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ABSTRACT: Tunneling effects on chemical reactions are well-known and have
been unambiguously demonstrated by processes that involve the motion of
hydrogen atoms at low temperature. However, the process by which tunneling
effects cause a falloff curve (i.e., how reaction rate constants depend on pressure)
has apparently not been previously documented. This work points out that falloff
curves can indeed be caused by tunneling and explains the effect in simple terms.
This is an interesting feature of quantum tunneling, which can appear in low
temperature chemistry (such as in atmospheric or interstellar environments). In
this Letter, we use high-level coupled-cluster calculations in combination with
master-equation methods on the well-studied reaction of OH with HNO3, which
plays an important role in the upper troposphere and lower stratosphere. Our results in combination with available experimental data
clearly demonstrate that the tunneling correction depends on not just temperature, but also pressure.

Q uantum mechanical tunneling plays a vital role in many
fields of chemistry and biology1 that involve electron

transfer processes and/or motions of light atoms such as
hydrogen.2,3 Such light particles can readily pass through a
potential barrier even if they do not have sufficient energy to
surmount it.1 Many chemical reactions observed experimen-
tally4−8 can only be explained by quantum mechanical
tunneling effects. Nowadays, the role of tunneling in chemical
reactions is fairly well-established.4−6 This has been seen for
several reactions that involve the motion of hydrogen atoms at
low temperature (or low energy).9

The tunneling correction, κ(T),1,10,11 is defined as the ratio
of the quantum mechanical rate coefficient and the (classical
mechanical) rate coefficient, the latter of which excludes
tunneling effects:
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where P(E)q and P(E)c are quantum and classical transition
probabilities, respectively. R is the gas constant, Vo is the
potential barrier, and T stands for the temperature of the
reaction system. E is the internal energy.
The tunneling correction, a theoretical concept, can be

estimated theoretically but cannot be measured experimen-
tally; κ(T) is used to determine how important tunneling is for
the reaction under study. It is well-established that κ(T) is
exquisitely sensitive to temperature: it decreases sharply when
temperature increases and converges to unity at a sufficiently
high temperature.11 Hence, including an accurate tunneling
correction in computing k(T) is vital for reactions occurring in

interstellar environments, still significant in atmospheric
environments, and ultimately becomes unimportant in high-
temperature combustion.
According to the Lindemann−Hinshelwoord mecha-

nism,12,13 the rate coefficient for a unimolecular reaction
depends not only on temperature but also on pressure, the
latter effect causing a falloff curve. Therefore, the tunneling
correction (eq 1) would be a function of pressure as well as
temperature (i.e., κ(T, P)). However, to the best of our
knowledge, the pressure dependence of κ has not previously
been discussed in the literature. In addition to unimolecular
reactions, some bimolecular reactions that take place through
one (or more) intermediate species before yielding products
are also generally seen to be pressure-dependent.14 The
purpose of this work is to examine the largely unexplored
pressure dependence of κ(T) and to check whether there is a
connection between quantum mechanical tunneling and the
falloff curve. The reaction of OH and HNO3, which
significantly affects stratospheric ozone, the HOx budget, as
well as NOx partitioning in the upper troposphere and lower
stratosphere (UTLS),15−22 is chosen as an example because
this bimolecular reaction (which also displays a pressure
dependence) has been well-characterized experimentally.15−20
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The reaction of OH and HNO3 has been heavily studied but
with relatively low levels of theory.17,24−26 In this work, to
obtain high-accuracy energies for kinetics calculations, we used
mHEAT-345(Q),23 which is a composite method mainly
based on high-level coupled-cluster calculations including full
triple excitations and perturbative noniterative treatment of
quadruple excitations. It is reported elsewhere that mHEAT-
345(Q) can provide high accuracy for relative energies,
typically within 0.5 kcal/mol.23 The potential energy surface
for the OH + HNO3 reaction is displayed in Figure 1. There
are two distinct reaction pathways for the association of OH
and HNO3, depending on the path taken when OH reacts with
HNO3. That on the right-hand-side (RHS) represents the
attack of OH in the HNO3 plane of symmetry, while that on
the left-hand-side (LHS) features OH attack roughly
perpendicular to the HNO3 plane of symmetry. The first
step of the association is the formation of the van der Waals
complex, PRC, which has two hydrogen bonds and a binding
energy of 5.33 kcal/mol, which is broadly consistent with an
experimental upper limit of 5.3 kcal/mol.27 It should be
mentioned that, for the LHS pathway, a shallower van der
Waals complex has been found with the B3LYP-DFT
method,24,25 but it does not persist at the CCSD(T) level.
The CCSD(T) optimization directly gives PRC instead. When
formed, PRC prefers to dissociate back to the initial reactants
via a loose, variational TS. However, a fraction of PRC
undergoes an H-abstraction via TS1 or TS2, leading to
products H2O + NO3. Depending on the temperature under
consideration, PRC can tunnel through (and/or surmount) the
barrier. At the atmospheric conditions considered in this work,
most such product is formed by tunneling through the barrier.
As seen in Figure 1, TS1 (with ωF = 2372i) lies about 3 kcal/
mol higher than TS2 (with ωF = 1579i), but has a notably
thinner barrier. So, both reaction pathways are in competition.
A theoretical kinetics analysis is desired to quantify product
branching ratios and phenomenological rate coefficients.
An E,J-resolved two-dimensional master equation28−31 that

describes the time evolution of one well (PRC) and multiple
products (as shown in Figure 1) is given by
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where Jmax is the maximum angular momentum; Emax is the
maximum internal energy; C 1(Ei, Ji, t) represents the
population density of PRC in state (Ei, Ji) and time t; ωLJ

