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Abstract

Speech perception is challenged by indexical variability. A litany of studies on talker normalization have demonstrated that

hearing multiple talkers incurs processing costs (e.g., lower accuracy, increased response time) compared to hearing a single

talker. However, when reframing these studies in terms of stimulus structure, it is evident that past tests of multiple-talker (i.e.,

low structure) and single-talker (i.e., high structure) conditions are not representative of the graded nature of indexical variation in

the environment. Here we tested the hypothesis that processing costs incurred by multiple-talker conditions would abate given

increased stimulus structure. We tested this hypothesis by manipulating the degree to which talkers’ voices differed acoustically

(Experiment 1) and also the frequency with which talkers’ voices changed (Experiment 2) in multiple-talker conditions. Listeners

performed a speeded classification task for words containing vowels that varied in acoustic-phonemic ambiguity. In Experiment

1, response times progressively decreased as acoustic variability among talkers’ voices decreased. In Experiment 2, blocking

talkers within mixed-talker conditions led to more similar response times among single-talker and multiple-talker conditions.

Neither result interacted with acoustic-phonemic ambiguity of the target vowels. Thus, the results showed that indexical structure

mediated the processing costs incurred by hearing different talkers. This is consistent with the Efficient Coding Hypothesis,

which proposes that sensory and perceptual processing are facilitated by stimulus structure. Defining the roles and limits of

stimulus structure on speech perception is an important direction for future research.
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Introduction

The world is far from random; instead, objects and events in

the environment are highly structured. According to the

Efficient Coding Hypothesis (Attneave, 1954; Barlow,

1961), sensory systems detect and exploit this structure in

order to facilitate processing. Efficient coding has been ex-

tremely productive for understanding visual processing and

perception (Field, 1987; Geisler, 2008; Olshausen & Field,

1996; Simoncelli, 2003), and recent applications to speech

perception have been equally promising (Gervain & Geffen,

2019; Kluender, Stilp, & Kiefte, 2013; Kluender, Stilp, &

Llanos, 2019; Stilp & Kluender, 2010). For example, the sta-

tistical structure of sentence contexts influences subsequent

vowel categorization (Stilp & Assgari, 2019), as predicted

by efficient coding.

While not originally conceived as such, studies of talker

normalization (e.g., Bradlow, Nygaard, & Pisoni, 1999;

Nygaard, Sommers, & Pisoni, 1995; Pisoni, 1997; Sommers,

Nygaard, & Pisoni, 1994) reflect perceptual sensitivity to

stimulus structure. In these studies, listeners perform a task

(e.g., phoneme categorization, word identification, recogni-

tion memory) with stimuli spoken by a single talker or by

multiple talkers. Listeners generally show higher accuracy

and/or faster response time in single-talker compared to

multiple-talker conditions. Hearing one talker (i.e., highly

structured stimuli) facilitates speech perception, whereas hear-

ing multiple talkers (i.e., minimally structured stimuli) incurs

processing costs.
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Throughout this literature, talker normalization studies

have provided fairly uniform tests of sensitivity to stimulus

structure. Multiple-talker stimuli often consist of speech from

a small number of men and women, with minimal acoustic

details provided regarding the specific degree of indexical

variation among talkers. This approach is sufficient to induce

processing costs for multiple-talker compared to single-talker

stimulus sets, but does not represent the graded nature of in-

dexical structure present in the environment. Efficient coding

makes a novel prediction for talker normalization: as stimulus

structure increases, processing costs associated with multiple

talkers should abate. Stimulus structure is a broad term that

has been used in the psycholinguistic literature to refer to, for

example, hierarchical variability within a phonetic category

(Kleinschmidt & Jaeger, 2015) or within-talker acoustic pre-

dictability across phonetic categories (Chodroff & Wilson,

2017). Here we use this term, as it is used in the efficient

coding literature, to encapsulate any type of predictability that

may be encoded and subsequently used by listeners to facili-

tate perception. We tested this prediction by manipulating the

degree to which talkers’ voices differed acoustically

(Experiment 1) and also how often talkers' voices changed

(Experiment 2) in multiple-talker environments. Listeners’ re-

sponse times for word identification were used to quantify

processing cost.

Methods

Participants

The participants were 72 monolingual speakers of American

English (53 women, 19 men; mean age = 20 ± 2 years1; n = 36

in each experiment, no one completed both experiments).

None had a history of speech, language, or hearing disorders

according to self-report; all passed a hearing screen on the day

of testing. Two additional participants were tested but exclud-

ed from the study due to failure to meet the accuracy criterion

described below.

