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ABSTRACT
An up-to-date overview of the CFOUR program system is given. After providing a brief outline of the evolution of the program since its inception
in 1989, a comprehensive presentation is given of its well-known capabilities for high-level coupled-cluster theory and its application to
molecular properties. Subsequent to this generally well-known background information, much of the remaining content focuses on lesser-
known capabilities of CFOUR, most of which have become available to the public only recently or will become available in the near future.
Each of these new features is illustrated by a representative example, with additional discussion targeted to educating users as to classes of
applications that are now enabled by these capabilities. Finally, some speculation about future directions is given, and the mode of distribution
and support for CFOUR are outlined.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004837., s

I. INTRODUCTION

The origin of the CFOUR (Coupled-Cluster techniques for Com-
putational Chemistry) program package1 is deeply connected with
the story of several young scientists crossing paths at an early
stage of their careers in Rodney J. Bartlett’s group at the Quantum

Theory Project at the University of Florida in Gainesville, near
the dawn of the 1990s. After attending the inaugural Molecular
Quantum Mechanics (MQM) meeting in honor of John A. Pople
in Athens, GA, in October 1989, John F. Stanton was inspired by
the rapid development around the world in high-accuracy quan-
tum chemical methods and especially by the rapid progress that
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was being made in their application to interesting and “real” chem-
ical problems. Educated in the Bartlett group, he had been fully
convinced of the power of high-level many-body methods and
was determined to develop a new set of programs to bring these
approaches to bear on meaningful chemical applications. Upon his
return to Gainesville, Stanton started a project that has now lasted
more than three decades, which has led to what is now known as
CFOUR. By the end of 1989, he had written interfaces to the self-
consistent field (SCF) and integral packages used in the Bartlett
group—the ACES (Advanced Concepts in Electronic Structure) pro-
gram system.2 In 1990, Jürgen Gauss arrived in Gainesville for a
postdoc in the Bartlett group, which fueled the development of the
project. Together, Stanton and Gauss wrote many-body perturba-
tion theory (MBPT)3 and coupled-cluster (CC)4 codes—the latter
through CC with singles and doubles (CCSD)—which included ana-
lytic gradients5 as well as the exploitation of molecular point-group
symmetry (D2h and subgroups).6

John D. Watts, another postdoc in the Bartlett group at that
time, contributed code for triple excitations, and Walter J. Laud-
erdale, a graduate student, wrote a new SCF and integral transforma-
tion program. Together with atomic orbital (AO) integrals coming
from the MOLECULE package7 of Jan Almlöf (one- and two-electron
integrals; the code had recently been extensively modified for perfor-
mance on vector processors by Peter R. Taylor), the VPROPS package8
(dipole and other one-electron property integrals that can trace their
lineage back to the POLYATOM package9), and integral derivatives com-
ing from the ABACUS package10 of Trygve Helgaker et al., the main
core of what was to become CFOUR had already emerged. Apart from
AO integral and integral derivative evaluation, all other codes were
completely new; nothing associated with Hamiltonian construc-
tion, MBPT and CC energy and density evaluation was taken from
another source; indeed, even input parsing and general processing
of output (vibrational frequencies, for example) was written from
scratch. With this nucleus, a number of chemical applications11–13

were done at the dawn of the 1990s, and a first paper14 describ-
ing the code—called ACES II at that time—was published in 1992.

Following the move of the main developers, Stanton to Austin,
TX, and Gauss to Karlsruhe (Germany) and later Mainz (Germany),
the main development centers of ACES II migrated from the original
Gainesville location, taking their exposure to many-body methods
with them. This eventually resulted in a bifurcation of ACES II, from
which the Mainz–Austin–Budapest (MAB) version originated—the
Budapest center (Hungary) involving Péter G. Szalay as another
main author. In Gainesville, this was followed by a complete rewrite
of the overall package devised to target emergent parallel comput-
ers. This is known now as the ACES III package.15 Finally, in 2008,
the Mainz–Austin–Budapest version of ACES II, by now containing
many new features and enhanced computational sophistication, was
renamed as CFOUR.16

Since its beginnings, CFOUR has specialized in high-accuracy
quantum chemical methods, targeting applications in the field of
thermodynamic, spectroscopic, and kinetic phenomena of small-
to medium-sized molecular systems. While some of its nearly 30-
year-old primordial core remains in the current version, much
has also changed since its inception. Incremental algorithmic
improvements have been made to the existing capabilities,
and new methodologies have been continuously added to the
package by developers throughout the world. Some of the

capabilities included today (together with their first appearance
in CFOUR) are nuclear magnetic resonance (NMR) chemical shifts
ranging from second-order MBPT through CCSD(T) (1990s),17–23

equation-of-motion coupled cluster (EOM-CC) methods for elec-
tronically excited and ionized states,24–29 analytic second deriva-
tives for MBPT and CC through CCSDT (1990s);23,30–33 auto-
mated evaluation of anharmonic (quartic) force fields and computa-
tion of associated rovibrational spectroscopic constants (1990s),34,35

new open-shell CC methods (1990s),36,37 properties associated with
high-resolution spectroscopy such as spin-rotation tensors (1990s
and 2000s),35,38–41 arbitrarily high-order CC gradients and sec-
ond derivatives (as interfaced to the MRCC program package42,43
of Mihály Kállay, 2000s),44–47 diagonal Born–Oppenheimer correc-
tions (2000s),48,49 couplings between quasidiabatic states (2010s),50,51
relativistic quantum chemical methods (2010s),52–60 multireference
CCmethods (2010s),61 highly efficient code for high-accuracy [post-
CCSD(T)] methods (2010s),62 and many more.

Following the work of the original team and beginning their
careers in the groups of the main authors, many more young sci-
entists actively contributed to CFOUR. The primary authors of CFOUR

now include Lan Cheng, who has contributed extensively with rela-
tivistic quantum chemical methods56,58–60 for both energy and prop-
erty calculations; Devin A. Matthews, who has written a new and
very fast coupled-cluster module (xncc)62 for CFOUR and contributed
significantly to some of the spectroscopic extensions of CFOUR;63,64

and Michael E. Harding, who has been in charge of many issues
related with code infrastructure, parallelization,65,66 and general
organization.

An accurate characterization of CFOUR is that it is a program
system with many capabilities for the highly accurate calculation
of parameters that play a role in diverse areas of chemical physics.
Largely through methods based on coupled-cluster theory,4 one
can calculate potential energy surfaces, couplings between electronic
states, a vast number of one- and two-electron properties that play a
role in various branches of molecular spectroscopy, and relativistic
corrections to electronic structure, and generally obtain informa-
tion that can be extracted from accurate electronic wavefunctions
and their response to external perturbations. Beyond this, there
are auxiliary tools that make use of this fundamental information.
For example, vibrational perturbation theory (VPT)67 can be used
to obtain accurate positions for the fundamental vibrational levels
of semirigid polyatomic molecules (using the efficiently calculated
anharmonic force field); information can be extracted to construct
vibronic Hamiltonians in a diabatic representation; extrapolation to
the basis set limit can be done in an automated fashion;68 andmolec-
ular structures can be fitted to rotational constants,35 both the raw
experimental data and the equilibrium constants corrected (by CFOUR

calculations) for the effects of vibration–rotation interaction.34,67

The capabilities of CFOUR can be also used in conjunction
with the features of other computational chemistry programs (e.g.,
MRCC,42,43 GIMIC,69 NEWTON-X,70–72 and GECCO

73,74) to which CFOUR has
been interfaced.

While providing powerful tools for the quantum chemical
study of small-sized to medium-sized molecules, CFOUR does not
have a great deal to offer in the area of large molecules. Devel-
opments in CFOUR have focused on many-body treatments of elec-
tron correlation, and the methods of density functional theory are
completely absent from its repertoire. The coupled-cluster methods
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available in CFOUR are mainly single-reference methods, meaning
that calculations are built upon a single Slater determinant that is
usually (but need not be) composed of orbitals associated with the
Hartree–Fock self-consistent field (HF-SCF) solution. While some
multireference effects can certainly be treated within the framework
of equation-of-motion coupled-cluster (EOM-CC) methods75—this
area represents a decided strength of CFOUR—more traditional meth-
ods based on multiconfigurational zeroth-order wavefunctions are
needed to describe phenomena associated with bond-breaking, to
construct (semi-)global potential energy surfaces, and even to treat
certain classes of transition states. While some of these limita-
tions described above have been addressed by implementing mul-
tireference variants of CC theory61,76 and incorporating a rigor-
ous second-order complete-active space SCF (CASSCF) scheme77

in CFOUR, the currently available version of the program exclusively
offers single-reference treatments of the correlation problem.

The remainder of this paper elaborates on the strengths and
capabilities of the CFOUR program system. Section II summarizes
the “core features” of CFOUR, specifically its treatments of the non-
relativistic electronic Schrödinger equation based on CC and MBPT
methods and its capabilities for calculating properties within these
approximations using analytic derivative techniques. Many users of
CFOUR are likely to be familiar with these capabilities, and Sec. II doc-
uments these features with some remarks about the current status of
implementations. We continue with a short section (Sec. III) about
practical aspects such as input and use of CFOUR. Section IV describes
new developments that are present in CFOUR, either in the current
version (V2.1) or versions likely to come in the near future. After
the discussion of the present state of the CFOUR project, we proceed
in Sec. V with some remarks about the general long-term perspec-
tive of CFOUR and close by describing the method by which the code
is distributed.

II. ESTABLISHED FEATURES
A. Treatments of electron correlation

The available treatments of electron correlation in CFOUR are
based on many-body perturbation theory [MBPT, also known as
Møller–Plesset (MP) perturbation theory]3,78 and coupled-cluster
(CC) theory,4,79,80 collectively referred to as single-reference meth-
ods, as their description of electron correlation starts from a single
Slater determinant.

CC theory was originally formulated for the quantum-chemical
treatment of nuclear matter.81,82 After its introduction into elec-
tronic structure theory by Čížek,83,84 it developed to one of the most
powerful schemes quantum chemistry nowadays has to offer for the
electron-correlation treatment and for high-accuracy computations.
The success of CC theory is probably illustrated best by the fact
that the CCSD(T) method,85 to be described in detail below, often
is referred to as the “gold standard” in quantum chemistry.

CC theory uses an exponential ansatz for the wavefunction

∣ψ⟩ = exp(T)∣0⟩, (1)

where |0⟩ denotes the reference determinant (often, but not neces-
sarily chosen as the HF state), and T denotes the cluster operator,
which is an excitation operator and consists of the weighted sum of
all excitations,

T = T1 + T2 + . . .TN . (2)

The sum in Eq. (2) runs up to TN with N as the number of elec-
trons. T1, T2, . . . denote the weighted sums of single, double, etc.,
excitations with the unknown parameters given by the weighting
coefficients that are usually referred to as amplitudes. The chosen
wavefunction ansatz in Eq. (1) has significant advantages over
the corresponding linear choice in configuration-interaction (CI)
theory, as it ensures size-consistency86/size-extensivity87 of the
electron-correlation treatment even within a truncated scheme that
does not include all excitations. CC theory, therefore, is, by construc-
tion, a size extensive approach.

Because of the exponential ansatz, the CC wavefunction is typ-
ically not determined via the variational principle. Instead, one uses
a projection approach in which the CC wavefunction is inserted
into the electronic Schrödinger equation; the latter is then multi-
plied from the left with exp(−T), and an expression for the energy
is obtained by projection onto the reference determinant

E = ⟨0∣ exp(−T)H exp(T)∣0⟩, (3)

and nonlinear equations for the amplitudes are obtained by projec-
tion onto the excited determinants

0 = ⟨ΦP∣ exp(−T)H exp(T)∣0⟩. (4)

In Eqs. (3) and (4), H denotes the usual molecular Hamiltonian
and ΦP denotes a determinant from the manifold of excited deter-
minants. The nonlinear amplitude equations [Eq. (4)] consequently
need to be solved for all possible ΦP.

Without any truncation, CC theory is equivalent to, though
more involved than, full configuration interaction (FCI) and hence,
in that form, not particularly useful. CC theory demonstrates its
advantages only when used with a truncated cluster operator. The
usual choices are here T = T2 [CC doubles (CCD)],88–90 T = T1 + T2
[CC singles and doubles (CCSD)],91 T = T1 + T2 + T3 [CC sin-
gles, doubles, triples (CCSDT)],92,93 and T = T1 + T2 + T3 + T4
[CC singles, doubles, triples, quadruples (CCSDTQ)],44,94,95 etc.
While initially the implementation of CC methods was quite cum-
bersome,89–91 the use of intermediates together with a rewrite of
the equations in terms of matrix-vector products has enabled more
straightforward access to CC methods6,95,96 and also forms the basis
of the CCSD implementations in CFOUR, which is described in detail
in Ref. 6. CFOUR also offers the possibility to perform CCSDT92,93,97

as well as CCSDTQ calculations.44,62,94,95 In addition, through an
interface to the MRCC code,42,43 CC computations with arbitrary
excitations are possible.44

While CCSD is for many applications not accurate enough and
CCSDT with an M8 scaling (M denotes here the system size, which
is assumed to be proportional to both the number of occupied and
virtual orbitals) too expensive, approximate CC methods have been
developed in which not only the cluster operator is truncated but
(expensive) terms in the CC equations are also neglected. This leads,
in the case of triple excitations in a straightforward manner, to the
CCSDT-n methods.98,99 The key idea is here to (a) skip the M8

terms and (b) avoid storage of the triples amplitudes. The selection
of the terms in the triples equations is then based on perturbation
theory and leads to CCSDT-1a,98 CCSDT-1b,98 CCSDT-2,99 and
CCSDT-3.99 Somewhat related to CCSDT-1b is the CC3 model,100

which has been introduced by the Aarhus group in the context of
CC response theory.101 All these models (CCSDT-n with n = 1–3
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and CC3) scale with M7 and do not require storage of triple excita-
tion amplitudes. The CC3 model furthermore is part of an alterna-
tive hierarchy of CC methods: CC2, CCSD, CC3, CCSDT, CC4, etc.,
in which CC2102 is the simplest choice and a cheap approximation
to CCSD with anM5 scaling and no need to store double excitation
amplitudes. In this context, one should also mention the quadratic
CI singles and doubles (QCISD) scheme103 by Pople et al., which
was introduced as a simpler alternative to CCSD. However, as there
are nowadays no difficulties to implement CCSD, QCISD now plays
only a minor role.

The CCSDT-n and CC3 models are significantly more efficient
in computational terms than the full CCSDT model, but they are,
for many applications, still not affordable due to the need to con-
sider triple excitations in each iteration. This issue can be amelio-
rated by just considering a perturbative correction for triple exci-
tations on top of a CCSD computation. Starting with early ideas
based on corrections taken from fourth order MBPT or MP the-
ory99,104 this ultimately led to the development of the (T) correction,
which involves the fourth-order correction due to triple excita-
tions,85,105 though computed with the converged CCSD amplitudes,
together with one fifth-order correction, namely, the one that cou-
ples singles and triples. Justifications for this choice have been, for
example, given in Refs. 106 and 107. Similar ideas as in the case
of CCSD(T) for triple excitations can be also pursued for the per-
turbative treatment of quadruple excitations, which leads to the
CCSDT(Q) approach.108,109 More elaborate triple and quadruple
corrections110 [referred to as Λ-CCSD(T)111 and Λ-CCSDT(Q)109]
can be obtained by using the solution of the Λ equations [Eq. (7)]
in addition to those of the amplitude equations for the evaluation of
the perturbative corrections.107,109,111,112

Considering the treatment of closed- and open-shell sys-
tems, CFOUR offers spin-adapted treatments for closed-shell sys-
tems and open-shell treatments based on unrestricted HF (UHF)
and restricted open-shell HF (ROHF) reference determinants.12

The UHF-CC treatment is a straightforward spin-orbital based
approach, though with spin integration, while ROHF-CC113 for-
mally classifies as a non-HF CC approach as the occupied-virtual
block of the Fock matrix in the spin-orbital basis does not vanish.
However, this only requires the trivial inclusion of off-diagonal ele-
ments of the Fock matrix in the CC equations within a standard
CC treatment, but some thought is required to formulate appro-
priate perturbative corrections.114,115 The latter are most efficiently
implemented using so-called semicanonical orbitals.116 CC calcula-
tions can also be carried out using the quasi-RHF (QRHF) deter-
minant113 as reference (here, the orbitals for the reference determi-
nant are obtained in an RHF calculation with a different number of
electrons). Further options involve Brueckner CC (B-CC)117,118 and
orbital-optimized CC calculations.119 In both cases, the orbitals are
determined in the presence of electron correlation, which, though
more expensive, sometimes turns out to be more efficient.

