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Abstract: In recent years, satellites capable of capturing videos have been developed and launched 

to provide  high definition satellite videos that enable applications far beyond the capabilities of 

remotely sensed imagery. Moving object detection and moving object tracking are among the most 

essential and challenging tasks, but existing studies have mainly focused on vehicles. To accurately 

detect and then track more complex moving objects, specifically airplanes, we need to address the 

challenges posed by the new data. First, slow-moving airplanes may cause foreground  aperture 

problem during  detection.  Second, various disturbances, especially parallax motion, may cause 

false detection. Third, airplanes may perform complex motions, which requires a rotation-invariant 

and scale-invariant tracking algorithm.  To tackle these difficulties,  we first develop an Improved 

Gaussian-based Background Subtractor (IPGBBS) algorithm  for moving airplane detection.  This 

algorithm adopts a novel strategy for background and foreground adaptation, which can effectively 

deal with  the foreground  aperture problem.  Then, the detected moving airplanes are tracked by 

a Primary Scale Invariant  Feature Transform (P-SIFT) keypoint  matching algorithm.  The P-SIFT 

keypoint of an airplane exhibits high distinctiveness and repeatability. More importantly, it provides 

a highly  rotation-invariant and scale-invariant feature vector that can be used in the matching 

process to determine the new locations of the airplane in the frame sequence. The method was 

tested on a satellite video with eight moving airplanes. Compared with state-of-the-art algorithms, 

our IPGBBS algorithm  achieved the best detection accuracy with  the highest F1 score of 0.94 and 

also demonstrated its superiority on parallax motion suppression. The P-SIFT keypoint matching 

algorithm  could successfully track seven out of the eight airplanes. Based on the tracking results, 

movement trajectories of the airplanes and their dynamic properties were also estimated. 

 
Keywords: satellite videos; moving object detection; moving object tracking; SIFT 

 
 
 
 

1. Introduction 
 

The advent of video satellites opens a new chapter in Earth observation [1–7]. These newly 

launched platforms can film videos of the Earth’s surface with sensors capable of “staring” at a specific 

area for several minutes’ duration. For example, the SkySat satellites can provide 30 frame-per-second 

(fps) panchromatic videos for up to 90 s with  a spatial resolution of about 1 m.  High  definition 

satellite videos enable us to explore exciting applications far beyond the capabilities of remotely sensed 

imagery [1]. In a pioneer work by Kopsiaftis and Karantzalos [7], a SkySat satellite video was utilized 

to detect moving vehicles and estimate traffic density. In the 2016 Data Fusion Contest by the Image 
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Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society [3], 

satellite imagery and videos were used for activity analysis and traffic density estimation [6], change 

detection [8], global population modeling [9], etc. 

However, the primary focus of satellite video-based studies has been on detecting and tracking 

moving objects. Yang et al. [5] used the saliency map derived from satellite video frames to detect 

moving vehicles and utilized their trajectories to generate a heat map for road network representation. 

Zhang et al. [4] detected moving vehicles with an emphasis on eliminating the false alarms caused 

by parallax motion in satellite videos. Ahmadi and Mohammadzadeh [10] tracked moving vehicles 

and vessels based on spatial proximity using the video captured from the International Space Station. 

Ahmadi et al. [2] used a SkySat video to estimate traffic parameters through the detection and tracking 

of moving vehicles. Shao et al. [1] developed a hybrid kernel correlation filter to track an individual 

moving object of middle to large size such as train, truck, and airplane in various satellite videos. 

To date, the targets of moving object detection and tracking using satellite videos have been mostly 

vehicles, whereas moving airplanes have not been treated much in the literature.  To the best of our 

knowledge, moving airplane tracking has been investigated in only few studies [1,11], which focused 

on tracking a single target. In addition to traffic monitoring, satellite videography may also provide 

practical values in supporting airport flow monitoring and scheduling, runway incursion warning, etc. 

The challenges to detect and track moving vehicles and airplanes are very different. For moving 

vehicle detection, the main challenges are the low contrast of vehicles with the background [5] and 

mixed pixel problem. For moving vehicle tracking, the main challenge is the small size (2 × 2 pixels) 

of a vehicle that cannot provide stable features for tracking.  Therefore, almost all existing studies 

use a tracking-by-detection strategy, which may not always yield satisfactory results.  In contrast, 

the primary challenges for detecting moving airplanes are the foreground aperture problem caused 

by the long lengths of some slow-moving airplanes, as well as the false alarms introduced  by the 

parallax motion of stationary airplanes. Compared with vehicles, airplanes are sufficiently  large to 

provide stable features for accurate tracking, but how to achieve robust tracking, especially for rotating 

airplanes, remains a problem. 

