1811.09213v1 [math.SG] 22 Nov 2018

arxiv

THE OMEGA LIMIT SET OF A FAMILY OF CHORDS

EDWARD BELBRUNO, URS FRAUENFELDER, OTTO VAN KOERT

ABSTRACT. In this paper we study the limit behavior of a family of chords
on compact energy hypersurfaces of a family of Hamiltonians. Under the
assumption that the energy hypersurfaces are all of contact type, we give
results on the Omega limit set of this family of chords. Roughly speaking,
such a family must either end in a degeneracy, in which case it joins another
family, or can be continued.

This gives a Floer theoretic explanation of the behavior of certain fami-
lies of symmetric periodic orbits in many well-known problems, including the
restricted three-body problem.

1. INTRODUCTION

In many well-known dynamical systems, such as the restricted three-body prob-
lem, families of periodic orbits are known to exist. Often existence is proved near
an integrable or otherwise easily understood case. How far the family then extends
is hard to quantify by analytical means, although one can often verify numerically
the existence of such a family for a wide range of parameters. In this paper we
focus our attention on symmetric periodic orbits and more generally chords.

The goal is to provide a Floer-theoretic reason for the behavior of families of
chords. The basic setup consists of a symplectic manifold (M,w), a smooth 1-
parameter family of autonomous Hamiltonians H,, and a pair of exact Lagrangians
Lo and L;. We will assume that X' := H,1(0) is a compact hypersurface that is
of contact-type.

Suppose that {v,},ecp0,u.) i @ smooth 1-parameter family of non-degenerate
Reeb chords in ¥, = H,'(0) connecting Lo and L;. Then one of the following
options must hold

(1) the family extends across peo to a family [0, oo + 9)
(2) v, exists and is a degenerate Reeb chord. In this case, there is another
family with the same -limit set.

Without the contact condition, the family can cease to exist for other reasons than
degeneracy, for example a blue sky catastrophe can occur, meaning that the period
blows up as 4 — fieo. This happens, for example, on the cotangent bundle of a
genus g surface. On this symplectic manifold we can choose a 1-parameter family
of Hamiltonians with 3, = ST™S,, where the dynamics change from geodesic flow
into the horocycle flow. The latter has no periodic orbits, showing that the family
can simply stop in such a case without ending up in either option (1) or (2).

To give a detailed and general statement, we introduce the Q-limit set of a family
of chords. This consists of all limits of the family when a sequence of parameters
1y converges to loo. Our first main result is

Theorem A: The Q-limit set is nonempty, compact and connected.
1
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We state Theorem A again in Section 5, where we prove it. The proof relies on
the Theorem of Arzela-Ascoli. Because our family of hypersurfaces is compact,
the image of the chords lies in a compact set. The contact condition is used to
prove equicontinuity. For that purpose we interpret chords as critical points of the
Rabinowitz action functional.

Our second main result is

Theorem B: If the Q-limit set is isolated and the family cannot be extended over
the limit set for p > peo, another family for p < peo converges to the limit set.

The precise statement of Theorem B together with its proof can be found in Sec-
tion 6. Intuitively the Theorem is rather clear. Because the family cannot be
extended over the 2-limit set the local Rabinowitz Floer homology of the limit set
vanishes and therefore for p < po, there has to be a second family which kills the
first one. In our proof we do not actually need the full strength of local Rabinowitz
Floer homology but use a homotopy of homotopies argument for gradient flow lines.
This is technically easier because it does not involve gluing.

Similar results for periodic orbits instead of chords should hold true. The ad-
vantage for chords is that if one interprets them as critical points of the Rabinowitz
action functional they are generically Morse critical points. This never happens for
periodic orbits because as critical points of the Rabinowitz action functional they
are parametrized and by reparametrizing them one gets different critical points of
the Rabinowitz action functional. In particular, critical points are never isolated.
One can interpret reparametrization as a circle action on the free loop space and
in the periodic orbit case the Rabinowitz action functional is invariant under this
circle action. Therefore it is generically Morse-Bott and its critical points arise in
circle families. It should be interesting to consider the local equivariant Rabinowitz
Floer homology of an -limit set of a family of periodic orbits to understand what
happens if the family cannot be extended over the limit set.

To conclude the introduction, let us point out that many classical dynamical
systems have been proved to be of contact-type. For example, regular energy levels
of all mechanical Hamiltonians as well as regularized energy hypersurfaces of the
planar and spatial restricted three-body problem in a large range of energy values,
see [2, 4], are of contact-type. Mechanical Hamiltonians with compact energy hy-
persurfaces include the Hénon-Heiles Hamiltonian, see [10] for a discussion of some
of its properties related to convexity, which is stronger than the contact condition.