MBPT can be derived using perturbative techniques together
with the Møller–Plesset partitioning120 of the electronic Hamilto-
nian. Alternatively, expressions for the various orders of MBPT
can be obtained through perturbative expansions of the CC energy
expression as well of the CC amplitude equations. Second-order
MBPT, known as MBPT(2) or MP2, has evolved over the years
to the standard scheme for a first (and not particularly accurate)
description of electron correlation at low cost (the formal scaling

is only of the order of M5) for otherwise rather well behaved sys-
tems. Higher-order MBPT schemes (up to sixth order) have also
been formulated and implemented86,121–125 but are only rarely used.
The reasons are the now well established convergence problems
of MBPT126,127 as well as the availability of the more robust CC
methods. Nevertheless, MBPT(3) (equivalent toMP3) andMBPT(4)
(equivalent to MP4) are accessible through CFOUR. MBPT(5) and
MBPT(6) are only available in specialized codes,123–125 while even
higher order MBPT corrections so far can only be extracted from a
perturbative dissection of FCI.128,129

MBPT is rather straightforward to formulate for restricted and
unrestrictedHF (RHF andUHF) reference functions. However, after
some experimentation,130–132 a satisfactory formulation ofMBPT for
restricted open-shell HF (ROHF) reference functions has been sug-
gested.116,133,134 The perturbed Hamiltonian contains here also the
virtual-occupied blocks of the Fockmatrices in a spin-orbital formu-
lation, and a non-iterative treatment is possible when semicanonical
orbitals are used.116

Table I summarizes the CC and MBPT/MP methods that are
available in the current public version (V2.1) of CFOUR together
with information about the possible choices for the reference
determinants.

B. Analytic derivatives for the computation
of molecular properties

A particular strength of CFOUR is its ability to provide analytic
derivatives of the energy and thus easy access to molecular prop-
erties for most of the implemented quantum-chemical methods.
Analytic derivative techniques136,137 play an important role for the
computation of molecular geometries, as only analytically evaluated
forces render geometry optimizations routinely doable. CFOUR offers
geometrical derivatives5,32,45,114,138–141 for most of the implemented
CC and MBPT methods and thus allows the routine determina-
tion of equilibrium geometries [preferably via the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) scheme142] but also of transition-state
geometries using methods based on eigenvector following.143

In CC theory, analytic gradients have been formulated144,145

and implemented144 rather late. The main reason is the non-
variational character of the standard CC approaches. Straightfor-
ward differentiation of the CC energy expression [Eq. (3)], with
respect to a perturbation x, thus leads to an expression that involves
the derivatives of the cluster operator

dE
dx
= ⟨0∣ exp(−T)

dH
dx

exp(T)∣0⟩ + ⟨0∣[exp(−T)H exp(T),
dT
dx
]∣0⟩.

(5)

Evaluation of gradients based on this expression would offer lit-
tle advantage over a finite-difference approach. However, based
on the interchange theorem of perturbation theory,146 the deriva-
tive expression can be reformulated such that the derivatives
of the cluster operator T are no longer needed. This has been
shown by Adamowicz, Laidig, and Bartlett,147 thereby introducing
the perturbation-independent Λ equations, and used by Scheiner
et al.144 for their implementation of analytic closed-shell CCSD
gradients. A modern formulation of CC derivative theory is
based on the Lagrangian formalism introduced by Helgaker and
Jørgensen.148–150 In order to cope here with the non-variational
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TABLE I. CC and MBPT/MP methods available in the CFOUR program package.a A single x designates that only energy evaluations are possible, while xx indicates that both
energies and gradients can be calculated, and xxx indicates that analytic second derivatives are available.

Method RHF UHF ROHF Remarks

HF xxx xxx xxx

MBPT(2)/MP2 xxx xxx xx
MBPT(3)/MP3 xxx xxx xx
SDQ-MBPT(4)/SDQ-MP4 x x x
MBPT(4)/MP4 xxx xxx x

CCD xxx xxx
CCSD xxx xxx x Also Brueckner, orbital-optimized CCSD, QRHF-CCSD
CCSDT xxx x x
CCSDTQ xx
CCSDT-n, n = 1a, 1b, 2, 3 xxx x
CCSDTQ-n, n = 1a, 1b, 3 xx

CC2 xxx xxx Inefficient code,M6 scaling
CC3 xxx x
CC4 xx

CCSD + T(CCSD) x x
CCSD(T) xxx xxx xx Also Brueckner, orbital-optimized CCSD, QRHF-CCSD
Λ-CCSD(T) xx x
CCSD + TQ(CCSD) x
CCSD + TQ∗(CCSD) x
CCSDT + Q(CCSDT) x
CCSDT(Q) xx
CCSDT(Q)/A x Differs from CCSDT(Q) for closed-shell non-HF reference
CCSDT(Q)/B x Differs from CCSDT(Q) for closed-shell non-HF reference
Λ-CCSDT(Q) x
CCSD(T-n), n = 2, 3, 4, 5b x
CCSD(TQ-n), n = 2, 3, 4c x
CCSDT(Q-n), n = 2, 3, 4, 5, 6c x

LCCDd x x
LCCSDe x x
CISD x x x
QCISD xxx xxx
QCISD(T) xxx xxx

aAdditional methods, in particular, open-shell variants of higher-order coupled cluster methods, including in many cases gradients and analytic second derivatives, are available
through the interface to theMRCC program [see theMRCCmanual (www.mrcc.hu) for a complete list].
bSee Ref. 107.
cSee Ref. 135.
dLCCD stands for linearized CCD.
eLCCSD stands for linearized CCSD.

character of standard CC theory, a Lagrangian L is introduced,
which consists of the CC energy augmented by the CC equations (as
the so-called constraints) premultiplied with Lagrange multipliers

L = ⟨0∣(1 +Λ) exp(−T)H exp(T)∣0⟩. (6)

In this equation, a compact notation is used in which the Lagrange
multipliers are subsumed into the Λ operator, a de-excitation oper-
ator that gathers all of them. At this point, it should be mentioned
that this CC energy functional was actually first suggested by Arpo-
nen151 in order to cast CC theory in a variational framework. The
Lagrangian is then made stationary. Stationarity with respect to

the amplitudes in the Λ operator recovers the CC amplitude equa-
tions, while stationarity with respect to the amplitudes in the cluster
operator leads to the linear equations for the amplitudes of the Λ
operator

⟨0∣(1 +Λ)(exp(−T)H exp(T) − E)∣ΦP⟩ = 0. (7)

Due to the stationarity of L, differentiation with respect to a pertur-
bation x yields, for the derivative,

dE
dx
=
∂L
∂x
= ⟨0∣(1 +Λ) exp(−T)

dH
dx

exp(T)∣0⟩, (8)

which forms the basis of CC gradient theory.
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The discussion so far has ignored orbital relaxation. The con-
sideration of this effect requires coupled-perturbed HF theory152,153

but is, in CC gradient theory, treated using the Z-vector approach
by Handy and Schaefer.154 CFOUR is able to handle orbital relaxation
for RHF and UHF reference functions5 and also in the case of ROHF
and some classes of QRHF reference determinants.138,139

All analytic gradient implementations in CFOUR (see Table I for
methods marked “xx” or “xxx”) make use of a density-based for-
mulation of the first derivatives155,156 such that, in the final step, the
perturbation-independent quantities, i.e., the one- and two-particle
density matrices as well as some intermediates, are contracted with
the derivatives of the one- and two-electron AO integrals without
any need to store the latter.

Analytic second derivatives have been formulated and imple-
mented within CC theory.23,30–32,46,157,158 CFOUR offers here a range of
options with all implementations based on the so-called asymmetric
formulation33,159 that results from a straightforward differentiation
of the gradient expression given in Eq. (8) with respect to a second
perturbation y. This means that the first derivatives of T and Λ need
to be computed but, at no point, are these quantities required for two
different perturbations at the same time.

Geometrical analytic second derivatives allow the computa-
tion of quadratic force constants (and thus harmonic vibrational
frequencies) and, via numerical differentiation,34,160 of cubic and
semidiagonal quartic force constants (and thus in the framework of
second order vibrational perturbation theory (VPT2) anharmonic
corrections to vibrational frequencies, i.e., the computation of fun-
damental frequencies as well as the frequencies of overtone and
combination bands).67 CFOUR offers the corresponding capabilities
and renders such computations doable on a routine basis. The cor-
responding computations can furthermore be easily performed in a
parallel manner. We also note that CFOUR offers capabilities to per-
form such calculations on the basis of numerical differentiation of
analytically evaluated forces as well.

Table I also summarizes the CC and MBPT/MP methods for
which analytic second derivatives are available in CFOUR (methods
marked with “xxx”). Note that so far no analytic second derivatives
are available for schemes based on a ROHF reference function.

Analytic differentiation schemes are particularly useful for the
computation of the corresponding geometrical derivatives. How-
ever, analytic derivatives also provide access to a range of other
properties. To be mentioned here in the context of first deriva-
tives are first-order properties such as dipole moments, quadrupole
moments, and nuclear electric-field gradients.

There is an additional point to be discussed here, namely,
whether these first-order properties are computed with or without
orbital relaxation effects included. CFOUR offers both options, and it
has been argued161 that CC theory takes (via single excitations) care
of orbital relaxation effects162 in an adequate manner.

The issue of orbital relaxation is also of relevance when
dealing with frequency-dependent properties in the framework
of CC response theory.163 The consideration of orbital relaxation
can lead here to artificial poles and is therefore avoided. CFOUR

offers, based on the existing analytic second derivative technol-
ogy, access to frequency-dependent polarizabilities at the CCSD,164

CC3,163 and CCSDT level.165 In addition, using analytic third deriva-
tives, frequency-dependent hyperpolarizabilities can be evaluated at
the same levels of theory.166–168 Further analytic third derivatives

include Raman intensities computed as gradients of the frequency-
dependent polarizability at the CCSD level169 and Verdet constants
computed as quadratic response functions at the CCSD and CCSDT
levels of theory.170

Concerning the computation of magnetic properties, i.e.,
nuclear magnetic shielding tensors and magnetizabilities, care has to
be taken with respect to the gauge-origin problem. As amply demon-
strated in the literature, the use of gauge-including atomic orbitals
(GIAOs,171–174 also known as London orbitals175) is here an ade-
quate choice, and they are hence used by default in CFOUR. CFOUR

offers unique capabilities to compute magnetic properties at various
CC levels with high accuracy for both nuclear magnetic shielding
constants20–23,46 as well as magnetizabilities.176 The implementation
of shielding constants at the MP2 level17,18 in CFOUR was the first
presented in the literature, but by now this option is also offered
by other quantum chemical program packages177–180 together with
advancements that facilitate large-scale calculations. The capabili-
ties of CFOUR concerning magnetic properties also allow the com-
putation of closely related properties such as nuclear spin-rotation
and rotational g tensors181 via the use of so-called rotational Lon-
don orbitals.38 In the context of NMR properties, we also note that
the second derivative capabilities of CFOUR allow the computation
of indirect spin–spin coupling constants at CCSD,182 CC3,183 and
CCSDT and higher CC levels (both via the MRCC program). To be
noted here is that (a) these calculations must be performed in an
orbital-unrelaxed manner182 and (b) CFOUR allows the computation
of all four contributions to the indirect spin–spin coupling constants
[i.e., Fermi-contact, spin–dipole, paramagnetic spin–orbit (SO), and
diamagnetic spin–orbit terms].184,185

To conclude this section, we mention that CFOUR also offers the
capability to compute vibrational corrections to a range of properties
via VPT2.186 These corrections turn out to be essential in the case
of high-accuracy computations that are compared to experimental
values from precise gas-phase measurements.

C. Excited state treatments via
equation-of-motion/linear response methods

Single-reference methods based on MBPT and CC theory are
excellent approaches to study the potential energy surfaces asso-
ciated with ground electronic states near their equilibrium struc-
ture but generally cannot be straightforwardly applied to study
excited states. In particular, all such methods are subject to varia-
tional collapse (through the reference function |0⟩) or convergence
to the lower-lying states with the same (spatial and spin) symme-
try. For closed-shell systems, the lowest singlet excited states often
have a symmetry different than the ground state (for example,
the lowest excited state of formaldehyde has 1A2 symmetry, while
the ground state has 1A1 symmetry), but such states are described
(in zeroth order) by a linear combination of two Slater determi-
nants and therefore not amenable to standard MBPT or CC cal-
culations. For many radicals, however, excited states are properly
described by a single determinant (for example, the excited 2Σ
state of OH), and the usual toolkit of “ground state” MBPT/CC
methods can indeed be employed. The same holds for excited
triplet states where a single determinant is often a valid descrip-
tion for the high-spin components. However, when one speaks
generally of excited states in the context of quantum chemistry, it
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can be assumed that standard single-determinant methods are not
suitable.

Themajor advance in extending CC theory to excited states was
identified in an insightful paper by Monkhorst187 and has ultimately
come to be known as both “equation-of-motion CC” (EOM-CC)
theory24,75,188,189 and “linear response CC” (LR-CC)190–194 theory.
Both of these approaches give the same excitation and final state
energies (see below) but differ in the way that certain properties are
defined (see Subsection II D). It should be noted that the symmetry-
adapted-cluster configuration-interaction (SAC-CI) method,195–198

which is similar in spirit to the EOM-CC approach, was developed
for excited, ionized, and electron-attached states by Nakatsuji and
Hirao in the late 1970s.

In EOM-CC methods, the final state energies are obtained by
diagonalization of the similarity-transformed Hamiltonian H̄,

H̄ ≡ exp(−T)H exp(T), (9)

a non-Hermitian operator that is obtained from the usual electronic
Hamiltonian using the CC amplitudes in the transformation step.
The excited states are described by the wavefunctions

∣ΨEOM-CC⟩ =R exp(T)∣0⟩, (10)

⟨Ψ̃EOM-CC∣ = ⟨0∣L exp(−T), (11)

where R and L are the right and left eigenvectors of H̄.
The characterization of EOM-CC above applies strictly only to

“complete” CC methods such as CCSD, CCSDT, etc., but must be
modified somewhat for methods in which certain classes of exci-
tation are not treated completely (CC2,102 CCSDT-1,92,98 and so
on). In such a case, the excitation energies are obtained again by
diagonalization of a non-symmetric matrix, but one that cannot be
written as H̄ is designated above. Rather, one differentiates the CC
amplitude equations [Eq. (4) of Sec. II A], which leads to the linear
equation

dT
dx
= A−1bx, (12)

where A is the “CC Jacobian” that is diagonalized to obtain the exci-
tation energies. This perspective on EOM-CC applies equally well to
the normal (CCSD, CCSDT, etc.) case, in which A = H̄, and is illu-
minating in that one can easily see the correspondence between the
eigenvalues of A and the excitation energies from the point of view
of first-order perturbation theory.