This objective of this paper is to develop a method to detect and track moving airplanes in an 

airport. First, we propose an Improved Gaussian-based Background Subtractor (IPGBBS) algorithm 

for moving airplane detection. This algorithm is able to effectively address the foreground aperture 

problem encountered by slow-moving airplanes in a satellite video. Second, detected moving airplanes 

are then tracked in the frame sequence through a Primary SIFT (P-SIFT) keypoint matching process, 

which incorporates the rotation invariance. This paper is organized as follows. Section 2 introduces the 

background research on moving object detection and moving object tracking. Section 3 describes the 

data and our method in detail. Section 4 provides the experimental results of the method applied to a 

satellite video with eight moving airplanes, followed by the discussion on computational efficiency 

and data availability  in Section 5. Finally, Section 6 concludes this paper. 

 
2. Background 

 

In moving  object detection studies, pixels for the moving  objects are often referred to as the 

foreground, whereas pixels on stationary objects and unwanted moving objects (e.g., waving trees) 

are called the background. The detection of foreground pixels in each video frame is often achieved 

by subtracting background pixels [12].  Background subtraction creates a background model for 

each pixel, which defines a possible range(s) in which the background pixel’s values should reside. 

The simplest background model is the average or median of multiple video frames [2,7]. However, this 

simple model may not be able to handle various disturbances  such as illumination change, movement 

of the camera, movement of the background.  More sophisticated models have been developed in 

the computer vision field to detect moving objects in ordinary  videos [13]. Chris and Grimson [14] 

proposed a more powerful Mixture  of Gaussian (MoG) model to distinguish  real foreground from 

moving background.  This model, however, may produce incorrect detection if intensity changes 
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abruptly.  Kim et al. [15] built the background model as a codebook with K codewords. This model 

can handle abrupt changes of intensity but has high computation and memory requirements. Barnich 

and Droogenbroeck [16,17] proposed the Visual Background Extractor (ViBe) model, which creates 

a sample set for each background pixel, with the values in the sample set being randomly selected 

from the pixel’s history of values. This model can successfully detect moving objects at various speeds 

and perform accurate detection with camera motion, which is achieved by diffusing samples between 

neighboring pixel models. For this reason, ViBe was adopted to detect moving vehicles in a satellite 

video and achieved good detection accuracy [4,5]. 

In recent years, many deep learning approaches have been developed to detect moving objects in 

ordinary videos. These methods begin by detecting objects of interest with deep learning models [18–21]. 

Then, the dynamic status of each object is determined by the subsequent tracking procedure [22,23]. 

However, the process of object detection requires massive computation for the offline training process. 

Moreover, it is unclear if these approaches can successfully detect small-sized moving airplanes in 

satellite videos because limited by spatial resolution, such an airplane can be much smaller than the 

targets handled by these approaches. 

For most tracking studies with ordinary videos, the strategy of tracking-by-detection has been 

widely  adopted [24,25]. This strategy automatically  links detected objects in the current frame to 

the nearest objects detected in the previous frame. Because of its simplicity, this approach has been 

widely adopted for tracking moving vehicles in satellite videos [2,5]. This approach highly relies on the 

accuracy and continuity of the preceding detection process because the identity of a detected vehicle 

can only be verified by spatial distance. If two different moving objects are close to each other in two 

consecutive frames, they may be mistakenly linked as the same object. 

In contrast, the template matching technique can track moving objects in a more sophisticated 

way by verifying their spectral identity. Template matching starts with defining a template of a moving 

object from the previous frame, and then the template is moved (pixel-by-pixel) in the current frame to 

search for the most similar subset. To quantify  the similarity between the template and each frame 

subset, the most straightforward measurements are pixel-wise correlations [26–28]. However, these 

measurements may fail to track objects with  rotation  due to their low rotation  invariance [28,29]. 

