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ABSTRACT

The extent that articulatory information embedded in incoming speech contributes to the
formation of new perceptual categories for speech sounds has been a matter of discourse for
decades. It has been theorized that the acquisition of new speech sound categories requires
a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully
integrate auditory and articulatory information. However, it is possible that these brain regions
are not sensitive specifically to articulatory information, but instead are sensitive to the abstract
phonological categories being learned. We tested this hypothesis by training participants over
the course of several days on an articulable non-native speech contrast and acoustically
matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency
with the two sets of stimuli, activation was measured in fMRI as participants passively listened
to both sound types. Decoding of category membership for the articulable speech contrast
alone revealed a series of left and right hemisphere regions outside of the dorsal stream that
have previously been implicated in the emergence of non-native speech sound categories,
while noregions could successfully decode the inarticulable nonspeech contrast. Although
activation patterns in the left inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), and
the supplementary motor area (SMA) provided better information for decoding articulable
(speech) sounds compared to the inarticulable (sine wave) sounds, the finding that dorsal
stream regions do not emerge as good decoders of the articulable contrast alone suggests that
other factors, including the strength and structure of the emerging speech categories are more
likely drivers of dorsal stream activation for novel sound leaming.

INTRODUCTION

Whether an infant learning her first language, or an adult learning his fifth language, in lan-
guage acquisition the learner must learn to perceive as well as produce new speech sounds.
In typical language acquisition, these two processes (perceptual and articulatory learning)
develop in tandem, although not necessarily on the same timeline (Tsao, Liu, & Kuhl,
2004). However, in laboratory conditions, we know that individuals can learn to distinguish
complex auditory speech and nonspeech categories without learning to produce these same
categories. At issue is the degree to which articulatory information associated with speech is
recruited even in the absence of articulatory learning. That is, when one learns a new pho-
netic category without learning to produce the same category, are speech motor represen-
tations recruited?
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Models of speech perception like the motor theory of speech (
) and subsequent direct realist approaches (
; ), make explicit predictions about the formative role of articulatory codes
(i.e., the gestures made by the articulators to create a speech sound) in speech perception. In
these models, motor or articulatory representations are the objects of perception, and must be
acquired and then accessed to achieve robust comprehension (see
for a review). Thus, learning to discriminate between a pair of speech sounds
like /b/ and /d/ (which are similar acoustically) requires that the listener access information the
articulatory gestures used to produce those sounds.

Though not explicitly linked, the dual stream model of speech processing (

) makes biological predictions that also implicate motor systems not in speech sound per-
ception, but speech sound learning. Specifically, the dorsal stream pathway (consisting of brain
regions like the inferior frontal gyrus (IFG), the pre-motor cortex (PMC), and the temporal-parietal
junction (TPJ)) is claimed to play a critical role in auditory-motor integration and serves as a
“neural mechanism that both codes and maintains instances of speech sounds,” which can then
be later used to aid in production as well as in perception ( , p- 399).
According to this view, during the learning of new speech sounds, listeners code the incoming
articulatory gestures in dorsal stream areas in preparation for future speech output (

). Notably, once speech sound representations have been learned, dorsal
stream activation is no longer thought to be required during perception-only tasks.

The role of the dorsal stream during speech perception (for established speech categories and
newly learned ones) has been a matter of significant debate, as has the role of articulatory codes
during speech perception in general (see, for instance, ;

; Wilson, 2009; ). If articulatory codes are
accessed as a matterof course during perception of speech categories, it should follow that the
encompassed brain regions are sensitive to differences in articulation between speech sounds
during speech perception, especially during speech sound learning (see

Abul | .
ni, 2004). While evidence for sensitivity to place/manner of articulation differences is
apparent in‘the left superior temporal gyrus using electrocorticography (
johnson), ), it is less clear that dorsal stream speech motor regions are involved
in the perception of established, mature speech categories. Using a univariate fMRI approach,
Pu found differential activation in lip- and tongue-dedicated regions of
the precentral gyrus in response to the syllables /p/ and /t/, which differ in place of articulation.
These results were supported by findings from , who used a
multi-voxel pattern analysis (MVPA) to identify brain regions that could classify neural responses
to stimuli based on specific articulatory features independent of phonemic category (and sub-
sequent acoustic variation). Activation patterns in pre-motor and motor areas (among other re-
gions) could distinguish place and manner of articulation contrasts, even though the classifier
was trained on responses to one phonological category (stop consonants) and tested on re-
sponses to another (fricatives). However, both and
failed to find any dorsal stream regions that were sensitive
to different articulatory dimensions of passively heard syllables in both univariate (attempting
to replicate Pulvermdiller et al.’s results) and multivariate analyses, calling into question the sen-
sitivity of the dorsal stream to learned phonological contrasts.

7 ’ ’

As noted above, there is contradictory evidence that dorsal stream regions are sensitive to
articulatory contrasts during speech perception. However, even in the studies that support the
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activation of the dorsal stream during speech processing, an alternative explanation exists: It is
possible that what is being observed is IFG sensitivity to abstract sound categories at large, and
not specifically the articulatory differences between sounds. That is, during speech perception,
inferior frontal structures may not be coding articulatory differences between sounds (like the
difference in lip protrusion in the production of /i/ and /y/), but instead reflect the ultimate
product of those gestures, which are two distinct phonetic categories. IFG sensitivity to speech
categories has been established in a number of studies ( ;

), but these studies do not disentangle the issue of articulatory codes versus ab-
stract categories as the two are fundamentally confounded in established speech categories. In
each of these previous studies, participants were presented with isolated speech sounds in
their native language. These well-established perceptual categories may activate articulatory
representations of the same sound by association rather than-as a means to perceive the sound
itself. That is, upon hearing “da”, one may automatically activate gestural codes for producing
“da”, whether or not this articulatory information is necessary for retrieving the speech sound
category. Further, as argued in the dual stream model, the dorsal stream may only be recruited
during learning, when participants are learning the links between auditory and motor repre-
sentations of sounds. Thus, to fully test the predictions of this model, it is necessary to present
listeners with a situation in which a new speech category is acquired alongside an acoustically
matched, inarticulable contrast in ‘order to fully establish what dorsal stream activation may
actually reflect.

i Possing and ex-
plored this idea by contrasting brain activation from familiar speech sounds (a continuum from
/b/ to /d/) with that of an-acoustically unfamiliar matched nonspeech continuum (created by
spectrally inverting the first formant of the speech continuum). Although when subjects have

minimal exposure to the speech and nonspeech continua ( ), no dorsal
stream differences emerged, once subjects were trained on the same stimuli for four days,
( et al. a2 ), some dorsal stream recruitment is seen. That dorsal stream recruit-

ment arises only during the learning process is consistent with the dual stream model, but par-
adoxically, dorsal stream engagement is not preferentially seen for speech (articulable) stimuli.
[nstead, several significant clusters in the left [FG, the bilateral postcentral gyrus, and the bi-
lateral supplementary motor area display greater activation at posttest for a nonspeech contin-
uum that could not be articulated by a human vocal tract. In a conjunction analysis, in which
the neural changes as a result of training were compared across the speech and nonspeech
continua, the left IFG was identified as sensitive specifically to learning in the nonspeech con-
tinuum. This provides further evidence that during learning, IFG activation more likely reflects
the emergent category status of the nonspeech stimuli as listeners begin to form perceptual
categories rather than a reflection of articulatory codes ( ).

