
ART I C L E

Neuroimaging genetics studies of specific reading

disability and developmental language disorder: A

review

Nicole Landi1,2 | Meaghan V. Perdue1,2

1Department of Psychological Sciences,

University of Connecticut, Storrs,

Connecticut, United States

2Haskins Laboratories, United States

Correspondence

Nicole Landi, Department of Psychological

Sciences, University of Connecticut, 406

Babbidge Road, Storrs, CT 06269,

United States.

Email: nicole.landi@yale.edu

Funding information

Florida Learning Disabilities Research

Clinic, Grant/Award Number: NIH

2P50HD052120-11; NIH P50 HD, Grant/

Award Number: 052120; NIH R03 HD,

Grant/Award Number: 053409; NIH R01

HD, Grant/Award Number: 48830; NSF

IGERT DGE, Grant/Award Number:

1144399; NSF GRFP, Grant/Award

Number: 1747453; NIH R21 DA, Grant/

Award Number: 030665

Abstract

Developmental disorders of spoken and written language

are heterogeneous in nature with impairments observed

across various linguistic, cognitive, and sensorimotor

domains. These disorders are also associated with charac-

teristic patterns of atypical neural structure and function

that are observable early in development, often before for-

mal schooling begins. Established patterns of heritability

point toward genetic contributions, and molecular genetics

approaches have identified genes that play a role in these

disorders. Still, identified genes account for only a limited

portion of phenotypic variance in complex developmental

disorders, described as the problem of “missing heritabil-

ity.” The characterization of intermediate phenotypes at

the neural level may fill gaps in our understanding of heri-

tability patterns in complex disorders, and the emerging

field of neuroimaging genetics offers a promising

approach to accomplish this goal. The neuroimaging

genetics approach is gaining prevalence in language- and

reading-related research as it is well-suited to incorporate

behavior, genetics, and neurobiology into coherent etio-

logical models of complex developmental disorders. Here,

we review research applying the neuroimaging genetics

approach to the study of specific reading disability (SRD)

and developmental language disorder (DLD), much of

which links genes with known neurodevelopmental func-

tion to functional and structural abnormalities in the brain.
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1 | INTRODUCTION

Developmental disorders of spoken and written language are characterized by deficits in various lin-

guistic domains such as reading, phonological processing, vocabulary, and grammatical skills

(Hulme & Snowling, 2013), as well as atypical neural structure and function (Mayes, Reilly, &

Morgan, 2015; Norton, Beach, & Gabrieli, 2015). A growing number of genes have been implicated

in the etiology of these disorders, many of which play a role in neurodevelopmental processes such

as neuronal migration, neurite outgrowth, cortical morphogenesis, and ciliary structure and function

(Newbury, Monaco, & Paracchini, 2014). The developmental function of such genes is a likely

source of neural anomalies, and the emerging field of neuroimaging genetics seeks to better under-

stand the relationships among genetic and behavioral markers of disorders by establishing intermedi-

ate phenotypes at the neural level. Findings to date provide some compelling evidence for links

among specific genes, brain structure and/or function, and reading- and language-associated pheno-

types. Here, we review research employing a neuroimaging genetics approach to study specific read-

ing disability (SRD) and developmental language disorder (DLD).1 These disorders are of interest to

study in parallel due to overlap in characteristic deficits, such as phonological processing, as well as

shared neural and genetic underpinnings. We provide a brief introduction on genetic approaches to

the study of complex disorders (please see Appendix A for explanation of technical concepts), along

with an overview of each disorder and the related neuroimaging genetic findings reported thus far.

Given the complex polygenic underpinnings of SRD and DLD, we have organized our discussion of

the relevant imaging genetic findings by gene, beginning with coverage of well-established candidate

genes for SRD and DLD and followed by those more recently associated with reading and/or lan-

guage (genes investigated in relation to SRD and DLD using a neuroimaging genetic approach are

listed in Table 1, and findings are summarized in Table 2). In addition, we only include genes that

have been studied using a neuroimaging genetics approach. In order to present a clear account within

the scope of neurodevelopmental disorders of spoken and written language, we have limited our

review to studies including typically developing populations and populations with SRD or DLD and

no additional neurological or psychiatric diagnosis.

2 | GENETICS IN DEVELOPMENTAL DISORDERS

The field of genetics took hold as a modern science following Mendel's foundational work in the

mid-late 1800s and was furthered by a number of remarkable discoveries throughout the 20th century

that led to the discovery of the genetic basis for many diseases. Following early genetic sequencing

efforts in the 1970s and 1980s, the successful sequencing of the human genome was accomplished in

2003 (Human Genome Sequencing Consortium, 2004). This sequencing did not uncover a determin-

istic map of human traits and diseases but instead revealed a basic architecture from which complex

interactions among genes, behavior, and environment dictate human ontogenesis (Gottlieb &

Lickliter, 2007). Uncovering this architecture has paved the way for advances in analytic approaches

for exploring the nature of gene–behavior relations. Previously, the primary method for uncovering

the genetic underpinnings of particular traits was through linkage analysis. This technique allowed

researchers to use genetic markers to identify the locations of the segment(s) of DNA in chromo-

somes that are shared by individuals within a family who exhibit a trait of interest (Smith, 1953).

Linkage analysis is a useful tool for establishing inheritance in single-gene Mendelian disorders

because it is based on deviations from expected patterns of inheritance and it traces cotransmission

of a DNA marker allele and a disorder. For single-gene disorders, linkage can be identified by using
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TABLE 1 Gene variants discussed in this review

Gene Chr Location Function Imaging

Phenotype

(language/reading) References

BDNF 11p13 Neuronal survival fMRI Reading Jasinska et al.

(2016)Neuronal proliferation

Synaptic growth

C2orf3/

GCFC2/

MRPL19

2p11-q11.2 Unknown MRI

DTI

Reading Eicher et al.

(2016)

Scerri et al.

(2012)

CMIP 16q23.2-q23.3 T-cell signaling MRI Reading Skeide et al.

(2016)

COL4A2 13q34 Type IV collagen

subunit encoding

MRI Reading Skeide et al.

(2016)

COMT 22q11.21 Dopamine metabolism fMRI Reading Landi et al.

(2013)

NRSN1 6p22.3 Neurite growth MRI Reading Skeide et al.

(2016)

ROBO1 3p12.3 Neuronal migration MEG Reading Lamminmäki et

al. (2012)Axon guidance

CCDC136/

FLNC

7q32.1 Unknown MRI Reading/Language Gialluisi,

Guadalupe,

Francks, and

Fisher (2017)

DCDC2 6p22 Neuronal migration MRI

fMRI

rsMRI

EEG

DTI

Reading/Language Cope et al. (2012)

Czamara et al.

(2011)

Darki et al.

(2012)

Darki et al.

(2014)

Cilia Marino et al.

(2014)

Meda et al.

(2008)

DYX1C1 15q21.3 Neuronal migration MRI Reading/Language Darki et al.

(2012)

Cilia Darki et al.

(2014)

FOXP2 7q31 Transcriptional

regulation

Neurogenesis

MRI

fMRI

PET

Reading/Language Belton et al.

(2003)

(Continues)
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TABLE 1 (Continued)

Gene Chr Location Function Imaging

Phenotype

(language/reading) References

Liegois et al.

(2003)

Pinel et al. (2012)

Skeide et al.

(2016)

Vargha-Kadem et

al. (1998)

Watkins et al.

(2002)

Wilcke et al.

(2012)

KIAA0319 6p22 Neuronal migration MRI

fMRI

rsMRI

EEG

DTI

Reading/Language Czamara et al.

(2011)

Darki et al.

(2012)

Darki et al.

(2014)

Eicher et al.

(2016)

Pinel et al. (2012)

RBFOX2 22q12.3 Alternative exon

splicing regulation

MRI Reading/Language Gialluisi et al.