To address this problem, image features of high rotation invariance can be compared as similarity 

measurements. Examples of image features are invariant  moments [30,31], Zernike moments [32], 

orientation codes [33], ring-projection  transformation  [29,34]. Deep convolutional neural networks 

(CNNs) have also been used to track moving objects in ordinary videos through the effective extraction 

of deep features [35,36]. These deep features usually emphasize the generality of the objects rather 

than their differences, so the subsequent tracking may cause objects with a similar appearance to be 

mismatched. In addition, the limited spatial resolution of satellite video poses challenges for existing 

CNN approaches. As a result, traditional hand-crafted features are still favored for tracking multiple 

objects, especially those with similar appearances [37,38]. 

 
3. Materials and Methods 

 
3.1. Satellite Video Data and Preprocessing 

 

A true-color (RGB) high definition video acquired by a Jilin-1 satellite provided by Chang Guang 

Satellite Technology Co., Ltd. is used for this study. The original satellite video has a duration of 25 s 

with a frame rate of 10 fps, and a spatial resolution of 1 m. Since our targets of interest are moving 

airplanes, the original  video is cropped to cover part of the Dubai International  Airport between 

25◦15t50.90”N, 55◦21t17.17”E and 25◦14t52.11”N, 55◦22t1.74”E (Figure 1a). Figure 1b,c shows the first 

and last frames of the cropped video with  eight moving airplanes of various sizes. Among them, 

Airplane 1–6 are taxiing in a constant direction, whereas Airplane 7 and 8 are both taxiing and turning. 



Remote Sens. 2020, 12, 2390 4 of 18  
Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 18 

 

 
 

 
Figure 1.. Study arreeaa aannddJJiillinin--11ssaatetellliltietevvidideoeofrfarmamese:s(:a()a)thteheESERSIRbI absaesme mapapshsohwoiwngintghethsetusdtuydayreaareoaf 

tohfethDeuDbauibIaniteIrnnteartinoantaiol nAailrpAoirtp; oarntd; a(nbd,c)(bth,ce) fithrset fainrsdt laansdt flraasmt fersaomf eths eoJfiltihne-1Jisliante-1llistaetvelilditeeo.vAidleloe.igAhltl 

meigohvtinmgoavirinpglaanierspalarneelas baerleedla.beled. 

 
Preprroocceessssiinnggooffththe evivdiedoedoadtaatiancilnucdleuddefrdamfreamsaemspalminpglainngd agnredysgcraelyesccoanlevecrosniovne.rAsiolln2.5A0 vllid2e5o0 

fvriadmeoesfrwamereesswpleirteinsptolitaidnetoteactdinegtecstaimngplseamsept laensdetaantrdacaktinragcksainmgpslaemspetl.e Tsehte. Tdheetedcetitnegctisnagmspalme pselet 

isnectluindcelus dthees fithrest f1ir5s0t f1r5a0mfersa(m0–e1s5(0s–),1w5sh),erweahsertheaestrtahcekitnragcksainmgpsleamsept loensleytinonclluydienscltuhde e1s70ththe, 1790th, 

21190th,, 2310tth,, a2n3d0t2h5, 0atnhdfr2a5m0tehs forfamthe voidf ethoeinviodredoerintooardcheiretvoeaachfaisetvteraacfkaisntgt.raFcrkaminegs. Finraemacehs sinameapclhe 

seatmwpeleresceot nwveerretecdoninvteortgerdeyinsctoalgeriemyascgaelsebimy uagsiensgb: y using: 

𝐹F==00.2.2998899 ∗ F𝐹௥ ++ 00..55887799 ∗F𝐹௥ ++00..11114400 ∗F𝐹,௥ , (1(1) )
 

∗   r  ∗   g ∗   b 

where Fr, Fg and Fb denote pixel values of the red, green, and blue band, respectively. 
where Fr, Fg and Fb denote pixel values of the red, green, and blue band, respectively. 

3.2. Methods 
3.2. Methods 

 

3..2..1.. Moving Airplane Detection by IPGBBS 
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In general, background subtraction has three 
components: model initialization, foreground/background classification, and model adaptation. Let 
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components: model initialization, foreground/background  classification, and model adaptation. Let 

I(x,y)0 denote the value of pixel (x,y) in the first detecting sample frame; the Gaussian background 

model for this pixel is initialized as: 
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background  is  adapted;  (c)  the  foreground  is  adapted  with  a  smaller  learning  rate  than  the 
adapted; (c) the foreground is adapted with a smaller learning rate than the background; and (d) the 

background; and (d) the detection in (c) is further boosted by a morphological closing operation. 
detection in (c) is further boosted by a morphological closing operation. 
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In contrast, our algorithm, named Improved Gaussian Based Background Subtractor (IPGBBS), 

adopts a novel adaption strategy.  Depending on the classification of the incoming  pixel, model 

parameters for foreground and background pixels are adapted separately by different learning rates. 