(in s−1) is the Lennard−Jones collisional frequency; and
k1→l(Ei, Ji) (in s−1) is the (Ei, Ji)-resolved microcanonical rate
coefficient from PRC to products. For the dissociations of PRC
via TS1 and TS2, Miller’s semiclassical TST (SCTST)
theory,32−36 which includes coupled vibrations and multi-
dimensional tunneling, is used to compute the microcanonical
rate constants without angular momentum effects, k(E,J = 0);
the J effects are then included using the J-shifting
approximation,3,37,38 assuming an active K-rotor model for
both reactant and TS.39−41 For the barrierless dissociation of
PRC back to OH + HNO3, variational RRKM theory42,43 is
used to characterize a kinetic bottleneck as well as to compute
k(E, J) for a loose TS. P(Ei, Ji | Ek, Jk) is the E,J-resolved
collisional transfer probability distribution function from state
(Ek, Jk) to state (Ei, Ji). OST stands for the original source
term, and is given by

E J F E J k TOST( , ) ( , ) ( ) OH HNOi i i iPRC 3= [ ][ ]∞ (3)

where k∞(T) is the capture rate constant for the association
step of OH and HNO3, leading to population in the PRC.
FPRC(Ei, Ji) is the E,J-resolved initial distribution function for
the nascent energized PRC and given by44,45

Figure 1. Schematic reaction energy profile for the OH + HNO3 → H2O + NO3 reaction constructed using the mHEAT-345(Q) method.23 Note
that, for the LHS pathway, a shallower van der Waals complex is found with the B3LYP-DFT method,24,25 but it does not exist at the CCSD(T)
level.
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In eq 4, ρ1(Ei,Ji) is the density of rovibrational states for
PRC.
The mHEAT calculations mentioned above provide

structures, energies, rovibrational parameters, and anharmonic
constants for all relevant stationary points. These data are then
used as input to the two-dimensional master equation
(2DME), which depends on both internal energy and total
angular momentum, to obtain thermal rate constants (as well
as product yields) as a function of both temperature and
pressure. Algorithms for solution of the 2DME were previously
reported elsewhere46−50 and are briefly summarized in the
Supporting Information.

Figure 2 displays thermal rate constants calculated at 298 K
as a function of pressure (i.e., falloff curves) for the OH +
HNO3 reaction. Three sets of recent experimental data15−17

are also included for comparison. Because both the average
vibrational (⟨ΔEvib⟩d) and rotational (⟨ΔErot⟩d) energies
transferred in a downward direction by collisions between
the vibrationally excited PRC and the bath gas are unknown, a
trial and error process is used to determine them. ⟨ΔE⟩d is
varied from 50 to 175 cm−1 with a step size of 25 cm−1. As
seen in Figure 2, all calculated k(T,P) are in good agreement
(within 20%) with the experimental results.15−17 Theory with
⟨ΔE⟩d = 50 cm−1 agrees with the experiment of Dulitz et al.,16

while a higher value of ⟨ΔE⟩d = 175 cm−1 is desirable to match
the experimental results of Brown et al.15 The overall best fit
between theory and experiment in this scenario is found with
⟨ΔE⟩d ∼ 100 cm−1. Following the same strategy, we did the
same at other temperatures (from 210 to 350 K), where
experimental data are available,15−17 and a good agreement

Figure 2. Reaction rate constants calculated at 298 K as functions of pressure and average vibrational and rotational energies transferred in a
downward direction. Here, we choose ⟨ΔE⟩d = ⟨ΔEvib⟩d = ⟨ΔErot⟩d (results for different values of ⟨ΔEvib⟩d and ⟨ΔErot⟩d are provided in the
Supporting Information). Where possible, experimental data15−17 are also included for the purpose of comparison. Note that pressure dependence
in the calculated rate constants is conspicuous; that for the experimental data is simply suggestive, owing to the limited range of pressure studied.