The results of this paper hence apply to these systems. We have included nu-
merics illustrating some of these phenomena of families in the restricted three-body
problem in Figure 1. Results of this paper were previously announced and applied
to the spatial restricted three-body problem in our earlier paper [3] on polar orbits
in the lunar problem.
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2. CHORDS

Suppose that (M, )) is an exact symplectic manifold, i.e., A € Q'(M) is a one-

form such that

w=dA
is a symplectic form. Assume also that Ly, L1 C M are two exact Lagrangian
submanifolds in the sense that they are Lagrangian submanifolds of (M, w) with
the additional property that

Mz, =0
for i € {0,1}. Furthermore, we are given a smooth function

H: M — R,

referred to as the Hamiltonian, with the property that 0 is a regular value of H so
that its level set
¥ = H(0)
is a smooth hypersurface in M. We assume further that
MhL;, i€0,1,
i.e. X intersects L; transversally in the sense that if x € ¥ N L; then
T.M=T,YX+T,L;.
In particular, this implies that
Li=L;NnY, 1€{0,1}

are smooth submanifolds of ¥. If the dimension of M is 2n, then the dimension of
¥ is 2n — 1 and the dimension of each £; is n — 1. The Hamiltonian vector field of
H is implicitly defined by the condition

dH = w(-, Xg).
Note that by antisymmetry of the symplectic form we get
dH(XH) :(JJ(XH,XH) =0

so that Xy is tangent to the energy hypersurface . In particular, ¥ is invariant
under the flow of Xp. If one thinks of H as energy then this means that energy is
preserved.

Lemma 2.1. The Hamiltonian vector field X is never tangent to L; fori € {0,1}.

Proof. This is a consequence of the assumption that L; is transverse to X. Indeed,
suppose that x € £;. Because the symplectic form is non-degenerate there exists
n € T, M such that

Since L; is transverse to ¥ we can decompose

n:770+771> To eT:cLiv T ETIZ
Hence
0# w(Xu,n) =w(Xu,n) +wXu,m) =w(Xu,n) +dH(m) = w(Xu,no)-
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Here we have used for the last equation that 7; is tangent to the level set of H.
Since 19 is a tangent vector of the Lagrangian, it follows from the definition of a
Lagrangian subspace that

Xy ¢ ToLs.

In particular, Xy is never tangent to £;. This finishes the proof of the lemma. O

Definition 2.2. A chord (v,7) € C*°([0,1],%) x (0,00) from Ly to Ly is a solution
of the problem

{ o(t) =7Xg(v(t)), teo,1],
v(i) € Ly, 1€ {0,1}.

If we reparametrize a chord (v, 7) to
v (t) :==v(L), tel0,7]
then v, € C*°([0,7],%) is a solution of the problem
O, (t) = Xu (v, (1)), te€][0,7],
UT(O) S Eo,
v (1) € Ly.

In view of this reparametrization we refer to 7 as the period of the chord.

We abbreviate by ¢; the flow of the Hamiltonian vector field Xg, i.e.

d
¢ = id|, ﬁgﬁ}{(x) = X (¢y(x), zeM.
If we set
O: Lo x(0,00) =%, (z,7)— dy(x)
then the map
(v,7) = (v(0),7)

gives a one to one correspondence between the set of chords and the set ®~1(L1).
In the following definition we use this identification.

Definition 2.3. A chord (v, 7) is called non-degenerate if ® is transverse to L1 at
(v,7), t.e.,

d®(v, T)T(UVT)(,C(] x (0,00)) ® T@(Uﬂ.)ﬁl = T@(vﬂ.)z.
Otherwise, the chord is called degenerate.

In view of Lemma 2.1 we get the following equivalent characterization of a non-
degenerate chord.

Lemma 2.4. A chord (v, T) is non-degenerate if and only if

d¢" (v(0))Ty(0)Lo N Ty L1 = {0}.
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3. RABINOWITZ ACTION FUNCTIONAL

We will see that chords can be detected variationally as critical points of the
Rabinowitz action functional. For periodic orbits this functional was first considered
in [9], Equation 2.7, and a Floer theory for this functional was developed in [5].
Extensions to the chord case can be found in [7, 8]. Some of the arguments that
will be used here were earlier explored in [1].

Abbreviate by

P ={veC>(0,1,M):v(i) € L;, i € {0,1}}
the space of paths in M connecting Ly with L;. The Rabinowitz action functional
AP x (0,00) = R
at a point (v,7) € P x (0,00) is given by

AH (v, 7) = /Olm _ T/Ol H(u(t))dt.

The first term is just the area functional. One might think of 7 as a Lagrange
multiplier. Then the critical points of the Rabinowitz action functional correspond
to critical points of the area functional subject to the constraint that the mean
value of the Hamiltonian H has to vanish.

Proposition 3.1. Critical points of A™ correspond to chords.

Proof. For v € P, the tangent space of P at v
T,P = {0 € T(v*TM) :5(i) € T,;Li, i € {0,1}}

consists of vector fields along v starting and ending in the corresponding La-
grangians. We first consider the differential of the area functional

1
Aog: P = R, v»—)/ v
0

If v € T, and L3 denotes the Lie derivative in the direction of ¥, then we can
compute using Cartan’s formula

1
dAg(v)v = /U*Lg)\
0

1 1
= / v*dagx\—k/ v LpdA
0 0
1 1
= / dv*L@)\—i—/ v 1w
0 0

1
= )\(v(l))ﬁ(l)—A(U(O))6(0)+/O w(T, By)dt

1
= / w(T, Opv)dt.
0

Here we have used in the fourth equality Stokes’ theorem and in the last equality
we have taken advantage of the assumption that \ vanishes on Ly and L;. Using
this formula we are now in position to compute the differential of the Rabinowitz
action functional. At a point (v,7) € P x (0,00) and a tangent vector

(67 7/:) € T(U,T) (P X (0, OO)) =T,PxR
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we get

Hoy N@.7) = VU —T ' vodt — T ' v
(1) dAT (0, n)E7) = dAo(v) /Odm)dt /OH<>dt

_ /O1 (B, 00 — X (v))dt ?/01 H(v)dt.