The first EOM-CC calculations were based on the CCSD
approximation and appeared more than 30 years ago,191 but the
method began to gain momentum with a flurry of activity that
took place both in Gainesville and in Aarhus after 1990.24,189,193 For
excited states that can be characterized as “single excitations”, EOM-
CCSD theory gives excitation energies that are usually no more
than 0.25 eV in error and tends toward overestimation.199–201 Later
developments led to EOM-CCSDT202–204 and EOM-CCSDTQ,205,206

as well as general arbitrary-order EOM-CC47 via the MRCC pack-
age.42,43 With these methods, excitation energies become systemat-
ically more accurate as the cost of calculation grows significantly.
As for ground-state methods, the high cost of EOM-CCSDT calcu-
lations has driven efforts to find suitable approximations, and this
remains an area of important research. Such approximations include

generalizations of the CCSDT-n methods mentioned earlier, CC3,
which is probably the most popular and perhaps successful such
approach,207 and a great variety of non-iterative methods. While
many such methods have been identified and tested,28,202,208–218 a
recent non-iterative technique [EOM-CCSD(T)(a)∗]29 shows con-
siderable promise200,219–221 and might be the method of choice for
future applications.

While sometimes thought of as strictly a means to compute
excitation energies, EOM-CC methods can also be used to com-
pute states that differ from the ground state in terms of the number
of electrons. That is, their domain of application includes “excited
states” in which electrons are “excited” to the continuum (ioniza-
tion) or electrons are excited from the continuum (electron attach-
ment). EOM-CC methods belonging to the former class are called
EOMIP-CC27 (removal of one electron), EOMDIP-CC222 (two elec-
trons), etc., while those in the latter class are EOMEA-CC223 (attach-
ment of one electron), EOMDEA-CC, and so on. EOM-CC meth-
ods, in which the number of electrons in the initial and final state
are identical, are then called EOMEE-CC (EE standing for excitation
energy). CFOUR has extensive capabilities for all the variants men-
tioned above [EOMEE-CC, EOM(D)IP-CC, and EOMEA-CC], the
state of which is summarized in Table II.

It should be noted that the capabilities indicated in Table II are
only for efficient implementations of the methods. This is impor-
tant because it has been shown224 that an EOMEE-CC code can be
used to do EOM(D)IP-CC or EOMEA-CC calculations by making
use of continuum orbitals; excitation of one electron to this contin-
uum orbital is equivalent to EOMIP-CC, excitation from an occu-
pied continuum orbital is equivalent to EOMEA-CC, etc. That is,
while Table II indicates that, for example, EOMEA-CCSDT is not
“available” in CFOUR, such calculations can indeed be done by this
means, although the resulting implementation has the same cost
as the corresponding EOMEE-CCSDT calculation. CFOUR allows the
straightforward use of these continuum orbital techniques, and the
capabilities extend to both energy and gradient calculations.

In addition to EOMEE-CC methods, CFOUR is also able to per-
form calculations using configuration interaction singles225 (CIS,
also known as the Tamm–Damcoff approximation226,227), the
perturbatively corrected CIS(D) method,228 and an approximate
method known as EOM-CCSD(2).229 All of these methods work at
the excitation energy level, and both EOMEE-CCSD(2) and EOMIP-
CCSD(2) are implemented.

Several functionalities are available to direct the program into
the desired excited state. The character of the excitation can be spec-
ified in terms of dominant orbitals as further explained in Sec. III.
Alternatively, one can simply request the lowest excited state(s) of a
particular spin and spatial symmetry. It is also possible with CFOUR to
compute excited states near a particular target energy.

D. Analytic derivatives and molecular properties
for excited states

While the pioneering work with EOM-CC theory dealt strictly
with energy differences (vertical excitation energies, ionization
potentials, and electron attachment energies), the central impor-
tance of excited states in chemical physics has demanded that the
associated potential energy surfaces be characterized computation-
ally. Such studies are relevant not only for analysis and predictions
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TABLE II. EOM-CC methods available in the CFOUR program package for closed-shell reference functions. A single x desig-
nates that only energy evaluations are possible, while xx indicates that both energies and gradients can be calculated. The
interface to the MRCC program also does allow general CC(n) (n > 1) computations of energies and gradients for open- and
closed-shell references.

Method EOMEE EOMIP EOMEA Remarks

CCSD xx xx xx Also open-shell |0⟩ and EOMDIP
CCSDT xx x Also EOMDIP
CCSDTQ x x
CCSDT-n, n = 1a, 1b, 2, 3 x
CC2 xx x Inefficient code,M6 scaling
CC3 x
CCSD∗a x x
CCSD(T)b x
CCSD(T)(a)c x x
CCSD(T)(a)∗c x
CCSDR(n), n = T, 1a, 1b, 3d x
CIS xx
CIS(D) xx
CCSD(2) xx xx

aSee Ref. 28.
bSee Ref. 214.
cSee Ref. 29.
dSee Ref. 210.

of electronic spectroscopy but also to study photochemical behav-
ior and interactions between excited states. Accordingly, analytic
derivative techniques similar in the spirit of application to those
mentioned in Sec. II B were developed for EOM-CC methods in the
early 1990s25–27 and were present in the first version of CFOUR. The
EOM-CC energy gradient is given by

dE
dx
= ⟨0∣L

∂H̄
∂x

R∣0⟩ + ⟨0∣Z
∂H̄
∂x
∣0⟩, (13)

and, apart from contractions between the differentiated electronic
Hamiltonian and the right- and left-eigenvectors of H̄ (note that a
calculation of the excitation energies requires only that one of these
eigenvectors be evaluated), involves an additional de-excitation
operator Z, which is analogous to the Λ operator in ground-state
CC gradient theory. The amplitudes that make up this operator are
obtained from solving the linear system

⟨0∣Z ∣ΦP⟩ = −⟨0∣Ξ∣ΦP⟩[⟨ΦP∣H̄ − ECC∣ΦP⟩]
−1, (14)

where matrix elements of the auxiliary operator Ξ are defined by

⟨0∣Ξ∣ΦP⟩ ≡∑
Q
⟨0∣L H̄∣ΦQ⟩⟨ΦQ∣R∣ΦP⟩ (15)

with ΦQ representing a determinant in the space of excitations
beyond that defined by the particular truncated CC approach (for
example, triply excited determinants in CCSD).

As for ground state CC methods, the general gradient for-
mula [Eq. (13)] is recast in terms of one- and two-electron density
matrices. Contraction of these with the geometric derivatives of the
Hamiltonian gives the gradient, while contraction of the densities
with other operators again provides other properties. EOM-CCSD
and EOM-CC2 gradients are available in CFOUR for all methods

(EOMEE, EOMIP, and EOMEA), for both closed-shell and open-
shell reference functions, and offer a very efficient means to study
potential energy surfaces of the final states. EOMEE-CCSDT gradi-
ents for closed-shell references are a very recent addition, and gen-
eral EOMEE-CC(n) gradients are available with the MRCC interface. It
is a straightforwardmatter here to calculate properties such as dipole
moments, higher multipole moments, Mulliken populations, and so
on, using the one-electron density; these properties are all equivalent
to those calculated as energy derivatives.

In addition to gradients, one-electron transition densities
involving only the ground-state T amplitudes and the L and R
vectors25 are available. These yield, among other things, transition
moments. It is here (and only here) that EOM-CC and CCLR meth-
ods provide different results.230–232 The transition moments eval-
uated in CFOUR calculations—those mentioned here—are not size-
intensive, becoming so only in the limit of a full CC (i.e., CCSDTQ
for a four-electron system) calculation. In CCLR theory, the transi-
tion moments satisfy size-intensivity but involve the cost associated
with solving an additional set of linear equations for each excited
state considered.

III. INPUT AND USE OF CFOUR

CFOUR calculations are rather straightforward to perform. After
having installed CFOUR (for information concerning the installation
of CFOUR, see the CFOUR website www.cfour.de and Appendix A) and
with all executables placed either in the working directory of the cal-
culation or in a directory (e.g., ../cfour/bin/) that is part of the
path, all calculations (unless otherwise advised) are invoked by the
command xcfour. This command calls a driver program that, after
having analyzed the input file ZMAT (see below), determines the var-
ious modules that need to be run and in what order to call them.
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The input for a CFOUR calculation consists of a single file. This
file, called ZMAT, consists of several sections as shown in the fol-
lowing example. The first three sections are always necessary, while
the fourth is optional (dependent on the chosen computational
approach).

EOMEE-CCSD/cc-pVDZ calculation for water
H
O 1 R
H 1 R 2 A

R=0.958
A=104.5

∗CFOUR(CALC=CCSD,BASIS=PVDZ,EXCITE=EOMEE)

%excite∗
1
1
1 5 0 6 0 1.0

The ZMAT file starts with a mandatory one-line title, which is
followed by the geometry information, either in the Z-matrix for-
mat (shown here and which is currently mandatory for geometry
optimizations) or in Cartesian coordinates. The geometry is fol-
lowed by a list of keywords in a sequence of lines that starts with
∗CFOUR. There are roughly 250 active keywords, but virtually all of
them take on default values (or are modified by default according
to other keywords in the input file). Common keywords to supply,
as shown in the example file above, include information about the
chosen quantum chemical method (CALC=CCSD obviously invokes
a CCSD calculation), basis set (BASIS=PVDZ requests the use of the
cc-pVDZ basis), and calculation type (EXCITE=EOMEE requests an
EOMEE-CCSD treatment). Additional parameters such as conver-
gence thresholds, maximum number of iterations, etc., can also be
modified, but they have appropriate default values and do not need
to be supplied. The final section (initiated by a% sign) provides addi-
tional information. In the example chosen here, this information
guides the choice of guess vectors for the EOMEE-CCSD compu-
tation with this particular example instructing the EOM-CC pro-
gram to start with the HOMO → LUMO guess in the Davidson
diagonalization procedure.

Basis set information is provided via the file GENBAS, which
can be either customized and externally supplied or used from the
default location (../cfour/basis/). The same holds also for infor-
mation about effective core potentials (ECPs), which is supplied via
the related file ECPDATA.

Of course, more elaborate input files can be created, and it
is sometimes advantageous or necessary to include additional files
(beyond ZMAT) in the running directory. Examples include here the
file FCMINT (which contains the force constants in Z-matrix internal
coordinates), which can be supplied to facilitate geometry optimiza-
tion (this permits the force constants in FCMINT to be used as a
starting guess for the Hessian as opposed to a naive set of initial
parameters). The ZMAT file below,

Calculation of LVC parameters for nitrogendioxide
O
N 1 R
O 2 R 1 A

R = 1.26 239
A = 116.4431

∗CFOUR(CALC=CCSD,BASIS=AUG-PVDZ,FROZEN_CORE=ON
EXCITE=EOMIP,SCF_EXPSTART=10
CC_MAXCYC=200,LINEQ_MAXCYC=200
FCGRADNEW=0
CHARGE=−1
TRANGRAD=ON,DERIV_LEV=1)

%excite∗
1
1
1 0 10 0 1.0

together with the file FCMFINAL, which, in this example, contains the
force constants for the NO2 anion, calculated separately, provides
the input to calculate the linear vibronic coupling (LVC) parame-
ters in Table IX (vide infra) for the Ã2B2 state (the κAs , vide infra).
In addition to directing CFOUR to do an EOMIP calculation with
the NO2 anion as reference, it specifies the calculation of a gra-
dient (DERIV_LEV=1), that this gradient should be transformed to
the normal coordinate representation associated with the force con-
stants in FCMFINAL, that the frozen core approximation is to be
used, and also some other parameters about the algorithm used
for the frozen-core gradient calculation, and specifications for the
maximum number of cycles for various equations that are solved.

Clearly, it is not possible or appropriate here to give an exhaus-
tive list of examples. The point is simply to show a few representative
cases and to state that the input is generally quite simple: the ZMAT
file and perhaps another file or two, depending on the type of cal-
culation. More examples can be found on the CFOUR website (see
Appendix A).

IV. NEW FEATURES
A. Higher-order coupled cluster methods: xncc

Highly accurate calculations often require treatment of the cor-
relation energy beyondCCSD(T). For example, many common ther-
mochemical protocols such as HEAT,233–235 Wn,236–238 and ANLn239

include not only CCSDT contributions but additional contributions
from quadruple excitations [CCSDT(Q) or CCSDTQ] and in some
cases even quintuple excitations [CCSDTQ(P) or CCSDTQP]. Such
corrections are critical (in combination with corrections for rela-
tivistic effects, basis set convergence, etc., described in Secs. IV C,
IV F, and IV G) to reaching sub-kJ/mol accuracy, and enabling real-
world applications using these methods has long been a design goal
of CFOUR.

For many years, CFOUR has supported CCSDT energy calcula-
tions for both closed and open-shell references, as well as prop-
erties, gradients, and even second derivatives at the closed-shell
CCSDT level. Additionally, the CCSDT(Q) method,108 which pro-
vides a cost-effective and often highly accurate approximation to full
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CCSDTQ, was originally implemented in a development version of
CFOUR. Recently, the full hierarchy of coupled cluster methods has
been made accessible via the interface between CFOUR and the MRCC

program of Kállay.44

However, in the last several years, we have become interested
in writing a new implementation of CCSDT(Q), CCSDTQ, and
other higher-order coupled cluster methods, which maximizes effi-
ciency and scalability on modern computers, as well as develop-
ing new theoretical techniques to facilitate such an implementa-
tion. For closed-shell references, we developed a general algebraic
and graphical interpretation of the non-orthogonal spin-adaptation
approach240,241 first pioneered by Kucharski and Bartlett242 and later
used by one of us (JG) to develop an efficient closed-shell CCSDT
code in CFOUR. In order tomaximize efficiency, we coupled thismath-
ematical technique with a storage format and set of implementa-
tion techniques designed to minimize data movement (from disk
as well as from main memory) and to avoid costly tensor trans-
poses.62 We alsomade code quality a major design goal, and we put a
large focus on modularity and code reusability, maintainability, and
extensibility. Finally, we included explicit OpenMP parallelization to
effectively make use of modern multi-core processors.

The end product of this work is a new CFOUR module, xncc,62,240
which implements a full suite of coupled cluster methods for closed-
shell molecules through CCSDTQ, including, in most cases, gradi-
ents (see Table I for the full list of supported methods). Calcula-
tions with xncc can be requested with CC_PROGRAM=NCC, but, in
most cases, this is not necessary as xncc is the default program for
CCSDT(Q) and CCSDTQ. Sample timings from Ref. 62 are listed in
Table III as the number of minutes per iteration (for CCSDT and
CCSDTQ) or the time in minutes required for the (Q) correction.
The hardware used here was one core of an Intel Xeon E5620 proces-
sor with 22 GB of memory allocated to CFOUR. From these results, it
is immediately clear that significant speed-ups can be achieved with
xncc compared to other programs—while these results use only one
core, the multi-core scalability of xncc is also very good with paral-
lel efficiencies (achieved parallel speed-up divided by the number of
cores used) of ∼50% for eight or more cores.

xncc also includes implementations of EOMEE-CC and
EOMIP-CC methods through CCSDTQ, with gradients avail-
able for EOMEE-CCSD and EOMEE-CCSDT. In addition to full
EOMEE-CCSDT, a number of approximate methods are also
included: EOMEE-CCSD∗,28,243 EOMEE-CCSD(T)(a) and EOMEE-
CCSD(T)(a)∗,29 EOMEE-CC3,207 EOMEE-CCSDT-n and EOMEE-
CCSD(T),209,211 and EOMEE-CCSDR(T), EOMEE-CCSDR(1a), and

TABLE III. Timing of CCSDT(Q) and CCSDTQ calculations in minutes (from Ref. 62)
for a representative set of small molecules. Two basis sets are listed for some
molecules: in this case, the first basis set refers to the CCSDT(Q) calculation, while
the second refers to the CCSDTQ calculation. The time for the CCSDT part (per
iteration) and the (Q) correction in CCSDT(Q) are listed separately.

CCSDT (Q) CCSDTQ

HSOH cc-pVTZ/cc-pVDZ 3.7 85.5 9.3
H2O cc-pVQZ/aug-cc-pVTZ 0.3 5.9 19.7
H2CCCCH2 cc-pVDZ/DZ 1.2 43.9 35.1
O3 aug-cc-pVDZ 0.2 7.5 99.6
FO3

– cc-pVDZ 0.5 12.3 241.3

EOMEE-CCSDR(3).210 Corrections to excited state energies, geome-
tries, and vibrational frequencies can be rather large; for exam-
ple, in a calculation of the geometries and harmonic frequencies
of the S1 excited state potential energy surface of C2H2, we found
that triples contributions to the harmonic frequencies can be in
excess of 100 cm−1, while quadruples corrections can be as large as
35 cm−1.206 While the current release includes analytic gradients for
EOMEE-CCSDT, transition properties at this level have not yet been
implemented but will be included in the next version along with
EOMEE-CCSDT natural transition orbitals.