, used a similar paradigm to

, but critically substituted sine-wave speech versions of both the speech (/b/-/d/) and non-
speech continua (spectrally rotated /b/-/d/). Adopting the labels from this study, we will refer to
them hereafter as “phonemic” and “nonphonemic,” respectively, to differentiate from the nat-
ural speech versions of these stimuli in previous studies. Sine-wave speech is created by taking
the spectral center and power of each of the formants in a speech sound, and then creating a
sine-wave tone at the same frequency and power ( ). The
resulting sound contains approximately the same distinctive spectral information as the original
speech sound but is not perceived as speech or speechlike until the listener is informed of the
intended message, after which listeners often report being able to understand the message. These
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stimuli allowed the authors to control for familiarity and to manipulate the availability of artic-
ulatory information by revealing to participants midway through the experiment that one of the
continua (the phonemic continuum) was made from familiar speech sounds. Dorsal stream re-
cruitment was observed at posttest, where greater activation in the left inferior frontal gyrus and
the left precentral gyrus was seen for the phonemic continuum compared to the nonphonemic
continuum. It seems possible that after being informed that the phonemic continuum was sup-
posed to reflect two familiar speech sound categories, listeners began to recover some of the
articulatory code used to create those sounds, and as a result the dorsal stream was recruited
during learning. But again, this possibility does not exclude that neural activation reflects the
emergence of two distinct categories, as perception of the phonemic continuum shifted from
a continuous mode to a categorical mode during posttest.

The Current Study

To investigate the role of the dorsal stream during the learning of new speech sounds, we at-
tempted to equate the degree of proficiency with the two stimulus sets being learned, as well
as to manipulate articulatory feasibility. While both variables have been manipulated indepen-
dently in previous studies, to our knowledge no study has controlled for both of these variables
simultaneously. We take a similar approach to by introducing a set
of articulable (non-native speech) versus inarticulable (impoverished sine-wave speech) sounds.
Like , we used sounds that did not initially have established categories for our
listeners, therefore requiring participants to learn both sets of sounds (unlike

, ). However, in'Desai et al., articulatory information is only indirectly implied in their
phonemic continuum,_.as listeners must recover a phonological category from sine-wave
speech. There is no guarantee that participants are activating articulatory representations of
the source stimuli; and their results could reflect listeners treating the sine-wave speech as in-
articulable sounds but with a defined category structure. Therefore, we chose to use a non-native
speech sound contrast to ensure that articulatory information is theoretically available, but the
contrastis still'as unfamiliar as the impoverished sine-wave speech contrast. Listeners are then
trained to the same accuracy on both contrasts, after which two competing hypotheses can be
investigated. First, following the logic of the dual stream model of speech perception, dorsal
stream regions should only be recruited for auditory-motor integration during the learning of
articulable sounds. Alternatively, dorsal stream regions (especially the IFG) may play a more
general role in categorical decisions and will be equally recruited during the learning of both
articulable and inarticulable sounds (so long as the two sounds are equally well learned).

The question at hand is especially suited to the use of multi-voxel pattern analysis (MVPA,

) because these techniques can provide a clue as to the nature of the infor-

mation stored in different areas of the cortex. If the patterns of activation are distinctive enough

to classify stimulus types, it implies that there is systematic neural representation for some

property of that stimulus. Further, the differences in activation in response to a contrast like

/b/ and /t/ may not be in separate areas of the cortex, but better characterized by a distributed

pattern of activation (including nonadjacent voxels), the kind of informational code that MVPA

is sensitive to. By using signal decoding techniques, we ask not only whether articulatory ver-

sus auditory regions are recruited, but whether the information content of those regions dis-
tinguishes between the two categories in each contrast.

We attempted to answer this question by using a multiday training study in which participants
were trained to equal degrees of familiarity on an unfamiliar (butarticulable) non-native phonetic
contrast (the /i/ vs. /y/ contrast found in languages like French), as well as acoustically-matched
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impoverished sine-wave analogues of the same contrast. After three days of training, participants
then engaged in a passive fMRI task in which they heard tokens from the two continua they were
trained on. A series of univariate and multivariate analyses were performed on the fMRI data to
determine the neural architecture involved in the learning of new sounds, and how the articu-
latory feasibility of that sound impacts that architecture.

MATERIALS AND METHOD

Participants

Thirty-four undergraduate students were recruited from the University of Connecticut. All par-
ticipants indicated that they were right-handed, monolingual native English speakers with nor-
mal hearing and no history of neurological or language disorders. Handedness and hearing
abilities were self-reported by the participant, but not assessed in any other way. Eight partic-
ipants were excluded (because of failure to complete all four sessions, n = 5, incomplete MRI
data, n =2, withdrawal, n = 1), leaving data from 26 participants (ages = 18-22 years, females =
16, males = 10) for analysis. Written informed consent was obtained from every participant in
accordance with the guidelines of the University of Connecticut ethics committee. Participants
were paid for their participation.

Stimuli

Speech stimuli

The speech stimuli consisted of tokens taken from a seven-step vowel continuum from /i/ (front
unrounded vowel, found. in English in words like “leaf”) to /y/ (front rounded vowel found in
languages such as French). This contrast was chosen because /y/ is not found in American
English phonology and monolingual English speakers consistently struggle to discriminate these
vowels without training ( ; ).

Natural speech tokens of /y/ and /i/ were produced by a male native speaker of Parisian
French, and the /y/ token was then transformed into synthesized speech using the to
KlattGrid function in Praat ( ) to allow for precise control over
acoustic properties. F1, F2, and F4 were fixed at the average values derived from the natural
/yl-production, and F3 was systematically lowered in 7 equal Bark scale steps until the F3
value was equivalent to the naturally produced /i/ token’s F3 value, creating a continuum from
/y/ to /i/. F5 was removed as it is uninformative to the contrast of interest. The synthesized /i/
and /y/ endpoints were submitted for pilot testing to five native speakers of French, who ac-
curately identified the intended vowels and deemed them natural sounding. All tokens had a
duration of 432 ms and were scaled to an intensity of 84 dB. Stimuli were delivered over head-
phones at a volume adjusted by the participant to a loud yet comfortable listening level.

Sine-wave stimuli

Nonspeech acoustic analogues of the speech stimuli were created by transforming the vowel
continuum described in the previous section into sine-wave speech. This was achieved using
a Praat script created by Chris Darwin (available at

). The resulting seven tokens were then stripped of the sine-wave
equivalents of F1 and F4, leaving only the critical F2-F3 contrast in place to reduce the likelihood
that they would be perceived as speech-like (see ). The resultant two-formant sine
sweeps are thus acoustically matched to the diagnostic information in the vowel continuum
(the frequency of F3), but critically during initial pilot testing (N = 11) they were never indicated

Q1
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Figure 1. Spectrograms of the first step of the vowel (left) and sine-wave (right) continua.

to be perceived as speech (participants frequently described them as “chirps”, “bird sounds”, or
“robot sounds”). The same pilot testing also revealed that asingle session was sufficient for par-
ticipants to reach near ceiling accuracy in categorizing sine-wave analogue tokens using the
explicit perceptual fading training task described in the following sections (M = 97.7%, SD =
15%). All tokens had a duration of 432 ms and were scaled to an intensity of 80 dB.

Experiment Schedule

The study took place over four consecutive days (see Figure 2); on the first day, participants went
through the informed consent process and completed the training paradigm for the vowel to-
kens. On the second day, participants returned and repeated training for the vowel tokens. On
the third day, participants againrepeated the vowel training followed by the sine-wave training
paradigm. Finally, on thefourth'day participants completed a short refresher on both stimulus
sets, in which participants were refamiliarized with the correspondence between continuum
sounds and the category they map on to, and then completed the fMRI task. The discrepancy
in the number of training sessions between the vowel stimuli and the sine-wave stimuli was a
result of earlier pilot testing, which indicated that it took participants one session to reach a
threshold of at least 80% accuracy in the most difficult training block on the sine-wave stimuli,
but three' days to reach the same criteria for the vowel stimuli. The fMRI task was completed on a
fourth day to allow for consolidation of the recently learned sine-wave stimuli, as sleep consol-
idation has been shown to impact non-native phonetic learing (Earle & Myers, 2015).