(2017)

SETBP1 18q12.3 DNA replication,

apoptosis,

transcription,

nucleosome assembly

fMRI Reading/Language Perdue et al.

(2019)

SLC2A3 4q32.1 Neural glucose

transport regulation

EEG

rsMRI

DTI

Reading/Language Roeske et al.

(2011)

Skeide et al.

(2015)

ACOT13/

THEM2

6p22.3 Cell proliferation MRI

DTI

Reading/Language Eicher et al.

(2016)

Pinel et al. (2012)

CNTNAP2 7q35 Cell adhesion

Voltage-gated

channels

MRI

fMRI

DTI

Language Dennis et al.

(2011)

Koeda et al.

(2015)

Skeide et al.

(2016)

(Continues)

4 of 37 LANDI AND PERDUE



a few large family pedigrees; for the study of complex traits, the affected sib-pair linkage design

which examines allele sharing for pairs of affected siblings in many different families is the most

widely used linkage design (Plomin, DeFries, McClearn, & McGuffin, 2007). However, linkage

approaches require a large gene effect for successful detection and thus have limited power for

identification of genes of modest effect that contribute to complex traits and disorders (Risch &

Merikangas, 1996). The vast majority of complex traits, conditions, and behaviors arise from the

presence of multiple genetic variations or polymorphisms as well as gene-by-gene and gene-by-

environment interactions. These include both common variants, which are present in greater than 1%

of the genome, and rare variants, which occur in less than 1% of the genome. The most frequently

occurring polymorphisms are single nucleotide polymorphisms (SNPs), in which there is a single

base pair substitution in the structural units of DNA (The International SNP Map Working Group,

2001)—these represent approximately 90% of the variation in human DNA (The 1000 Genomes

Project Consortium, 2011). Additional variation comes from insertion–deletion polymorphisms

(indels) which affect one or more base pairs by the removal or addition of units (Weber et al., 2002)

and copy number variations (CNVs) which represent alterations in the position or number of

copies of larger sequences of DNA (Iafrate et al., 2004). SNPs and other common variants are of

great scientific interest as markers of risk for genetic diseases or conditions in the general population

because they occur relatively frequently and modest gene effects can be detected using association

studies that do not require large family pedigrees.

Researchers who seek to understand the genetic origins of common diseases and traits are

guided by two predominant hypotheses: the common disease/common variant (CDCV) hypothesis

and the common disease/rare variant hypothesis (CDRV). According to CDCV, variants that are

common in the population but have low penetrance (i.e., the probability that the carrier of the variant

will express the disease) play a primary role in disease susceptibility (Lander, 1996; Reich & Lander,

2001; Schork, Murray, Frazer, & Topol, 2009). In contrast, CDRV suggests that rare variants

with high penetrance are the major contributors to disease susceptibility (Schork et al., 2009).

Evidence supports both of these models (Schork et al., 2009), and while ongoing research

continues to contrast these models, a hybrid account for complex disease and trait susceptibility holds

the most explanatory power. Consistent with the CDCV hypothesis, many of the identified genetic

variants associated with SRD and DLD are (a) fairly common in the general population2; (b) carried

by only a small subset of individuals with these disorders; and (c) not clearly linked to the behavioral

phenotype of the individuals who carry them. There are, however, some rare variants associated with

language and reading phenotypes which have been found in more severely impaired individuals,

TABLE 1 (Continued)

Gene Chr Location Function Imaging

Phenotype

(language/reading) References

Tan et al.

(2010)

Udden et al.

(2017)

Whalley et al.

(2011)

Note. Publications focused on patient populations and/or individuals with disorders other than SRD and DLD were excluded from our

review.
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TABLE 2 Summary of imaging geneticsfindings related to reading/language

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

BDNF Jasinska et al.

(2016)

rs6265** Continuous fMRI 81 6–10 70 Caucasian

1 African-

American

2 Hispanic

3 Asian

5 Mixed

ethnicity

Increased activation

bilaterally in Met

carriers relative

to Val/Val

homozygotes

Val allele homozygotes

performed better than

Met carriers on

passage

comprehension,

phonological

memory, and IQ

C2ORF3/

MRPL19/

GCFC2

Eicher et al.

(2016)

rs2298948*

rs917235*⊥

rs6732511*⊥

⊥DYX3 locus

upstream of

GCFC2 and

MRPL19

Continuous MRI

DTI

332 3-20 European Minor allele on

rs2298948

associated with

decreased CT and

GMV. rs917235

associated with

CT

rs6732511 minor

allele associated

with increased

GMV

NR

Scerri et al.

(2012)

rs917235*****

rs714939

rs1000585

Continuous MRI

DTI

76 6–25 98%

European

G allele associated

with reduced

WMV

rs714939 and rs917235

associated with

verbal IQ

CMIP Skeide et al.

(2016)

rs12927866

rs6564903

rs3935802

rs4265801

rs16955705

rs7201632

Joint SNP

effect*****

Case/control MRI 54 5–12 NR CMIP related to

bilateral portions

of cerebellar WM

Associated with reading

comprehension

6
o
f
3
7

L
A
N
D
I
A
N
D
P
E
R
D
U
E



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

COL4A2 Skeide et al.

(2016)

rs9521789***** Case/control MRI 54 5–12 NR Related to

cerebellar GMV

No significant

associations reported

COMT Landi et al.

(2013)

rs4680**** Case/control fMRI 86 6–10 83 Caucasian

3 African-

American

Greater activation

in left hemisphere

reading-related

regions for Met

carriers

Significant differences

between genotype

groups in

phonological

awareness (PA) and

spelling

NRSN1 Skeide et al.

(2016)

rs9356928

rs4285310

rs3178

Joint SNP

effect*****

Case/control MRI 54 5–12 NR Joint SNP

association with

GMV and WMV

NRSN1 associated with

reading

comprehension

performance. GMV

in VWFA ROI

related to NRSN1

predicted reading

outcomes

ROBO1 Lamminmäki

et al. (2012)

N/A Case/control MEG 10 19–51 Finnish Ipsilateral auditory

suppression in

both hemispheres

related to ROBO1

expression levels

NR

CCDC136/

FLNC

Gialluisi,

Guadalupe,

Francks, and

Fisher (2017)

rs59197085

rs56184882**

rs339054**

rs339046**

Continuous MRI 1275 18–35 NR Associated with

cortical

surface area in

IFG

NR

DCDC2 Cope et al.

(2012)

rs793862

rs807701

rs807724

Continuous fMRI 82 7–12 European

American

DCDC2 variants

associated with

activation during

Nominally significant

associations between

DCDC2 variants and

(Continues)

N
E
U
R
O
IM

A
G
IN

G
G
E
N
E
T
IC
S
O
F
S
R
D
A
N
D
D
L
D

7
o
f
3
7



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

BV677278

STR**

BV677278 del.

rs1087266

print and auditory

processing

Nominal

associations

between DCDC2

variants and

activation during

word reading and

nonword reading

tasks

measures of IQ, PA,

word reading, and

passage

comprehension

Czamara et al.

(2011)

Chr6:24459391/

rs105272490

5**

Chr6:24564881**

Chr6:24571041**

Chr6:24581378/

rs103336748

0**

SRD EEG 200 8–19 German Four rare variants

on DCDC2 or

between DCDC2

and KIAA0319

were associated

with late

mismatch

negativity

(MMN) to speech

NR

Darki et al.

(2012)

rs793842*****

rs793862

rs807701

rs2328819

rs2792682

rs7751169

rs9460974

Continuous MRI

DTI

76 6–25 98%

European

Associated with

WMV

Positive correlation

between white matter

volume and reading

scores. No direct

relationships between

SNPs and behavior.

Darki et al.