Stimuli and procedure

Tokens of the words he’d, hoed, and who’d, each produced

by ten talkers, were drawn from the Hillenbrand corpus

(Hillenbrand, Getty, Clark, & Wheeler, 1995). Words were

selected to achieve low (/i/ - /o/) and high (/o/ - /u/)

acoustic-phonemic ambiguity in the vowel contrasts, as in

Choi, Hu, and Perrachione (2018). The talkers formed

three levels of talker variability: single talker (one man or

one woman; each heard by half of the participants), mixed

talker with low fundamental frequency (F0) variability

(two men, two women), and mixed talker with high F0
variability (two men, two women). The selected talkers

showed consistent F0 across tokens (i.e., within 30 Hz).

In multiple-talker conditions, four talkers were selected

so that F0 was either minimally (low variability) or maxi-

mally (high variability) different across talkers, as shown

in Table 1. Mean word duration (625 ± 81 ms) did not vary

across talker variability conditions (F(2, 27) = 0.271, p =

0.765) or target vowels (F(2, 27) = 0.016, p = 0.985).

Intensity of the tokens was equated using Praat.

Talker variability (single, mixed low, mixed high) and

acoustic-phonemic ambiguity (low, high) were both manipu-

lated within-subjects, forming six blocks. Block order was

counterbalanced across participants in each experiment.

Each block consisted of 20 trials for each vowel (i.e., /i/ and

/o/ for low ambiguity blocks, /o/ and /u/ for high ambiguity

blocks). Following Choi et al. (2018), single-talker blocks

tested 20 repetitions of each vowel; mixed-talker blocks tested

five repetitions of each vowel from each of the four talkers. In

Experiment 1, stimulus presentation within each block was

randomized separately for each participant. In Experiment 2,

mixed-talker trials were blocked to present ten consecutive

trials from each of the four talkers. Talker order, held constant

across ambiguity conditions and participants, was determined

by maximizing the change in F0 each time the talker (and,

concomitantly, talker gender) changed. Within each talker

blocking, order of the ten trials remained randomized. To il-

lustrate this manipulation, Fig. 1 shows trial-by-trial F0 in each

block for one participant in each experiment; F0 is highly

structured for the mixed-talker conditions in Experiment 2

compared to Experiment 1.

1
Here and throughout, variability values reported in the main text indicate

standard deviation.

Table 1 Mean fundamental frequency (Hz) of the tokens for the three

talker variability conditions and the two acoustic-phonemic ambiguity

conditions; talker identifiers correspond to those used in the

Hillenbrand corpus (Hillenbrand et al., 1995)

Talker variability Acoustic-phonemic ambiguity

Low High

Condition Talker /i/ /o/ /o/ /u/

Single w16 237 228 228 238

m18 133 135 135 139

Mixed Low m01 173 175 175 181

m45 215 202 202 212

w26 194 191 191 189

w49 206 189 189 201

Mixed High m03 94 98 98 102

m11 160 158 158 159

w11 216 206 206 237

w33 287 264 264 291
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On each trial, participants were instructed to identify

the word as quickly and accurately as possible.

Participants responded by pressing a labeled button on

a response box (Cedrus RB-740). A visual stimulus

assigning a number to each word was displayed

throughout each block. Trials were separated by 2,000

ms, timed from the participant’s response. All testing

was completed in a sound-attenuated booth. Auditory

stimuli were presented via headphones (Sony MDR-

7506) at a comfortable listening level that was held

constant across participants. Stimulus presentation and

response collection were controlled using SuperLab

(version 4.5) running on a Mac OS X operating system.

Results: Experiment 1

High accuracy for word identification (≥ 0.95 proportion

correct) was an inclusion criterion for this study; accord-

ingly, accuracy across participants was near ceiling (mean

= 0.99 ± 0.01). Incorrect trials were excluded from anal-

ysis. Response times (RTs, in milliseconds) were log-

transformed, and trials exceeding three standard devia-

tions from each participant’s mean log RT were excluded

(< 1% of trials). Figure 2 shows the mean RT in each

condition for each participant, in addition to boxplots ag-

gregating across participants. Trial-level log RTs were

submitted to a linear mixed effects model using lme4

(Bates, Maechler, Bolker, & Walker, 2015) in R (R

Development Core Team, 2016). The Satterthwaite ap-

proximation of degrees of freedom was used to evaluate

statistical significance using the t distribution as imple-

mented in lmerTest (Kuznetsova, Brockhoff , &

Christensen, 2017). The model included fixed effects of

talker variability, acoustic-phonemic ambiguity, and their

interaction. Talker variability was treatment-coded with

mixed-low variability as the reference level. Ambiguity

was sum-coded (low = -0.5, high = 0.5). The random

effects structure consisted of random intercepts by subject

and random slopes by subject for talker variability, ambi-

guity, and their interaction. Estimated marginal means

from the model are shown in Table 2.