Behavioral Training Regimen

The behavioral training paradigm consisted of three subtasks that were identical in structure
across both Vowel and Sine training. OpenSesame 3.2.4 (Mathot, Schreij, & Theeuwes, 2012)

A) B) C)
AX Discrimination Trials
Day 1 Day 2 Day 3 Day 4 Training Paradigm 24 35 4.6
Vowel Vowel Vowel Stimulus e
Training Training Training Refresh talning- Bloc 1
Training - Block 2 Jif -
T i v
Sine fMRI __Training - Block3 1 2 3 4 5 6 7
Training Task Continuum Block 3 |
Categorization Block 2

Explicit perceptual-fading training blocks

Figure 2. (A) Schedule of tasks completed over the course of the four days of training. (B) Schedule of the subtasks that comprised both the
vowel and the sine-wave training sessions. (C) Overview of the stimulus pairs used in the discrimination (above the horizontal continuum line)
and the explicit perceptual fading training (below the horizontal continuum line).

Neurobiology of Language
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was used for stimulus presentation, and all responses were made via a Cedrus RB-840 response
box. Participants wore Sony MDR-7506 headphones and were allowed to adjust volume to
their most comfortable listening level. All response options were counterbalanced across
participants.

Discrimination

At both the beginning and the end of the behavioral training paradigm, participants completed
an identical AX discrimination task in which they were presented with a pair of tokens from the
appropriate stimulus set that were either identical (e.g., step 1 vs. step 1) or two steps apart on
the continuum (e.g., steps 1 vs. step 3; steps 4 vs. step 6) and asked to indicate as quickly and
accurately as possible if the two sounds were the same or different. All pairs were presented
both “forwards” (e.g., step 1 followed by step 3) or “backwards” (e.g., step 3 followed by step 1),
with an intertrial interval of 500 ms. There were seven pair types where the two tokens pre-
sented were identical and ten pair types where the stimuli differed. Each pair was presented
11 times, for a total of 187 trials. Accuracy of response and reaction time (RT) were both re-
corded as outcomes of interest, and d’, an unbiased measure of sensitivity, was calculated from
the participants’ responses. Trials in which participants failed to respond before the trial timed
out (6,000 ms) were considered incorrect responses.

Perceptual fading training

Explicit training on the sound categories used a perceptual fading paradigm where participants
were asked to map the two halves of the continuum to a different colored square. On each
successive block, the acoustic difference between the two tokens that participants were asked
to identify was reduced. To familiarize participants with the two categories they would be
hearing, they were first:shown a colored square and played 10 repetitions of the continuum
endpoint token that would thereon be arbitrarily associated with that colored square (e.g., a
red square would appear on the screen and the /i/ endpoint token would play).

In the first training block (labeled as “easy”), participants were asked to identify as quickly
and accurately as possible which colored square corresponded to step 1 and step 7. On the
second training block (labeled as “medium”), participants were asked to identify which col-
ored square corresponded to continuum step 2 and continuum step 6. On the third training
block (labeled as “hard”), participants were asked to identify which colored square corre-
sponded to continuum step 3 and continuum step 5, the tokens that lay on opposing sides
of the acoustic boundary. Notice that step 4, the midpoint of the continuum, was not presented
during training.

Each block consisted of 60 trials (30 repetitions of each token), and participants were re-
quired to achieve an 80% accuracy threshold in order to ascend to the next block. If partic-
ipants did not reach threshold by the end of the block, they would repeat that same block up to
three times before being forced to move on to the subsequent block. Therefore, a given par-
ticipant could experience between one and three repetitions of each block, depending on how
quickly they advanced to more difficult blocks. Participants received explicit feedback during
the task. Accuracy of response and RT were both recorded as outcomes of interest.

Continuum categorization

Following training, participants engaged in a two-alternative forced choice task in which they
were asked to identify the colored square that corresponded to the sound being presented, with
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no feedback. There were 10 randomly presented repetitions of each token from the full seven-
step continuum, for a total of 70 trials. The proportion of step 7 responses (which corresponded
to the /y/vowel and /y/sine endpoints in the Vowel and Sine conditions respectively) per contin-
uum step were then calculated. Trials in which participants failed to respond were omitted from
analysis.

Imaging Methods

fMRI design and procedure

Before entering the scanner, participants completed a brief task in which they were refamiliar-
ized with the stimuli that would be presented during the fMRI task. Participants were first pre-
sented with a colored square while five repetitions of each of two tokens from that category
were played. Following this, participants engaged in a two-alternative forced choice (2AFC)
task in which they were asked to identify which colored square corresponded to the sound
presented. Each of the four tokens were repeated 30 times, and this was repeated for both
the Vowel tokens and the Sine tokens, leading to a total of 240 trials for the 2AFC task.
Explicit feedback was provided during this task.

Participants were instructed to listen attentively and told that on some trials a stimulus
would be presented more quietly than normal. When this happened, they should press any
button on the MRI-safe response devices held in both hands. These catch stimuli consisted
of a randomly chosen token from the eight Vowel and Sine tokens presented at 20 dB lower
intensity. Participants completed a brief training during the structural scan acquisition to famil-
iarize them with this task. Imaging data from catch trials were modeled in participant level
analyses but did not contribute to group-level analyses. Participants were on average quite
accurate at detecting catch trials (M = 90%, SD = 30%). Stimuli were delivered by
OpenSesame 3.2.4. The volume was set to a comfortable listening level as determined by each
participant.

The fMRI experimental paradigm consisted of ten runs, with run order randomized between
participants: Trials within each run were presented in a fixed, pseudorandom order determined
using the OptSeq2 tool ( ). Steps 1, 3, 5, and 7 from
both the Vowel and Sine continua were each repeated 15 times per run, along with 15 stimuli
used for the catch task described in the previous paragraph, resulting in 150 presentations of
each stimulus over the course of the experiment. An auditory stimulus appeared in all but 25
of the silent gaps during scanning, for an average intertrial interval of 2,390 ms. Each run con-
sisted of 161 volumes.

Acquisition parameters

Anatomical and functional MRI data were collected with a 3-T Siemens Prisma scanner
(Erlangen, Germany). High resolution three dimensional T1-weighted anatomical images were
acquired using a multiecho magnetization prepared rapid gradient echo sequence (MPRAGE:
repetition time [TR] = 2,400 ms, echo time = 2.22 ms, inversion time = 1,000 ms, 0.8 mm?>
isotropic voxels, 320 x 320 matrix) and reconstructed into 208 slices. Functional Echo Planar
Images (EPIs) were acquired using an accelerated multiband sequence in ascending, inter-
leaved order (52 slices, 2.5 mm thick, 2 mm? axial in-plane resolution, 110 x 110 matrix,
220 mm’ field of view, flip angle = 62°) and followed a fast, sparse sampling design: Each
functional volume was acquired with a 1,000 ms acquisition time, followed by 1,000 ms of
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silence during which auditory stimuli were presented (effective TR = 2000 ms). Stimuli were
always presented during the silent gap.

Univariate fMRI analyses

Data were analyzed using AFNI ( ). Preprocessing for the univariate analyses con-
sisted of first transforming images from oblique to cardinal orientation, followed by motion
correction using a six-parameter rigid body transform aligned with each participant’s anatom-
ical data set, normalization to Talairach space ( ), and spatial
smoothing with a 4 mm Gaussian kernel. Masks were created using each participant’s anatom-
ical data to eliminate voxels located outside the brain. Individual masks were used to generate
a group mask. Motion and signal fluctuation outliers were removed following standard
procedures.

We generated time series vectors for each of the eight continua tokens (Vowel step 1,
Vowel step 3, Vowel step 5, Vowel step 7, Sine step 1, Sine step 3, Sine step 5, Sine step 7) as
well as the catch trials and any false alarm trials foreach participant in each run. These vectors
contained the onset time of each stimulus and were convolved with a stereotypic gamma hemo-
dynamic function. The ten condition vectors along with six additional nuisance movement
parameters were submitted to a regression analysis. This analysis generated by-voxel fit coeffi-
cients for each condition for each participant.