Another unique feature of xncc is the use of sub-iteration con-
vergence acceleration for the CCSDT, CCSDTQ, and approximate
CCSDT (CC3 and CCSDT-n) methods.244 For CCSDT and other
iterative triples methods, this technique essentially “freezes” the
higher-order cluster amplitudes and their contributions to the sin-
gles and doubles, while a number of (modified) CCSD iterations are
performed. The triples amplitudes are then updated and the cycle
repeats. For CCSDTQ, two levels of sub-iteration are possible, and
xncc utilizes both of them simultaneously by default. For all meth-
ods, but especially for approximatemethods such as CCn, CCSDT-n,
and CCSDTQ-n, this technique can drastically reduce the number
of iterations required for convergence. The current version includes
sub-iteration for the amplitude equations, optional direct inversion
in the iterative subspace (DIIS) for the triples and/or quadruples
amplitudes, and optional amplitude damping that can help in cases
where oscillatory behavior is encountered. The next version will
extend the sub-iteration technique to linear equations (e.g., the Λ
equations) and potentially to EOM-CC as well.

The availability of a high-performance yet easily extensible plat-
form for higher-order coupled cluster has also allowed us to rapidly
implement new coupled cluster-based methods. Perhaps the best
example of this is the recent development of bivariational coupled
cluster perturbation theory methods CCSD(T-n), CCSD(TQ-n),
and CCSDT(Q-n)107,135 for which we have implemented up to
n = 5, 4, and 6, respectively. These methods, with the exception
of the lowest-order correction, scale formally the same as the full
method (CCSDT or CCSDTQ), but, by recovering essentially all
of the higher-order correlation energy in only a small number of
high-scaling steps, a steep reduction in computational cost can be
achieved. As an example, errors in total atomization energies for
a test set of small molecules are summarized in Table IV with
respect to full CCSDTQ.135 From these results, we can see that

TABLE IV. Total atomization energy errors with respect to CCSDTQ in kJ/mol for
various approximate quadruples methods (from Ref. 135). Errors are summarized by
Mean Signed Error, Mean Absolute Error, and MAXimum-amplitude signed error.

CCSDT CCSDT(Q) Λ-CCSDT(Q)

MSE −3.06 0.55 0.35
MAE 3.06 0.56 0.36
MAX −14.06 4.01 1.92

CCSDT(Q–2) CCSDT(Q–3) CCSDT(Q–4)

MSE −0.70 −0.01 −0.15
MAE 0.70 0.08 0.15
MAX −2.58 −0.29 −0.97
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CCSDT(Q-3) can reduce errors by approximately one order of
magnitude compared to CCSDT(Q) at the expense of oneM10 step.

All the capabilities described here (except where noted) are
available in the current version. The next release of xncc will
focus on implementing open-shell alternatives for all supported
methods, in particular, CCSDT(Q) and CCSDTQ. Additionally, the
version of xncc under development has included further perfor-
mance improvements due to transpose-free tensor contraction oper-
ations from the TBLIS library,245 including extension to tensors with
explicit point-group symmetry.246 We also hope to include scalable
distributed-parallel implementations in the next release.

B. Quadratically convergent SCF and complete active
space SCF methods

A rigorous treatment of multireference systems can usually
not be achieved by using a single-reference method (see Sec. II C).
In order to have not only a method to describe such systems
in an unbiased and qualitatively correct way but also a starting
point for internally contracted multireference correlated treatments,
an implementation of the Complete Active Space–Self-Consistent
Field (CASSCF) method247,248 has been recently added to CFOUR. In
CASSCF, the orbital space is partitioned into the following three
groups: (i) internal orbitals that are always doubly occupied, (ii)
active orbitals with floating occupation, and (iii) external orbitals
that are always empty. The molecular wavefunction is written as the
linear combination of all the symmetry allowed Slater determinants
that can be formed by varying the occupation of the active orbitals
for a given number of active electrons. Both the orbitals and the CI
coefficients are then fully optimized. Such a non-linear optimiza-
tion problem is typically difficult to converge and ill-conditioned,
making the use of advanced numerical strategies mandatory. Many
CASSCF algorithms have been developed in the past. The numerical
strategies proposed can be grouped into two main classes depending
on their convergence properties, namely, first-order methods249–254

and second-order methods.255–261 The latter strategy is particularly
attractive, because the second-order methods offer rigorous con-
vergence and are particularly robust, so that achieving convergence
requires little to no case-by-case calibration by the user.

The implementation strategy pursued for the CASSCF module
of CFOUR is based on the Norm Extended Optimization (NEO) algo-
rithm of Jensen and co-workers.77,258–260 The CI operations are han-
dled in a direct fashion using a string-based determinant CI formal-
ism,262–264 and the CI implementation follows the integral-driven,
vector implementation by Bendazzoli and Evangelisti.265

A second-order optimization strategy is based on the definition
of a quadratic model Q of the energy, obtained by expanding it in
Taylor series with respect to the variational parameters x up to the
second order around a starting point x0,

Q(x) = E(x0) + g†x +
1
2
x†Gx, (16)

where g and G are the energy gradient and Hessian evaluated at the
expansion point. The straightforward minimization of the quadratic
model corresponds to the Newton–Raphson (NR) method142 and
prescribes to take a step

δNR = −G−1g. (17)

The NR method enjoys quadratic convergence if the starting point
is close to a local minimum but is known to exhibit erratic behav-
ior or even to diverge if, at the starting point, the Hessian is not
positive definite. This issue can be solved by defining a trust region,
i.e., a maximum stepsize Rt within which the quadratic model of the
energy is deemed to provide an accurate representation. This con-
straint can be imposed bymeans of a Lagrangemultiplier ν. By doing
so, one gets, for the step, the following coupled equations:

{
(G + νI)δ = −g,
∥δ(ν)∥ = Rt .

(18)

The trust-radius Newton method is also known as Levenberg–
Marquardt (LM) method.142 If the LM method is coupled with an
adaptive choice of the trust radius Rt , as proposed by Fletcher,142

depending on the agreement of the quadratic model with the energy,
it is possible to prove that, under certain regularity hypotheses
of the energy that can be assumed to be satisfied, the procedure
always converges to the closest local minimum. The NEO algorithm
is an elegant practical implementation of the Fletcher–Levenberg–
Marquardt (FLM) strategy, thus enjoying its convergence proper-
ties.259 The NEO scheme is the default for state-specific CASSCF
calculations. The implementation in CFOUR also includes another
second-order algorithm, in particular, a simplified version of the
one proposed byMeyer, Werner, and Knowles,74,256,261 which can be
used for state-averaged CASSCF. CASSCF calculations are requested
via the CALC=CASSCF keyword and require one to provide, as an
additional input, the definition of the orbital spaces. This is done
by adding a section to the ZMAT input file that specifies the number
of active alpha and beta electrons and the number of active orbitals
and then the actual definition of the active space. The latter can be
provided in two different ways. The first possibility, invoked with
the keyword CAS_INPUT=ORBITALS, is to specify a list of active
orbitals (in HF energy order), and the second possibility, invoked
with the keyword CAS_INPUT=OCCUPATION, is to specify, for each
irreducible representation, the number of internal orbitals and then
the number of active orbitals. The following example provides the
input for a CASSCF calculation on benzene, inD2h symmetry, corre-
lating the six π electrons in the six π orbitals, using the first strategy,
where the order of the orbitals is obtained from a HF calculation
using the cc-pVDZ266 basis set:

%casscf
3 3 6
17 20 21 22 23 30

The same calculation, using the second input method, is
obtained with the following route:

%casscf
3 3 6
6 4 5 3 0 0 0 0
0 0 0 0 2 1 2 1
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Other options that control the CASSCF calculations can be
found in the CFOUR online manual (see Appendix A). CASSCF can
be used with either non-relativistic or spin-free relativistic Hamilto-
nians, which are detailed in Sec. IV C. At the moment, the CASSCF
code is still experimental, and it is thus not included in the current
public release of CFOUR. The code will be made available with the next
release.

The quadratically convergentmachinery developed for CASSCF
can also be employed to deal with a particularly important sub-
case, i.e., regular SCF. These equations can be notoriously dif-
ficult to converge using a standard SCF algorithm even when
Pulay’s DIIS267 is used to accelerate convergence, especially for
open-shell systems. Furthermore, even for well-behaved systems,
it can be difficult to achieve very tight convergence, which is
required, for instance, when computing numerical derivatives of
post-HF Hessians in anharmonic force field calculations. In all
these cases, the user must try and adjust a combination of SCF
convergence parameters, such as whether to damp the first iter-
ations and what damping parameters to use, how many points
to use for the DIIS extrapolation, and when to start it. Tun-
ing all these parameters on a system-dependent basis can be very
time consuming, especially if one has to perform a large num-
ber of calculations for which different parameters need to be
used.

In such a situation, the robust convergence properties of a
second-order scheme are particularly useful. A quadratically con-
vergent implementation of restricted and unrestricted HF based on
the solution of Eq. (18) is available in the last public release of CFOUR
and can be used by adding the SCF_PROG=QCSCF keyword. The cur-
rent implementation works in the MO basis and requires to fully
assemble and diagonalize the MO rotation Hessian and is, therefore,
much more computationally demanding than regular SCF. How-
ever, as HF is typically an intermediate step in a correlated calcu-
lation, this is, in practice, not an issue for the standard CFOUR user.
A new, direct, AO-based implementation that uses the NEO algo-
rithm exists and can be accessed by specifying SCF_PROG=DQCSCF.
However, this implementation is not mature enough to be released
at the moment and will be made available with the next release of the
code.

The QCSCF program can be considered as an almost black-
box SCF code. However, there are a few precautions that the user
needs to take. The code performs, at the beginning of the calcula-
tion, a few regular SCF iterations that are used in order to get a
better starting point for the QC solver and, if a calculation is run
with symmetry, to try to guess the correct occupation numbers for
each irreducible representation. These are fixed during the QC opti-
mization so that QCSCF will converge to a minimum for that given
occupation. The user should thereforemake sure that the occupation
numbers guessed are correct or provide the correct ones in input. A
second aspect that should be considered is the general condition-
ing of the problem. If a very large basis set is used, linear depen-
dence problems can be encountered, as it can be seen by looking
at the eigenvalues of the overlap matrix. In such cases, it will not
be possible to converge the SCF equations beyond a certain thresh-
old due to numerical precision limitations. This issue can be easily
detected by looking at the QCSCF iterations. If the residual norm
starts oscillating or iterations are stagnating, it means that the best
numerical solution that can be achieved for the chosen basis set

has been reached, and the user should either consider the calcula-
tion converged or, if not satisfied with the result, remove redundant
basis functions. A third aspect concerns UHF cases for which multi-
ple SCF solutions with different spin contamination exist. QCSCF is
guaranteed to converge to the closest local minimum, which might
be different from the one found with regular SCF. In the experience
of the authors, QCSCF tends to converge to the solution that is low-
est in energy and more spin-contaminated. Whether this solution
is acceptable is something that the user needs to check. Neverthe-
less, a subsequent post-HF treatment is usually able to remove most
of the spin contamination. An interesting aspect of QCSCF is that,
when regular SCF converges to an unstable solution, QCSCF usually
manages to converge to a stable one, at least within the symmetry
of the electronic wavefunction. However, convergence can be diffi-
cult, especially if theMO rotationHessian has several small and close
eigenvalues.

In order to illustrate the robustness of QCSCF, we propose two
examples. As an example of a routine application where very tight
convergence is required, we compute the SCF solution for benzene
(C–C distance 1.3989 Å and C–H distance 1.0808 Å) with the aug-
cc-pVTZ266 basis set. This is a standard calculation; however, we
require the wavefunction to be converged to 10−11 in the root mean
square (rms) norm of the MO rotation gradient. Using the default
parameters for the calculation and starting from a guess obtained
by diagonalizing the core Hamiltonian, QCSCF performs six regu-
lar SCF iterations, until the rms variation of the density matrix is
smaller than 0.1, and then manages to converge in only four FLM
iterations. On the other hand, the regular SCF code easily achieves an
intermediate convergence (maximum change of the density matrix
smaller than 10−7) but then struggles to further refine the solu-
tion, exhibiting an oscillating behavior. The convergence profiles
of the two algorithms are reported in Fig. 1. The superlinear con-
vergence of QCSCF is particularly apparent, as two convergence
profiles can be seen focusing on the green line. The regular SCF iter-
ations exhibit a linear convergence profile. As soon as the FLM iter-
ations start, the energy error drops very rapidly until convergence
is achieved.

FIG. 1. Convergence profile for the regular SCF code and QCSCF for benzene.
The converged energy is −230.780 571 677 Eh.

J. Chem. Phys. 152, 214108 (2020); doi: 10.1063/5.0004837 152, 214108-12

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A second, more challenging example concerns a weakly bonded
complex of molecular oxygen and argon (O–O distance 1.25 Å,
O–Ar distance 2.1748 Å, O–O–Ar angle 174.21○), the ground state
of which is a triplet. For this molecule, described using a UHF ref-
erence, the regular SCF code converges with some difficulty to an
unstable solution, which has both a UHF–UHF instability that pre-
serves the symmetry of the wavefunction and a UHF–UHF insta-
bility to a broken-symmetry solution. QCSCF manages to converge
to a minimum within the symmetry (about 1μEh lower in energy
than the regular SCF solution), although convergence requires as
many as 36 FLM iterations. An instability with respect to a broken
symmetry solution is, however, still present. Interestingly, the NEO
based code xdqcscf converges effortlessly to a stable solution—no
instability is found even with respect to a broken symmetry UHF
solution. While the latter result is a fortunate occurrence that can,
in general, not be expected, the better convergence properties of
the NEO based code can be explained by the fact that the NEO
algorithm introduces an augmented Hessian so that the presence
of small and close eigenvalues in the original MO rotation Hes-
sian has a small effect on the overall convergence of the optimiza-
tion. The convergence profile of the three algorithms is reported in
Fig. 2. It is interesting to comment on the behavior of QCSCF. The
first iterations manage to quickly locate the same solution found by
the regular SCF code. However, the iterations are not stopped as
QCSCF detects the instability in the form of a negative eigenvalue
in the MO rotation Hessian. A large number of iterations are then
spent trying to reach the local minimum. As the lowest eigenval-
ues of the Hessian are both small and very close, convergence is
very slow. On the other hand, the NEO based xdqcscf code does
not suffer from this problem and converges smoothly to the global
minimum.

FIG. 2. Convergence profile (absolute energies are reported) for the regular SCF
code, the default QCSCF code, xqcscf, and the NEO based code, xdqcscf,
for Ar⋯O2. The converged energy is −676.391 261 81 Eh for the regular SCF,
which finds a solution unstable both with respect to a UHF solution with the
same symmetry and with broken symmetry, − 676.391 262 67 Eh for xqcscf,
which finds a solution that is unstable with respect to a UHF solution with
broken symmetry, and −676.391 300 17 Eh for xdqcscf, which finds a stable
solution.