(2014)

rs793842***** Continuous MRI

DTI

76 6–25 98%

European

Associated with

WMV in left

temporo-parietal

region and with

Associated with reading

comprehension

scores; WMV and CT

8
o
f
3
7

L
A
N
D
I
A
N
D
P
E
R
D
U
E



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

CT in left

temporo-parietal

and occipital

cortices

correlated with

reading scores

DCDC2 Eicher et al.

(2016)

rs707864 Continuous MRI

DTI

332 3–20 European NS NR

Marino et al.

(2014)

DCDC2-intron2

deletion**
Case/control DTI 47 16–21 NR Reduced WM

integrity in

subjects with

DCDC2 intron2

deletion

Positive correlation

between fractional

anisotropy (FA) and

average reading

scores

Meda et al.

(2008)

DCDC2-intron2

deletion*

Continuous MRI 56 19–85 NR Increased GMV in

carriers of

DCDC2 intron 2

deletion

compared to

those

homozygous for

no deletion

NR

DYX1C1 Darki et al.

(2012)

rs3743204****

rs3743205

rs17819126

Continuous MRI

DTI

76 6–25 98%

European

Associated with

WMV in bilateral

temporo-parietal

region

Significant correlation

between WMV and

reading scores

Darki et al.

(2014)

rs3743204***** Continuous MRI

DTI

76 6–25 98%

European

Associated with

bilateral

temporo-parietal

WMV,

replicating

Significant correlation

between WMV and

reading scores

(Continues)

N
E
U
R
O
IM

A
G
IN

G
G
E
N
E
T
IC
S
O
F
S
R
D
A
N
D
D
L
D

9
o
f
3
7



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

findings of Darki

et al. (2012)

across an

additional time

point

FOXP2 Belton et al.

(2003)

KE Family*** Case/control MRI 34 9–27 European Altered GM density

in affected family

members

NR

Liegois et al.

(2003)

KE Family*** Case/control fMRI 20 19–56 European Affected family

members showed

an atypical

pattern of

activation in a

verb generation

task compared to

unaffected family

members and

controls

NR

FOXP2 Pinel et al.

(2012)

rs10249234***

rs7784315***

rs7812028*

rs17137135***

rs6980093***

rs6942634

rs2894699

rs1476535

rs10255943

rs10486026

rs10261780

rs10262103

Continuous fMRI 94 M = 24.7 European Associations with

activation during

a sentence

reading task

NR

1
0
o
f
3
7

L
A
N
D
I
A
N
D
P
E
R
D
U
E



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

rs4727799

rs17312686

rs2106900

rs17312861

rs12113612

rs10266297

rs10279936

rs7799109

rs12532920

rs17137124

rs10269986

rs1229761

rs1229758

rs12705966

rs10230087

rs7782412

rs1456029

rs12670585

rs6966051

rs17213159

rs1378771

rs12705971

rs12705973

rs2396766

rs12671330

FOXP2 Skeide et al.

(2016)

rs923875

rs12533005

rs6980093

rs10230558

Continuous MRI 54 5–12 NR Joint SNP effect

related to GMV

in left medial

NS

(Continues)

N
E
U
R
O
IM

A
G
IN

G
G
E
N
E
T
IC
S
O
F
S
R
D
A
N
D
D
L
D

1
1
o
f
3
7



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

rs7782412

rs936146

Joint SNP

effect*****

superior frontal

gyrus

Vargha-Kadem

et al. (1998)

KE Family*** Case/control PET

MRI

34 NR European Atypical activation

during a word

repetition task in

affected family

members.

Regional

alterations in GM

structure

Affected family

members show

deficits in word

repetition, nonword

repetition, and

simultaneous and

sequential orofacial

movements

Watkins et al.

(2002)

KE Family*** Case/control MRI 34 9–27 European Atypical pattern of

GMV in affected

family members

compared to

unaffected family

members and

controls

Correlation between

caudate nucleus

volume and

performance on test

of oral praxis,

nonword repetition,

and coding subtest of

Wechsler Intelligence

Scale in affected

family members

Wilcke et al.

(2012)

rs12533005** Case/control fMRI 33 M = 11 German Decreased

activation in risk

allele carriers

during rhyme

decision task

NR

Darki et al.

(2012)

rs6935076*****

rs4504469

Continuous MRI

DTI

76 6–25 98%

European

Positive correlations

between WMV and

1
2
o
f
3
7

L
A
N
D
I
A
N
D
P
E
R
D
U
E



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

rs2143340 Associated with left

temporoparietal

WMV

reading

comprehension and

WMV and timed

single-word reading;

No significant

correlations between

SNPs and reading

KIAA0319 Darki et al.

(2014)

rs6935076***** Continuous MRI

DTI

76 6–25 98%

European

Associated with

bilateral

temporoparietal

WMV,

replicating

findings from

Darki et al.

(2012) across an

additional time

point

Significant correlation

between WMV and

reading scores

Eicher et al.

(2016)

rs9461045****

rs9295626

rs10456309

rs4576240

Continuous MRI

DTI

332 3–20 European Associated with

cortical thickness

and WM integrity

NR

Pinel et al.,

2012

rs2235676

rs9467247

rs3756821

Continuous fMRI 94 M = 24.7 Primarily

Caucasian

NS NR

RBFOX2 Gialluisi et al.

(2017)

rs5995177***

rs78563107***

rs6000084***

rs6000085***

rs144006011***

Continuous MRI 1275 18–35 NR Associated with

cortical thickness

NR

(Continues)

N
E
U
R
O
IM

A
G
IN

G
G
E
N
E
T
IC
S
O
F
S
R
D
A
N
D
D
L
D

1
3
o
f
3
7



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

SETBP1 Perdue et al.

(2019)

rs7230525*** Continuous fMRI 73 5–12 116

Caucasian

2 African

American

3 Hispanic

4 Asian

8 mixed

2 unreported

Interaction between

genotype,

lexicality and

modality in the

right inferior

parietal lobule

Genotype associated

with phonological

working memory

SLC2A3 Roeske et al.

(2011)

rs4234898***

rs11100040***
SRD EEG 200

18

6c***

8–19 German Altered late MMN

response

NR

Skeide et al.

(2015)

rs4234898

rs11100040***
Continuous rsfMRI

DTI

34 9–12 NR Weaker functional

and structural

connectivity in

risk allele carriers

WM integrity related to

PA performance

THEM2/

ACOT13

Eicher et al.

(2016)

rs3777663* Continuous MRI

DTI

332 3–20 European Associated with

cortical thickness

NR

Pinel et al.

(2012)

rs17243157***

rs3756819

rs1061925

rs3181227

rs2223588

rs6928074

rs9461049

rs926529

rs1885211

Continuous fMRI 94 M = 24.7 Primarily

Caucasian

Associated with

functional

asymmetry

during reading

and speech

listening tasks

NR

CNTNAP2 Dennis et al.

(2011)

rs2710102*** Continuous DTI 328 M = 23.4 Caucasian Atypical structural

connectivity

NR

1
4
o
f
3
7

L
A
N
D
I
A
N
D
P
E
R
D
U
E



TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

indices in risk

allele carriers

Koeda et al.

(2015)

rs7794745***

rs2710102

Continuous fMRI 108 M = 26.3 Japanese Genotype group

differences in

activation during

general auditory

processing,

human voice

processing, and

language

processing

NS

Skeide et al.

(2016)

rs7794745

rs10246256

rs2710102

rs759178

rs17236239

rs4431523

rs2710117

Joint SNP

effect*****

Continuous MRI 54 5–12 NR Joint SNP effect

related to WMV

in left cerebral

and cerebellar

peduncles

Association with

reading

comprehension

CNTNAP2 Tan et al.

(2010)

rs7794745*** Continuous MRI

DTI

114 NR NR Reduced GMV,

WMV, and WM

integrity in risk

allele

homozygotes

NR

Udden et al.