Compared to the mixed-talker low variability condition

(mean = 675 ± 144 ms)2, RTs were faster in the single-

talker condition (mean = 613 ± 131 ms; bβ = -0.096, SE =

0.014, t = -6.699, p < 0.001) and slower in the mixed-talker

high variability condition (mean = 703 ± 134 ms; bβ =

0.045, SE = 0.014, t = 3.152, p = 0.003). The pairwise

comparison between the mixed-talker high variability and

single-talker conditions was tested for this model using the

emmeans package (Lenth, 2019), which showed that RTs

were significantly slower in the former compared to the

latter (bβ = -0.141, SE = 0.016, t = -9.124, p < 0.001).

The model also showed a main effect of ambiguity (bβ =

0.141, SE = 0.024, t = 6.006, p < 0.001), with faster RTs for

2
In the main text, empirical means and their corresponding standard devia-

tions are reported to describe the raw data. To calculate the empirical means,

we first calculated by-subject means in the condition(s) of interest; thus, em-

pirical means reflect grand means. Estimated marginal means for each of the

six conditions of each experiment as derived from the linear mixed-effects

models are shown in Table 2.
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Fig. 1 Trial-by-trial F0 in each condition for a representative participant

in Experiment 1 (top, subject E1.001) and Experiment 2 (bottom, subject

E2.001). Talker order was m45, w26, m01, w49 for mixed-low talker

variability and w33, m11, w11, m03 for mixed-high talker variability.

Trial-level F0 variability for mixed-talker conditions in Experiment 1,

where trials were completely randomized within conditions, is increased

relative to Experiment 2, where trials for mixed-talker conditions were

blocked by talker
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the low- (mean = 626 ± 142 ms) compared to the high-

ambiguity condition (mean = 702 ± 127 ms). There was

no interaction between ambiguity and talker variability for

either contrast (bβ = -0.025, SE = 0.029, t = -0.864, p =

0.393 and bβ = -0.028, SE = 0.027, t = -1.050, p = 0.301,

respectively).3

Following Choi et al. (2018), interference effects of talker

variability were calculated in each ambiguity condition (Fig.

2, right). Interference was calculated as the difference in mean

RT between each mixed-talker condition and the single-talker

condition, scaled to each participant’s mean RT in the single-

talker condition: [(mixed – single / single) × 100]. Consistent

with the main effect of talker variability in the model, inter-

ference values were higher for the mixed-high variability con-

dition compared to the mixed-low variability condition. The

null interaction between variability and ambiguity reflects

similar displacement of interference distributions across am-

biguity conditions.

3
The analysis deviated from the preregistration in one way. Specifically, the

mixed-talker low variability condition was used as the reference level instead

of the single-talker condition. This is because we were wrong in the preregis-

tration; in order to test for a monotonic change across talker variability, the

reference level needs to be set to the intermediate condition.

Fig. 2 Results from Experiment 1 (top) and Experiment 2 (bottom). At

left is empirical mean response time (RT, in milliseconds) for each par-

ticipant and boxplots aggregated across participants. At right are the em-

pirical interference distributions across participants; interference was

calculated as the difference between the mixed-talker conditions and the

single-talker conditions, scaled to each participant’s mean RT in the

single-talker condition as follows: [(mixed – single / single) × 100]

Table 2 For each experiment, estimated marginal means (in

milliseconds) and corresponding 95% confidence interval (in

parentheses) for the single, mixed low, and mixed high talker variability

conditions for each of the acoustic-phonemic ambiguity conditions.

Estimated marginal means were derived for the linear mixed effects

models described in the main text using the emmeans package in R

Experiment Talker variability Acoustic-phonemic ambiguity

Low High

1 Single 550 (506–598) 618 (579–660)

Mixed Low 598 (551–649) 689 (644–737)

Mixed High 634 (588–685) 710 (670–754)

2 Single 512 (471–557) 621 (576–669)

Mixed Low 535 (498–575) 637 (590–688)

Mixed High 556 (510–606) 613 (574–653)
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Results: Experiment 2

Mean accuracy across participants was near ceiling (mean =

0.99 ± 0.01). Incorrect trials were excluded, RTs were log-

transformed, and trials exceeding three standard deviations

from each participant’s mean log RT were excluded (1% of

trials). Figure 2 (bottom) shows mean RT in each condition for

each participant and boxplots aggregating across participants.