Therefore, the value of learning rate α in Equation 4 is selected from the set {αf, αb}, representing the 

learning rate for the foreground and background, respectively. Figure 2c shows the detection result 

for the same airplane by using IPGBBS. Compared with traditional model adaptation strategies, the 

advantage of this novel strategy in IPGBBS is twofold. First, it is able to maintain a high accuracy 

of the Gaussian background model when pixel (x,y) belongs to the foreground.  Second, it is able to 

gradually adapt the Gaussian background model for a pixel initially occupied by a moving object so 

that the Gaussian background model will represent the real background. 

The fragmented detection in Figure 2a also indicates that the traditional approach suffers from 

the foreground  aperture problem with  a slow-moving object. In this case, some locations may be 

continuously covered by the similar foreground pixels in may frames. Pixels on these locations may 

be easily misclassified as background because the change of pixel values is so small. As a result, the 

moving object detected may be incomplete or include small holes and gaps. In contrast, IPGBBS 

can alleviate this problem by the simultaneous use of a fairly low background learning rate and an 

even lower foreground learning rate. In addition to the slow speed, the foreground aperture problem 

can also be caused by a high degree of spectral homogeneity of the airplane [40,41], which leads to 

the airplane’s tail separated from the main body in Figure 2c. To further deal with  this problem, a 

morphological closing operation is applied to the preliminary detection. The morphological closing 

operation consists of dilation  and erosion.  The dilation  first fills small holes and gaps, and then 

the erosion recovers the real boundary of the foreground.  Figure 2d demonstrates the result of the 

morphological closing, wherein the previously separated main body and tail are successfully connected. 

Additionally, the detected foreground may contain noise and false alarms caused by local spectral 

variation and camera jitter. These noise and false alarms are usually small, thus can be easily rejected 

by an area filter with a threshold parameter ρ. If an object’s area is smaller than ρ, the object is labeled 

as background, and excluded from the subsequent tracking process. 

 
3.2.2. SIFT Based Keypoint and Feature Vector Extraction 

 

Our moving  airplane tracking  algorithm  follows  a keypoint  matching  paradigm,  in which 

keypoints of moving airplanes detected in the previous frame are used to match those in the subsequent 

frames. Various keypoints generation algorithms, including SURF, SIFT, and PCA-SIFT, were compared, 

and SIFT was adopted because of the highest rotation and scale invariance of the SIFT feature vector [42]. 

To extract SIFT keypoints from image e, we start with building its scale-space, L, by convolving 

image e with a variable-scale Gaussian function G(x,y,η): 
 

x2 +y2 
− 

L(x, y, η) = G(x, y, η)    e(x, y) with G(x, y, η) = e 
2πη2 

2η2 (5) 

 

where    represents a convolution operation and η the scale variable. This process is commonly referred 

to as a Gaussian smoothing, where a larger η means a higher level of smoothing.  To establish a 

continuous scale space of image e, variable η is incrementally  multiplied by a factor k. Meanwhile, 

image e is down-sampled (halved) after each n times of Gaussian smoothing operation. As a result, 

image e is incrementally smoothed and down-sampled to construct its scale space as a pyramid of N 

octaves (each octave represents one down-sampling). In each octave, the Difference of Gaussian (DOG) 

images are obtained by differencing adjacent smoothed images in the same octave as: 

DOG(x, y, η) = G(x, y, k·η) − G(x, y, η))    e(x, y)= L(x, y, k·η) − L(x, y, η)  (6) 

Subsequently,  scale-space extrema are identified by comparing each pixel (red pixel in Figure 3) in 

a DOG with its neighbors in the current DOG and the DOGs above and below (green pixels in Figure 3). 
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form a feature vector for the SIFT keypoint. The keypoint is extracted from the continuous scale space 
algorithm  [43],  the  coordinates  of  the  neighborhood  and  the  gradient  orientations  inside  the 
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of the image, and the extracted feature vector is able to achieve scale invariant. According to Lowe’s 
algorithm  [43],  the  coordinates  of  the  neighborhood  and  the  gradient  orientations  inside  the 
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space of the image, and the extracted feature vector is able to achieve scale invariant.  According to 