(2017)

rs7794745**** Continuous MRI 1717 M = 24.3 Primarily

European

Caucasian

Reduced GMV in

AT/TT carriers

compared to AA

homozygotes

NR
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TABLE 2 (Continued)

Gene Reference(s) Variant(s) Design Imaging N
a Agea,b

Ethnic

Backgrounda Imaging findings Behavioral findings

Whalley et al.

(2011)

rs7794745***

rs2710102***
Continuous fMRI 66 M = 20.5 Caucasian Atypical patterns of

activation in risk

allele carriers

during sentence

completion task

NS

Note. Shading indicates relevant phenotype: white = reading, light gray = reading and/or language, dark gray = language. Boldface indicates SNPs for which significant imaging-genetic results were

reported. For studies that included corrected and uncorrected p values, asterisks indicate corrected p to be consistent with other studies presented here.

Abbreviations: CT, cortical thickness; GMV, gray matter volume; NR, not reported; NS, no significant findings; WMV, white matter volume.
*p < .01, uncorrected.
**
p < .001, uncorrected.

***
p < .05, corrected.

****
p < .01, corrected.

*****p < .001, corrected.
aInformation listed refers to samples included in neuroimaging analyses.
bAge ranges or means reported according to information available in each study.
cReplication sample.
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including some of the FOXP2 variants associated with speech and language impairment (e.g., see

Estruch et al., 2016).

Under both the CDRV and CDCV approaches, two primary methods are used for the identifica-

tion of genes associated with complex neurodevelopmental disorders. Hypothesis-driven candidate

gene association studies investigating specific SNPs allow researchers to identify how alleles at one

or more pre-identified locations on the gene are related to specific phenotypes (Kornilov &

Grigorenko, 2016). Alternatively, an exploratory approach may be taken using a genome-wide asso-

ciation study (GWAS) to identify SNPs associated with a trait of interest; this approach is especially

useful for detection of new variants (Hirschhorn & Daly, 2005). GWAS is a powerful tool, but it is

costly and effortful to genotype thousands of SNPs per individual, and GWAS requires large sample

sizes for sufficient power to detect small effects associated with complex traits (Hirschhorn & Daly,

2005). Recent efforts to build and share large genetic databases (e.g. the Pediatric Imaging, Neuro-

cognition, and Genetics [PING] Data Repository; Jernigan et al., 2016) aim to reduce the burden and

increase power of GWAS studies. The field of neuroimaging genetics applies these genetic methods

in combination with neuroimaging techniques to improve characterization of complex traits through

the identification of intermediate phenotypes that link genes to behaviors through neural mecha-

nisms. Using these methods, geneticists, neuroscientists, and psychologists may work together to

deepen the understanding of complex developmental disorders such as specific reading disability

(SRD) and developmental language disorder (DLD) in a step to improve identification and treatment

of these conditions.

3 | SPECIFIC READING DISABILITY

Specific reading disability (SRD), or developmental dyslexia (DD), is a prevalent learning disability

affecting around 7–16% of school-age children and is characterized by deficits in accurate and/or

fluent word recognition, decoding and spelling which do not result from inadequate educational

experiences (Fletcher, 2009; Lyon, Shaywitz, & Shaywitz, 2003; Pennington & Bishop, 2009). SRD

is neurobiological in origin, and functional and structural magnetic resonance imaging (fMRI/MRI)

reveal atypical brain characteristics (in both structure and function) associated with SRD in left

temporo-parietal, occipito-temporal, and inferior frontal regions (e.g., Landi et al., 2010 Maisog,

Einbinder, Flowers, Turkeltaub, & Eden, 2008; Pugh et al., 2001; Richlan, Kronbichler, & Wimmer,

2009, 2013). Specifically, individuals with SRD exhibit reduced activation during reading and

phonological awareness tasks relative to controls in left temporo-parietal and occipito-temporal

regions (e.g., Richlan et al., 2009). Mixed findings of over- and under-activation in the left inferior

frontal cortex in SRD suggests that activation in this area may be task-specific and warrants further

investigation (e.g., Richlan et al., 2009). Reports of anomalous cortical structure in SRD include

reduced gray matter volume in bilateral superior temporal regions (Hoeft et al., 2007; Richlan et al.,

2013), bilateral temporo-parietal regions and insula (Hoeft et al., 2007), bilateral occipito-temporal

and right temporo-parietal regions (Kronbichler et al., 2008), and atypical sulcal pattern in left

temporo-parietal and occipito-temporal regions (Im, Raschle, Smith, Grant, & Gaab, 2016).

Advances in the use of diffusion-weighted MRI (including diffusion tensor imaging, or DTI) allow

examination of white matter microstructure, indexed by a measure of white matter integrity called

fractional anisotropy (FA), and measures of diffusivity along white matter tracts: mean diffusivity

(MD), axial diffusivity (AD), and radial diffusivity (RD). The application of diffusion-weighted MRI

to the study of SRD has shown decreased white matter integrity (reduced FA) in left hemisphere
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tracts including the arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital

fasciculus, and corona radiata, which structurally link language-related cortical areas (Vandermosten,

Boets, Wouters, & Ghesquière, 2012; Yeatman et al., 2011). Although some of the observed

neurobiological alterations in SRD may be a result of reading difficulties, much of the altered brain

function and structure characteristic of SRD is observed in pre-reading children and consequently

has been proposed to be rooted in underlying genetic risk factors (Ozernov-Palchik & Gaab, 2016).

3.1 | Neuroimaging genetics studies of specific reading disability

3.1.1 | SRD candidate genes: DCDC2, KIAA0319, THEM2, NRSN1, DYX1C1,
and ROBO1

Variation on DCDC2 has been associated with performance on several measures of reading and

reading-related skills including phonological skills, word/pseudoword reading, and spelling in

samples with SRD (Chen, Zhao, Zhang, & Zuo, 2017; Ludwig, Roeske, et al., 2008; Marino et al.,

2012; Matsson et al., 2015; Meng et al., 2005; Wilcke et al., 2009) and without SRD (Lind et al.,

2010; Newbury et al., 2011; Powers et al., 2013; Scerri et al., 2011; Sun et al., 2014; Venkatesh,

Siddaiah, Padakannaya, & Ramachandra, 2013; Zhang et al., 2016). Extant research suggests that

variation in this gene is associated with subtle cortical malformations in brain areas important for

reading (Meng et al., 2005). For example, in a study of typically developing Swedish-speaking

children and young adults, one SNP in DCDC2 (rs7938423) was related to white matter volume in

left temporo-parietal cortex, with the highest white matter volume indices in CC homozygotes and

lowest in TT homozygotes, and heterozygotes falling in between (Darki, Peyrard-Janvid, Matsson,

Kere, & Klingberg, 2012). In addition, the authors found a significant positive correlation

between white matter volume and reading fluency; however, no direct associations between SNPs

and behavioral performance were significant (Darki et al., 2012). The association between rs793842

and left temporo-parietal white matter volume was replicated in a follow-up analysis that examined

the same sample with the inclusion of a third longitudinal time point, and a significant association

between this SNP and cortical thickness in the left temporo-parietal and occipital cortices emerged

in this follow-up analysis, such that T-allele carriers had thicker cortex in these regions (Darki,

Peyrard-Janvid, Matsson, Kere, & Klingberg, 2014). Additionally, rs793842 was associated with

reading comprehension scores.

A second polymorphism in DCDC2, a deletion in intron 2 (hereafter, DCDC2d), which

encompasses BV677278, has been associated with SRD, and with interindividual variation reading

performance and motion perception in children with SRD and typical development (TD; Brkanac et

al., 2007; Cicchini, Marino, Mascheretti, Perani, & Morrone, 2015; Gori et al., 2015; Harold et al.,

2006; Ludwig, Schumacher, et al., 2008; Marino et al., 2012; Meng et al., 2005; Wilcke et al.,

2009).4 One imaging genetics study of the DCDC2d reports significantly increased gray matter

volume in a number of regions related to language and reading, including bilateral temporo-parietal

regions, in typically developing individuals heterozygous for DCDC2d (Meda et al., 2008).