For group level analysis, beta coefficients were submitted to a 2 x 3 analysis of variance
(ANOVA) in AFNI (using 3dANOVA3): In the ANOVA, main effects of sound type (Vowel vs.
Sine), continuum step (1°vs. 3 vs. 5 vs. 7), and their interaction were estimated.

Multivariate fMRI analyses

Data were preprocessed again using AFNI with a modified pipeline compared to the univariate
analyses. Specifically, multivariate preprocessing consisted of first transforming images from
oblique to cardinal orientation, followed by motion correction using a six-parameter rigid
body transform aligned with each participant’s anatomical data set. No blurring or spatial nor-
malization were performed until after the subject-level analysis to preserve fine-grained spatial
information. The same ten condition vectors from the univariate analyses along with six addi-
tional nuisance movement parameters were submitted to an individually-modulated regres-
sion analysis (using the stim_times_IM flag in AFNI’s 3dDeconvolve), in which each trial for
a condition is given its own amplitude estimation, yielding trial-wise beta coefficients (as op-
posed to run-wise beta coefficients, see ). The matrices
from the output of the individually-modulated regression were then submitted to a least
squares sum estimation using AFNI’s 3dLSS, in accordance with best practices for performing
multivariate analyses on fast event-related fMRI designs (
; ).
The beta coefficient output from 3dLSS was then used in a multi-voxel pattern analysis
(MVPA) performed in MATLAB using the Decoding Toolbox (TDT,
). A linear support vector machine (SVM) classification was used with 3 voxel
(6 mm) radius searchlight and a leave-one-run-out cross validation scheme, in which the SVM
was trained on data from nine runs and tested on a tenth, held-out run. The regularization
parameter for the SVM was set at C = 1. In a searchlight analysis, a roving sphere moves across
the whole brain, and in each searchlight sphere an SVM was trained and tested (
). The classification accuracy score was assigned to the central
voxel of each searchlight. This yielded a subject-level classification accuracy map for each
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participant in their brain’s native space. The following classifications were performed: /i/versus
/y/ for vowel tokens (defined as step 1 and step 3 vs. step 5 and step 7, hereafter “/i/yower VS.
Yvowel”), and the analogous sine version (which we will hereafter refer to as “/i/sine VS. /Y/sine”)-

In preparation for group-level analyses, subject-level classification maps were then normal-
ized to Talairach space and blurred with a 4 mm Gaussian kernel. Following this, single-
sample t tests against chance levels were performed for the /i/yower VS. Y/vowel and /i/sine Vs.
NYlsine (using 3dttest++ in AFNI): t test output was masked by a group mask which only included
voxels present in all 26 participants. In addition, a paired-samples t test was performed com-
paring the /i/vowel VS. /Y/vowel and /i/sine VS. /Y/sine decodings.

Cluster level correction for multiple comparisons was determined by running 10,000 iter-
ations of Monte Carlo simulations on the group mask. Specifically, we used the -acf option in
3dFWHMx and 3dClustSim (AFNI) to estimate the spatial smoothness and generate voxel-wise
and cluster-wise inferences. Data were corrected at a cluster level correction of p < 0.05 (voxel
level threshold of p < 0.025, 149 contiguous voxels).

RESULTS
Behavioral Data Analysis and Results

Vowel training results

All the following behavioral analyses were conducted using the R packages afex and Ime4
( & Walker, ;

). Model selection was achieved by first creating and running all possible permutations
of random effects structures, after which a backwards stepping selection procedure was applied
to the models that converged ( ). Output
from the ANOVA table generated by the afex command “mixed” (run on the appropriate model
selected from the earlier described procedure) is reported for all mixed-effects model analyses in
this study. Residuals were inspected for each selected model with no deviations from normal
encountered.

Perceptual fading training. On average, accuracy during training improved over the course of
the three days (see , ). Given the adaptive nature of the paradigm, participants
completed varying repetitions of each level of difficulty (easy: M = 1.29 blocks, SD = 0.58;
medium: M = 1.28 blocks, SD = 0.58; hard: M = 2.12 blocks, SD = 0.90), and as expected
there was a strong negative correlation between the number of blocks completed and average
accuracy on the explicit perceptual fading training (r(24) = —0.92, p < 0.0001), reflecting the
fact that less proficient learners had to complete more blocks to progress through training.

Accuracy data during training was submitted to a generalized linear mixed-effects model
using the R packages afex and Ime4 ( ;

). Model selection was achieved by first creating
and running all possible permutations of random effects structures, after which a backwards
stepping selection procedure was applied to the models that converged (

). Output from the ANOVA table generated by the afex com-
mand “mixed” (run on the appropriate model selected from the earlier described procedure) is
reported for all mixed-effects model analyses in this study.

To examine the degree to which participants’ accuracy during vowel training increased
over time, a generalized linear mixed-effects model was fit The selected model included fixed
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Table 1. Accuracy during explicit perceptual fading training

Training Easy (1-7) Medium (2-6) Hard (3-5)

—-Day 1: Vowel M = 87.7% (SD = 33%) M =89% (5D = 31%) M =73.9% (SD = 43.9%)
—-Day 2: Vowel M =96.2% (SD = 19%) M =93.1% (SD = 25.3%) M =76.9% (SD = 42.2%)
—-Day 3: Vowel M =95.7% (SD = 20.3%) M =93.3% (SD = 25%) M =79.4% (SD = 40.5%)
—-Day 3: Sine M =93.7% (SD = 24.3%) M =94.9% (SD = 22.1%) M =83.9% (5D = 36.7%)

Note: Means (M) and standard deviations (SD) displayed.

effects for training difficulty level, training day, and the interaction of training day and level, as
well as by-subject random slopes and intercepts for the interaction between training difficulty
level and training day. The model revealed a significant main effect of training difficulty (y2 =
89.27, p < 0.0001) and a main effect of training day (2 = 7.45, p = 0.02), with higher accu-
racy on easier blocks and higher accuracy on successive days of training The interaction be-
tween training difficulty and training day did not reach significance (p = 0.62).
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Figure 3. Behavioral data from the vowel training paradigm. (A) Accuracy on the explicit perceptual fading training task for the vowel stimuli
as a function of training level difficulty. Each point indicates an individual subject’s performance, and the shape of the point indicates the
number of times that participant repeated that block. (B) Responses to the continuum categorization task as a function of /i/,owel~/Y/vowel CON-
tinuum step and training day. Error bars indicate standard error. (C) d scores from the AX discrimination task for the vowel stimuli across each
stimulus as a function of pretest and posttest as well as training day. Error bars indicate standard error. (D) d’ scores from the AX discrimination
task for vowel stimuli with respect to the subject-specific determination of the between-category (BC) and within-category (WC) tokens as a
function of pretest and posttest as well as training day. Error bars indicate standard error.
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Vowel categorization posttest. In general, participants were successful at identifying the end-
points of the continuum, with at least 90% accuracy on average across each of the three train-
ing days (see ). Responses from the categorization posttest were transformed into a
binary outcome variable and then submitted to a generalized linear mixed-effects model with
a logit link function (also instantiated in the R package afex) to assess how categorization of the
full continuum changed over the course of the three training days. P values were estimated
using a likelihood-ratio test. The model selected included fixed effects for continuum step
(centered) and training day, with by-subject random slopes and intercepts for continuum step,
training day, and their interaction. Output from the model indicated a main effect of contin-
uum step (2 = 44.15, p < 0.0001) and a main effect of training day (2 = 6.08, p = 0.05),
indicating that participants’ /y/vower responses increased as a result of the F3 manipulation
across the continuum as expected, and that participants’ overall proportion of /y//ower re-
sponses decreased with more experience with the continuum. The interaction was not signif-
icant (p = 0.82), indicating no significant change in the steepness of the categorization
function over the three days of training.