C. Relativistic quantum chemical methods
Treatment of relativistic effects268,269 is indispensable for cal-

culations of molecules containing heavy elements and also plays an
important role in high-accuracy calculations of molecules that com-
prise lighter atoms from the first few rows of the periodic table. The
development of relativistic quantum-chemical methods in CFOUR has
focused on obtaining relativistic corrections to energies and prop-
erties with a CC treatment of electron correlation. Initial efforts on
the perturbative treatment of scalar-relativistic effects were focused
on the framework of standard (non-relativistic) CC gradient theory
and the Breit–Pauli Hamiltonian.270,271 First-order scalar-relativistic
corrections to energies can be conveniently obtained in a calcula-
tion of first-order properties (PROP=FIRST_ORDER) and are widely
used in well-established protocols for the computation of ther-
mochemical parameters.233 Calculations of scalar-relativistic cor-
rections to geometrical parameters and electrical properties have
been enabled by using nonrelativistic analytic CC second-derivative
techniques.272 Perturbative techniques for treating relativistic effects
have been extended to using direct perturbation theory (DPT),52

a four-component formalism that permits a rigorous treatment of
two-electron contributions.273–275 In the released version of CFOUR,
the use of the keyword RELATIVISTIC=DPT2 in geometry opti-
mizations and evaluation of first-order properties is a convenient
way of obtaining leading relativistic corrections to geometries and
first-order electrical properties. Uncontracted basis sets are rec-
ommended for DPT calculations, since DPT requires an accurate
description for both the non-relativistic and the relativistic wave-
functions. DPT corrections to energies have been implemented in
CFOUR through fourth order with respect to c−1 (DPT4) as ana-
lytic second derivatives of non-relativistic energies, including both
scalar-relativistic corrections and spin–orbit corrections,53 and have
been further extended to sixth order for scalar-relativistic correc-
tions.276 Furthermore, DPT4 corrections to electrical properties can
be computed.54 The development of DPT has also provided relativis-
tic one- and two-electron integrals required for the development of
non-perturbative approaches.

Subsequent development of relativistic quantum chemical
methods within CFOUR has involved a rigorous non-perturbative
treatment of scalar-relativistic effects augmented with a perturbative
treatment of spin–orbit coupling. In these calculations, the cost of
the coupled-cluster steps of a scalar-relativistic calculation is essen-
tially identical to that of the corresponding non-relativistic calcu-
lation. In contrast, spin-symmetry breaking due to spin–orbit cou-
pling leads to substantial computational overhead; a spin–orbit CC
calculation requires more than an order of magnitude more com-
puting time and storage than a corresponding nonrelativistic or
scalar-relativistic calculation.277 Meanwhile, the magnitude of the
impact of scalar-relativistic effects on properties is usually substan-
tially larger than that of spin–orbit effects. Therefore, a natural idea
for a cost-effective treatment of relativistic effects at CC levels is to
treat the larger but computationally less expensive scalar relativistic
effects rigorously and then address spin–orbit effects by means of
perturbation theory.

In this context, the spin-free exact two-component theory in
its one-electron variant (SFX2C-1e)56,278,279 is highly recommended
for a rigorous treatment of scalar-relativistic effects in routine
chemical applications. The SFX2C-1e scheme performs an exact
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block-diagonalization of the spin-free version of the matrix rep-
resentation of the Dirac Hamiltonian to decouple electronic and
positronic degrees of freedom and uses the electronic block of
the resulting matrix representation of the Hamiltonian together
with non-relativistic two-electron integrals in the subsequent many-
electron treatment. As scalar-relativistic corrections are dominated
by one-electron contributions,278,280 the SFX2C-1e scheme is capa-
ble of providing an accurate treatment of scalar-relativistic effects
on energies and properties. An SFX2C-1e calculation requires only
additional manipulation of one-electron Hamiltonian integrals as
compared to a non-relativistic calculation and thus essentially has
the same computational cost, as mentioned above.

The SFX2C-1e energy and analytic gradients56,281 are available
in the released version of CFOUR. SFX2C-1e calculations of energies
and first-order properties and geometry optimizations can conve-
niently be carried out. That is, the same input file used for the
corresponding non-relativistic calculation needs only an instruction
that the SFX2C-1e scheme is to be used (RELATIVISTIC=X2C1E),
and then, an appropriate basis set (recontracted for the SFX2C-1e
scheme) needs to be selected. Table V summarizes the geomet-
rical parameters for gold-containing molecules computed at the
non-relativistic and SFX2C-1e CCSD(T) levels. These SFX2C-1e
CCSD(T) calculations have essentially identical computational cost
as the corresponding non-relativistic ones; scalar-relativistic effects
are obtained for free. In this demonstration, the availability of ana-
lytic gradients and the efficiency of the SFX2C-1e scheme allow a
quick prediction for the geometry of an unknown gold-containing
species (AuCH3) with reasonably good accuracy, with one optimiza-
tion cycle (one gradient calculation) taking only around 15 min
using a single core of an Intel Xeon E5-2698v3@2.30GHz processor
and 4 GB memory. More rigorous treatments of scalar-relativistic
effects using the spin-free Dirac–Coulomb (SFDC) approach282 or
SFX2C in its mean-field variant (SFX2C-mf)283 have also been
implemented in CFOUR. The SFDC approach features a spin sep-
aration in the four-component framework and is perhaps the
most rigorous treatment of scalar-relativistic effects. SFDC is avail-
able in the released version of CFOUR for calculations of energies
and first-order electrical properties (RELATIVISTIC=SFREE).55 The
SFX2C-mf scheme recently implemented284 in CFOUR performs the

TABLE V. Geometrical parameters of AuF, AuCN, and AuCH3 computed at the non-
relativistic and SFX2C-1e-CCSD(T) levels (bond lengths in Å and bond angles in
degree). 1s electrons of C, N, and F as well as 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, and 4d
electrons of gold have been kept frozen in the CC treatment. The ANO basis sets of
triple-zeta quality used here have been obtained by recontracting ANO-RCC primitive
sets285,286 using non-relativistic and SFX2C-1e CCSD atomic densities and can be
found at www.cfour.de.

Nonrelativistic SFX2C-1e Experiment

AuF R(Au–F) 2.094 1.921 1.918
AuCN R(Au–C) 2.151 1.902 1.912

R(C–N) 1.171 1.168 1.159
AuCH3 R(Au–C) 2.207 1.984 . . .

R(C–H) 1.088 1.088 . . .
∠(Au–C–H) 107.7 107.3 . . .

block-diagonalization at the HF level and will be available in the next
released version.

Perturbative treatment of spin–orbit effects can be obtained
using either the SFDC or the SFX2C-1e scheme as the zeroth-order
treatment.287–289 For the latter, the corresponding spin–orbit inte-
grals are defined as first derivatives of SFX2C-1e Hamiltonian inte-
grals, thereby treating spin–orbit integrals in the four-component
formulation as the perturbation and using the analytic SFX2C-
1e derivative technique. In this way, scalar-relativistic effects on
spin–orbit integrals, which represent the coupling between scalar
relativistic effects and spin–orbit coupling, have been taken into
account. This greatly extends the applicability of the perturbative
treatment of spin–orbit coupling in CFOUR to molecules contain-
ing heavy elements. Two-electron spin–orbit contributions can be
taken into account using the molecular mean-field (MMF) or the
atomic mean-field (AMF) spin–orbit approach.288,290,291 The result-
ing effective one-electron spin–orbit integrals can be contracted with
one-electron transition density matrices to obtain spin–orbit matrix
elements between two electronic states. The EOM-CCSD transition
density matrices (also needed for the quasidiabatic couplings in
Sec. IV E) have been shown to provide accurate spin–orbit param-
eters289,292,293 and are highly recommended for routine applications.
Spin–orbit splittings of representative 2Π states computed using
MMF and AMF spin–orbit integrals within the SFX2C-1e scheme
at the EOM-CCSD level are summarized in Table VI. The computed
splittings compare very well with the experimental values, with the
biggest discrepancy being about 4% in the case of TeH. SFX2C-1e
EOM-CCSD calculation of spin–orbit coupling matrix elements will
be available in the next release of CFOUR.

CFOUR has also included options for non-perturbative treat-
ment of spin–orbit coupling to obtain benchmark results or for
studying heavy elements such as those in the 6p or 7p blocks
for which these effects are too large to be handled perturbatively.
The released version of CFOUR provides a spin–orbit CCSD(T)
scheme for closed-shell systems.294 In this scheme, a HF calcu-
lation using scalar-relativistic effective core potentials (ECP) is
first performed to obtain orbitals. A corresponding ECP spin–
orbit term is then included to augment the Fock matrix in sub-
sequent CC calculations. Analytic first and second derivatives are
available for this scheme in the released version of CFOUR.294–296

Recent developments along this line include EOMEE-, EOMEA-,

TABLE VI. Spin–orbit splittings (in cm−1) of 2Π radicals calculated at the SFX2C-1e-
EOM-CCSD level using uncontracted ANO-RCC basis sets. “MMF” and “AMF” refer
to molecular mean field and atomic mean field, respectively. The experimental values
are given as compiled in Ref. 289.

MMF AMF Expt.

OH 135.2 132.7 139
SH 369.5 369.3 377
SeH 1701.2 1700.9 1763
TeH 3675.3 3675.1 3816
FO 195.0 193.8 197
ClO 319.6 316.9 322
BrO 985.2 984.5 975
IO 2126.3 2124.0 2091
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and EOMIP-CCSD methods.297–299 Recently, an X2C300–305 AMF
approach has been developed for the non-perturbative treatment
of spin–orbit coupling.59 Based on this approach, coupled-cluster
methods [CCSD(T), EOM-CCSD, and EOM-CCSD(T)(a)∗] with
spin–orbit coupling included at the orbital level have been imple-
mented.60,221,306 The focus of these studies is on efficient implemen-
tation using atomic orbital based algorithms and rigorous treatment
of spin–orbit coupling in X2C. Users requesting more information
about these relativistic methods in CFOUR are encouraged to make
inquiries on the CFOUR mailing list (see Appendix B).

D. Multireference coupled-cluster methods
The treatment of quasidegenerate systems with chemical accu-

racy is one of the most intriguing problems of electronic-structure
theory. Although certain patterns of quasidegeneracy can be treated
by means of EOM-CC methods (see Sec. II C) or in terms of gen-
eralized single-reference CC methods,307,308 all these methods are
subject to limitations, in particular, a bias toward the selected ref-
erence determinant. The development of genuine multireference
CC (MRCC) methods therefore remains an important goal of CC
theory.

Much effort has been devoted to generalize the CC ansatz to the
multireference domain, but this has turned out to be not straightfor-
ward: Many MRCC methods have been suggested and successfully
applied to actual chemical problems, but a theory as elegant and
robust as single-reference CC theory discussed in Sec. II A has yet
to emerge. Comprehensive overviews of the field are provided, for
example, in Refs. 61 and 309.

The development of MRCC theory in CFOUR has concentrated
on the method suggested by Mukherjee and co-workers (Mk-
MRCC).310,311 This is a state-specific MRCC variant relying on the
Jeziorski–Monkhorst ansatz,312

∣Ψα
⟩ =

d

∑
μ
exp(Tμ)∣Φμ⟩cαμ . (19)

The reference determinants Φμ differ in the occupation of the
active orbitals; they form a model space of dimension d, and
their weighting coefficients cαμ are optimized for a particular tar-
get state α. The cluster operators Tμ are specific to reference
Φμ and can be partitioned into excitation classes in analogy to
Eq. (2). So-called internal excitations that map Φμ onto another
reference determinant Φν need to be excluded from Tμ. The
energy Eα and the coefficients cαμ are obtained as the eigenvalue
and eigenvector of an effective Hamiltonian, whose elements are
Heff
μν = ⟨Φμ∣ exp(−Tν)H exp(Tν)∣Φν⟩. The amplitude equations take

on the form

⟨ΦP(μ)∣ exp(−Tμ)H exp(Tμ)∣Φμ⟩ cαμ

+∑
ν≠μ
⟨ΦP(μ)∣ exp(−Tμ) exp(Tν)∣Φμ⟩ Heff

μν c
α
ν = 0, (20)

with ΦP(μ) as an excitation manifold specific to reference Φμ. The
first term of Eq. (20) can be interpreted as a generalization of Eq. (4),
whereas the second term couples the amplitude equations for dif-
ferent cluster operators Tμ, Tν. In practice, the cluster operators are
usually truncated in analogy to the single-reference case, giving rise
to the Mk-MRCCSD,310,311,313 Mk-MRCCSDT,314 etc., models.

Distinct advantages of Mk-MRCC theory include rigorous size-
extensivity,311 the unbiased treatment of all references Φμ in the
model space,61 and conceptual simplicity, resulting in relatively sim-
ple working equations.313 However, all truncated MRCC methods
based on Eq. (19) are not invariant with respect to rotations among
the active orbitals,61,315 and it has also been shown that the com-
putation of excitation energies and frequency-dependent proper-
ties by means of linear-response theory is problematic with Mk-
MRCC methods because the pole structure of the linear-response
function is flawed.316,317 Furthermore, the number of amplitudes
to be determined is proportional to the size of the model space.
As a consequence, the computational cost scales with system
size as d times that of the corresponding single-reference model,
that is, d ⋅ M6 for Mk-MRCCSD, d ⋅ M8 for Mk-MRCCSDT,
and so forth, making Mk-MRCC impractical for large model
spaces.61

CFOUR offers efficient Mk-MRCCSD318 and Mk-MRCCSDT66

implementations for a model space of two closed-shell determi-
nants. An implementation of Mk-MRCC for arbitrary excitation
levels and model spaces has been presented elsewhere.319 The CFOUR

implementation is adequate for biradical species and single-bond
breaking and therefore applicable to many multireference cases. In
these calculations, orbitals can be taken from either an HF or a two-
configurational SCF calculation. The application of Mk-MRCCSDT
to larger molecules is greatly facilitated by means of paralleliza-
tion, that is, computing the triple amplitudes and their contributions
to the singles and doubles residuals in a distributed manner. Mk-
MRCCSDT computations using well over 200 basis functions have
been carried out with CFOUR.66 A non-iterative treatment of triple
excitations, termed Mk-MRCCSD(T), has also been implemented
into CFOUR for model spaces of two closed-shell determinants.320 The
treatment of open-shell states is possible at the Mk-MRCCSD level
using a model space of two open-shell determinants and orbitals
from a low-spin ROHF calculation.321 The case of a full model space
of two electrons distributed among two orbitals (comprising four
reference determinants) can also be treated at the Mk-MRCCSD
level.

Larger model spaces are required if more than two orbitals are
(quasi-)degenerate. Examples include the breaking of double and
triple bonds as well as many transition-metal compounds.61 Such
cases can be treated by means of internally contracted (ic)-MRCC
methods73,322–326 implemented in the GECCO program73 that has been
interfaced to CFOUR.74 In ic-MRCC theory, a single cluster operator
acts on amultideterminantal reference. ic-MRCCmethods maintain
full orbital invariance and size extensivity, and their computational
cost is roughly comparable to that of the corresponding single-
reference method.61,73 However, the working equations are con-
siderably more complicated mandating automated implementation
techniques.73

As a unique feature, CFOUR offers efficient implementations of
analytic gradients at the Mk-MRCCSD318,327 and Mk-MRCCSDT328

levels of theory. The theory is formulated starting from a Lagrangian
in analogy to single-reference CC gradient theory (see Sec. II B). The
Mk-MRCC gradient can be written as318

dE
dx
=∑

μ
c̄μcμ⟨Φμ∣(1 +Λμ) exp(−Tμ)

dH
dx

exp(Tμ)∣Φμ⟩ (21)
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TABLE VII. C1–C2 distances for o-benzyne, C2–C6 distances for m-benzyne, and
C1–C4 distances for p-benzyne in Å computed at the Mk-MRCCSD, CCSD, and
CCSD(T) levels of theory using the cc-pCVTZ basis set. The weights of the reference
determinants [see Eq. (19)] are also shown. For further details, see Ref. 321.

o-benzyne m-benzyne p-benzyne

R [CCSD] 1.2436 . . .a 2.7071
R [CCSD(T)] 1.2567 2.0432 2.7183
R [Mk-MRCCSD] 1.2505 2.0141 2.6865
|c1|2 [Mk-MRCCSD] 0.942 0.921 0.724
|c2|2 [Mk-MRCCSD] 0.058 0.079 0.276

aCCSD calculations for m-benzyne favor a bicyclic structure without multireference
character.

with Λμ as an analog to the Λ operator from Eqs. (6) and (7)
and c̄μ as additional Lagrange multipliers. Equation (21) is evalu-
ated based on density matrices; the relevant details are discussed
in Ref. 318. Besides enabling geometry optimizations of polyatomic
molecules,318,321,327 these analytic gradients also provide conve-
nient access to harmonic vibrational frequencies through numerical
differentiation.