Moreover, a study of white matter microstructure in individuals with and without SRD found the

DCDC2d to be associated with reduced white matter integrity in the left arcuate fasciculus and the

posterior corpus callosum, regardless of reading impairment status. Within the reading impaired

group, white matter integrity was reduced bilaterally in the inferior longitudinal fasciculus and

anterior corpus callosum in those with the deletion relative to those without (Marino et al., 2014).

Marino et al. (2014) also reported positive correlations between white matter integrity and average

reading scores in several left-hemisphere tracts related to reading and language.
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In addition to structural findings, recent fMRI and event-related potential (ERP) studies that

engage the neural circuitry for reading and language provide evidence for links between DCDC2 and

brain function. One ERP of particular interest in reading and language research is the mismatch

negativity (MMN) response, a commonly used index of auditory discrimination (typically of tones or

phonemes) that is characteristically reduced in individuals with reading and language impairment

(Schulte-Körne, Deimel, Bartling, & Remschmidt, 2001). Czamara et al. (2011) reported an

attenuated late MMN response to phonemic stimuli in minor allele carriers of one SNP in DCDC2

(chr6:24459391/rs1052724905) and three locations between DCDC2 and KIAA0319

(chr6:24564881, chr6:24571041, and chr6:24581378/rs1033367480) in a sample of children with

SRD. Further, using fMRI, Cope et al. (2012) identified patterns of activation associated with alleles

of BV677278 during a set of language and reading tasks and replicated previous findings of

gene/reading behavioral associations. Specifically, BV677278 alleles were significantly associated

with activation in the left temporo-parietal cortex (positive correlation) and the right occipito-

temporal gyrus (negative correlation) during processing of printed words and negatively associated

with activation in the right occipito-temporal gyrus during processing of spoken words, indicating

relevance of this gene for both written and spoken language. The functional association in the

temporo-parietal cortex is consistent with the localization of structural associations with DCDC2d

discussed above (Meda et al., 2008), and together, these results link DCDC2 and temporo-parietal

anomalies that are characteristic of SRD.

A close neighbor of DCDC2 within the same locus on chromosome 6p22.3, KIAA0319, is another

well-studied candidate gene for SRD that has been associated with reading ability within SRD (Cope

et al., 2005; Couto et al., 2010; Dennis et al., 2009; Ludwig, Roeske, et al., 2008; Mascheretti et al.,

2014) and the general population (Lim, Wong, Ho, & Waye, 2014; Luciano et al., 2007; Newbury et

al., 2011; Paracchini et al., 2008; Scerri et al., 2011; Venkatesh et al., 2013; Sun et al., 2014).

Animal research shows that the expression pattern of KIAA0319 in the developing brain is consistent

with its hypothesized role in neuronal migration, and recent bioinformatics analysis has suggested

its involvement in additional neurodevelopmental and signaling functions (Peschansky et al., 2010;

Poon et al., 2011; Szalkowski et al., 2013, 2012; Velayos-Baeza, Levecque, Kobayashi, Holloway, &

Monaco, 2010). Consistent with KIAA0319's hypothesized role from animal findings, structural

associations with KIAA0319 have been reported in human MRI research. An association between

white matter volume in the left temporo-parietal region and KIAA0319 SNP rs6935076 has been

identified (Darki et al., 2012) and replicated with an additional right hemisphere effect when data

from a third longitudinal time point were added to the analysis (Darki et al., 2014). Furthermore,

Eicher et al. (2016) reported decreased cortical thickness in a left orbitofrontal region in carriers of

the minor allele of the SNP rs9461045 (associated with single-word reading and spelling ability;

Dennis et al., 2009) relative to those homozygous for the major allele within a sample of individuals

ages 3–20 years from the Pediatrics Imaging Neurocognition Genetics study (PING) database.5

With regard to structural connectivity, the minor allele of the same SNP was associated with

reduced white matter integrity in the corpus callosum. These findings point toward an effect of

KIAA0319 on language-related brain structures that may underlie individual differences in language

and reading abilities.

In addition to DCDC2 and KIAA0319, two additional genes within 6p22-21.3 (THEM2 and

NRSN1) have been linked with reading-associated neural structure and/or function across multiple

studies. Presence of the minor allele at rs3777663 in THEM2 (also known as ACOT13 and previously

identified as a protective allele [Eicher et al., 2014]) has been linked to increased cortical thickness in

the left inferior frontal region (Eicher et al., 2016). In a separate study, Pinel et al. (2012) found that
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THEM2 SNP rs17243157 was associated with functional asymmetry in a posterior temporal region

during reading and speech listening tasks, with a stronger effect for reading.

NRSN1 has recently been implicated in reading-related cortical structure. Specifically, recent work

has identified associations between variation on NRSN1 and gray matter volume in right

parieto-occipital, left lateral occipital, and left occipito-temporal regions, as well as white matter

volume in a left postcentral region (Skeide et al., 2016). In a follow-up classification analysis, left

occipito-temporal volume performed significantly above chance in classifying subjects into SRD and

control groups, and variation on NRSN1 was further associated with reading comprehension (Skeide

et al., 2016). These structural and functional associations may be attributed to variation in NRSN1

expression, which has been linked to axon and dendrite growth (Araki et al., 2002). Together, these

findings support THEM2 and NRSN1 as loci for further investigation of links between genes, neural

structure/function, and reading.

The remaining candidate genes for SRD have received relatively little attention in human

neuroimaging studies. Like those of other SRD candidate genes, the protein encoded by DYX1C1 has

been linked to neurodevelopmental processes (Currier, Etchegaray, Haight, Galaburda, & Rosen,

2011; Rosen et al., 2007; Szalkowski et al., 2011; Tammimies et al., 2016; Tarkar et al., 2013;

Threlkeld et al., 2007; Wang et al., 2006), and variation on this gene has been associated with reading

and spelling abilities in both general population (Bates et al., 2010; Newbury et al., 2011; Zhang et

al., 2012) and clinical samples (Lim, Ho, Chou, & Waye, 2011; Marino et al., 2007; Venkatesh,

Siddaiah, Padakannaya, & Ramachandra, 2014). With respect to neuroimaging, Darki et al. (2012)

found a relationship between SNP rs3743204 in DYX1C1 and white matter volume in bilateral

temporo-parietal regions and correlations between white matter volume in these regions and reading

scores. As with the KIAA0319 findings described above, these findings were replicated when a third

longitudinal time point was added for the same sample (Darki et al., 2014).

ROBO1 appears to serve an axon guidance function that regulates the connections between brain

hemispheres and between cortical and subcortical structures (Andrews et al., 2006; Hannula-Jouppi

et al., 2005; Massinen et al., 2016; Whitford et al., 2002). Linkage studies suggest that this gene is

related to SRD (Fisher et al., 2002; Mascheretti et al., 2014; Nopola-Hemmi et al., 2001; Tran et al.,

2014) and speech-sound disorder (Stein et al., 2004), and research in the general population indicates

an association with phonological skills (Bates et al., 2011). In the context of neuroimaging, ROBO1

has been investigated in one study that employed magnetoencephalography (MEG) to examine

auditory processing in individuals with reading impairment from a family carrying a rare, weakly

expressing haplotype of the ROBO1 gene relative to typical controls (Lamminmäki, Massinen,

Nopola-Hemmi, Kere, & Hari, 2012). Ipsilateral auditory suppression in both hemispheres was

related to ROBO1 expression levels in the haplotype carrier group, and these subjects showed

significantly weaker ipsilateral suppression compared to the control group. These imaging findings

point toward a possible auditory processing deficit as the source of previously observed associations

between ROBO1, phonological skills, and speech-sound disorders.