AX discrimination task. Discrimination data was first separated into pretest (the first discrimina-
tion task completed during that day’s training) and posttest (the final discrimination task follow-
ing that day’s continuum categorization task), and “different” trials were collapsed such that
discrimination token “step 1 — step 3” was considered the same as “step 3 — step 1”.
Following this, d" was calculated for each of the resulting five “different” tokens for each subject
and training day. For the purposes of analysis, the token “3-5" was considered to be “between-
category” (as step 4 of the continuum represents the most ambiguous token in terms of acous-
tics), and all other tokens were considered “within-category” ( ).

A linear mixed-effects model was then fit for participants’ d’ scores, with fixed effects of
token type (between-category vs. within-category), training day, block (pretest vs. posttest)
and their interactions; as well as by-subject random intercepts. A main effect of token type
was found (32 =12.30, p < 0.001), in that d’ scores were higher for the between-category
token (step 3 —step 5) than the within-category tokens. In addition, a main effect of training
day. (2 = 3.09, p = 0.05) arose, indicating that d’ scores increased over the course of the
experiment. All other main effects and interactions were nonsignificant.

Using the acoustic boundary to determine the between-category discrimination token ig-
nores the fact that participants’ perceptual boundary did not necessarily correspond to the
midpoint of the continuum. To remedy this concern, we estimated subject-specific perceptual
boundaries and fit a linear mixed-effects model using the subject-specific determinations of the
between-category and within-category tokens. This model selected contained fixed effects of
token type (between-category vs. within-category), training day, block (pretest vs. posttest) and
their interactions, as well as by-subject random intercepts. This model was then compared to
the model previously fit using the acoustic boundary to determine whether a token was be-
tween-category or within-category, and the model that used participant-relative boundaries
had superior fit, but yielded largely the same findings: a main effect of token type (2 =
38.76, p < 0.0001), a main effect of training day (2 = 5.19, p < 0.01), and a main effect of
block (2 = 6.78, p < 0.01). All interactions were nonsignificant.

Sine training results

Explicit perceptual fading training. Participants again completed varying repetitions of each level
of difficulty (easy: M = 1.27 blocks, SD = 0.60; medium: M = 1.35 blocks, SD = 0.56; hard:
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M =1.69 blocks, SD = 0.84), and there was a similarly strong negative correlation between the
number of blocks completed and the average accuracy on the explicit perceptual fading training
(r(7) = -0.86, p = 0.003).

To examine the efficacy of the single training session on identification of the two Sine
tokens, a generalized linear mixed-effects model was performed. The model selected included
fixed effects for training difficulty level and by-subject random intercepts (the maximal model
for this analysis). The model revealed a significant main effect of training difficulty (y2 =
102.98, p < 0.0001), indicating higher accuracy on easier blocks consisting of larger intervals
on the continuum.

Sine AX discrimination task. Discrimination data for the sine-wave stimuli was analyzed using
the same procedure as the vowel stimuli. A linear mixed-effects model was then used for par-
ticipants’ d’ scores, with fixed effects of token type (between-category vs. within-category),
block (pretest vs. posttest), and their interaction, as well-as by-subject random slopes and
intercepts for all fixed effects and interactions.

The model revealed that there was no significant difference in d’ between the between-
category and within-category tokens (p = 0.26). However, there was a main effect of block,
in which d’ scores overall increased from pretest to posttest (F = 9.43, p < 0.01). The interac-
tion between token type and block was significant (F = 5.60, p < 0.05), indicating a larger
increase in sensitivity at posttest for the between-category token than the within-category
token. Recoding the data to use subject-specific determinations of the between-category token
did not alter the results ( é 1D).

Comparison of vowel and sine-wave behavioral performance

Explicit perceptual fading training. Accuracy on the training task was comparable in sine-wave
and vowel tokens, despite participants only having a single day of training (see ,

), which was expected from previous pilot testing. Data from the third day of training
was analyzed with a generalized linear mixed-effects model with logit link function (the de-
pendent variable, accuracy, was coded as binary value for each trial). Fixed effects of training
difficulty level, stimulus type (Vowel vs. Sine), and their interaction, along with by-subject
random slopes and intercepts for all fixed effects and their interactions were entered into
the model. P values were estimated using a likelihood ratio test. The model output yielded
a significant main effect of block (y2 = 29.33, p < 0.0001), indicating that participants’ accu-
racy decreased as training difficulty increased, regardless of stimulus type, as well as a main
effect of stimulus type (2 = 4.39, p = 0.04), in that accuracy was higher for the Sine stimuli
compared to the Vowel stimuli. The interaction between block and stimulus type was nonsig-
nificant (p = 0.07).

Categorization posttest. Participants’ accuracy at identifying the endpoints of the Sine con-
tinuum was not as robust as with the Vowel continuum, but still reached at least 75% ac-
curacy at each endpoint token ( ). Posttest categorization accuracy was analyzed
using a generalized linear mixed-effects model where categorization of the Vowel (on the
third training day) and Sine continua were compared. Fixed effects of continuum step, con-
tinuum type (Sine vs. Vowel), and their interactions, as well as random by-subject slopes
and intercepts for all fixed effects and interactions were entered into the model. P values
were estimated using a likelihood ratio test. There was a significant effect of continuum step
(x2 = 42.19, p < 0.0001), but the effect of continuum type was nonsignificant (p = 0.34).
However, there was a significant continuum step by continuum type interaction (y2 = 6.17,
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Figure 4. Behavioral data from the sine-wave training paradigm. (A) Accuracy on the explicit perceptual fading training task for the sine-wave
stimuli as a function of training level difficulty. Each point indicates an individual subject’s performance, and the shape of the point indicates
the number of times that participant repeated that block. (B) Categorization data as a function of the /i/gine—/y/sine continuum step. Error bars
indicate standard error. (C) d’ scores from the AX discrimination task for the sine-wave stimuli across each stimulus as a function of pretest and
posttest. Error bars indicate standard error. (D) d’ scores from the AX discrimination task for sine-wave stimuli with respect to the subject-
specific determination of the between-category (BC) and within-category (WC) tokens as a function of pretest and posttest. Error bars indicate

standard error.
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p = 0.01). Post hoc pairwise comparisons were performed using the R package Ismeans to
investigate the source of the continuum step by continuum type interaction. There were
significant differences (after Bonferroni correction) between the categorization of sine-wave
and vowel stimuli at step 1 (p = 0.025), step 5 (p = 0.012), step 6 (p = 0.005), and step 7
(p = 0.004), which reflects the lesser degree of certainty at the endpoints for the sine-wave
continuum.

Another metric of differences in the mode of categorization between the two stimulus sets
(i.e., categorical perception vs. more continuous perception) is the slope of the categorization
function. To this end, psychometric functions were fit to participants’ continuum categoriza-
tion responses from the third day of training for both the sine-wave stimuli and the vowel stim-

uli using the package quickpsy ( ) in R. The slope of the
psychometric function was used as a tool to quantify how strongly categorical an individual’s
perception is, similar to the “categorical index” approach in , ,

with the assumption that a steeper slope is among the behavioral hallmarks of more rigidly
categorical perception. A linear mixed-effects model was then fit to the slopes of the psycho-
metric functions, with a fixed effect of stimulus type (Vowel vs. Sine-wave) and random by-
subject intercepts. There was no significant difference in slope values between stimulus sets
(F=0.55, p=0.47).

