (1)).

Y = γ ·OTA +X, where γ is a scalar value (1)
The VA module uses Y as input to calculate the features that
accommodate the variable attention OV A. OV A is then com-
bined with Y and get hidden states Z using Eq. (2).

Z = ζ ·OV A +Y, where ζ is a scalar value (2)
The final features in Z combining both theOTA andOV A are
called cross attention features.
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⊕ denotes matrix addition
Figure 1: The architecture of CA-SFCN (Cross-Attention based Stabilized Fully Convolutional Networks)

Section 3.1 explains the detailed design of the new CA
mechanism. Section 3.2 introduces the techniques to make
the FCN more stabilized, which leads to the term Stabilized
FCN (SFCN).

3.1 Cross Attention Mechanism
Cross Attention (CA) contains two attention modules: a tem-
poral attention module that generates temporal attention (TA)
and a variable attention module to generate variable attention
(VA). TA captures the dependencies of the historical values in
each time series. VA represents the variable attention module,
which evaluates the dependencies of different variables.

Temporal Attention (TA) Calculation for the Time Series
of One Variable
The goal of the TA module is to calculate TA for each vari-
able. The TA of one variable captures the critical historical
long-term and short-term dependencies for all the values in
this variable’s corresponding time series.

For one variable, let us use X =
(x11, x

2
1, . . . , x

L
1 ) · · · (x1C , x2C , . . . , xLC) to represent its

feature sequences in the input layer or a convolutional layer
in Figure 1. Here, L is the number of features for L time
steps and C is the number of channels. For a special case
that X is the data of the input layer, then L = m and C = 1.

Fig. 2 shows the structure of the TA module. It demon-
strates how to use the matrix X ∈ RL×C to calculate the TA
matrix α ∈ RL×L and the output of the TA module OTA.

As the first step, X is first transformed to three feature
spaces (Q, K, and V ) using Eq. (3).

Q(X) = X ·WQ, K(X) = X ·WK , V (X) = X ·WV (3)

where WQ,WK ∈ RC×Ca and WV ∈ RC×Cv . The chan-
nel numbers for Q(X) and K(X), Ca, need to be the same.
The number of channels for V (X), Cv , can be different from
Ca. Here, Q(X) ∈ RL×Ca is generally called the query
space, K(X) ∈ RL×Ca is denoted as the key space, and
V (X) ∈ RL×Cv is called the value space. The three feature
spaces are named following the convention of [Vaswani et al.,
2017] where the attention captures the mapping relationships
between a possible query and the key-value pairs in the data.
The transformation of X to each feature space is equivalent
to and can be implemented as applying a 1× 1 convolutional
operation to X .

In the second step, the temporal attention for one variable,
denoted as α in Figure 2, is calculated using the features in
the query space and key space by two operations shown in
Eq. (4) and Eq. (5).

S = Q(X) ·K(X)T (4)
Let Sq,k be a hidden state in the matrix S(∈ RL×L). The

Sq,k value captures the attention that the historical memory at
time step k gives to the feature at time step q. Thus, Sq,k is
valid only when k ≤ q. To accommodate this, S is updated to
S′ by setting Si,j to be zero when i < j. I.e., the right upper
corner of the S matrix is set to zero. S directly captures the
attention of both long-term and short-term historical values.
For example, consider a sequence of length L = 100 and
its last feature, SL,L−99 is the attention that its last feature
gets from the first time step, which can be treated as long-
term dependency, while SL,L−1 captures the attention that
L’s immediate previous step gives to the last feature, which
is an example of short-term dependency.

The softmax function is applied to S′ to normalize the at-
tention as shown in Eq. (5).

αq,k =
exp(Sq,k)∑q
j=1 exp(Sq,j)

(1 ≤ k ≤ q ≤ L) (5)

In the third step, the normalized attention α is applied to
the features in the value space V (X) to calculate the output
of the attention, OTA. This step first gets the attention hidden
states Va = α·V (X), then calculates the output using Eq. (6).

OTA = Va ·Wo where Wo ∈ RCv×C (6)

The OTA calculation can be implemented as applying a 1×1
convolutional operation to Va.

The TA calculation is more efficient than typical RNN
model training. As analyzed above, the training of RNN mod-
els generally requires sequential loops. However, in the TA
calculation, only matrix multiplications are needed. Matrix
multiplication can be easily calculated in parallel using GPU.

The temporal attention calculation is different from other
existing attention mechanisms. As far as we know, existing
attention mechanisms either do not consider the temporal or-
der of the values [Zhang et al., 2019] or calculates the atten-
tion from features that already represent the temporal order
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⊗ denotes matrix multiplication
Figure 2: Temporal Attention module to calculate the attention of one variable

of values (e.g., using recurrent layers) [Qin et al., 2017]. The
TA mechanism directly captures the time dependency of val-
ues in the attention calculation.