Trial-level log RTs were submitted to a linear mixed effects

model as described for Experiment 1; estimated marginal

means from the model are shown in Table 2.

Compared to the mixed-talker low variability condition

(mean = 619 ± 135 ms), RT was numerically but not statisti-

cally faster in the single-talker condition (mean = 600 ± 140

ms; bβ = -0.034, SE = 0.018, t = -1.988, p = 0.055) and com-

parable to the mixed-talker high-variability condition (mean =

618 ± 143 ms; bβ = -0.001, SE = 0.015, t = -0.042, p = 0.9671).

Pairwise comparison of the estimated marginal means for the

model showed slower RTs in the mixed-talker high variability

condition compared to the single-talker condition (bβ = -0.034,

SE = 0.014, t = -2.503, p = 0.044). The model showed a main

effect of ambiguity (bβ = 0.175, SE = 0.021, t = 8.260, p <

0.0001), confirming faster RTs for the low- (mean = 566 ± 134

ms) compared to the high-ambiguity contrast (mean = 659 ±

144 ms). Ambiguity did not interact with talker variability for

the single versus mixed-low contrast (bβ = 0.018, SE = 0.032, t

= 0.547, p = 0.588), but did for the mixed-low versus mixed-

high contrast (bβ = -0.078, SE = 0.029, t = -2.682, p = 0.011).

To examine the nature of the interaction, the emmeans

package was used to test pairwise comparisons in the model

using the Tukey method to adjust for multiple comparisons.

RTs were slower in the high- compared to the low-ambiguity

condition for the single-talker (bβ = -0.193, SE = 0.025, t = -

7.807, p < 0.0001), mixed-low talker variability (bβ = -0.175,

SE = 0.021, t = -8.260, p < 0.0001), and mixed-high talker

variability conditions (bβ = -0.097, SE = 0.026, t = -3.734, p <

0.001). In the low acoustic-phonemic ambiguity condition,

there was no reliable difference in RT between the single-

talker and mixed-low talker variability conditions (bβ =

0.044, SE = 0.023, t = 1.890, p = 0.157), nor between the

mixed-low and mixed-high talker variability conditions (bβ =

-0.038, SE = 0.021, t = -1.858, p =0.166); however, RTs were

slower in the mixed-high talker variability condition com-

pared to the single-talker condition (bβ = -0.082, SE = 0.024,

t = -3.361, p = 0.005). In the high acoustic-phonemic ambi-

guity condition, there was no reliable difference between any

of the talker variability conditions (single-talker vs. mixed-

low talker variability: bβ = 0.026, SE = 0.024, t = 1.063, p =

0.543; single-talker vs. mixed-high talker variability: bβ =

0.014, SE = 0.021, t = 0.653, p = 0.792; mixed-low talker

variability vs. mixed-high talker variability: bβ = 0.040, SE =

0.022, t = 1.818, p = 0.179). Thus, the interaction observed in

the full model reflects slower RTs for the mixed-talker high

variability condition in the low but not the high acoustic-

phonemic ambiguity condition.

Compared to Experiment 1, adding trial-level indexical

structure in Experiment 2 attenuated the processing cost

associated with talker variability. As shown in Fig. 2 (right),

the interquartile range for three of the four interference dis-

tributions in Experiment 1 does not include zero (which

would indicate no interference compared to the single-

talker condition). In contrast, the interquartile range for

three of the four interference distributions in Experiment 2

does include zero. This interaction between talker variabil-

ity and experiment was directly tested in a linear mixed

effects model following the structure outlined previously

with the addition of experiment as a fixed effect (sum-cod-

ed, experiment 1 = -0.5, experiment 2 = 0.5). RTs were

numerically but not significantly slower in Experiment 1

(mean = 663 ± 132 ms) compared to Experiment 2 (mean

= 612 ± 136 ms; bβ = -0.095, SE = 0.050, t = -1.902, p =

0.061). There was no interaction between experiment and

acoustic-phonemic ambiguity (bβ = 0.034, SE = 0.032, t =

1.069, p = 0.289). However, the interaction between exper-

iment and talker variability was reliable for both the mixed-

talker low versus single-talker contrast (bβ = 0.061, SE =

0.023, t = 2.716, p = 0.008) and the mixed-talker low versus

mixed-talker high contrast (bβ = -0.046, SE = 0.021, t = -

2.166, p = 0.034). Simple slope analyses showed no change

in RTs across experiments for the single-talker condition (bβ

= -0.033, SE = 0.051, t = -0.656, p = 0.514), a numerical but

not significant decrease for mixed-talker low variability (bβ

= -0.095, SE = 0.050, t = -1.904, p = 0.061), and significant

decrease for mixed-talker high variability (bβ = -0.140, SE =

0.048, t = -2.909, p = 0.005).