3.1.2 | Summary: Neuroimaging genetics studies of SRD

The early observation of heritability in SRD and subsequent identification of candidate genes

have made SRD a model for studying genetic contributions to complex cognitive traits and

understanding the genetic bases of heterogeneous neurodevelopmental disorders. Further, the

extensive research on neural structure and function in SRD provides a basis for linking genes, brain

structure and function, and behavior in this disorder. Associations between SRD risk genes and gray
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and white matter structure in reading-associated regions are consistent with the role of these genes in

brain development and further support atypical neural development as a contributing factor to

reading difficulties. Although cross-report comparisons of structural findings are mixed,

inconsistencies are at least partially due to variability in SNPs investigated for a particular gene, the

structural metrics that are used, ages of participants, and inclusion of individuals with SRD vs. use of

a broader population sample. Additional research, including replication studies, is needed to clarify

these ambiguities and more definitively establish links among specific genes and polymorphisms,

and neural structure. While association among genetic variation and neural function is less well

studied in SRD, extant fMRI and ERP studies linking polymorphisms on candidate genes to

well-characterized auditory electrophysiological components and atypical neural function in

reading-related regions provide some encouraging evidence for mapping of gene–brain–behavior

relations.

4 | DEVELOPMENTAL LANGUAGE DISORDER

Developmental language disorder (DLD) refers to difficulties in language acquisition that may affect

comprehension and/or production of language across modalities (e.g., spoken and written; American

Psychological Association, 2013). Because DLD often affects components of language that are also

impaired in SRD, such as phonological awareness, similarities in the neural and genetic underpin-

nings of these two disorders are expected. The neurobiology of DLD has not been as well studied as

that of SRD, but a small body of literature indicates decreased activation during language processing

tasks (broadly construed) in individuals with DLD relative to typical controls in temporo-parietal and

superior and middle temporal regions, as well as some mixed evidence for atypical functioning in the

left inferior frontal gyrus (de Guibert et al., 2011; Hugdahl et al., 2004; Mayes et al., 2015).

A number of genes have been linked to impairments in speech and language function, including

FOXP2, CNTNAP2, ATP2C2, and CMIP (Newbury, Fisher, & Monaco, 2010). Because these genes

play potentially wide-reaching roles in neurodevelopment and brain function (discussed below),

imaging genetic research on these DLD-associated genes is not only helpful for linking genes to their

specific neural functions in the context of expressive and receptive language but may also be helpful

for understanding the potential cascading effects of these genes on reading.

4.1 | Neuroimaging genetics studies of developmental language disorder

4.1.1 | FOXP2

FOXP2 was first linked to language impairment in the KE family, which gained the attention of

geneticists because half of the members are affected by a severe inherited speech and language

disorder (Fisher, Vargha-Khadem, Watkins, Monaco, & Pembrey, 1998; Lai, Fisher, Hurst,

Vargha-Khadem, & Monaco, 2001). Genetic associations with this speech and language disorder

have been extensively investigated in a three-generation pedigree of the KE family that includes 27

family members (Lai et al., 2001). More recently, FOXP2 has been linked to variability in language

and reading traits in both the general population and in a clinical sample (Mozzi et al., 2017). Using

linkage analyses, researchers first identified the locus associated with inheritance of the disorder

(SPCH1, chromosome 7q31), and later determined that a mutation in the gene FOXP2 was causally

related to the disorder (Fisher et al., 1998; Lai et al., 2001). FOXP2 belongs to a family of genes that
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produce proteins that regulate expression of other genes during neurodevelopmental processes

(Carlsson & Mahlapuu, 2002), leading to complex and widespread contribution of this gene to

neurodevelopment (Newbury et al., 2010).

Among the series of studies investigating the nature of the KE family's impairment are several

examinations of neural structure and function. Studies of gray matter structure in the KE family have

revealed atypical gray matter volume and density in affected compared to unaffected family members

in cortical and subcortical regions associated with motor and language functions including the

inferior frontal gyrus, pre-supplementary motor area, caudate nucleus, and cerebellum (Belton,

Salmond, Watkins, Vargha-Khadem, & Gadian, 2003; Vargha-Khadem et al., 1998; Watkins et al.,

2002). These early findings point toward a relationship of FOXP2 with brain structure in

regions related to speech production and language; however, additional studies are needed to

confirm whether these patterns hold in members of the general population who exhibit atypical

expression of FOXP2.

In addition to structural anomalies, affected members of the KE family have shown altered

functional neural activation during both overt and covert language production tasks in motor areas

and language-related regions (Liegeois et al., 2003; Vargha-Khadem et al., 1998). Research in the

KE family has also led to the investigation of functional associations with FOXP2 SNPs in the

general population, with consistent findings related to activation in the left inferior frontal cortex

(Pinel et al., 2012; Wilcke et al., 2012). For example, associations have been observed between

rs6980093 and left inferior frontal activation and between rs7784315 and rs17137135 and left

precentral activation in response to sentences presented in auditory and visual modalities in a study

of typically developing young adults (Pinel et al., 2012). Moreover, Wilcke et al. (2012) included

typically developing children and children with SRD in their fMRI study of FOXP2 SNPs. Results

revealed decreased activation during a rhyme decision task in the temporo-parietal cortex, inferior

frontal cortex, superior occipital gyrus, and lingual gyrus in carriers of the risk allele on rs1253305

(Wilcke et al., 2012). This evidence suggests that the neural alterations associated with FOXP2 are

not limited to the mutation characteristic of the KE family, but may play a role in language disorders

more broadly with possible implications for reading impairment.

4.1.2 | CNTNAP2

CNTNAP2 has been identified as a risk-gene for DLD and autism (Alarcón et al., 2008; Strauss et al.,

2006), and variation in CNTNAP2 has been associated with performance on nonsense word

repetition (Vernes et al., 2008) and with rapid auditory processing (Riva et al., 2018). CNTNAP2

(also known as CASPR2), a gene proximal to and regulated by FOXP2, is involved in regulation of

neuron–glia interaction related to myelination and localization of ion channels (Poliak et al., 2003;

Rasband, 2004; Vernes et al., 2008). These functions have been taken as support for a role of this

gene in structural connectivity and neural activity. Functional neuroimaging studies implicate a

relationship between CNTNAP2 polymorphisms and atypical lateralization of language processing.

For example, Whalley et al. (2011) found associations between lateralization for language and

two CNTNAP2 polymorphisms in typically developing adults during a sentence completion task.

Specifically, increased activation in the right inferior frontal cortex combined with decreased

activation in the left superior parietal lobule was observed in individuals homozygous for the risk

allele at rs2710102 compared to all other subjects; and increased activation in the right middle

temporal gyrus was observed in those homozygous for risk allele at rs7794745 compared to all other

subjects. Further evidence for atypical lateralization for language associated with CNTNAP2
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polymorphisms comes from a study of language, voice, and general auditory processing. Koeda et al.

(2015) reported increased activation in the right middle frontal gyrus during native language

listening in Japanese carriers of the nondominant allele for rs7794745. This pattern of increased right

hemisphere activation also held for human voice perception (reversed sentences) the right middle

frontal gyrus. Further, these authors observed an interaction between lateralization of function during

voice processing (forward and reversed speech), rs7794745 genotype, and handedness, suggesting a

complex influence of this SNP on voice processing networks in relation to handedness and

lateralization.6

With respect to brain structure, two studies have identified regional reductions in gray matter

volume associated with the risk allele on rs7794745 primarily affecting occipital, fusiform, and

cerebellar regions (Tan, Doke, Ashburner, Wood, & Frackowiak, 2010; Uddén, Snijders, Fisher,

& Hagoort, 2017). Additionally, altered white matter structure associated with CNTNAP2 has

been reported in fronto-occipital and thalamic tracts (Tan et al., 2010) as well as midbrain tracts

that facilitate communication among the cortex, cerebellum, and other central nervous system

structures (Skeide et al., 2016). Using diffusion MRI, Dennis et al. (2011) identified a pattern

of white matter structure characterized by local rather than long-range connections in individuals

homozygous for the risk allele on CNTNAP2 SNP rs2710102. These reductions in long-range

connectivity may indicate a weakened link between frontal and temporal cortical regions

important for language processing and production. These white matter findings are consistent

with CNTNAP2's role in myelination and suggest that CNTNAP2 may contribute to variation in

language skills via modulation of connectivity among regions that are needed for effective

language function.