To give an example of Mk-MRCC geometry optimizations,
Table VII shows selected structural parameters for the ground
states of the three isomers of benzyne depicted in Fig. 3. The
electronic structure of these biradicals can be understood qualita-
tively in terms of two frontier MOs that are a bonding and an
antibonding combination of the atomic orbitals hosting the rad-
ical electrons. The wavefunctions are dominated by two closed-
shell determinants whose weights computed with Mk-MRCCSD
are also included in Table VII; this illustrates that the multirefer-
ence character increases from the o-isomer to the m-isomer to the
p-isomer. Owing to the shape of the frontier MOs, the distance
between the two radical centers provides a measure for the influ-
ence of the two reference determinants on the molecular equilib-
rium structures.318,327 Table VII illustrates good agreement between
CCSD and Mk-MRCCSD for o-benzyne, whereas larger deviations
are observed for the other two isomers with stronger multireference
character.

FIG. 3. Optimized structures of the ground states of the three isomers of benzyne
computed at the Mk-MRCCSD/cc-pCVTZ level of theory. Taken from Ref. 321.

TABLE VIII. Spin–orbit splittings in cm−1 calculated at the Mk-MRCCSD/cc-pVQZa

level of theory using the spin–orbit mean-field approximation. Experimental data are
also given. For further details, see Ref. 329.

Molecule Mk-MRCCSD Expt.

OH 135.1 139.2
SH 375.2 377.0
SeH 1707.9 1763.3
NCS 360.8 325.3

ag-functions have been omitted.

In addition to geometrical derivatives, CFOUR can compute spin–
orbit (SO) splittings for 2Π states based on degenerate perturbation
theory as a first-order property at the Mk-MRCCSD level of the-
ory.329 This constitutes an alternative to the computation of these
quantities by means of EOM-CC theory (see Table VI) and is also
helpful for the theoretical analysis of MRCC models relying on
Eq. (19). For such methods, the symmetry properties of the SO
operator allow for a decomposition of the SO splitting expression
into two terms: a similarity-transformed SO operator times a cou-
pling term intimately related to the coupling term from Eq. (20).
It has been argued329 that SO splittings provide a quality measure
for this coupling term. As a numerical example, Table VIII shows
SO splittings for the 2Π states of a few diatomic and triatomic
molecules.

E. Vibronic Hamiltonians and electronic
spectroscopy

A relatively common application of quantum chemistry is to
electronic spectroscopy, the full understanding of which requires
knowledge of electronic, vibrational, and (sometimes) rotational
energy levels. While many electronic transitions, photoioniza-
tion, and electron detachment processes are well-described by
the Franck–Condon approximation, this is not always the case.
A standard approach for treating these difficult cases—which
involve Herzberg–Teller or true non-adiabatic effects—is to con-
struct a molecular Hamiltonian in an electronic basis that does
not consist of the usual adiabatic states typically obtained in
quantum chemical calculations. A convenient framework for such
an analysis was devised by Köppel, Domcke, and Cederbaum
(KDC),330 who applied it long ago with great success to a num-
ber of photoelectron spectra in which ionization to the lowest-
lying ionic states was inadequately treated by the Franck–Condon
picture.331

In such calculations, the molecular Hamiltonian is written in
a basis of “quasidiabatic” electronic states that, by construction,
vary smoothly and slowly as the nuclei are displaced. This assump-
tion motivates the form of the (diagonal) kinetic energy operator
but means that the potential energy (the usual electronic Hamilto-
nian) is not diagonal. For a two state problem, this model vibronic
Hamiltonian takes the form

HKDC = T + V = (Ta 0
0 Tb
) + (VaaVab

VabVbb
), (22)
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which is usually projected onto a vibrational basis and then diag-
onalized to compute the spectrum and intensities. A particularly
simple form is given by the so-called linear vibronic coupling model
(LVC), viz.,

VLVC =
⎛

⎝

∑s κ
a
s qs + 1

2 ∑k ωkq2k ∑c λcqc

∑c λcqc Δab +∑s κ
b
s qs + 1

2 ∑k ωkq2k

⎞

⎠
, (23)

which, in this form, is applicable to the pseudo-Jahn–Teller case,
where interaction between two (generally quite proximate) non-
degenerate states is important.

Treatments of electronic spectra with the KDC model can
involve an arbitrarily large number of electronic states (for exam-
ple, a proper treatment of the NO3 radical requires at least five
states332), and going beyond the LVC is sometimes necessary to
obtain qualitative understanding and always necessary for quanti-
tative agreement with the measured spectra. Moreover, true Jahn–
Teller cases (interaction between degenerate states) can also be
treated with largely the same framework. Nevertheless, the very sim-
ple non-degenerate two-state LVC model is an appropriate example
to explain what tools are available in CFOUR for such calculations.
Details for how more elaborate calculations are done can be found
elsewhere.333,334

The form of the LVC Hamiltonian above involves a choice of
normal coordinates (q), the gap between the electronic states at the
coordinate origin (Δab, assumed to be positive below), linear diag-
onal terms with coefficients κs that correspond to gradients along
totally symmetric coordinates (qs) on the adiabatic potential energy
surface, quadratic force constants for all modes on the diagonal (in
the LVC model, these are assumed to be equal to the reference state
for which the normal coordinates are calculated), and—critically—
an off-diagonal coupling in which modes qc of a certain symmetry
(for example, the asymmetric b2 NO stretching mode if the two
states are the X̃2A1 and Ã2B2 states of NO2) carry quasidiabatic
coupling constants λc. Without sacrificing simplicity, a useful exten-
sion of the LVC model is to maintain the assumption of linear off-
diagonal coupling but to allow the quadratic force constants to relax
from those of the reference state, which leads to

V =
⎛

⎝

∑s κ
a
s qs + 1

2 ∑kl g
a
klqkql ∑c λcqc

∑c λcqc Δab +∑s κ
b
s qs + 1

2 ∑kl g
b
klqkql

⎞

⎠
. (24)

The computation of all parameters begins with the determina-
tion of a set of normal coordinates, which usually are those of the
same molecule in a different (reference) electronic state, with the
absorbing state in the spectroscopic experiment being the most log-
ical choice. For example, to study photodetachment of NO−2 , one
would choose the anion. To do an LVC calculation, the first and
second derivatives of the energies at the origin of the coordinate sys-
tem (i.e., the geometry of NO−2 ) are evaluated using the derivative
techniques in CFOUR and then transformed into the normal coordi-
nates. CFOUR contains a module called xquadmodel for effecting this
transformation. The quasidiabatic coupling constants (λc) above are

evaluated according to a diabatization scheme based on EOM-CC
theory that is described in detail elsewhere,50 and their evaluation is
based on an algorithm that is quite similar to that for adiabatic EOM-
CC gradients. However, transition one- and two-electron densities
are used in this case, and there are additional minor modifications
necessitated by the different physical situation under consideration.
It is important to note that these are not “non-adiabatic couplings”
(which are off-diagonal terms in the kinetic energy in the adia-
batic basis rather than off-diagonal terms in the potential energy
in the quasidiabatic basis) but are intimately related to them, as
discussed in Refs. 51, 335, and 336. In any event, once the qua-
sidiabatic couplings are calculated, the force constants of the cou-
pling modes appearing in the diagonal blocks of the potential are
“diabatized” via

gacc′ = ( f
A
cc′)adiabatic +

2λcλ′c
Δab

, (25)

gbcc′ = ( f
A
cc′)adiabatic −

2λcλ′c
Δab

, (26)

where f cc′ are the quadratic force constants on the adiabatic poten-
tial surfaces. For coefficients gkl where qk and ql do not couple
the states, these are simply equal to the corresponding adiabatic
force constants on the two surfaces. Together with the trivially
calculated Δab, all parameters for the Hamiltonian are now avail-
able, and the xsim module of CFOUR can then carry out the spectral
simulation.

It should be emphasized that the crucial coupling of states
that characterizes these situations makes special demands on the
quantum-chemical method. Approaches appropriate for the param-
eterization are many but generally do not include ground-state
single determinant MBPT and CC methods. It has been recog-
nized that EOM-CC methods are ideally suited for problems of
this sort75,337 and are recommended for applications. For the exam-
ple above (the photodetachment spectrum of NO−2 ), EOMIP-CC
is the most appropriate method, and the gradients available in
CFOUR (together with the quasidiabatic coupling calculation) greatly
facilitate the calculations that need to be done to construct the
Hamiltonian. Quasidiabatic couplings can currently be routinely
evaluated with EOMEE-CCSD only, with the continuum orbital
approach recommended for EOMIP-CCSD and EOMEA-CCSD
calculations.

Documentation about vibronic Hamiltonian construction and
diagonalization calculations is spotty, and the process of carrying out
these calculations (apart from the simplest LVC treatment) is slightly
arduous and tedious. In general, the procedure involves three phases.
First, the reference state (which is used to define normal coordi-
nates and is usually the absorbing state in the experiment) is charac-
terized by means of geometry optimization and second derivative
calculations. Then, the first and second derivatives are calculated
for the final states and transformed to the reference state normal
coordinates. Beyond this, the quasidiabatic couplings are calculated
and similarly transformed. For an LVC (or slightly elaborated LVC
calculation, as is demonstrated in the following paragraph), these
are the three required phases of quantum chemistry calculation.
Any investigators who require assistance with such calculations or
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intend to explore more elaborate vibronic coupling models with
CFOUR are encouraged to seek advice and assistance from the CFOUR

mailing list (see Appendix B). This will also permit them to be
directed to the tools that have been created by the authors to facilitate
this particular type of spectroscopic application and instructed in
their use.

Parameters and a simulation are shown for the NO−2 photode-
tachment spectrum in Table IX and Fig. 4, respectively, where the
latter may be compared to the laboratory spectrum. The calculations
were done at the frozen-core CCSD/cc-pVDZ level of theory (the
anion is treated with simple single-reference CCSD, and the X̃2A1
and Ã2B2 states of NO2 are treated with EOMIP-CCSD), and the
simulated spectrum shows indeed the power of the LVC model for
capturing the salient qualitative features of electronic spectra. It is
an entirely straightforward matter to do this parameterization and
spectroscopic calculation with CFOUR; the entire procedure can easily
be done in a few hours of work.

Finally, for simpler electronic spectra in which interactions
between electronic states can be neglected, CFOUR has a highly
efficient Franck–Condon program xfc_squared,339 and clear doc-
umentation for running it is available on the CFOUR website
(see Appendix A).

F. Automatized composite schemes and basis-set
extrapolations

Additivity schemes and basis-set extrapolation340,341 are nowa-
days popular tools to minimize both basis-set truncation errors and
correlation errors and to provide high-accuracy quantum-chemical
results.233,236,342,343 While these schemes are easily handled (with a

TABLE IX. Parameters of the LVC Hamiltonian describing the photodetachment
spectrum of NO−2 obtained at the fc-(EOMIP)-CCSD/cc-pVDZ level of theory. The
geometry of the anion is R(N–O) = 1.262 Å, θ = 116.44○, and the anion harmonic
frequencies are ω1 = 1356.7 cm−1, ω2 = 794.6 cm−1, and ω3 = 1322.7 cm−1. The
first two modes have a1 symmetry, and the third mode (which couples the two states)
has b2 symmetry. All parameters are in cm−1.

Parameter

κX1 −2614.4
κX2 1400.1
κA1 803.3
κA2 −2034.1
gX11 984.2
gX12 137.5
gX22 902.2
gX33 1148.8
gA11 1500.8
gA12 −70.7
gA22 463.3
gA33 1100.5
Δab 8039.8
λa3 530.2

aGeometric mean of λAX and λXA (see Ref. 50).

FIG. 4. Simulation of the 266 nm (4.66 eV) photodetachment spectrum of the NO2
anion using the parameters in Table IX and calculated with the xsim module of
CFOUR. The vertical energies have been adjusted by +0.2 eV so as to have the
origin (peak at highest eKE) approximately coincide with that in the laboratory
measurement of Ref. 338 (inset). This shift accounts for an underestimation of
the electron affinity at the EOMIP-CCSD level of theory with the aug-cc-pVDZ
basis set. In the simulation, each state in the stick spectrum has been convoluted
with Gaussians having a width of 0.05 eV. Note that the experimental spectrum
reveals a higher excited state of NO2 (at low electron kinetic energy), which was
not included in the simulation. The two-state Hamiltonian was projected onto a
vibrational basis comprising 25 functions per mode and diagonalized using 1000
Lanczos recursions. Transition moments for the two ionization processes are
assumed to be equal. The inset was reproduced with permission from Weaver
et al., J. Chem. Phys. 90, 2070–2071 (1989). Copyright 1989 AIP Publishing LLC.

calculator or a spreadsheet) when focusing on energies, their appli-
cation is much more cumbersome in the context of geometry opti-
mization or the computation of other properties. CFOUR offers here
an automatized scheme,68,344 which within a geometry optimization
sets up and runs all individual computations that are needed, gathers
the result, and computes the total energy and gradient.

As input for computations involving basis-set extrapolation as
well as composite schemes, CFOUR requires (a) the property to be
computed (energy, geometry, or harmonic frequencies), (b) infor-
mation concerning the basis sets used in the extrapolation (three
basis sets from one of the correlation-consistent hierarchies of basis
sets266,345 are required for the extrapolation at the HF level;340 two
sets are needed for the extrapolation at the correlated level341), (c)
information about the additional corrections to be applied, i.e., those
from CCSDT, CCSDTQ, or all-electron CCSD(T) computations,
and (d) keywords for the individual calculations to be performed.
Detailed information about the input can be found on the CFOUR

website (see Appendix A).
It should be pointed out that the computation of equilibrium

geometries and harmonic vibrational frequencies in this way pro-
vides results that are consistent with the potential energy surface
defined by the extrapolated energy. This is accomplished by using,
for the gradient or the corresponding second derivatives, expres-
sions that are derived from the original extrapolated energy by
means of straightforward differentiation.68
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FIG. 5. Computed and semi-experimental equilibrium structure of cyclic SiS2. The
semi-experimental structure was obtained via a least-squares fit of the geometrical
parameters of cyclic SiS2 to the experimentally determined rotational constants of
three isotopologues, and the theoretical one (in parentheses) was obtained via
composite computations as described in the text. All distances are given in Å, and
all angles are given in degrees. For further details, see Ref. 346.

To give an example, Fig. 5 compares the equilibrium geometry
of cyclic SiS2 obtained at the HF/∞Z + CCSD(T)/∞Z + ΔT/cc-
pVTZ + ΔQ/cc-pVDZ + core/cc-pCV5Z level at which compu-
tations using the cc-pVQZ, cc-pV5Z, and cc-pV6Z basis sets are
used to estimate the HF limit and computations at the cc-pV5Z
and cc-pV6Z level to obtain the basis-set limit for the fc-CCSD(T)
correlation energy. Additional contributions involve a correction
obtained at the fc-CCSDT level [in comparison to fc-CCSD(T)]
computed with the cc-pVTZ set, a correction obtained at the fc-
CCSDTQ level (in comparison to fc-CCSDT) evaluated with cc-
pVDZ, and a correction for core-correlation effects obtained at the
CCSD(T)/cc-pCV5Z level [in comparison to frozen-core CCSD(T)].
The experimental equilibrium geometry346 has been obtained from
rotational constants determined for three isotopologues of cyclic
SiS2. These rotational constants have been adjusted using vibra-
tional corrections computed at the CCSD(T)/cc-pCVTZ level using
VPT2.67 Concerning harmonic vibrational frequencies, the extrapo-
lation scheme yields 1647 cm−1, 3836 cm−1, and 3947 cm−1, which
can be compared to the experimental inferred values of 1648.5 cm−1,
3832.2 cm−1, and 3942.5 cm−1.347

Statistical analyses of the performance of these extrapolation
schemes can be found in Ref. 68 for equilibrium geometries and in
Ref. 35 for rotational constants derived from the computed geome-
tries after taking account of vibrational corrections. In passing, we
note that the extrapolation scheme can be further augmented by
scalar-relativistic corrections computed either at the DPT2 level or
using the X2C scheme.