At a critical point (v, 7) of the Rabinowitz action functional this expression has to
vanish for all (v,7) € T, P x R implying that (v, 7) solves

o(t) =7Xg(v(t)), te]o,1],
Jy H(v)dt = 0.

Because the Hamiltonian vector field is tangent to the level sets of the Hamiltonian

we obtain from the first equation that H(v) is constant. Hence the mean value

constraint in the second equation is actually equivalent to a pointwise constraint
and the equation above can be equivalently written as

Ow(t) =7Xpu(v(t)), te][0,1],
H(v(t)) =0, t €0,1].
But this is precisely the equation of a chord. This finishes the proof of the propo-

sition. O

Remark 3.2. Under the identification of chords with critical points of the Rabi-
nowitz action functional, the non-degeneracy condition of a chord can be thought of
as a Morse condition for the critical point.

4. THE CONTACT CONDITION

On the exact symplectic manifold (M,w = d\) the Liouville vector field Y is
defined implicitly by the condition

A= w(Y, ).
We now assume the following contact condition on %
dH|»(Y) > 0.
This implies that
Y h,

i.e., the Liouville vector field is transverse to the energy hypersurface ¥ and the
restriction of the one-form A to X is a contact form. Under this assumption we can
define the Reeb vector field on ¥ uniquely by the requirement

AR) =w(V,R) =1, w(R,& =0, £cT.

Note that the restriction of the Hamiltonian vector field to X is positively parallel
to the Reeb vector field. Indeed, if we define

f:X—(0,00), z+—dH(Y)(x)
it follows that
w(Y, XH)|2 = dH(Y)|§] = f
which together with

OZdH(f):oJ(f,XH):ch(XH’f), fGTZ
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implies that for every x € ¥ it holds that
Xu(x) = f(z)R(x).

We suppose further that ¥ is compact. As a consequence there exists x > 1 such
that

(2) %gf(x)gn, x €.

Lemma 4.1. Under the above assumptions, if (v,7) is a chord, then its action can
be estimated by the period as

< .AH(’U7T) < KT.

R

Proof. We compute

1 1
AH (0, 7) = Ao(v) = / AN X (v(8))dt = T/ Flo(t))dt.
0 0
The estimate now follows in view of (2). O

5. THE OMEGA LIMIT SET

We now suppose that we have a one-parameter family of Hamiltonian functions,
namely a smooth function H: M x [0,1] — R. For u € [0, 1] we abbreviate

H,, == H( p) € C%(M).
Suppose that 0 is a regular value of H,, for every u € [0,1] and H~'(0) is compact.
This implies that the level sets
EH = H;:l(o)
build a smooth family of compact hypersurfaces in M and in particular all ¥,, are
diffeomorphic to each other. If Y is the Liouville vector field on M we assume that
dH/l‘Eu (Y) >0

so that for every p € [0,1] the energy hypersurface X, satisfies the contact condi-
tion. If R, € I'(T'Y,) denotes the Reeb vector field on ¥, then with the smooth
function

fHY0) = (0,00), (0, 41) > dH, (V) ()

it holds for every u € [0,1] and for every = € ¥, that

XH“ (x) = f(xvﬂ)Ru(x)'
Abbreviate
H/ — aH(v N)
I op
By compactness there exists £ > 1 with the property that

€ 0> (M).

@ S s e HU@ S8 (o € HTH0),

Suppose that (vg,7p) is a non-degenerate chord on ¥y. Due to the assumption
that the chord is non-degenerate, there exists by the implicit function theorem
Hoo = poo(V0, 7o) € (0,1] with the property that there exist smooth maps

v: [0,1] X [0, prog) = M, 71 [0, pins) — (0, 00)
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with the property that (v(0),7(0)) = (vo, 70) and for each p € [0, pio) the tuple
(Vs 7) 1= (s 1), 7() € C([0,1], M) x (0, )
is a non-degenerate chord on ¥,,. We assume that ji is maximal with this property.
Proposition 5.1. There exist constants 0 < cg < ¢1 < 0o such that
co <<, peE|0, o)

Proof. The method of proof is very similar to the argument in [6], Theorem 7.6.1,
used to preclude blue sky catastrophes. By Proposition 3.1 for every p € [0, ftoo)
we can interpret the chord (v,,7,) as a critical point of the Rabinowitz action
functional Af+. Differentiating the action along the family of critical points we
obtain

d / '
@AHM (Vs ) = A (v, 7)) = —TN/O H) (v,,)dt.

In view of Lemma 4.1 and the inequalities (3) we estimate from this

1
(4) 7AH“ ('Uuy Tu) < ‘(ZJAH“ (qu TM) < KQ'AHM (v“’ T“)'

K2

Integrating this inequality we obtain the inequality
e AT (v, 1) < ATTh (0, 7,) < e FATO (ug, 7).
Using once more Lemma 4.1 we obtain from that the estimate

e KH

2
7o < 7 < ke .
K

In particular, 7,, is uniformly bounded from above and below by

70 < 7, < KE™ 7.