Lowe’s algorithm [43], the coordinates of the neighborhood and the gradient orientations inside the 

neighborhood are rotated according to Θ in order to achieve rotation invariance. The neighborhood is 

further divided into multiple subregions. Then, in each subregion, the gradient orientations of pixels 

are grouped into eight directions, representing eight bins in a gradient histogram. The length of each 

bin is represented by the accumulated gradient magnitudes of the corresponding pixels. Originally, 

the feature vector is extracted from four by four subregions with each subregion 4 × 4 pixels in size. 

However, considering the general size of an airplane in a remotely sensed video frame, we decided to 
use two by two subregions but kept each subregion at 4 × 4 pixels in size. 

 
3.2.3. Moving Airplane Tracking by P-SIFT Keypoint Matching 

 

Since our IPGBBS algorithm utilizes a recursive model, more accurate detection is expected in 

later frames. Therefore, only the result from the last detecting sample frame, denoted by F0, is used as 

input to the subsequent tracking algorithm.  Our tracking algorithm starts with defining templates 

from F0 based on the estimated bounding box of each moving airplane. To guarantee a sufficiently 

large neighborhood for feature vector extraction, the size of each template is extended by a predefined 

value of δtemp. However, the enlarged template may include some SIFT keypoints outside the airplane. 

Therefore, a screening process is conducted by using the detected area as a mask. The resulting SIFT 

keypoints on a detected moving airplane are identified as: 

Ctemp = 
 
c
→

, c
→

, c
→

, . . . 
  

(8)
 

1    2    3 

 

Conventionally, matching keypoints in different frames requires adequate and repeatable keypoints. 

Otherwise, keypoints in a frame may easily be mismatched to wrong keypoints in another frame, 

leading to an incorrect tracking.  Moving  objects tracked in ordinary  videos may easily fulfill these 

prerequisites due to their large sizes and high spectral heterogeneity. In contrast, moving airplanes in 

satellite videos are often relatively  small and homogeneous, and therefore may not have adequate 

and repeatable keypoints for tracking. For example, many of the keypoints on the “large” airplane 

shown in Figure 4 have very low repeatability because of its low spectral heterogeneity. Using such 

SIFT keypoints could easily mislead the tracking of the moving airplane. 

Fortunately, at least one keypoint of an airplane demonstrates the highest repeatability among 

all the SIFT keypoints. We name this keypoint as the Primary SIFT (P-SIFT) keypoint of the airplane, 

denoted by c
→

 . Figure 4 suggests that the airplane’s P-SIFT keypoint is always represented by the 

largest circle located at the center of the airplane because it is identified  in the highest scale space. 

During  the process of SIFT keypoint extraction, the whole airplane is incrementally  smoothed and 

down sampled. SIFT keypoints along edges are first identified because they are immediately connected 

with the background. As the scale-space becomes higher, the airplane is increasingly shrunk towards 

a single pixel.  When this pixel finally  meets the background, it becomes a local extremum.  After 

investigating all the airplanes in different video frames, we found the following distinct properties of 

their P-SIFT keypoints: 

•    High distinctiveness: The P-SIFT keypoint has the largest scale variable among all SIFT keypoint 

of the same airplane. 

•    High repeatability: For an airplane having a spectral contrast with its surrounding background, 

its P-SIFT keypoint can always be detected in any video frame. 

•    High stability of the feature vector: For an airplane with consistent spectral properties, the feature 

vector of its P-SIFT keypoint is highly rotation and scale invariant in the frame sequence. 
 