G. Analytic calculation of the Diagonal
Born–Oppenheimer Correction (DBOC)

The Born–Oppenheimer approximation348 (BOA) is a funda-
mental assumption used in the description of molecules: not only
are quantum-chemical calculations mostly based on it but also
chemical intuition relies on the notion of potential energy surfaces
defined by the BOA. It is a quite good approximation, and as cause
for its breakdown typically (near-)degeneracy of coupled electronic
states349 is mentioned. The first-order correction to the BOA350 is,
however, not related explicitly to other electronic states;351 it comes
from the (parametric) dependence of the electronic wavefunction

on the nuclear coordinates, which results in a nonzero expecta-
tion value of the nuclear kinetic energy operator over the electronic
wavefunction,

ΔEDBOC(R) = ∫ drΨ∗(r;R)TN(R)Ψ(r;R), (27)

with Ψ as the normalized electronic wavefunction obtained within
the BOA and TN as the nuclear kinetic energy operator. In Eq. (27),
the electronic coordinates are collectively denoted by r, while the
nuclear coordinates are represented byR. The integration in Eq. (27)
is over electronic coordinates only; thus, the so-called diagonal
Born–Oppenheimer correction (DBOC) depends parametrically on
the nuclear coordinates and represents a mass-dependent increment
to the potential energy surface. Thus, with the DBOC included in
the calculation, the adiabatic picture is kept352 (the DBOC is some-
times also called the adiabatic correction), and the notion of poten-
tial energy surfaces is retained, although they now become mass-
dependent. The DBOC is numerically small, but the high accuracy
reached by electronic structure methods, as also discussed in several
parts of this paper, sometimes necessitates its inclusion in the final
energy.

Since the kinetic energy operator in Eq. (27) includes the sec-
ond derivative with respect to nuclear coordinates (RAi), the key
to the computation of the DBOC is the evaluation of the expecta-
tion value of the operator ∇2

RAi over the electronic wavefunction.
353

Replacing this second derivative by first derivatives of both the right-
and left-hand CC wavefunctions, we were able to formulate the
DBOC at the general CI level.48 However, calculation of the DBOC
from the coupled-cluster electronic wavefunction is complicated
by the biorthogonal approach with different right- and left-hand
wavefunctions,151,187 especially by issues associated with normaliza-
tion. These problems have been resolved in Ref. 48, and the DBOC
expression could be formulated using derivatives of the cluster and
Λ operators, the antisymmetric CC derivative density matrix, as well
as the one- and two-particle unrelaxed density matrices.

Evaluation of the DBOC formulas is possible with gradient and
second derivative techniques available in CFOUR and MRCC: the deriva-
tive of the amplitudes and the Λ parameters can be taken directly
from analytic force constant calculations. The same also holds for the
calculation of the unperturbed one- and two-particle density matri-
ces. Two differences need to be mentioned: (a) for the DBOC, unre-
laxed density matrices are required, while the relaxed density matri-
ces are used for the force constants; (b) translational invariance,
which is exploited in force-constant calculations, cannot be used for
the DBOC since derivatives with respect to all nuclear coordinates
are required. The latter difference makes a slight increase in com-
putational time, while the first one precludes the possibility of doing
DBOC and force constant calculations at the same time. The depen-
dence of the computational effort on the size of the system is the
same as for the underlying CCmodel, but the loop over the complete
set of nuclear coordinates introduces an additional factor of 3Natoms
with Natoms being the number of atoms in the considered molecule.
Thus, the calculation of the DBOC is rather expensive compared to
a single-point energy evaluation; nevertheless, it can always be rou-
tinely performed when harmonic frequencies and zero-point energy
corrections to the energy can be calculated analytically.
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TABLE X. DBOC contribution to atomization energies (in kJ mol−1) of selected small systems calculated by different
methods. The raw data are taken from Ref. 49 and obtained with the aug-cc-pCVQZ basis at CCSD(T)/cc-pVQZ geometries.

SCF MP1 MP2 CCSD SCF MP1 MP2 CCSD

C2H2 0.50 0.39 0.36 0.33 HCN 0.31 0.24 0.20 0.20
CCH 0.13 0.10 0.14 0.10 HCO −0.14 −0.19 −0.21 −0.21
CF 0.03 0.01 0.01 0.01 HF 0.00 0.00 0.00 0.00
CH −0.35 −0.41 −0.42 −0.44 HNO −0.23 −0.31 −0.36 −0.40
CH2 0.13 0.06 0.06 0.06 HO2 0.03 −0.01 −0.03 −0.04
CH3 0.19 0.07 0.08 0.06 N2 0.08 0.04 0.01 0.03
CN −0.07 −0.07 −0.02 0.06 NH −0.21 −0.24 −0.24 −0.24
CO 0.07 0.03 0.02 0.02 NH2 −0.05 −0.12 −0.12 −0.14
CO2 0.20 0.16 0.14 0.15 NH3 0.56 0.44 0.44 0.42
F2 0.02 0.02 0.00 0.01 NO −0.48 −0.39 −0.11 0.02
H2 0.22 0.13 0.09 0.06 O2 0.05 0.03 0.01 0.01
H2O 0.52 0.45 0.42 0.41 OF −0.02 −0.02 −0.01 0.00
H2O2 0.52 0.44 0.39 0.36 OH 0.04 0.01 0.00 −0.01

Availability of the DBOC for CC (and CI) methods in CFOUR

is the same as that of the analytic second derivative, as shown
in Table I. The only exceptions are non-iterative methods such
as CCSD(T), where, due to the lack of a well-defined wavefunc-
tion, the DBOC cannot be expressed in the above formalism. For
more details, see Ref. 48. We note that according to numerical
tests,48 triples contributions are rather small even at the full CCSDT
level; therefore, a CCSD(T)-type DBOC would not bring substantial
improvement over CCSD.

To offer a reduced-cost alternative to CC methods, in Ref. 49,
approximations to the above theory within many-body perturbation
theory were presented. The first one, termed MP1, uses first-order
amplitudes in the formula and its perhaps unusual name reflects
the fact that, contrary to the total energy, there is a first-order cor-
rection to the DBOC even in the Møller–Plesset partitioning. MP1-
level DBOC just requires the evaluation of first-order (MP2) double
excitation amplitudes and their contraction with the corresponding
DBOC integrals, i.e., no significant additional cost compared to the
HF-SCF evaluation of the DBOC is incurred (provided the CPHF
equations are solved). The next level is MP2, which requires the
knowledge of the first- and second-order single and double excita-
tion amplitudes. Higher order formulas have not been worked out
since the cost of their evaluation would be similar to CCSD.

The calculated DBOC has foundmost of its application in accu-
rate prediction of thermochemical values235,354–356 as well as in spec-
troscopy.357–364 To demonstrate its importance, the DBOC contri-
butions to the atomization energies of selected small molecules are
given in Table X, as obtained by different methods. Table X shows
that the DBOC contribution can be as large as several tenths of a
kJ mol−1, therefore non-negligible in certain applications. Indeed,
as has been shown, e.g., in Refs. 49 and 355, the DBOC contribu-
tion increases with the number hydrogen atoms, and its role can
be even more important for larger molecules with many hydrogen
atoms.

The importance of electron correlation and the accuracy of
different methods is represented graphically in Fig. 6. Here, the

average DBOC contribution to atomization energies with respect to
the CCSD value (100%) is presented. One can conclude that (a) the
correlation contribution is important, and its size is unpredictable
(as shown by the large standard deviation of the SCF values); and
(b) both MP1 and MP2 give good estimates with decreasing error
bars.

H. Core-level spectroscopy
Core electron photoelectron and absorption spectra have

served as useful tools for probing local chemical environments
in molecules and solids.365,366 Recent developments of x-ray light
sources have also led to a rapid growth in investigations of x-ray

FIG. 6. Average DBOC contribution to atomization energies with respect to the
CCSD value (in %). Standard derivations are given as error bars. Data from
Table X have been used, NO and OF excluded.
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induced ultrafast dynamics.367,368 Accurate calculations of core ion-
ization and excitation energies and of x-ray absorption spectra are
of significant interest and have been a longstanding challenge for
quantum chemistry.369 Benefiting from the available efficient imple-
mentation of EOM-CC methods, CFOUR offers EOM-CC machin-
ery ranging from EOM-CCSD (available using the xvcc, xecc, and
xnccmodules) to EOM-CCSDT and EOM-CCSDTQ (using the new
xncc module) for high-accuracy calculations of core ionization and
excitation energies. In order to eliminate spurious coupling between
core ionized or excited states and high-lying valence excited states,
Cederbaum and collaborators370 proposed a generic idea of core–
valence separation (CVS). The original formulation of CVS neglects
coupling between core and valence orbitals in Hamiltonian inte-
grals. An efficient implementation of this scheme has recently been
reported by Vidal et al. for the EOM-CCSD method.371 We have
adopted a variant of CVS suggested for EOM-CCSD by Coriani
and Koch372 in which CVS is only applied to the EOM vectors,
i.e., only excitation operators containing targeted core orbitals are
retained in the EOM vectors. EOM-CC methods using this variant
of CVS (hereafter referred to as “CVS-EOM-CC”methods) have ini-
tially been implemented in CFOUR by using a projector that sets pure
valence excitations in the EOM vector to zero in a regular EOM-CC
calculation. As shown in Table XI, benchmark studies have demon-
strated the systematic convergence of CVS-EOM-CC methods and
the high accuracy of computed core ionization energies when triples
contributions are taken into account.373

We have also recently explored the use of both perturbative
and iterative approximations to full CVS-EOM-CCSDT coupled
with efficient techniques for implementing the core–valence sepa-
ration for higher-order excitation amplitudes.375 Among the best-
performing approximations was the CVS-EOM-CCSD∗ method,
which is a straightforward modification of the original method of
Stanton and Gauss.28 We have recently implemented these approx-
imations in xncc (along with full CVS-EOM-CCSDT and CVS-
EOM-CCSDTQ) using an algorithm that explicitly discards triple
and quadruple excitation amplitudes with only valence occupied
or inactive core indices. When only a constant number of core
orbitals are active (in most calculations only one core orbital is
active), this implementation leads to reduced scaling of the EOM-
CC calculation. Importantly, the scaling is reduced to fully M6 for
CVS-EOM-CCSD∗.

TABLE XI. Maximum absolute deviations (MADs) and standard deviations (SDs) of
CVS-EOM-CC373 and CVS-ΔCC374 results from experimental values for chemical
shifts of 21 1s ionization energies of C, N, O, and F in 14 molecules (in eV).

SD MAD

CVS-EOM-CCSD 0.40 0.94
CVS-EOM-CCSDT 0.20 0.45
CVS-EOM-CCSDTQ 0.10 0.24

CVS-ΔHF 0.70 1.67
CVS-ΔCCSD 0.19 0.53
CVS-ΔCCSD(T) 0.10 0.20

Although EOM-CC methods are capable of providing accurate
results for core ionization energies, relatively slow convergence of
the computed results with respect to the rank of excitation has been
observed. This can be attributed to strong relaxation of the wave-
function due to the removal of core electron(s). The convergence is
expected to be even slower for calculation of double core hole states.
An alternative option for computing core ionization energies using
ΔCC methods374,376 has also been implemented in CFOUR and will
be available in the next release. ΔCC methods perform separate HF
and CC calculations for the neutral molecule and the core-ionized
state. Due to the local nature of core holes, the HF wavefunction of a
core-ionized state can usually be obtained using the maximum over-
lap method.377 The convergence problem of the CC equations for
core-ionized states due to coupling to valence continuum states can
be handled using a generalization of the CVS scheme.374 Favorable
accuracy has been obtained for CVS-ΔCC results of core ioniza-
tion energies, with CVS-ΔCCSD(T) providing results as accurate as
CVS-EOM-CCSDTQ, as shown in Table XI.

I. Vibrational perturbation theory and effective
Hamiltonians

CFOUR allows for the determination of harmonic vibrational fre-
quencies for a wide range of quantum-chemical methods. When
analytic Hessians are not available, the Hessian may be com-
puted numerically by finite differences of gradients and/or single-
point energies. Additionally, anharmonic vibrational frequencies
and intensities may be obtained by finite differences (preferably of
analytical Hessians). The xcubicmodule calculates anharmonic con-
tributions based on second-order vibrational perturbation theory
(VPT2).380–384 While VPT2, when paired with a sufficient level of
electron correlation and basis set completeness, can provide highly
accurate frequencies and intensities compared to gas-phase experi-
ments,385–390 the presence of near-degeneracies in the harmonic fre-
quencies can lead to a breakdown in the perturbation theory. Most
commonly, VPT2 is affected by Fermi391 and Darling–Dennison392

resonances (although the latter is better described as a missing vibra-
tional interaction rather than a PT breakdown). xcubic automat-
ically attempts to detect cases of Fermi resonance and provides
“deperturbed” frequencies and intensities, but a more accurate treat-
ment requires the construction and diagonalization of an effective
vibrational Hamiltonian as in contact transformation perturbation
theory (Van Vleck perturbation theory).393,394

In order to treat these more difficult cases, the xguineamodule
is provided as a standalone program. xguinea reads the output of an
anharmonic calculation, in particular, the files rota, coriolis,
dipole[xyz], quadratic, cubic, and quartic. The CFOUR

job archive files (JOBARC and JAINDX) are used if present to deter-
mine symmetry and axis frame information. xguinea offers an inter-
active command-line input so that different options and structures
of the effective Hamiltonian can be quickly explored. Alternatively,
an input file can be fed to xguinea using shell redirection, e.g.,
xguinea < input. An example input file for treating multiple
Fermi resonances in formaldehyde is given below (here, ω5 ≈ ω2 +
ω6 ≈ ω3 + ω6—the Darling–Dennison coupling between the latter
two states is also included). The full xguinea manual is available on
the CFOUR website (see Appendix A).
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states
3
0 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1
vibration
vpt2
diagonalize
calc

The construction of the effective Hamiltonian requires two
steps: first, the diagonal elements are set equal to the deperturbed
anharmonic frequencies. These differ from the standard VPT2 fre-
quencies by removal of terms with a nearly degenerate energy
denominator. Second, the off-diagonal elements are determined
by coupling formulas specific to the type of resonance (Fermi or
Darling–Dennison) and the relationship between the two states. The
Fermi coupling coefficients, also called the F coefficients, are simply
equal to scaled cubic force constants. The Darling–Dennison or K
coefficients395 are much more complicated in form and arise from
the second-order transformed Hamiltonian. The expressions for the
effective Hamiltonian for the formaldehyde example above are given
in Ref. 390,

Heff =

51 2161 3161
⎛
⎜
⎜
⎝

ν∗5 1√
8
ϕ256 1√

8
ϕ356

1√
8
ϕ256 ν2 + ν6 + x∗26 K

1√
8
ϕ356 K ν3 + ν6 + x∗36

⎞
⎟
⎟
⎠

, (28)

K =
1
4

6

∑
i=1

Ki2,i3 +
1
2
K26,36, (29)

where an asterisk indicates deperturbation of the frequencies or
anharmonicity coefficients xij, and the K ij ,kl coefficients are tabu-
lated in the literature.63,395,396

The treatment of Darling–Dennison resonances is especially
important for accurately calculating the overtone and combination
bands of molecules with multiple hydrogen stretching modes. For
example, in water, the symmetric and antisymmetric O–H stretch-
ing modes interact strongly for 2νOH and higher. The results from
Ref. 63 for the nνOH, n = 1, 2, 3, 4, levels of water computed with
CCSD(T)/ANO2397 are reproduced in Table XII. Overtone levels
of ν3 are reproduced extremely well, as are combination and ν1
overtone levels for νOH ≤ 3. In the 4νOH polyad, additional inter-
actions with bending mode overtones nν2 begin to affect the sym-
metric stretching mode. Effective Hamiltonians for the fixed polyad
numbers are easily specified in xguinea, e.g.,

polyad
2
1 0 0
0 0 1
vibration
vpt2

states
1
0 0 0 1
diagonalize
calc

!set
states
1
0 0 0 2
diagonalize
calc
. . .