This finishes the proof of the proposition. [

Let
Q = Q(vo,70) C P x (0,00)

be the Omega limit set of the family of chords (v,7) consisting of all (w,o) €

P x (0,00) for which there exists a sequence p, € [0, ioo) for v € N such that
VILH;O My = Moo, VILH;O(U/LUaT/Lu) = (w,0).

Here it suffices to require that the second limit is in the C°-topology, since by

bootstrapping the equation of a chord we automatically get that the limit is actually

in the C*°-topology and in particular, the Omega limit set consists of chords on
by

Poo*

Theorem 5.2. The Omega limit set ) is nonempty, compact and connected. More-
over, the Rabinowitz action functional Afre is constant on Q. If o < 1, then all
chords in Q) are degenerate. If oo = 1 and ) consists of more than just one chord,
then again all chords in ) are degenerate.
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Proof. Suppose that p, € [0, uso) is a sequence converging to fioo. By Proposi-
tion 5.1 the periods 7, are uniformly bounded from above as well as uniformly
bounded from below away from zero. By the chord equation the sequence v, is
equicontinuous so that in view of the assumption that H~1(0) is compact we ob-
tain by the Theorem of Arzela-Ascoli a convergent subsequence of (v,,,7,,). In
particular, € is not empty.

We next show that €2 is compact. Because the path space is metrizable, it suffices
to show that €2 is sequentially compact. Assume that

z, = (wy,0,)

is a sequence in ). By definition of ) for each v € N there exists a sequence pj,
converging to i as k goes to infinity such that the sequence

Y = (Vg Tuy)
converges to x, as k goes to infinity. Choose a metric on P x (0, co) which induces
the topology. We put k; = 1 and inductively define for v € N

: v+1 MOO_/J’ZU v+1 1
Ry = mm{k:Moo_FLkJr = #ad(%j s Tyy1) < il

We set
[ = pg, -
From the construction of k, we infer that the sequence pu, converges to po, as v

goes to infinity. By the argument in the first paragraph of this proof it follows that
there exists a subsequence v; and a chord x = (w, o) € § such that

jlgrolo(vuuj ) Tuuj) =Z.

In order to prove compactness it suffices now to show that

lim z,. = .
Jj—o0 7

Noting that
y;i] = (vﬂuj’TMUj)

we choose for € > 0 a positive integer jo = jo(€) satisfying

Vi > %, d(y;’ij,x) < g, Vi > jo.
For j > jo we get the estimate
v; v, 1 € 1 €
d(zy;,2) < d(xyj,ykij) +d(yk1j,x) < p +35< o +5=e

We have proved that 2 is compact.

The goal of this paragraph is to show that  is connected. We argue by con-
tradiction and assume that 2 is not connected. This means that 2 can be written
as

Q=0 U

where both ; and €25 are nonempty, closed and open subsets of 2 which are disjoint
from each other, i.e.,

Q1 NQy =0.
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As we have already proved that 2 is compact, the sets Q; and 25 are compact as
well. This allows us to find disjoint open neighborhoods of 2; and €5, i.e., open
subsets Uy and Uy in P x (0, 00) satisfying

UlmU2:®, 91CUv17 Qs C Us.

Choose
Ty = (wy,01) € Q1, 2 = (w2,02) € Q.
Because both sets 2; and €5 are nonempty this is possible. Moreover, by con-

struction of {2 there exist sequences ,u,l€ and ,u% in [0, too) converging to i such
that

lim (v
k— o0

We put k1 = 1 and inductively define for v € N

o min {k: pi > pp, } v odd
vl min {k : i > p3 } v even.

Hi’THi):xi’ iG{l,Q}.

By construction the sequence p, converges to . For v large enough the path

[:ukwukwrl] — P % (07 00)7 = (UM7TM)

has the property that one of the endpoints of this path lies in U;, whereas the other
is contained in Us. Since U; and Us are disjoint, this allows us to find

My € [Mkyvﬂky+1]

meeting the requirement that
Yv = (UuwTuu) € (P X (0,00)) \ (U1 UUy).

By construction the sequence p, converges to ., as v goes to infinity. Therefore
by the first paragraph of this proof we conclude that there exists a subsequence v;
and

T e
such that

lim y,, = .

]A)OO
However, U; and U, were assumed to be open and therefore their complement is
closed so that

y € (P x(0,00) \ (U1 NUz) C (P x(0,00)) \ (2 NQ) C (P x (0,00)) \ 2

This is a contradiction and therefore €2 has to be connected.
We next show that the Rabinowitz action functional A1 is constant on Q. By
integrating (4) we obtain for every 0 < py < po < fieo the inequality

—k2(po— H H k2 (p2— H
e (B2=p1) AHuq (UM17TM1) <A ”2(%277'#2) <e (B2=p1) AHuq (Umva)

from which the desired conclusion follows.