Based on the high distinctiveness property, the P-SIFT of a moving airplane can be found from 

CT by: 
→ 

pri    
= max 

   → 

ci (η) 
 

(9) 
→
c   CT 

i ∈ 
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is the P-SIFT keypoint  of the moving airplane in the template, and it has the largest η 

among all SIFT keypoints.  Figure 5 shows the P-SIFT keypoint  of the moving  airplane extracted 
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ROS of an airplane can be defined by its upper left coordinates ULros and lower right coordinates LRros 

ROS of an airplane can be defined by its upper left coordinates ULros and lower right coordinates 
as: 

LRros as: 
U𝑈L𝐿௥௥௦ == U𝑈𝐿L− 𝛿δ௥r௥o௦s − 𝑠ℎ𝑖𝑓𝑡
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of M candidate keypoints is selected from Cros  by: pri 

more efficient two-scan procedure to enhance tracking efficiency. In the first scan, a set Ccandi of M 

candidate keypoints is selected fr𝑪
௥௥௥ௗ ௥  = ሼሬ𝒄bሬଙሬy⃗ᇲ  :𝑖𝑓 ��ᇱ  ≤ 𝑀, ��ሬଙሬ⃗ᇲ   ∈ 𝑠𝑜𝑟𝑡𝑒��(𝑪௥௥௦ )ሽ (11)
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size, thus a larger airplane should have a larger scale variable for its P-SIFT keypoint than a smaller 

one. If the ROS includes multiple objects (with the number of objects less than M), the above equation 

extracts the P-SIFT keypoints of all objects in the ROS, and the target airplane should be one of them. 
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(11) 

In the second scan, candidates in Ccandi  are individually matched with  𝒄௥௥ప

 

based on the feature 
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→ 

→ 

pri 

P+FN 

P+FP 

F1 score = 2 ∗ 

t 

 
 

where function sorted rearranges all SIFT keypoints in Cros based on the descending order of their scale 

variable. Theoretically, the scale variable of an airplane’s P-SIFT keypoint is positively related to the 

size, thus a larger airplane should have a larger scale variable for its P-SIFT keypoint than a smaller 

one. If the ROS includes multiple objects (with the number of objects less than M), the above equation 

extracts the P-SIFT keypoints of all objects in the ROS, and the target airplane should be one of them. 
→ 

In the second scan, candidates in Ccandi are individually matched with c
temp 

based on the feature vector 

similarity.  Consequently, the P-SIFT keypoint of the tracked moving airplane in the ROS, denoted by 
→ 

pri 
, is retrieved by: 

 

cros
 →  →

m
 

pri  
=  min 

cm ∈C
candi

 

I u − u I, m = 1, 2, 3 . . . M 
 

1 

 

 
(12) 
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k=1    
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→  → 

where ut is the feature vector of c
temp

, 
→
m is the feature vector of the mth keypoint in Ccandi, and q is the

 

pri  
u 

→ 

dimensions of the feature vector. If a keypoint in Ccandi has the highest similarity with c
temp 

among all 

the keypoints in Ccandi, this keypoint is determined as the P-SITF keypoint of the moving airplane in 

ROS. Consequently, the location of the keypoint is designated as the tracked location of the moving 

airplane in the current tracking sample frame. 

 
3.3. Accuracy Assessment 

 

We use recall, precision, and F1 score to assess the performance of the developed IPGBBS moving 

airplane detection algorithm  at the object level.  Given the number of detected objects being true 

positive (TP), false positive (FP), and false negative (FN), these metrics are defined as: 
 

recall = T 
TP

 

 

precision = T 
TP

 

precision ∗ recall 

precision+recall 

 
(13) 

 

It is worth noting that a moving airplane may be detected as several parts, but only one of them 

is treated as TP, while others are considered as FPs. The accuracy of the developed moving airplane 

tracking algorithm is also assessed at the object level by the visual verification of whether the tracked 

locations are on the same moving airplane or not. 

 
4. Results 

 
4.1. Results of Moving Airplane Detection 

 

The performance of the IPGBBS algorithm was compared with three state-of-the-art algorithms: 

Codebook [15], Mixture  of Gaussians (MoG) [14], and Visual Background Extractor (ViBe) [16,17]. 

These algorithms have been widely used in computer vision for detecting moving objects in ordinary 

videos, but only ViBe has been applied to satellite videos for moving vehicle detection [4,5]. Parameters 

used for the three comparison algorithms were estimated based on the best results in different trails. 

Table 1 displays the parameters of IPGBBS obtained based on empirical trails. Initial results by four 

algorithms (Codebook, ViBe, MoG, and IPGBBS) were further boosted with a morphological closing 

and area filter, with  the minimum area ρ being set to 60 pixels, which should be smaller than the 

smallest airplane while larger than the general sizes of false alarms. 
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Table 1. Suggested parameters for the IPGBBS algorithm. 
 