Figure 3. A ratio of k(T,P) and k(T,P = 0) calculated as a function of both temperature and pressure. Note that this ratio is also equivalent to the
ratio of tunneling corrections (κ) at P and P = 0 (see text).
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between theory and experiment has been seen (see Figure S1
in the Supporting Information).
It should be emphasized that other approaches for kinetics

calculations could be used to generate the same qualitative
results. For example, there are several master-equation
approaches from other groups (refs 28−31), which can be
used in a manner similar to that above. In addition, the
PolyRate software package (ref 11) can be used to compute
thermal rate constants at the high-pressure limit, where
Boltzmann thermal equilibrium distribution can be assumed.
Our recent studies for several reactions have shown that the
SCTST approach is comparable in accuracy to other methods
used for tunneling, as for example those used in PolyRate. It
might also be mentioned that a classical trajectory approach
would not reproduce the falloff curve here because tunneling
effects are not included. Full quantum dynamics are also not
practical, both because they are not suited to capture pressure
effects as well as the very high dimensionality of the reactive
potential energy surface.
Is κ a function of pressure? Next, we calculated the ratio of

k(T,P) to k(T,P = 0) as a function of both pressure and
temperature and plotted the results in Figure 3. As
demonstrated in the Supporting Information, this ratio (γ) is
also equivalent to the ratio of κ(T,P) and κ(T,P = 0). Note that
when tunneling is turned off, the rate constant without the
tunneling correction, k(T)wt, becomes pressure-independent in
this scenario, as seen below.
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Figure 3 clearly shows that the tunneling correction (κ)
depends not only on temperature, but also on pressure. To the
best of our knowledge, this property has not previously been
pointed at in the literature. The ratio γ = κ(T,P)/κ(T,0)
increases with increasing pressure. In contrast, it decreases with
temperature, as is expected. From Figure 3, it is obvious that γ
is most conspicuous at low temperature, and reduces
significantly when temperature increases. γ can be used to
determine whether or not a reaction depends on pressure as
well as the shape of the falloff curve. At conditions of 298 K
and 760 Torr, the calculated value of γ is 1.30, meaning that
the rate constant is only 30% larger than at the zero-pressure
limit. Such a small difference may not easily be observed in
experiment for two reasons: first, many experiments have been
done in the low-pressure regime (≪760 Torr) where the
pressure dependence is smaller (see Figure 3); second,
experimental values tend to have an error bar of about 10 to
20%. To observe this pressure dependence, experiments would
have to be carried out at lower temperatures and/or higher
pressures.
Is there a correlation between tunneling and fallof f curve?

Scheme 1 reveals a (simplified) kinetics model to compute
reaction rate constants at the zero- and infinite-pressure limits.
At the zero-pressure limit, k(T)P=0 is calculated as an integral

of Grv
⧧(E,J), which is a sum of rovibrational states including

quantum mechanical tunneling correction, from the energy
level of the initial reactants, OH + HNO3, to infinity (because
there are no collisions to cause deactivation).
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At the high-pressure limit, k(T)P=∞ is calculated as an
integral of Grv

⧧(E,J) from the ground energy level of PRC to
infinity:
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From eq 7 and eq 6, the difference (Δk) of two rate
constants calculated at the infinite- and zero-pressure limits can
be derived:
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Δk in eq 8 comprises an integral of Grv
⧧(E,J) calculated from

the lowest energy level of the PRC to that of OH + HNO3, a
region that lies in a classically forbidden regime (see Scheme
1). When tunneling is turned off, Δk becomes zero, resulting in
k(T)P=∞ = k(T)P=0. In order words, the reaction is pressure-
independent in the absence of tunneling. Thus, we can
conclude that tunneling effects make this reaction depend on
pressure (i.e., producing a falloff curve), which is an interesting
perspective and observation. Notably, this finding is consistent
with experimental results for OH + HNO3 (which has a
pressure dependence because tunneling effects are impor-
tant)15−17 and those for OD + DNO3 (which is pressure-
independent because tunneling effects are unimportant).51 It is
also important to point out that the magnitude of Δk implies
the degree to which the reaction depends on pressure, as well
as the shape of the falloff curve. The magnitude of Δk can be

Scheme 1. Schematic Chemical Kinetics Model for the OH
+ HNO3 → H2O + NO3 Reaction
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influenced by a number of factors, including a strongly bound
PRC, the barrier height (energy of the TS), and the shape of
the barrier. All three factors control quantum mechanical
transition probabilities through the barrier leading to products,
H2O + NO3.
While a tunneling enhancement of the rate constant at the

high-pressure limit might well be similarly demonstrated with
the simple Lindemann model, the master-equation approach
used here is more general and provides a means to compute
the experimental falloff curve, and to investigate the tunneling
effects therein.
In summary, high accuracy coupled-cluster calculations in

combination with a fully E,J-resolved two-dimensional master
equation simulation52 have been used to study the reaction of
OH and HNO3 to produce H2O + NO3. The calculated
results, in combination with the available experimental data,
clearly show that the tunneling correction, κ(T,P), is a function
of both temperature and pressure. Moreover, tunneling effects
are found to be the source of the pressure dependence. This
interesting feature of quantum mechanical tunneling, which
has a relatively simple origin, is elucidated and explained in
terms of an elementary construction. Given that reactions
similar to OH + HNO3 with H-abstraction following formation
of a van der Waals complex are very common in atmosphere
and interstellar chemistry,22,53,54 the results of this work may
be applicable to such environments.
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