Finally if there is a non-degenerate chord in 2, then in view of the fact that € is
connected, as proved above, it follows from the implicit function theorem, that 2
just consists of one single chord and the family (v,7) can be extended to p > oo
unless po, = 1. This completes the proof of the theorem. O
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6. GRADIENT FLOW LINES

We assume that the same set-up as in Section 5 holds. We denote by C, C
P x (0,00) the set of all chords on ¥, for p1 € [0, 1] or equivalently

C,= critAfx

the set of critical points of the Rabinowitz action functional. We suppose that the
following hypotheses hold true

(i): The Omega limit set 2 is isolated in the set of chords on X
exists an open set U C P X (0,00) such that

lieo s 1-€., there

Unc,, =Q.
(ii): The family of chords (v, 7) does not extend to 1, i.e.,

Moo <1

and there exists a sequence 1, € (ftoo, 1] converging to p, with the property
that on X, there are no chords in U, i.e.,

Cu, NU=0, veN.

Theorem 6.1. Under the assumptions above there exists & > 0 with the property
that for all p € (ftoo — 0, fo) there are on X, at least two chords in U, i.e.,

#(C,NU) > 2.

By definition of the Omega limit set we already know that for u € [0, us) close
enough to e, the chord (v,,7,) belongs to C, NU. The theorem guarantees that
there is a second chord on ¥, for U. This is clear intuitively by looking at the local
Rabinowitz Floer homology for the isolated critical set Q. By hypothesis (ii), the
local Rabinowitz Floer homology is trivial. Now if (v,,7,) were the only chord on
%, for U, then the local Rabinowitz Floer homology is a one-dimensional vector
space generated by (v,,7,), because (v, 7,) is by definition non-degenerate. From
this contradiction we see that there have to be at least two elements in C,, N U.
In the following we give a more elementary argument to prove Theorem 6.1 which
does not use the full strength of local Rabinowitz Floer homology. In particular, it
does not require any gluing construction, but is based on Floer’s stretching method
for time dependent gradient flow lines.

As preparation for the proof of Theorem 6.1 we choose an w-compatible almost
complex structure J on M, meaning that

g= w('v J')

is a Riemannian metric on M. We use the Riemannian metric g to define a metric
on each connected component of P as follows. If wy,w; € P let

Powr € C([0,1],10,1], M)

be the subspace consisting of all w € C*°([0,1],[0,1], M) satisfying the boundary
conditions

w(oa ) = Wo, w(la ) = W, w(O,s) € Ly, w(las) €Ly, se [07 1},
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FIGURE 1. Two families of symmetric periodic orbits in RTBP for
i = 1073, The family parameter is the Jacobi energy c¢. On the
vertical axis, the starting point of the chord, parametrized by the
z-axis. The lower family is non-degenerate in the entire parameter
range. The upper family becomes degenerate.

ie., Py w, consists of all paths in the pathspace P connecting wy and w;. If
Puwow, 7 0, i.e., wo and wy lie in the same connected component of P, we define

1 1 1
d = inf Osw(s,t)|?2dtds =  inf Osw(s,-)||2ds,
plwg. )=t \//| ws.OPdids = int [ o,u(s. s

where the norm |- | = |- |4 on T'M is taken with respect to the metric g and || - ||2
is the L%-norm on TP induced from | - |;. This defines a metric on each connected
component of P. We endow each connected component of P x (0,00) with the
product metric

d((wo, 00), (w1, 01)) = dp(wo, w1) + |o1 — 00|
For p > 0 we define the p-ball around 2 as
B,(Q) := {y € P x (0,00) : d(y,9) < p}.
Lemma 6.2. There exists p > 0 with the property that
BP(Q) n Cltoo =,
i.e., the only chords contained in the p-ball around ) are the ones contained in €.

Proof. We argue by contradiction and assume that there exists a sequence p, > 0
converging to 0 with the property that there exists a chord

Y = (wy,0,) € B,, Q)

not contained in 2. Because ) is compact, it follows that the sequence o, is
uniformly bounded. By the chord equation we conclude that the sequence w, is
equicontinuous. Hence by the theorem of Arzela-Ascoli there exists a chord

y=(w,0) €
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and a subsequence v; such that

lim y,, = y.

Jj—o0
Again by the chord equation we conclude that for j large enough y,, € U. This
contradicts hypothesis (i) and the lemma follows. O

Note that the equation of a chord on ¥, = H;l(O) only depends on the deriva-
tives of H on ¥,; the behavior of H on the rest of the symplectic manifold M is
irrelevant for the chord equation. Hence after maybe throwing away some part of M
and maybe after replacing the interval [0, 1] by a closed subinterval we can assume
without loss of generality that there exists a constant ¢ > 0 with the properties
that

() (Xu, (@) <ec, [Hy(@)|<e [Xu(x)l<e, zeM

where we have taken the norm of the tangent vector | Xy (x)| with respect to the
metric g and moreover,

(SR RN}

c’c

is compact. Hence by Lemma 6.2 we can choose pg > 0 with the following proper-
ties.