14
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Finally, to achieve converging evidence regarding the mode of categorization between the
vowel and sine-wave stimuli, we also analyzed participants’ reaction times in the phonetic
categorization task, as categorical perception is usually accompanied by slower responses
for more ambiguous tokens in the center of a continuum than the clearer endpoint tokens
( ). We again used responses only from the third day of training. To account
for overall slower responses to the sine-wave stimuli compared to the vowel stimuli (sine-
wave: M = 638.83 ms, SD = 577.35 ms, vowel: M = 473.64 ms, SD = 464.99 ms), we con-
verted reaction times to z-scores. A linear mixed-effects model was fit to the z-scored reaction
times, with main effects of stimulus type (Vowel vs. Sine-wave), continuum step (squared, to
better reflect the quadratic shape of participants’ responses), and their interaction. The model
selected included by-subject random slopes and intercepts for stimulus type and continuum
step. There was no significant main effect of stimulus type (p = 0.93) or continuum step (p =
0.16), and critically no interaction between stimulus type and continuum step (p = 0.85), in-
dicating that the pattern of responses for each step of the continuum, regardless of stimulus set,
was not significantly different (see ).

AX discrimination task. To evaluate the behavioral equivalence across stimulus sets, the AX
discrimination data from the third day of training for the vowel stimuli was combined with
the data from the sine-wave stimuli and analyzed using a linear mixed-effects model on the
d’ scores. The model selected included main effects of token type (between-category vs. within-
category), block (pretest vs. posttest), stimulus set (Vowel vs. Sine), and their interactions, as
well as by-subject random slopes and intercepts for each main effect.

A main effect of token type was found (F = 4.53, p < 0.05), indicating higher overall sen-
sitivity for between-category tokens than within-category tokens, as well as a main effect of
block (F = 6.58, p < 0.05), indicating higher d’ scores at posttest than pretest, and a main effect
of stimulus set (F = 21.68, p < 0.0001), with participants showing better overall sensitivity to
sine-wave stimuli. In-addition, a significant interaction of token type and stimulus set was
found (F =12.06, p < 0.001), as well as a significant interaction between block and stimulus
set (F=9.72, p < 0.01).

Post hoc pairwise comparisons on both interactions were again performed using the R
package Ismeans with Bonferroni correction. The interaction between token type and stimulus
set was driven by a significant difference between within-category and between-category
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Figure 5. Reaction time (z-scored) in the continuum categorization task on the third day of training
as a function of continuum step and stimulus set. Error bars indicate standard error.

15



Neural decoding of articulable and inarticulable sounds

Vowel > Sine Sine > Vowel
t=9.55

Figure 6. Regions that showed greater activation for sine-wave tokens than vowel tokens in the
ANOVA. Clusters corrected at the voxel level of p < 0.025, with 149 contiguous voxels and a cor-
rected threshold of p < 0.05.

tokens in the vowel data (p = 0.001), but not the sine-wave data (p = 0.34), while the inter-
action between block and stimulus set reflected an overall increase in d’ from pretest to post-
test in the sine-wave condition (p = 0.0004) but no difference in the vowel condition (p =
0.51).

fMRI results

Imaging data from Sine and Vowel tokens were pooled in two analyses; a univariate approach
to look for differences in activation magnitude, and a multivariate approach to investigate dif-
ferences in activation patterns.

Univariate analysis. Contrasting functional activation for vowel tokens compared to sine-wave
tokens (Figure 6, Table 2)-revealed three prominent clusters, all showing more activation for
sine-wave tokens compared to vowel tokens. Significant activation differences were found in a
large right hemisphere cluster in the STG extending into the Rolandic operculum, the insula,
the temporal pole, and Heschl’s gyrus; an analogous left hemisphere cluster in the STG ex-
tending into Heschl’s gyrus, the Rolandic operculum, and the temporal pole and a smaller
cluster in the left cerebellum.

To investigate how individual differences in proficiency with the two continua may have
impacted neural results, a linear mixed-effects model (with fixed effects of stimulus type and
continuum step, and by-subject random intercepts) was performed on the functional data
using AFNI’s 3dLME. Accuracy on the hardest level of difficulty for the explicit perceptual
fading training for both the vowel tokens and sine-wave tokens on the final day of training
was selected as a covariate. After controlling for participants’ proficiency with the two

Table 2. Results of univariate ANOVA comparing activation to Sine versus Vowel stimuli

Area Cluster size (Voxels) X y z Maximum t value

Sine > Vowel

L STG, L RO 1807 -45 -11 6 7.85
R STG, R RO 1777 47 -9 6 9.55
L Cere (Crus 2), L Cere (Crus 1) 150 =15 -69 -34 3.90

Note. STG = superior temporal gyrus. RO = Rolandic operculum. Cere = cerebellum. Clusters corrected at the voxel level of p < 0.025, with 149 contiguous
voxels and a corrected threshold of p < 0.05.
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continua, similar bilateral STG clusters emerged in which sine-wave tokens elicited greater
activation than vowel tokens.

Multivariate analysis. Subject-level classification accuracy maps from the searchlight MVPA
analysis were submitted to single sample t tests against chance level (50%) to determine cor-
tical regions that were able to discriminate category differences (e.g., all “A” tokens vs. all “B”
tokens). For the decoding of the two vowel categories (/ivower VS. /Y/vowel), three significant
clusters were found: (1) a cluster in the right middle temporal gyrus extending into the right
superior temporal gyrus, (2) a cluster in the right inferior frontal gyrus (specifically in the pars
triangularis and the pars opercularis), and (3) a cluster in left middle temporal gyrus (see
Table 3, Figure 7A). The same analysis for the sine-wave speech tokens, decoding /i/sine Vs.
N/sine did not yield any regions that met the threshold for significance, but voxel-level decod-
ing results from the searchlight analysis contributed to the Vowel decoding — Sine decoding
comparison below.

Next, we contrasted the sine-wave and vowel decoding maps to identify regions that dif-
fered significantly in decoding performance for the two stimulus sets. Subject-level classifica-
tion accuracy maps from the sine-wave and vowel decoding analyses were submitted to a
paired-samples t test to identify regions that showed significantly different decoding perfor-
mance for Vowel category differences than for Sine category differences. All such clusters
showed superior decoding of Vowel contrasts and included a cluster that extended from the

Table 3. Results of t tests performed on MVPA classification data

Area Cluster size (voxels) X y z Peak accuracy
/i/vowel VS /Y/vowel decoding

R MTG, R STG 200 47 -7 -12 51.64%

R IFG 181 49 19 30 51.66%

L MTG 159 =53 -43 2 51.47%
/i/sine VS. /V/sine decoding

No significant clusters - - - - -
Vowel decoding — Sine decoding Maximum t value
L Thalamus 422 -21 -17 6 3.04

L Insula, L TP, L RO, L IFG 404 -33 -5 20 2.94

L MTG 288 —47 -59 6 2.87

R SMA, R MCC, L SMA 227 9 -17 44 2.93

R Cere (VI), R Cere (IV-V) 191 15 =53 -22 2.97

L Cere (IV-V), Cere Verm (4/5) 186 -3 -57 -8 3.18

R HC, R Put 171 27 -29 0 3.06

L Cere (VI), L Cere (Crus 1) 162 -23 =55 -26 2.93

Note. MTG = medial temporal gyrus. STG = superior temporal gyrus. IFG = inferior frontal gyrus. TP = temporal pole. RO = Rolandic operculum. SMA =
supplementary motor area. MCC = middle cingulate cortex. Cere = cerebellum. HC = hippocampus. Put = putamen. Cere Verm = cerebral vermis. Clusters
corrected at the voxel level of p < 0.025, with 149 contiguous voxels yielding a corrected threshold of p < 0.05.