4.1.3 | Summary: Neuroimaging genetics studies of DLD

Neuroimaging genetic investigations of these two primary DLD candidate genes suggest specific

roles of each gene in language-related neural function. Imaging genetics studies of FOXP2

indicate that this gene affects brain regions associated with language production and speech

motor planning (Liegeois et al., 2003; Pinel et al., 2012; Vargha-Khadem, Gadian, Copp, &

Mishkin, 2005), with preliminary links to activity in posterior language regions (Wilcke et al.,

2012). CNTNAP2 has also been found to have effects on functional activation in language-

related regions, including inferior frontal and middle temporal gyri (Whalley et al., 2011) and

on gray matter morphology in occipital, fusiform, and cerebellar regions (Tan et al., 2010;

Uddén et al., 2017); in addition, this gene has effects on structural and functional connectivity

among language-associated regions and more domain general regions (Dennis et al., 2011;

Skeide et al., 2016). The compelling neuroimaging genetic findings related to both of these

genes may direct future research to further characterize their roles in DLD. Further examination

of FOXP2 in the general population will be particularly useful to disentangle the specific effects

of the KE Family mutation from more common polymorphisms that may contribute to individual

differences in language abilities. Additional functional neuroimaging research is needed to clarify

the associations of these genes with specific aspects of language processing. Furthermore,

several additional DLD candidate genes (e.g., ATP2C2 and CMIP) have yet to be studied using

neuroimaging genetics, and this approach may provide insight into the mechanisms by which

they impact language function.
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5 | ADDITIONAL GENES LINKED TO READING AND
LANGUAGE

Neuroimaging genetic research provides an informative approach to understanding the contributions

of novel candidate genes for SRD and DLD and language/reading-related polymorphisms located in

intergenic regions. Gialluisi et al. (2017) reported promising findings in several recently identified

candidate genes for reading and language disorders. The minor allele of RBFOX2 SNP rs5995177,

previously linked to reading/language skills (Gialluisi et al., 2014), was significantly associated with

decreased cortical thickness in parietal, temporal, and inferior frontal regions of interest (Gialluisi

et al., 2017). Furthermore, three SNPs located upstream of CCDC136 (rs56184882, rs339054, and

rs339046) were nominally related to cortical surface area of the inferior frontal gyrus bilaterally

(Gialluisi et al., 2017). Evidence for the role of a set of SNPs located in a noncoding region has also

been revealed by neurogenetic methods. Variation on a haplotype formed by rs4234898 and

rs11100040 in a noncoding region in chromosome 4q32.1 has been associated with the MMN

response in children with SRD (Roeske et al., 2011). Both SNPs were associated with regulation of

the glucose transport gene SLC2A3, leading the authors to propose that the attenuated MMN

response observed in children with SRD may arise from reduced glucose resulting from the modula-

tion of SLC2A3 expression by rs4234898 and rs11100040. In another investigation, Skeide et al.

(2015) reported reduced functional and structural connectivity among left hemisphere

reading/language regions in children carrying the risk-allele at rs11100040. Additional research will

be needed to investigate a potential causal mechanism among these SNPs, regulation of SLC2A3,

connectivity, and reading and language abilities.

Several studies have linked the DYX3 genetic locus on chromosome 2 containing GCFC2/C2Orf3

and MRPL19 to SRD (Anthoni et al., 2007; Fagerheim et al., 1999; Kaminen et al., 2003), but the

role of these genes in neural function remains unknown. Two neuroimaging genetic studies of this

locus suggest associations with neural structure. Eicher et al. (2016) reported suggestive associations

between gray matter structure and SNPs in and upstream of GCFC2. A separate study linked one

DYX3 SNP to decreased white matter volume in the posterior corpus callosum and cingulum,

suggesting a disturbance in interhemispheric connectivity between posterior reading-related regions

(Scerri et al., 2012). Scerri and colleagues also found an association between variation in DYX3

SNPs and verbal IQ performance, extending previous links of the DYX3 locus with reading to a

broader cognitive scope.

Our laboratory has recently conducted a behavioral association and neuroimaging genetic study

of the SETBP1 gene, which was previously associated with expressive language function in an iso-

lated population in Russia with a high prevalence of DLD (Kornilov et al., 2016). This population is

of interest for investigating a shared genetic cause of DLD because its remote location leads to

reduced genetic diversity and increased heritability of traits within the population. A follow-up study

revealed a significant association between the SETBP1 gene and reading-relevant skills (e.g., phono-

logical working memory) in a group of typically developing children in the United States (Perdue

et al., 2019). Further, we investigated brain activation for the SNP with the strongest association

(rs7230525) in a subset of participants who completed an fMRI task that involved reading and listen-

ing to words and pseudowords. Our imaging analysis revealed a complex three-way interaction

among genotype, word type, and presentation modality in the right inferior parietal lobule. Breaking

down this interaction revealed greater activation for more difficult to process printed stimuli

(pseudowords > words) for individuals in the genotype group associated with poorer phonological
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skills (Perdue et al., 2019). Although preliminary, these findings point to a relation between variabil-

ity in SETBP1 and the role of attentional networks during decoding.

Finally, due to the complex nature of reading, it is likely that genes involved in regulating cogni-

tive processes such as memory, executive functioning, and attention may subsequently be related to

reading and language. Two such “generalist genes” are COMT, which is involved in dopamine regu-

lation in the prefrontal cortex (Meyer-Lindenberg et al., 2005), and BDNF, which regulates a variety

of processes involved in brain development and plasticity (Numakawa et al., 2010). One recent study

showed an association between the COMT Val158Met polymorphism (SNP rs4680) and neural activa-

tion in the reading circuit (e.g., the left occipito-temporal and superior temporal/middle temporal

regions) during a word and pseudoword reading task, in addition to associations with phonological

awareness and spelling (Landi et al., 2013). A second study showed that a common variation at

BDNF SNP rs6265 (the BDNF Val66Met polymorphism) is associated with reading-related behav-

iors, including passage comprehension, and neural activation during reading in children (Jasi�nska et

al., 2016). In light of these reading-related findings for genes associated with more general cognitive

factors, it seems important that the field continue to consider the contribution of so-called generalist

genes in examinations of the genetic basis of individual differences in reading and language.

6 | LIMITATIONS AND FUTURE DIRECTIONS

Although neuroimaging genetics provide a useful lens for investigating mechanisms that link genes to

behavior in neurodevelopmental disorders, several important limitations must be addressed: reproduc-

ibility and convergence. Replication of genetic associations with language phenotypes has emerged

as one key problem in the extant literature, both in genome-wide and targeted genetic association

studies. Specifically, Carrion-Castillo et al. (2016) conducted a genetic association study of reading

and language phenotypes with 17 of the most significant SNPs associated with these phenotypes in

prior GWAS studies and failed to find any significant associations surviving correction for multiple

comparisons in an independent sample from the Netherlands. Accordingly, neuroimaging genetics

studies of reading and language should be interpreted with caution, especially because most do not

include an independent replication cohort. Indeed, only one of the studies reviewed here included an

independent replication cohort for neuroimaging-genetic analysis (Roeske et al., 2011). Furthermore,

Grabitz et al. (2018) recently raised additional concerns with regard to genetics studies published in

neuroimaging journals, namely, issues of sample size and power, calculation of effect size, correction

for multiple comparisons, completeness of reporting, and complexity of analysis, in addition to the

aforementioned replication problem. Indeed, very few of the studies reviewed here include reports of

effect sizes, and several of those reported effect sizes for behavioral-genetic associations, but not

imaging genetic associations, making it difficult to interpret the magnitude of reported effects.