TABLE XII. Stretching levels of water obtained at the CCSD(T) level of theory with the ANO2 basis set. Italicized level
energies correspond to states of b2 vibrational symmetry. The VPT2 values are ordered in terms of decreasing ν1 quantum
numbers (i.e., the 3νOH levels are ordered 300, 201, 102, and 003), and the VPT2 + K levels are ordered in terms of those
with dominant eigenvector projections along the same zeroth-order levels.

νOH 2νOH 3νOH 4νOH

VPT2 VPT2 + K VPT2 VPT2 + K VPT2 VPT2 + K VPT2 VPT2 + K

Calc.

3659 . . . 7231 7201 10 718 10 591 14 119 14 215
3757 . . . 7249 7249 10 656 10 604 13 977 13 804
. . . . . . 7415 7445 10 742 10 869 13 982 13 801
. . . . . . . . . . . . 10 976 11 028 14 136 14 309
. . . . . . . . . . . . . . . . . . 14 439 14 525

Expt.a

3657 . . . . . . 7202 . . . 10 600 . . . 13 828
3756 . . . . . . 7250 . . . 10 613 . . . 13 831
. . . . . . . . . 7445 . . . 10 869 . . . 14 221
. . . . . . . . . . . . . . . 11 032 . . . 14 319
. . . . . . . . . . . . . . . . . . . . . 14 538

aReferences 378 and 379.

J. Chem. Phys. 152, 214108 (2020); doi: 10.1063/5.0004837 152, 214108-22

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In addition to computing anharmonic frequencies, intensi-
ties, and vibrationally averaged dipole moments at the VPT2
level, xguinea can also compute frequencies using fourth-order
vibrational perturbation theory (VPT4).398 VPT4 calculations in
xguinea additionally require the didq, quintic, and sextic
files—the latter two are not calculated as part of a standard
CFOUR anharmonic calculation, but they may be manually com-
puted either by finite differences of fourth-order force fields or
by fitting to a local potential energy surface (the “off-diagonal”
quartic constants ϕijkl with i ≠ j ≠ k ≠ l are also required).
In a future version, we hope to extend xguinea to rotational
and ro-vibrational spectroscopies and the calculation of higher-
order vibration–rotation interaction and centrifugal distortion
constants.

V. FUTURE DIRECTIONS
The discussion so far has focused on the current status of

CFOUR and is limited to features provided via either the current pub-
lic version or a version to be released shortly. However, there are
many other long-term developments concerning CFOUR either ini-
tially underway or in the planning stages, which will extend its
capabilities in the future. While most of these ideas are still in the
planning stages and not yet appropriate for discussion, a few rep-
resentative examples are provided here. Specifically, we will briefly
discuss ongoing work on the use of Cholesky decomposition (CD)
in order to facilitate computations on large molecules and on the
development of methods for treating atoms and molecules in the
exotic but astrophysically relevant environment of finite and strong
magnetic fields.

A. Cholesky decomposition representation
of the electron repulsion integrals

While the main focus of CFOUR is, by design, on the high-level
treatment of small- to medium-sizedmolecules, extending the appli-
cability of rigorous, ab initiomethods to larger systems is becoming
more and more desirable. The asymptotically rate-determining step
of such calculations is the solution of the amplitude equations; how-
ever, calculations on medium to large molecules with reasonable but
not too large basis sets can often become overwhelming due to the
cost of handling the two-electron repulsion integrals (ERIs). Opera-
tions such as the full or partial transformation of the ERIs from the
AO to the MO basis may often become the limiting step in prac-
tice. This is due to two factors. First, it is usually safe to assume that
the ERIs do not fit in memory, which is usually true for ERIs in the
AO basis and even more so for ERIs in the MO basis. This means
that handling the integrals involves slow disk I/O, which can be a
serious limiting factor. Second, integrals are computed (and stored)
in an order that depends on the shell structure of the basis set and
accessed (or re-computed, for integral-direct implementations399–401)
in buffers. This makes writing subsequent code with optimal han-
dling of memory accesses virtually impossible, as the order in
which the integrals are available is system-dependent and, in gen-
eral, not optimal for vectorization or use of highly optimized
BLAS routines.

The ERI matrix is, however, not a full rank one. While there
are, in principle, O(M4

) nonzero integrals, due to the localization
of Gaussian basis functions, many of these will be small or negli-
gible.399,400,402 This induces sparsity in the ERI matrix that can be
exploited by introducing low rank approximations

(μν∣ρσ) ≈
n

∑
KL
(μν∣K)SKL(L∣ρσ), (30)

where n is the rank of the decomposition and is assumed to be much
smaller than the full rank N = M(M + 1)/2, where M is the number
of basis functions. Popular choices are the so-called resolution of the
identity (RI)403–407 [or density fitting (DF)] approximation and the
Cholesky decomposition (CD)408–415 technique. In RI, an auxiliary
basis set is introduced in order to approximate four-center integrals
with products of three-center ones according to Eq. (30). CD, on
the other hand, is, in principle, the exact decomposition of the ERI
matrix in the product of a (full rank) lower triangular matrix times
its transpose, i.e.,

(μν∣ρσ) =
N

∑
K=1

LKμνL
K
ρσ . (31)

However, the decomposition in Eq. (31) can be truncated at
n ≪ N in a way that allows for both compression, to the point
that the resulting Cholesky vectors can often be kept in mem-
ory, and a rigorous a priori control of the approximation error.
The latter feature is particularly attractive, as the accuracy of a
CD-based calculation can be precisely controlled, which is not the
case for the RI approximation. On the other hand, RI computa-
tions can be performed using the same machinery used to compute
the ERIs themselves, with little modifications, and many auxiliary
basis sets are available in the literature,406,416–419 while CD needs an
ad hoc implementation to compute the decomposition itself. The
same applies for integral derivatives.420–422 We believe that this price
is worth paying to retain full control of the precision of the cal-
culation. For this reason, CD of the ERIs has been implemented
in CFOUR.

The long term goal of this development is to offer all the
main features of CFOUR in conjunction with a CD representation
of the ERIs. CD allows for large computational savings in opera-
tions on the integral tensor as it reduces the scaling of AO to MO
transformations from M5 to M4. However, it does not change the
scaling of the correlated treatment, with the exception of scaled-
opposite-spin second-order many body perturbation theory (SOS-
MP2).423,424 Nevertheless, it can make a large difference as a formu-
lation based on the CD of the integrals is intrinsically well suited
for writing all the operations involving the ERIs as matrix–matrix
multiplications, which can be performed with very efficient level
3 BLAS routines. Furthermore, as each Cholesky vector LK con-
tributes to the final quantity independently of the others, it is possi-
ble to parallelize CD-based calculations by distributing the Cholesky
vectors.

At the moment, we are just starting to explore the use of CD
in CFOUR.425 A particularly promising development is the coupling of
CDwith quadratically convergent solvers for both SCF andCASSCF.
To show an example of the potential benefits of such a technique,

J. Chem. Phys. 152, 214108 (2020); doi: 10.1063/5.0004837 152, 214108-23

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

we present here some preliminary results obtained with a serial,
CD-based implementation of quadratically convergent SCF. This
implementation is part of the experimental xdqcscf code described
in Sec. IV B.

As an example of the use of CD to extend the applicability
of methods implemented in CFOUR, let us consider a medium-sized
molecule such as caffeine (C8H10N4O2). Using Dunning’s corre-
lation consistent cc-pVTZ basis set, 560 basis functions are used,
which is starting to be borderline for many post-HF applications.
The SCF optimization can however still be performed using the AO-
based code in xdqcscf. The calculation requires, on a single core,
about 2.5 h and is heavily dominated by disk I/O. The same calcu-
lation using CD ERIs can be performed in little more than 5 min
using a threshold for the CD of 10−4, which is a reasonable choice
for most applications. All the timings were obtained on a single core
of an Intel Xeon Gold 6140M processor. The main difference is that
the CD ERIs can easily fit in memory, avoiding thus slow I/O oper-
ations, and that the vast majority of the operations performed are
done with highly efficient BLAS-3 routines. It is interesting to note
that the same calculation, when performed forcing the use of an out-
of-core algorithm and thus reading the Cholesky vectors from disk,
requires slightly less than 10 min on the same machine. Therefore,
even though the calculation is slower by a factor of two than the
same performed with the Cholesky vectors in core, it is still much
faster than the traditional one. As a second example, we computed
the SCF wavefunction for taxol (C47H51NO14), a large molecule for
which we employ again Dunning’s cc-pVTZ basis set and the same
settings for CD for a total of 1947 basis functions. The SCF optimiza-
tion can be performed in 4.5 h on the same cluster node used before.
While these are very preliminary results and simple-minded appli-
cations, we believe that they offer a convincing argument in favor of
using CD as a method to handle larger molecular systems.

We have also recently completed an implementation in xncc
of a CD-based algorithm for the expensive particle–particle ladder
contribution to MP3 and CCSD, which avoids explicit storage of the
⟨ab∥cd⟩ integrals. We plan to extend this pilot implementation to
additional terms in the CCSD equations that deal with the ⟨ab∥ci⟩
integrals in order to further reduce storage and I/O bottlenecks.

B. Reduced-scaling coupled cluster methods
While the Cholesky decomposition approach (or RI/DF) can

drastically reduce the memory and I/O requirements of both the
SCF and correlated calculations, by itself it cannot reduce the scal-
ing of post-Hartree–Fock methods, except for SOS-MP2. In order
to reduce the scaling of the same-spin (exchange) part of the MP2
energy as well, Hohenstein et al. introduced a further factorization
of the ERIs termed the tensor hypercontraction (THC) decomposi-
tion,426

(μν∣ρσ) ≈∑
RS

XR
μX

R
νVRSXS

ρX
S
σ . (32)

This factorization, combined with a Laplace quadrature representa-
tion of the orbital energy denominators, reduces the scaling of full
MP2 to M4 and SOS-MP2 to M3. Parrish et al. refined the THC
method by assuming that the factor matrices X take the form of
a real-space collocation of the orbitals over a set of grid points:
XR
μ = ϕμ(xR).427 This reduces the problem of finding the interaction

matrixV to a linear least squares problemwith closed-form solution,

VRS =∑
R′S′
∑
μνρσ
(S−1)RR′XR′

μ XR′
ν (μν∣ρσ)X

S′
ρ X

S′
σ (S

−1
)SS′ , (33)

SRS =∑
μν

XR
μX

R
ν X

S
μX

S
ν . (34)

This procedure scales as M5 for exact ERIs but reduces to M4 when
paired with an additional CD/DF/RI approximation.

We have recently used this LS-THC factorization to implement
reduced-scaling MP2 and MP3 methods (both scale as M4). In par-
ticular, we have found that using a Cholesky decomposition of the
real-space metric matrix S allows for defining “pruned” grids spe-
cific to particular classes of transformed MO integrals, e.g., (ai|bj)
vs (ab|cd).428 The accuracy of the LS-THC-DF-MP2 energy and
size of the pruned grids were found to be similar or superior to
hand-optimized429 or other automatically generated430,431 grids. We
are now turning to the THC factorization of the double excitation
amplitudes432 and the efficient implementation of a reduced-scaling
THC-CCSD method.

C. Atoms and molecules in finite magnetic fields
Strong magnetic fields lead, due to the interplay between

Coulomb and Lorentz forces, to a fascinating and complex elec-
tronic structure.433 For example, the lowest triplet state of the hydro-
gen molecule (3Σ+

u) becomes bound and even assumes the role of
the ground state of the molecule at a sufficiently strong magnetic
field by the so-called perpendicular paramagnetic bonding mech-
anism even though the formal bond order is zero.434 Such strong
field strengths are of astrophysical relevance as they can be found on
magnetic White Dwarf stars (WDs). Spectra from WDs are, how-
ever, very difficult to interpret since the magnetic field strength as
well as the composition of the atmosphere are a priori unknown.
As the magnetic field changes the electronic spectra completely,
accurate quantum-chemical predictions are crucial prerequisites to
interpretation. For such predictions, perturbation theory is inade-
quate because the field is by no means only a small perturbation
to the system and finite-field methods have to be used instead. The
predictions face the challenge that due to the structure of the Hamil-
tonian for a molecule in a magnetic field, the wavefunction becomes
(in general) complex-valued, such that the implementation needs
to allow for complex wavefunction parameters, integrals, etc. It is
hence the goal to develop high-accuracy methods for the investi-
gation of atoms and molecules in strong magnetic fields. Finite-
field full-CI implementations exist and have led to the discovery
of strongly magnetized WDs with helium atmospheres435 and to
the above-mentioned bonding mechanism.434 However, since finite-
field full-CI only allows the study of systems with very few electrons,
alternative high-accuracy finite-field methods with lower computa-
tional scaling, such as finite-field methods based on coupled-cluster
and equation-of-motion coupled-cluster theory, are desirable.436–438

In order to use thesemethods within CFOUR, a new integral code using
gauge-including atomic orbitals based on theMcMurchie–Davidson
scheme439,440 together with an SCF driver is being written and will be
interfaced with the QCUMBRE program.441 The latter is written in C++
and designed in an object-oriented manner. A hierarchical data-type
structure ensures that changes can be made on a low level without
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having to modify the existing top-level code. A key feature of QCUM-

BRE is a black-box contraction routine that allows one to code in a
manner that resembles the equations on paper, while efficient com-
plex BLAS algorithms such as ZGEMM3M are being used internally to
carry out matrix multiplications.
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APPENDIX A: WEBSITE AND ONLINE
DOCUMENTATION

Already in 2005, at the time of the ACES II Mainz–Austin–
Budapest (MAB) version, a wiki-based website was implemented to
replace the old latex based manual in order to increase the up-to-
dateness and to facilitate documentation of old and new features
of the program package. With the renaming to CFOUR, the current
wiki-based website www.cfour.de was introduced, which provides
detailed information how to obtain, install, and use the CFOUR pro-
gram package, what features are available, as well as many illustra-
tive examples together with a bibliography, which provides refer-
ences for methods, basis sets, and the underlying implementations
in CFOUR.

APPENDIX B: MAILING LIST
Besides the aforementioned online manual (see Appendix A),

there is a mailing list available (cfour@lists.uni-mainz.de) to
which any CFOUR user may subscribe. This mailing list, which is
hosted at the University of Mainz, is meant as a forum for the
exchange of experiences between users of the CFOUR program sys-
tem. Users may join at any time via the website https://lists.uni-
mainz.de/sympa/subscribe/cfour. Note that in order to prevent

spam, subscription requests are monitored and require that sub-
scribers are accepted manually. After having subscribed, one can
post questions and comments via email to cfour@lists.uni-mainz.de.
A searchable message archive of previous postings to the CFOUR

mailing list, which goes back to about 2009, is available at
https://lists.uni-mainz.de/sympa/arc/cfour.

APPENDIX C: LICENSING AND MODE
OF DISTRIBUTION

For non-commercial purposes, there is no charge to obtain
CFOUR for academic users (individuals, universities, and research
institutes). The CFOUR license agreement, which is available from the
aforementioned website, has to be signed and sent via regular mail
or fax to the indicated address.

After reception of the properly signed unmodified CFOUR license
agreement, instructions will be provided for downloading CFOUR

from a GitLab server hosted by the University of Florida. This portal
offers a user interface similar to other popular git-based portals such
as GitHub and Bitbucket. From there, users can easily download any
released CFOUR version. Bug fixes that fall between versions are dis-
tributed through this system as well, and users can either download
a new version or receive updates through git version control.
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