(a): By () NCpe =9,
(b): For every y = (w,0) € B,,(£) there exists 7y € [0, 1] such that
[ Hy. (w(m0))] < 52,
(€): po < tmin{o: (w,0) € Q}.
We next introduce the gradient of the Rabinowitz action functional. In order to

do that we first need a Riemannian metric on T(P x (0,00)). Let y = (w,0) €
P x (0,00) and

U1 = (W1,01), G2 = (W2,02) € Ty(P x (0,00)) = T,,P x R.
Define

U1, 92) = /0 g(Wi(t), a(t))dt + 61 -T2 = /0 w( @y (t), J (w(t))wa(t))dt + 71 - Ga.

Note that the Riemannian metric (-, ) on T'(P x (0,00)) induces up to equivalence
the metric d on P x (0, 00).

For any Hamiltonian H € C°°(M,R) the gradient of the Rabinowitz action
functional VA with respect to the metric (-,-) at a point y = (w, o) € P x (0, 00)
is implicitly defined by the condition

dA" (y)g = (VAT (y),7), V7= (@,5) €T, (P x (0,00)).
From (1) we infer that

Hapyg = 1wﬂ} R w)) — & ' w
AT ()7 = /0 (@, B — 0 Xz () /OH( \dt

= —/ g(@,J(w)(atw—JXH(w))—ﬁ/ H(w)dt.
0 0
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Hence with respect to the splitting T}, (P x (0,00)) = T;,P x R the gradient of the
Rabinowitz action functional becomes

J(w)(Ow — o X g (w)) )

[y H(w)dt

vt =
We abbreviate by
Apo () = Bayy3(2) \ By y3(2) = {y € P x (0,00) : po/3 < d(y, Q) < 2p0/3}.

Using this notion we are now in position to state our next lemma.

Lemma 6.3. There exists € > 0 such that
VAT (g)|| 2 €, ¥y € Ap(Q)
where the norm || - || is taken with respect to the metric (-,-).

Proof. We argue by contradiction and assume that there exists a sequence
Yy = (wy,0,) € Apy ()

with the property that

VAT ()] < £, veEN.
To derive a contradiction we first show the following Claim.
Claim 1: There exists vy € N with the property that for every v > vy the im-
age of the path w, is completely contained in the compact subset H;;([—l/c, 1/¢])
of M.

In order to prove the Claim we first observe that since H,'([-1/c,1/c]) C M
is compact there exists k > 0 with the property that

\VH, (2)| <k, w€H, ([-1/e,1/c]).
Here the gradient and the norm are taken with respect to the Riemannian metric

g on TM. By property (b) in the choice of py we know that there exists 7y € [0, 1]
with the property that

| Hyuo (w0 (70))] < 5

Now suppose that the path w, is not contained entirely in the set H, ' ([~1/¢,1/c]).
This means that there exists 7, € [0, 1] with the property that

[ Hyo (wi (71))] = ¢
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IN IN
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In view of this estimate the assertion of Claim 1 follows by choosing
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|HHoo (wy(11)) — H,. (wV(TO))‘

[ G ottt

0
T1

dH, _ (wy(t))atwu(t)dt‘

70

0

0

0

R/Tl |8twl,(t) —0,Xmu,__ (w,,(t))’dt

k|| Ovw, () — 00 X g, (w, ()],
;g| |8tw,,(t) -0, Xm, (wu(t))Hg
K| [V AT (y,)|

K

v

vy > 2kKcC.

Claim 2: The sequence w, 1S equicontinuous.

[ 0 P00,0) X, o))
/Tl g(VHMoo (wy (t)), Opw, (t) — o, XH,_ (wy, (t)))dt‘

/ A \VH,.. (w,(t))] - |0sw, (t) = 0, Xa, _ (w,(t))]dt

15

Let vy € N be as in Claim 1. It suffices to check equicontinuity for v > 1y. Note
that in view of Claim 1 it follows that

(X, (0o ()] = [VH, (0, ()] < &,

Note further that

(6)

Uygmax{az(w,o)EQ}JrQSﬂf.

te0,1].

=: K.
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Given 0 < tg < t1 < 1 we estimate

‘wu(tl) - wu(t0)| S / ' |3tw,,(t)|dt

to

t1
< / 10w, (£) — 0 X, (w, (£))]dt
t
0 tl
+/ low X, (w,(t))|dt
to
t1
< VETh / 00, () — 0, X, (w, (1)) Pt
to
+(t1 —to)rik
< Vi —to||owwy (t) — 00 Xp, _(wu(1)|], + (t1 — to)k1k
< Vin—to||[VA e (g, || + (81 — to)kak
Vi —1
< % + (tl — to)lﬁllﬁl
N
< vi—o + (tl — to)lill{.

Vo
This proves that the sequence w, is equicontinuous and establishes the truth of
Claim 2.

Claim1 and Claim2 together with the uniform bound in (6) allow us to apply
the Theorem of Arzela-Ascoli. That means that there exists a subsequence v; and
y e Al’o (Q)

such that
lim y,, =y.
J—00
In particular,
VAus (y) =0
or equivalently
dAHr (y) = 0.
Hence y is a critical point of the Rabinowitz action functional and therefore by
Proposition 3.1 it follows that y is a chord lying in
APo (Q) - BPO (Q) \ Q.
This contradicts Lemma 6.2. The proof is complete. g

Because by (5) the quantities [H},| and | Xp; | are uniformly bounded, we obtain
the following result.