Variable Attention (CA) Calculation for Multiple
Variables
Besides designing the aforementioned TA module to capture
the long-term and short-term temporal dependency of values
in one time-series sequence, we also design a Variable Atten-
tion (VA) module to evaluate the interactions between multi-
ple variables.

The input sequence of VA is the feature sequence of all
variables at the same time step from C channels, Y t =
((yt1,1, y

t
2,1, · · · , ytV,1), · · · , (yt1,C , yt2,C , · · · , ytV,C)). Using

the similar procedure to calculate α in the TA module, we can
calculate a normalized variable attention (say β ∈ RV×V ).
The output of applying the variable attention to Y t is OV A

(∈ RV×C).
Different from the TA calculation, which uses a horizontal

slice of the feature tensor X, VA calculation utilizes all the
variables at the same time step. As shown in Fig. 1, Y t is a
vertical slice of the feature tensor Y.

3.2 Techniques to Stabilize the FCN Training
The CA-based FCN is trained using a gradient descent algo-
rithm through multiple iterations. In each iteration, a batch of
instances is used to adjust the weights of the model. We intro-
duce techniques to stabilize the model training by addressing
two issues to better adjust the batch instances.

The first issue is with the batch normalization (BN) step,
which is commonly used in training neural network models
[Ioffe and Szegedy, 2015]. The exiting approach of BN is
applied to all the instances in a batch. This, however, can-
not represent the real situation that instances from different
classes may have different distributions. To improve this step,
we apply normalization on instances from different classes
using a similar idea as that in [Miyato et al., 2018].

The second issue is with the choice of instances in each
batch. Regular choice of batch instances does not consider the
situation of imbalanced instances in a batch, which however
is common in the real situation. To address this issue, we
define a minimal number of instances σmin for each class.
Then, in choosing the instance batches, the algorithm makes
sure to sample at least σmin instances from each class in every
batch. A similar strategy is utilized in [Hao et al., 2019].

The aforementioned BN and batch instance selection tech-
niques are used to stabilize the training procedure. The stabi-
lized FCN model is denoted as SFCN in this paper.

Dataset N CL V m
Action 560 20 570 100

Activity 320 16 570 337
Ara Voice 8800 88 39 91

Auslan 2565 95 22 96
Daliy Sport 9120 19 45 125

Ges 396 5 18 214
Har 10299 6 9 128

Ht Sensor 100 3 11 5396
JVowels 640 9 12 26

OHC 2858 20 30 173
Net 1337 2 4 994
Eeg 128 2 13 117

Eeg2 1200 2 64 256
Ozone 346 2 72 291

N : # of instances, CL: # of class labels, V : # of variables,
and m: temporal steps of each time series

Table 1: Datasets

4 Experiments
All the methods are implemented using Python 3.7, and
tested on a server with Intel Xeon Gold 5117 2.0G CPUs,
192GB RAM, and one Nvidia Tesla P100 GPU. TensorFlow
(www.tensorflow.org) is used to build the CA-SFCN model
and Adamoptimizer is used in the training process.

4.1 Methods for Comparison
The performance of the proposed approaches is compared
with 16 approaches including (i) four existing state-of-the-art
MTS classification approaches, (ii) nine other baseline meth-
ods, and (iii) SFCN without cross attention and SFCN with
other attention mechanisms.

MTS Classification Approaches
The state-of-the-art approaches that we compare with in-
clude Multivariate Long Short Term Memory Fully Convo-
lutional Network (MLSTM-FCN) and Attention MLSTM-
FCN (AMLSTM-FCN in short) [Karim et al., 2019] which
extend the LSTM-FCN and ALTSM-FCN [Karim et al.,
2018] methods. They achieve the best performance on clas-
sifying MTS data by combining Long Short-Term Memory
(LSTM) and FCN. Besides the previous four state-of-the-art
approaches, 9 other baseline methods (denoted as OB), in-
cluding WMUSE [Schäfer and Leser, 2017], ARKernel [Tun-
cel and Baydogan, 2018], LPS [Baydogan and Runger, 2016],
mv-ARF [Tuncel and Baydogan, 2018], SMTS [Baydogan
and Runger, 2015], HULM [Pei et al., 2018], DTW [Seto et
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Methods
Dataset LSTM-FCN MLSTM-FCN ALSTM-FCN MALSTM-FCN Best-of-OB GA-SFCN RA-SFCN SFCN CA-SFCN
Action 0.717 0.754 0.727 0.747 0.707 0.810 0.819 0.808 0.835
Activity 0.531 0.619 0.556 0.588 0.581 0.610 0.607 0.606 0.623
Eeg 0.609 0.656 0.641 0.641 0.625 0.547 0.549 0.547 0.656
Eeg2 0.907 0.910 0.907 0.913 0.775 0.977 0.965 0.978 0.983
Ges 0.505 0.535 0.525 0.531 0.409 0.585 0.571 0.561 0.591
HT Sensor 0.680 0.780 0.720 0.800 0.720 0.800 0.800 0.800 0.800
Ozone 0.676 0.815 0.792 0.798 0.751 0.809 0.803 0.786 0.792
Ara Voice 0.980 0.980 0.986 0.983 0.946 0.972 0.965 0.965 0.980
Daily Sport 0.997 0.997 0.997 0.997 0.984 0.995 0.993 0.995 0.995
Net 0.940 0.950 0.930 0.950 0.980 0.953 0.949 0.943 0.951
Har 0.960 0.967 0.955 0.967 0.816 0.963 0.965 0.965 0.967
Auslan 0.970 0.970 0.960 0.960 0.980 0.977 0.970 0.977 0.978
JVowels 0.990 1.000 0.990 0.990 0.980 0.984 0.965 0.986 0.990
OHC 1.000 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000