Additionally, heterogeneity among study samples, measures, and methods likely contributes to a

perceived lack of replication in some cases. The neuroimaging-genetic studies reviewed here include

a great deal of variance in selection of samples, genetic markers, and analytic approaches that make it

difficult to compare findings across studies. For example, Eicher et al. (2016) included a set of behav-

iorally associated SNPs on DCDC2, but not the DCDC2 intron 2 deletion (DCDC2d) in their neuro-

imaging genetic analysis. This omission could lead to perceived lack of convergence with previous

imaging genetic work on DCDC2 by Meda et al. (2008) that found an association between gray mat-

ter volume and the DCDC2d. Likewise, differences in the acquisition and analysis of neuroimaging

data such as examining white matter volume versus white matter microstructure (FA, RD, and AD)

represent methodological heterogeneity that limits cross-study comparability. Large-scale studies
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accounting for such variations are needed to confirm or reject the associations of specific SNPs with

reading and language phenotypes. This poses a practical challenge that will require more collabora-

tive cross-disciplinary efforts among researchers to collect the data required for replication. Transpar-

ent reporting of methods may also address issues of convergence such that future studies may

provide appropriate comparison to existing findings.

7 | GENERAL CONCLUSION

The findings presented in this review illustrate the complex neurobiological underpinnings of reading

and language disorders (See Table 2 for a summary of results from neuroimaging genetics studies

reviewed in this paper). Though the application of neuroimaging genetic methods to research on

SRD and DLD is in its early stages, common threads are emerging in the observed relations among

gene, brain, and behavior. Indeed, imaging genetics research has linked variation on genes involved

in aspects of neurodevelopment with brain structure and/or function in language-associated areas and

reading/language performance. Although these links are not as clear for genes with less well-

specified roles in neurodevelopmental processes or neuronal function, imaging genetics findings may

guide new research that seeks to better understand the role of these genes in brain structure or func-

tion. Imaging genetics research also validates the involvement of a number of generalist genes, which

contribute to individual differences in cognitive processing that affect reading and language perfor-

mance. These contributions may explain additional genetic variance in reading and language perfor-

mance beyond specific risk genes for dyslexia or DLD, thereby addressing the often-cited missing

heritability problem.

The associations revealed between genes and neural activation suggest genetic sources of atypical

neural functioning, but it remains unclear whether functional deficits arise due to anomalous brain

structure and/or direct contributions of genes to neuronal excitation and metabolism. Limited by their

correlational nature, neuroimaging genetic approaches cannot directly investigate causal mechanisms

of SRD and DLD in humans, but these methods are key in building theoretical models of the etiolo-

gies of these prevalent neurodevelopmental disorders. Advances in neuroimaging technologies will

help to fill some gaps in the mechanisms linking genes, brain, and behavior. One promising direction

is the application of magnetic resonance spectroscopy (MRS) in neurogenetic research. This noninva-

sive tool allows for in vivo measurement of neurometabolites and neurotransmitters, thereby provid-

ing a neurochemical level of exploration for identification of connections between genes and neural

function. This method affords human investigation of evidence linking genes and neurochemistry to

atypical neural function in animal models such as the association between mutation of the DCDC2

homolog in mice and altered neural activity driven by dysfunction of the neurotransmitter glutamate

(Che, Girgenti, & LoTurco, 2014; Che, Truong, Fitch, & Loturco, 2016). Indeed, initial work utiliz-

ing MRS in humans has identified links between glutamate and choline and SRD and formed the

basis for the application of the neural noise hypothesis to the study of SRD (Hancock, Pugh, &

Hoeft, 2017; Pugh et al., 2014).

Further insight may arise from the combined use of neuroimaging and advanced DNA sequencing

methods, including next-generation whole genome sequencing and whole exome sequencing, which

afford the advantage of detecting small structural variants in addition to mutations and SNPs

(Kornilov & Grigorenko, 2016). Ongoing developments in the use of next-generation sequencing

along with advances in statistical approaches will support the discovery of new risk genes as well as

complex gene by gene interactions and gene by environment interactions that further our understand-

ing of the genetic bases of SRD and DLD.
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Finally, the field will benefit from continued attempts at replication of extant findings as well as

data sharing and combining that will allow for mega- and meta-analyses. The aforementioned lack of

replication, lack of methodological overlap, and limited details in statistical reporting pose challenges

to neuroimaging genetics research, but these issues may be ameliorated through the application of

rigorous research and reporting methods. With these limitations in mind, neuroimaging genetic

methods can make an important contribution by helping to constrain exploratory findings through

identification of intermediate phenotypes that elucidate brain-based mechanisms linking genes to

behavior in SRD and DLD.
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ENDNOTES

1 For purposes of this review, specific reading disability is synonymous with reading disability (RD) and dyslexia, and

developmental language disorder is synonymous with specific language impairment (SLI) and language impairment

(LI).

2 Allele frequency data are publicly available in the dbSNP database: https://www.ncbi.nlm.nih.gov/snp (Sherry et al.,

2001).

3 Unique identifiers called reference SNP (rs) ID numbers are assigned by The National Center for Biotechnology

Information (NCBI) for consistent identification and comparison of polymorphisms across individuals (Kitts, Phan,

Ward, & Holmes, 2013).

4 Although negative findings have also been reported (Paracchini et al., 2011; Scerri et al., 2017).

5 PING is a multi-site study and corresponding database that includes standardized behavioral measures, imaging phe-

notypes, and whole genome genotyping (Jernigan et al., 2016).

6 The non-dominant allele (A) identified for this study according to the Japanese Hapmap ratio does not correspond to

the rs7794745 risk-allele (T) identified in the Whalley et al. (2011) study described above.
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APPENDIX

GLOSSARY

Allele: One of several alternative forms of a unit (base) of DNA that may be present at a given loca-

tion on a chromosome

Axon guidance: The neurodevelopmental signaling process by which neuronal projections (axons)

extend toward a target

Bioinformatics analysis: The application of computational methods to the study of genetic data

GWAS (Genome-wide association study): An exploratory approach to identify genetic markers of

traits and diseases by searching across the genome for locations in which the frequency of a polymor-

phism is associated with a trait of interest

Haplotype: A combination of genetic variants that are inherited together

Heterozygote/heterozygous: An individual's homologous chromosomes express different genetic

variants at a given location

Homozygote/homozygous: Both of an individual's homologous chromosomes express the same

genetic variant at a given location

Insertion–deletion polymorphisms (indels): A genetic variation in which one or more units of

DNA are added (insertion) or removed (deletion)

Intergenic region: A portion of a chromosome that lies in between genes; these stretches of DNA

do not code for proteins and are often of unknown function, though some may have regulatory effects

on nearby genes
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Intron: A portion of the DNA sequence within a gene that does not code for proteins

Linkage analysis: A method used to identify links between genetic markers (a DNA sequence in a

chromosome) and traits or diseases by examining patterns of inheritance among individuals within a

family who exhibit the trait of interest. Genetic markers that are specifically carried by family mem-

bers who exhibit the given trait are inferred to be related to that trait and may be targeted as links to

the trait in the general population.

Polymorphism: A varying form of a small structural unit of the DNA molecule (a base or series of

bases) which can be expressed in different forms or numbers of repetitions

Sequencing: The process of identifying the order of the small units (bases) that make up DNA

and genes

SNP (single nucleotide polymorphism): A genetic variation in which one unit of the DNA mole-

cule (one base) is expressed in an alternative form (e.g., G or Guanine instead of A or Adenine)
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