Neurobiology of Language
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A) Vowel Decoding: /i/yyye VS- /Y vowel

Peak Accuracy = 51.66%

B) Vowel Decoding — Sine Decoding

t=3.12

Figure 7. Results from the MVPA analyses. (A) Regions that showed significant classification of the
two Vowel categories. Clusters corrected at the voxel level of p < 0.025, with 149 contiguous vox-
els and a corrected threshold of p < 0.05. (B) Output from the paired t test showing regions that
classified Vowel categories significantly more accurately than Sine stimuli. The pop-out image dis-
plays cerebellar clusters and a thalamus cluster not rendered in surface image.

left insulainto: the left temporal pole and the left inferior frontal gyrus, as well as another clus-
ter in the left middle temporal gyrus (Table 3, Figure 7B).

DISCUSSION

Behavioral Results

The intent in this study was to train participants to equal proficiency on two novel contrasts, a
non-native vowel contrast and an acoustically-matched sine-wave contrast. There are many
metrics that can be considered when evaluating the degree to which we were successful in
doing so; overall accuracy during training reflects the degree to which contrasts were learn-
able in the moment, the slope of the categorization curve reflects the precision with which
participants separated the categories, and differences in discrimination performance (in partic-
ular spikes in discriminability of tokens that cross the category boundary) reflect the emerging
“categorical” status of the sound category. It is notable that these metrics do not necessarily
pattern together, even in well-developed native language categories. For instance, several
studies have found no relationship between the categorization function and discrimination
performance (Gerrits & Schouten, 2004; Hary & Massaro, 1982; van Hessen & Schouten,
1999; Schouten, Gerrits, & van Hessen, 2003).

On balance, participants showed successful learning of both contrasts: Participants’ ability
to both identify and discriminate between the two categories in each continuum increased
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with training, and ultimately, performance on the training task, the slope of the category
boundary, and the shape of the reaction time function were not significantly different between
the two continua. The continua differed, however, in the degree of “acquired distinctiveness”
in the discrimination data, with the vowel stimuli showing marked increases in sensitivity to
between-category tokens, while sine-wave stimuli showed much higher overall discriminabil-
ity, but no obvious peak for between-category tokens. This pattern may reflect qualitative dif-
ferences in the way that speech versus nonspeech categories emerge, with speech sound
categories more likely to have perceptual warping within the category, a classic hallmark of
native language speech categories. Below we consider our results in the context of other lit-
erature on speech and nonspeech category learning.

The vowel contrast in particular showed a behavioral pattern that qualitatively resembles
nativelike perception (i.e., an increased sensitivity across-category boundaries, a decreased
sensitivity within category boundaries, a sharp categorization curve, and an increased RT to
near-boundary decisions ( & Griffith ; ).
On the last day of training, d’ values from the AX discrimination task for within-category to-
kens, (e.g., 1-3 or 5-7) were much lower than on the first day of training, whereas d’ scores
increased for the tokens most often containing participants’ perceptual boundary (2—4 and 3-5).
These results are congruent with previous studies of native English speakers’ perception of the
front-rounded vowel /y/, which shows that listeners will initially assimilate /y/ to the American
English vowel /i/. Nonetheless, this contrast is ultimately learnable to a high level of proficiency

( ; 9).

Sine-wave versions of speech stimuli are not automatically mapped to speech analogues. In
our study, we removed F1 and F4 to prevent listeners from reconstructing the formants for the
/il and /y/ vowels and thus retrieving those speech categories. Studies of the perception of sine-
wave speech continua have found that participants’ responses in identification tasks were ei-
ther random or largely continuous ( ; ,exp. 1;

2008), though a sine-wave speech version of a vowel continuum was perceived
categorically regardless of whether the listeners interpreted them as speech or nonspeech
( o Rals , exp. 2). As discussed above, the sine-wave behavior is betrayed
by one finding that suggests that the sine-wave category was more poorly learned (or less fully
elaborated) than the vowel stimuli, namely a lack of an obvious peak in the discrimination
function around the category boundary. However, the significant interaction present in the
sine-wave AX discrimination analysis, wherein there was a greater increase in sensitivity for
the between-category token than the within-category tokens at posttest, does point to an
emerging pattern for acquired distinctiveness. Without additional exposure, this point will re-
main speculative as there is a lack of converging research on discrimination performance for
sine-wave speech after multiple days of training.

fMRI Results

[n general, greater activation for the sine-wave tokens in the univariate analysis points to the
possibility that they were being processed less efficiently by a general auditory, and not a
speech-specific, mechanism. A broad scale contrast of areas where sine-wave tokens elicited
greater activation than vowel tokens revealed bilateral clusters in STG, similar to the findings
in , where nonspeech stimuli showed greater activation than speech
stimuli at posttest in STG. This could be due to the fact that the sine-wave tokens were still
more novel and participants had less of an opportunity to habituate to them. However, our
results replicate , where participants were trained over the course of
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four sessions on their nonspeech stimuli, suggesting that mere lack of exposure is not the only
driving factor behind the sine-wave vs. vowel activation differences. Given the broad scale of
dimensions that vary between the two stimulus sets (e.g., articulatory information or acoustic
complexity), it is difficult to draw conclusions about the driving force of these neural differ-
ences using only univariate methods.

Regions identified in vowel decoding analysis are outside of dorsal stream

As discussed earlier, the dual stream model posits that the dorsal stream is recruited during the
learning of speech sounds, where it serves as an auditory-motor integration mechanism.
Evidence for this role has been difficult to ascertain given that many previous studies have used
stimuli where only the inarticulable stimuli were unfamiliar (e.g., , ).
To more conclusively answer this question, we trained participants on an unfamiliar vowel con-
trast, and used multivariate decoding analyses to investigate which brain regions could represent
the differences between these sounds. Any region that can decode these newly-learned vowel
categories could do so by virtue of access to (1) articulatory differences (lip rounding differences
that listeners infer or extract from the auditory input), (2) abstract phonological categories (/i/ vs.
/y/), or (3) the acoustic differences between the two sounds (F3 is higher in /y/).

We found that the right MTG and the right STG were sensitive to vowel category information.
Crucially these areas are not included in the dorsal stream or implicated in speech-motor pro-
cessing but have been identified in previous imaging studies of non-native phonetic learning

( ; rachione; ). Additionally, another significant clus-
ter was found in the right IEG, which along with the right MTG, has been implicated as playing a
role in perceptual learning for speech, as found it to be sensitive to

changes in representation of an /s/-/|/ contrast in response to a talker-specific artificial accent.
The right IFG has also been shown to be sensitive to nonlinguistic acoustic processing, like pitch
( ) Jongman ), as well as to play a role in non-native phonetic learn-
ing ( & Swan, ). Thus, we take it as more likely that decoding sensitivity in these right
hemisphere regions is based upon differential representations of the abstract categories of /i/vowel
and /y/vowel @and not the differences in articulation between them (or simply the acoustic differ-
ences). The only left hemisphere region that successfully decoded the two vowel categories was
the left MTG, and the cluster overlaps strongly with the phonological network described as part
of the ventral stream ( ). As such, our preferred interpretation of this pat-
tern is that the left MTG likely represents phonological category differences between /i/ and /y/.
The failure to find evidence for dorsal stream representation of different speech sounds during
phonetic learning, when it is predicted by the dual stream model, suggests that articulatory in-
formation is either coded in areas not involved in speech-motor gestures (like the right MTG and
the STQ) along with phonological representations, or is represented at a level that our multivar-
iate analysis is not sensitive to, or is simply not recruited during this task.

Dorsal stream identified only when vowel decoding is contrasted against sine-wave decoding

It is possible the sensitivity to newly learned vowel categories reflects acquisition of any new
auditory categories, and is not speech-specific. In order to differentiate these possibilities, we
compared classification results from the /i/\owes VS. /Y/vower and the /ilsine vs. /y/sine decoding
maps. The resulting statistical map indicates regions that better decoded the two different
vowel categories than the two sine-wave categories, or put differently, regions that are sensitive
specifically to auditory contrasts that differ in articulation. The critical comparison of interest is
whether dorsal stream regions show discriminable patterns of activation only during the
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learning of articulable sounds (Vowel) but not non-articulable sounds (Sine), as would be pre-
dicted by the conception of the dorsal stream as an auditory-motor integration mechanism.
Several dorsal stream regions emerged from this analysis; the left IFG and the left insula, the
bilateral supplementary motor areas, and a left MTG extending into posterior STG (see

) all showed superior decoding of vowel tokens compared to the sine-wave
analogues.