*Best-of-OB: the best results from all the other 9 baseline approaches
Table 2: Classification performance comparison (the results of our newly proposed method CA-SFCN are shown in the last column)

al., 2015], SVM [Boser et al., 1992], and RF [Ho, 1995] are
also used for comparison. For these 9 OB approaches, we
only report the best results due to page size limitation.

Existing Attention Mechanisms
To demonstrate the effectiveness of the designed cross-
attention mechanism, we have selected two state-of-the-art
attention mechanisms: the Global-Attention (GA) [Zhang et
al., 2019] and Recurrent Attention (RA) [Qin et al., 2017], as
baselines.

GA and RA are the two best performing attention mecha-
nisms from different perspectives. In our experiments, we ap-
plied GA and RA to the SFCN model and create GA-SFCN
and RA-SFCN methods. Furthermore, the basic SFCN with-
out any attention mechanism is also used as a baseline. All
the three approaches, SFCN, GA-SFCN, and RA-SFCN, are
compared with our proposed CA-SFCN in the experiments.

4.2 Experimental Settings
(1) Datasets: 14 real-world datasets are used to test the per-
formance of the proposed approaches [Dua and Graff, 2017;
Karim et al., 2019] We utilize datasets with at least 128 in-
stances because the batch size in the FCN model training is
set to be 128, as same as the batch size in [Karim et al.,
2019]. For datasets with less than 128 instances, we only
pick the one with the largest number of instances as an ex-
ample (“HT Sensor”). Table 1 shows the detailed statis-
tics for the datasets. (2) Evaluation measurements: We
report the classification accuracy to show the performance.
(3) Parameter setting: The convolutional and pooling lay-
ers use the similar configuration as that in [Karim et al.,
2019]. In particular, the convolutional layers contain three
2-D layers with filter sizes 8 ∗ 1, 5 ∗ 1, and 3 ∗ 1, the corre-
sponding filter numbers for the three layers are 128, 256, and
128. (4) Source code: The source code can be found from
https://github.com/huipingcao/nmsu yhao ijcai2020.

4.3 Effectiveness Analysis
This section shows the results of our proposed method and
other approaches on different datasets. Table 2 presents the

classification accuracy on classifying the datasets. Note that
the settings of the convolutional layers are the same for all
the methods (except the “Best-of-OB”) for this set of experi-
ments.

Effectiveness using Same Convolutional Configuration
To better compare the performance of the different ap-
proaches, the 14 datasets are split into two groups: (i) the
first group contains seven datasets, on which the best accu-
racy that the existing methods can achieve is lower than 0.95.
Existing methods do not show good performance on these
datasets because they cannot capture the intrinsic features
hidden in those datasets. The results on these seven dataset
are reported in the first seven rows of Table 2. (ii) the second
group contains the remaining seven datasets, on which the ex-
isting method can achieve the best accuracy above 0.95. The
results on these seven dataset are reported in the last seven
rows of Table 2. The room of improving the classification
performance is higher for the first group of data than the sec-
ond group of data. Table 2 shows the classification accuracy
of different approaches on the two groups of datasets. The
highest accuracy is highlighted.

As we can see from Table 2, the proposed approach, CA-
SFCN, achieves the highest accuracy on all datasets except
one (Ozone) from the first group. The result of our method on
the Ozone dataset is also comparable to other baselines. Com-
pared with the second-best method, CA-SFCN improves the
averaged accuracy by around 2%. Compared with the state-
of-the-art methods, CA-SFCN gets competitively similar per-
formance on the second group datasets. Even the SFCN with-
out any attention mechanism can classify those datasets well.
This means that the instances belonging to different classes
in these datasets are relatively easier to be separated. The re-
sults show that our method can achieve better improvement
on datasets where previous works generate poorer results.