Discussion

Stimulus structure can mediate the processing costs incurred

when hearing multiple talkers. In Experiment 1, processing

time for mixed-talker blocks decreased as variability in F0
decreased, decreasing further still for single-talker blocks.

Past studies of talker normalization have generally focused

on the presence/absence of such processing costs; here we

reveal that these costs are graded. In Experiment 2, blocking

talkers within mixed-talker conditions further attenuated pro-

cessing costs, leading to performance that was more similar

among talker variability conditions. Across experiments, the

perceptual benefits of stimulus structure interacted with each

other. Blocking talkers within mixed-talker conditions only

2241Atten Percept Psychophys (2020) 82:2237–2243



made responses faster for stimuli with the greatest indexical

variability. These results support an efficient coding approach

to talker normalization, as speech perception amidst indexical

variability was increasingly facilitated by trial-level stimulus

structure.

Talker normalization depends on acoustic characteristics of

talkers’ voices. This point was first raised by Goldinger

(1996), who reported a correlation between similarity ratings

and perception of words spoken by different talkers. As acous-

tic differences across talkers (defined in large part by F0) in-

creased, RT increased and word recall accuracy decreased.

Talker acoustics show graded influence for other aspects of

speech processing, including spectral context effects

(Ladefoged & Broadbent, 1957). Context effects are attenuat-

ed when talkers’ fundamental frequencies are highly variable,

and are in some cases equivalent to single-talker conditions

when F0 is minimally variable (Assgari & Stilp, 2015;

Assgari, Theodore, & Stilp, 2019). Acoustic similarity also

affects perception of both phonetic and indexical properties

of the speech signal, which are interdependent (Mullennix &

Pisoni, 1990). Choi et al. (2018) found that the processing

costs incurred by hearingmultiple talkers increased when pho-

netic properties were more similar. This pattern was not ob-

served in the current work, suggesting that structured indexi-

cal variation can diminish potentially additive influences of

phonetic and indexical variability.

Here, talker normalization is revealed to be a graded

process, but is it obligatory? Previous work has suggested

that this is in fact the case, given that talker variability

challenged categorization of even acoustically unambigu-

ous phonemes (Choi et al., 2018). In Experiment 1, pro-

cessing costs were observed for talkers who minimally dif-

fered in F0; however, the interference distributions ob-

served in Experiment 2 suggest that stimulus structure

may be sufficiently great to eliminate these costs entirely.

Indeed, the results of Experiment 2 showed no difference

in processing time among the three talker variability con-

ditions for the high ambiguity contrast, nor between the

single and mixed-talker low variability conditions for the

low-ambiguity contrast. These results provide an existence

proof that some types of trial-level stimulus structure can

sufficiently eliminate the processing cost associated with

mixed-talker input, at least when measured at the block

level as is standard in the talker normalization literature.

Importantly, the current manipulations of structured index-

ical variation reflect only two of the many ways that struc-

ture may be provided, and not all are expected to benefit

perception equally. For example, context phrases rich in

spectro-temporal information provided no more resilience

to talker variability than a single neutral vowel matched in

duration (Choi & Perrachione, 2019). Defining the limits

of perceptual facilitation resulting from stimulus structure

is an important direction for future research.

Bottom-up and top-down influences combine to shape

speech perception (Davis & Johnsrude, 2007; McClelland,

Mirman, & Holt, 2006; Sohoglu, Peelle, Carlyon, & Davis,

2012). Here, indexical structure was an important bottom-up

influence when hearing different talkers. Previous studies

have reported various higher-level influences on talker nor-

malization including instructions and/or expectations

(Johnson, Strand, & D’Imperio, 1999; Magnuson &

Nusbaum, 2007), previous experience (Nygaard, Sommers,

& Pisoni, 1994), and attention (Nusbaum & Morin, 1992).

Defining the relative contributions of lower-level stimulus

structure and higher-level factors for perception of different

talkers’ speech will be highly illuminating.
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