Lemma 6.4. Let € be as in Lemma 6.3. Then there exists dg > 0 with the property
that

VAT (Il > =, 1€ (oo — 005 pos +00), Y € Apy ().

NN e

We next introduce moduli spaces of gradient flow lines of time dependent Rabi-
nowitz action functionals. Choose a cutoff function

B e C™(R,[0,1])
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satisfying

B'(s) >0, s<0, B'(s) <0, s >0, B(s)=0, |s|>T
for some T' = T'(3) > 0. For

0<p0 <o <p1 <1
such that pg is close enough to o in the sense that
(Vpos o) € B (£2)

we introduce the time dependent family of Rabinowitz action functionals

Ag ot P x (0,00) x R =R, (y,s) > Auo+s@ti-uo) (y).

We introduce the moduli space of gradient flow lines of Ag ,,,,,, contained in B, (€2)
doubly asymptotic to the chord (v, T,,), i-e.,

M(ﬁv Mo, Nl) cCo™= (Rv Bpo (Q))
consists of all y: R — B, (£2) satistying

aSy(S) + VAﬁ,#o’Hl (y(s), 8) =0, lim y(s) = (vuovTMo)'

s—+oo

Proposition 6.5. There exists 41 > 0 with the following property. If
Poo — 01 < o < floo < f1 < floo + 01
and y € M(B, pro, 1) then

d(y(s), ) < 2%, seR.

Proof. Let y = (w,0) € M(B, o, 1). We estimate the energy of y. For that
purpose we abbreviate by A'ﬂ’ Lo i1 the derivative with respect to the second variable.
We further introduce the constant

k= max{r: (u,r) € Q} + po.
Note that
o(s) <k, VseR

Using that y is doubly asymptotic to the same critical point of the Rabinowitz
action functional Af#0 we obtain

0 = gli>I£lo AB o, (y(s)a 3) - SEI_HOO AB 10,1 (y(s), s)
< d
- /,Oo T AB o (u(), 5)ds

oo

dAg 1,1 (4(5), 5)Dsy(s)ds

- /_OO Al o (U(s5),8)ds + /
= (mo —M1)/_To(s)ﬁ/(s) L 50—y (W($))ds

‘/Z [V Ap s (9(5), 9)]|“ds.

This gives the inequality

@ 1T 0.9

oo
— 00

IN

T
(41 — po)re / 18 )lds

2(p1 = po)ke.

IN
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Assume that §; < §p where dp is as in Lemma 6.4 and where §; is so small such
that for every p € [ftoo — 91, thoo) it holds that

(Vs Tu) € Bpy/3(82).
Choose 11 € [foos ftoo + 01) and suppose that y € M(B, po, pt1) which has the
property that y is not contained for all times in the closed ball of radius 2p/3
around 2. In view of the asymptotic behavior of y this implies that there exist
So < s1 satisfying

2 2
d(y(so), Q) = %, d(y(s1),Q) = %, % < d(y(s),Q) < %, s € [so, $1].
We estimate using Lemma 6.4
00 S1
(8) / N2 (y(s),s)szs > / N2 (y(s),s)szs
0o 650 .
2 5/ HVAﬁ,uo,m (y(5)75)‘|d3
S
€ (;1
= 5[ oo jas
so0
> §d<y(sl)ay(30))
> 2o
- 6
Combining the inequalities (7) and (8) we obtain the inequality

% < 2(p1 — po) ke < 401 ke.

Hence by choosing

€Po
0 <
'™ ke
this inequality cannot be true anymore and therefore y has to stay in the closed
2po/3-ball around Q. This finishes the proof of the proposition. (I

Given a cutoff function 8 and 0 < g < piso < 1 < 1 we introduce the following
subset of

Mo (B, pros 1) € M(B, o, p11)
consisting of all y = (w,0) € M(, o, 1) satisfying

1
|H o4-8(s) (11— o) (0(5, 1)) < = VseR, tel0,1].

Proposition 6.6. Assume thaty, = (w,,0,) is a sequence in Mo(B, po, p1). Then
there exists a subsequence v; and a gradient flow line y of the time-dependent Ra-
binowitz action functional Ag g 4, , i-e., a solution of

8sy(3) + VAB;MO:HI (y(s)a 8), seR
such that y,, converges in the C2% (R x [0,1], M) x C32 (R, (0, 00))-topology to y.

loc loc

Proof. Note that ¢, is uniformly bounded and therefore w, satisfies a perturbed
Cauchy-Riemann equation of bounded energy with bounded perturbation. More-
over because y, lies in M(3, o, 1) its image is contained in the compact subset

U &z (-2 cm
nelo,1]
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Because w = dX is exact and A vanishes on the Lagrangians Ly and L;, there is
neither bubbling of holomorphic spheres nor holomorphic disks. The proposition
follows. O

Proposition 6.7. There exists do > 0 with the following property. Assume that

1o € [Hoo = 02, foc); 1 € (Koo, Hoo + 02]
Then for every y = (w,0) € Mo(S, o, 1) it holds that
1
|H#0+ﬁ(s)(#1*#0)(w(8at))' < %a Vse Ra te [07 1]
Proof. We argue by contradiction and assume instead that there exists sequences
1o < poo and pf > poo satisfying
(9) Jim g = proe = lim pg

such that there exists y, € Mo (B8, u, 1¥), s, € R and t, € [0, 1] such that

1
(10) 1 H g+ (=) (W50, 00))] 2 o
We consider the sequence of time-shifted gradient flow lines
($0)+Uu(s) :i=yu(s+s,), seR