Our further analysis focuses on the performance on the
first group of datasets. The last four columns in Table 2
specifically show the effectiveness of the designed cross-
attention mechanism. Using the same parameter configura-
tions, SFCNs with attentions (GA, RA, or CA) achieve better
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Methods
Dataset SFCN1CA-SFCN1SFCN3CA-SFCN3SFCN5CA-SFCN5

Action 0.819 0.835 0.808 0.835 0.811 0.829
Activity 0.600 0.617 0.606 0.623 0.612 0.623

Eeg 0.547 0.578 0.547 0.656 0.594 0.609
Eeg2 0.980 0.985 0.978 0.983 0.971 0.977
Ges 0.525 0.545 0.561 0.591 0.570 0.561

HT Sensor 0.800 0.800 0.800 0.800 0.820 0.820
Ozone 0.803 0.809 0.786 0.792 0.809 0.821

* The subscript k in SFCNk and CA-SFCNk denotes the number of
convolutional layers

Table 3: The effect of the proposed CA mechanism for different
settings of convolutional layers in SFCN

average performance than SFCN without any attention.
Among those three different attention mechanisms, the

CA-SFCN outperforms the other two attention mechanisms,
GA-SFCN and RA-SFCN by around 2% to 3% respectively.
The results support our design rationale that the newly de-
signed CA can better capture the MTS features.

Effectiveness using Different Convolutional
Configurations
We further explore the effectiveness of the CA mechanism
with different configurations of the convolutional layers.

We built three SFCN models with 1, 3, and 5 convolutional
layers. These SFCN models are denoted as SFCN1, SFCN3,
and SFCN5. SFCN1 has one convolutional layer with filter
size 8 ∗ 1; SFCN3 has three convolutional layer with filter
size 8∗1, 5∗1, and 3∗1, the same as the SFCN configuration
in Table 2. SFCN5 has two more convolutional layer (with
filter sizes 3 ∗ 1 and 3 ∗ 1) after SFCN3.

Table 3 presents the results of SFCNk and CA-SFCNk with
k convolutional layers. CA-SFCNk is the SFCNk model with
the cross-attention mechanism. The performances of SFCNk

models can be improved by around 2% by applying the CA
mechanism. The results show that the proposed CA mecha-
nism can advance the performance of different convolutional
models. Different configurations of SFCN show different ac-
curacy values. The optimal configuration for SFCN is still an
open question and that is not the focus of this paper.

4.4 Efficiency Analysis
This section shows the training time of the proposed CA-
SFCN and other baselines. We focus on the efficiency
analysis of models with attention mechanisms (CA-SFCN,
GA-SFCN, and RA-SFCA) because the newly designed CA
mechanism is the major contribution of this work. Their per-
formance is compared with SFCN to show the differences
in model training with and without attention mechanisms.
MLSTM-FCN is also used in this comparison since MLSTM-
FCN achieves the second-best performance in Table 2. We
show the running time on two representative datasets, includ-
ing the dataset with a small number of instances (Eeg) and the
dataset with a large number of instances (Har). Fig 3 shows
the training time of the different models on the two datasets.

Let us first compare the training efficiency of the four
SFCN-based models. The figures show that SFCN can be

(a) Eeg

(b) HAR

Figure 3: Training time (sec) on different datasets

trained faster than the SFCN models with attention mecha-
nisms since it does not calculate any attention. CA-SFCN
and GA-SFCN show similar performance on both datasets be-
cause both CA and GA calculate the pair-wise dependencies
between all feature values. RA-SFCN is the least efficient
model due to the sequential calculation in RA.

The results also show that MLSTM-FCN runs faster than
CA-SFCN on HAR. It is because MLSTM-FCN combines
all the variables at the first convolutional layer (using the
Conv1D operation), but SFCN model uses Conv2D opera-
tions. The running time difference is not significant on small
datasets (e.g., Eeg). The results demonstrate that CA is an ef-
fective and efficient attention mechanism for identifying fea-
tures from and classify MTS data.

5 Conclusions
This paper presents a new attention mechanism, cross-
attention (CA), and a CA-based stabilized fully convolutional
network (CA-SFCN) to classify MTS data. The newly pro-
posed CA captures the long- and short-term dependencies of
values in times series and the interactions of the multiple vari-
ables in the MTS by integrating the temporal attention (TA)
and variable attention (VA). To the best of our knowledge, CA
is the first attention mechanism to leverage both the tempo-
ral connection and pair-wise variable dependencies on MTS
data. The experiments on 14 real-world datasets show that
the proposed model outperforms the state-of-the-art models.
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