These results are consistent with several transcranial magnetic stimulation (TMS) studies of
the role of motor regions in speech perception, in which “artificial lesions” of speech motor
regions (i.e., primary and pre-motor cortices) lead to changes in discriminating or identifying
native language speech sounds, indicating a causal role of the articulatory regions during
speech perception ( ;

; 2013;
; 07;
). However, these studies have not necessarily addressed the dorsal stream as circuit
though, and have instead focused on one of its constituent regions at a time. For instance,
showed that stimulation of dorsal stream regions affected pho-
netic decisions but not performance, on a more naturalistic task where listeners had to match a
word to a sample picture. €ll, Restle, applied TMS
simultaneously to the left pre-motor cortex and the left IFG (two of the three regions of the
dorsal stream) and found decrements in phonological processing only in noisy conditions,
which suggests that the dorsal stream may only be brought online during perception when
stimulus identity is unclear. In‘ourstudy, it is possible that the dorsal stream is recruited when
the newly learned vowel /y/ must be distinguished from similar English vowels already in the
repertoire. By contrast, the sine-wave stimuli most likely do not assimilate to any existing au-
ditory categories, and thus their identity is more easily resolved.

The results from the Vowel decoding — Sine-wave decoding analysis do provide support for
the dual stream model’s conception of the dorsal stream as an auditory-motor integration
mechanism, but we hesitate to conclusively accept this interpretation. As we will discuss in
the next section, no brain regions significantly decoded sine-wave stimuli, which means that
the Vowel-decoding — Sine-wave decoding analysis is displaying areas that have higher
accuracy in the vowel decoding, but nevertheless do not reach significance in the vowel
decoding alone (there was essentially no overlap between the map generated by the Vowel
decoding — Sine-wave decoding analysis and the map generated by the vowel decoding alone
beyond the left MTG). To that end, we believe the results from the vowel decoding, which do not
involve any dorsal stream regions, sufficiently address the original motivation of this study.
Based upon these results, future research should step back and more thoroughly examine if
the dorsal stream is truly involved in phonetic learning at all.

Another potential issue with the Vowel decoding — Sine-wave decoding lies in the present
study’s ability to completely control the equivalence of category structure across the vowel
and sine-wave stimuli. As our motivating goal was to investigate if dorsal stream recruitment
in previous studies reflected auditory-motor integration, or simply the formation of new audi-
tory categories, it was necessary to have two sets of stimuli that differ only on the dimension of
articulatory feasibility. As discussed above, although our stimuli were equated in terms of par-
ticipants’ success on the training task, that equivalent accuracy may have led to qualitative
differences in the shape of the emerging categories. Specifically, by one metric (discrimination)
our sine-wave stimuli differed from our vowel stimuli in their degree of categoricity. Therefore,
it is possible that the regions found in the Vowel decoding — Sine-wave decoding could reflect
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differences in the emergence of categorical perception and not just articulatory information.
Future research will need to more strongly control for category structure to more precisely
equivalate between speech and nonspeech sounds.

Gradient neural representations of sine-wave stimuli may have impeded decoding

The sine-wave decoding analysis did not uncover any brain regions that reliably represented
the two sine-wave categories. This is a bit of a puzzle given strong behavioral evidence that
participants were able to distinguish the categories. One explanation for the failure to find
neural sensitivity to sine-wave tokens appeals to the degree to which these stimuli showed
“acquired equivalence” within the sound category. In speech processing, acoustic cues to
speech sounds are initially encoded continuously at the neural level (

; ; 3NN ), then cate-
gorical structure is imposed on them quickly and neural responses begin to reflect phonolog-
ical category membership early in processing (Tosce /

). We speculate that by contrast, nonspeech categories such as the sine-wave
speech tokens used in the current study may continue to be represented in a graded fashion at
the neural level. Because our analysis favored grouping of two more perceptually distinct sine-
wave stimuli to reflect a single category (e.g.; steps 1 and 3 for /i/sine), this could have created a
more difficult classification problem for sine-wave tokens. Submitting just the endpoints of the
sine-wave continuum (step 1 & step 7) to the same decoding analysis yielded a significant
cluster in the right MFG. Notably, this analysis suffers from less power than that reported in
the main body of the text, using only half of the tokens in the decoding analysis. This finding
contrasts with a previous multivariate fMRI study of trained nonspeech novel auditory catego-
ries that found that bilateral primary auditory cortex activation could successfully classify the
two categories (Leyet al, 2012).

On the topic of classifier accuracy, observed accuracy at the group levels was numerically
low, but statistically reliable. For the goals of this experiment, maximizing accuracy of the
classifieris:not of primary importance; significantly above-chance findings indicate that there
are structured neural patterns in response to different stimuli, and using accuracy levels as a
measure of the size of this effect is a faulty assumption. For a detailed explanation of the dif-
ferences between MVPA for interpretation versus prediction, see

Subcortical regions implicated only in learning of speech sounds

Speech sound processing, especially during learning and adapting to speech sound variants,
may not be limited to cortical regions. In the present data, better decoding for the vowel con-
trast compared to the sine-wave contrast was found in the left thalamus. Previous work has
observed that the thalamus is sensitive to human speech sounds:

found that the thalamus was generally more active for speech rather than sine-wave
speech analogues in humans, while found that the guinea pig thalamus
is sensitive to complex spectral differences between human speech sounds even when animals
were not exposed to any kind of training on these sounds. However, more relevant to this goal
of this study is the relationship between the thalamus and articulatory information; neuropsy-
chological investigations have found that damage to the thalamus often yields difficulties with
the articulation of speech sounds ( ; ), and our results suggest
that during the learning of new speech sounds, the thalamus may be representing the articu-
latory codes that will later be used for production, similar to the role of the dorsal stream in the
dual stream model.
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More broadly, there has been increasing interest in the contribution of subcortical brain
structures in experience-dependent plasticity in the auditory system (
), and it is suggested that the cerebellum is involved in adaptation to alterations
in speech through its functional connectivity to cortical language areas (
). In the present study, the significant right cerebellar clusters
may reflect the engagement of this language plasticity network (similar to
) as a result of the nascent formation of a speech sound category. Language related cer-
ebellar function is heavily right lateralized, while the left cerebellum, especially lobule VI and
Crus 1, are implicated as having a role in executive functioning. Left cerebellar engagement in
this study could reflect a decision-making process about category membership for the vowel
contrast (for a review, see ).

Conclusion

In sum, the MVPA results from the present experiment provide support for the interpretation
that dorsal stream regions are recruited during the learning of articulable sounds only, a ques-
tion that has been obscured in previous studies due to stimuli not being equated on profi-
ciency or articulatory feasibility. We did find evidence for dorsal stream recruitment when
looking for regions that could preferentially discriminate category membership for articulable
contrasts (our vowel contrast) rather than inarticulable contrasts (our sine-wave contrast);
however, differences in category structure between the articulable and inarticulable contrasts
(in that the former was perceived more categorically by some metrics than the latter) also
allow for the possibility that this recruitment reflects sensitivity to category structure and
not articulatory feasibility. However, these regions did not appear when examining decoding
of the two articulable vowel sounds alone. Instead, a series of regions outside of the dorsal
stream previously implicated in non-native phonetic learning could successfully classify the
two vowel categories. Future work will need to address the interplay between recruitment of
the dorsal stream in the initial stages of phonetic learning and the contribution of right hemi-
sphere cortical regions.
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