By the arguments in the proof of Proposition 6.6 and (9) there exists a subsequence
v; and a gradient flow line y of the Rabinowitz action functional

— AHuoo
Aﬁaﬂoov#oc - A *

such that (s,).y, converges to y. Note that in view of (9) and the fact that y, is
doubly asymptotic to the same chord, the energy

B(s)m) = ) = [ 0o s

converges to zero as v goes to infinity. This implies that y = (w, o) is just a constant
gradient flow line of the Rabinowitz action functional A= i.e., y is a critical point
and therefore has to be a chord in €. Because the sequence t, is contained in the
compact interval [0, 1] we can assume, maybe after going to a further subsequence,
that there exists to € [0, 1] such that

lim ¢, =t

Jj—o0
Hence we infer from (10) that
1
H teo))] > —.
(Hy (o)) >
This contradicts the fact that the image of the chord w is completely contained in
Yoo = H, 1 (0). The proof of the Proposition is finished. O

Choose §; > 0 as in Proposition 6.5 and d> > 0 as in Proposition 6.7 and set
53 = min{él, (52}

Proposition 6.8. Assume that pioo — 03 < po < fhoo < p1 < oo + 03 and suppose
that

(11) B,y () Nerit A o = {(v,y, 7o) }-

Then crit A N B, (Q) # 0.
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Proof. Choose a smooth function v € C*(R, [0, 1]) satisfying
v >0, v(s)=0,s<-1, ~H(s)=1, s>1.
Define a smooth one-parameter family of cutoff functions
Br € C*(R,[0,1]), R € [0,00)
as follows
Ry2+s5) Re[01], s <0,
Br(s) = Ry(2—-s) Re]0,1], s>0,
B2 4y(1+s+R)  R>1, s<0,
v(1—-s+R) R>1, s> 1.
We now consider the one-parameter family of moduli spaces

ME = Mo(Br, 110, 1), R € [0,00).

Claim: For every R € [0,00) the moduli space ME is nonempty.

In order to prove the Claim we consider the moduli space

Nr= [ Mjx{r}.

r€[0,R]

By assumption (11), gradient flow lines in Az cannot break. Therefore Proposi-
tion 6.5 and Proposition 6.7 combined with the proof of Proposition 6.6 show that
the moduli space Ny is compact. After a small perturbation we can assume that
it is a one-dimensional manifold with boundary, where the boundary is given by

ONR = MY x {0} U ME x {R}.

The moduli space M consists of gradient flow lines of the time-independent Rabi-
nowitz action functional A%+« doubly asymptotic to the chord (v,,,7,,). However,
because of time-independence such a gradient flow line has to be constant, i.e., is
just given by the chord (v, 7,,). Hence MS§ consists just of a single point. Note
further that, because (vy,,7,,) is non-degenerate, this boundary point of Np is
non-degenerate so that we actually do not need to perturb there to get a manifold
structure. However, a one dimensional manifold is a disjoint union of intervals and
circles. In particular, the number of boundary points is even. This proves that
M # 0 and establishes the truth of the Claim.

Choose now a sequence R, converging to infinity. By the claim there exist gra-
dient flow lines

Yu € ./\/lé?‘".
By Proposition 6.5 and Proposition 6.7 combined with the proof of Proposition 6.6
there exists a subsequence v; and a gradient flow line y = (w, o) of the Rabinowitz
action functional A1 whose image is contained in B, (£2) and moreover the image
of w is contained in the compact subset ¢ 1) H;'([-1/¢,1/c]) C M such that

lim y,;, = y.
Jj—o0

Now choose a sequence s, converging to infinity. Then there exists a subsequence
v; such that the sequence

y(st) € BPO (Q)
converges to a critical point of Af#1 . This finishes the proof of the Proposition. [J
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Corollary 6.9. Under the assumptions of Proposition 6.8 there exists p1 > oo
such that for every p € (oo, 11) it holds that crit AH« NU # ().

Proof. We argue by contradiction. In this case we can assume by Proposition 6.8
that there exists a sequence u, > jio converging to ., with the property that

critA%e 0 B, (Q) # 0, critAP U = 0.

Hence we choose
y, € critAT N B, (Q), v, ¢U.
Because 1, converges to [io there exists a subsequence v; and a chord y € §2 such
that
lim y,, = y.

Jj—o0
However, in view of the continuity of the chord equation this implies that there
exists jo € N such that

ij S Ua .7 2 jO'
This contradiction proves the Corollary. (]

We are now in position to prove the main result of this section.

Proof of Theorem 6.1: By assumption of the Theorem and by Corollary 6.9 we
conclude that for p € (feo — 93, fioo) it holds that

#(B,, () Nerit A7) > 2.

But then the same argument as in the proof of Corollary 6.9 implies that there
exists 0 < § < d3 with the property that

#(U N eritAfe) > 2.
This finishes the proof of the Theorem. (]
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