Parameter Description Value 

σ0 The initial standard deviation for the Gaussian background model 30 

αb The learning rate for adapting background pixels 0.01 

αf The learning rate for adapting foreground pixels 0.001 

ϕ The threshold to detect foreground pixels 3 

 
The performance of initial detection and boosted detection are shown in Figure 6, and the accuracy 

assessment is given in Table 2. Codebook can only detect the fastest airplane (Airplane  8) in both 

the initial  and the boosted detection results. This indicates that Codebook possesses low sensitivity 

to slow-moving airplanes, leading to the lowest recall among all algorithms.  From the incomplete 

detection of the only airplane, we can see that Codebook is also greatly affected by the foreground 

aperture problem.  The initial  detection by MoG includes many FPs caused by the movement of 

the remote sensing platform.  Most FPs have sizes larger than ρ (60 pixels), and therefore cannot be 

removed by the area filter. As a result, MoG has the lowest precision and F1 score among all methods. 

The ViBe has a recall of 1 because it successfully detects all moving airplanes. However, it has a lower 

precision compared to our algorithm since it detects more FPs. In both the initial detection and boosted 

detection results, ViBe has better performance than Codebook and MoG, but poorer performance than 

our algorithm.  In addition, the performance of both MoG and ViBe has been degraded by parallax 

motion. For example, ViBe produces two FPs between Airplane 7 and 8 in the boosted detection. In the 

original video, two stationary airplanes are parking at this location, and their parallax motion results in 

the reduced precision of ViBe. Overall, our method has the highest possible recall of 1 and the highest 

precision among all methods, leading to the highest F1 score of 0.942 for the boosted detection result. 

This result indicates that our IPGBBS algorithm is able to detect all the moving airplanes with the lease 

number of FPs (only 1). 

 
Table 2. Accuracy assessment of four moving object detection algorithms. 

 

Algorithm FP Count Recall Precision F1 Score 

  Initial Detection   

Codebook 37 0.125 0.026 0.043 

MoG 7866 1 0.001 0.002 

ViBe 129 1 0.058 0.110 

IPGBBS 34 1 0.191 0.321 

  Boosted Detection   

Codebook 1 0.125 0.500 0.200 

MoG 199 0.750 0.029 0.056 

ViBe 2 1.000 0.800 0.889 

IPGBBS 1 1.000 0.890 0.942 

 
Based on Figure 6 and Table 2, it is clear that the morphological  closing and area filter  have 

greatly enhanced the performance of all algorithms, especially on FP suppression. For example, our 

algorithm includes 34 FPs in the initial detection result, and this number reduces to 1 in the boosted 

detection result. Additionally, the foreground aperture problem has been effectively suppressed by 

using morphological closing. However, the foreground aperture problem is still observed for multiple 

moving airplanes. The missing parts are mainly from the rear half of fuselages, where the foreground 

aperture problem has an even greater effect than other parts. The moving Airplane 7 is initially detected 

as multiple parts by MoG, ViBe, and IPGBBS, whereas Codebook does not even detect it. This airplane 

is moving over a zebra crossing (crosswalk with alternating black and white stripes) where the white 

lines have similar intensities to the airplane. These algorithms cannot detect the portions of the airplane 

superimposed on the white lines because of the so-called camouflage problem [40]. Even though our 



 

2, 

cannot be removed by the area filter. As a result, MoG has the lowest precision and F1 score among 
all methods. The ViBe has a recall of 1 because it successfully detects all moving airplanes. However, 

it has a lower precision compared to our algorithm since it detects more FPs. In both the initial 

detection and boosted detection results, ViBe has better performance than Codebook and MoG, but 

poorer performance than our algorithm. In addition, the performance of both MoG and ViBe has been 
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degraded by parallax motion. For example, ViBe produces two FPs between Airplane 7 and 8 in the 
boosted detection. In the original video, two stationary airplanes are parking at this location, and 
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Figure 6. Initial  and boosted results of moving airplane detection by four algorithms:  (a) ground 

reference; (b) Codebook; (c) MoG; (d) ViBe; and (e) our IPGBBS algorithm. 
 

4.2. Results of Moving Airplane Tracking 
 

In the moving airplane tracking stage, the detection result from the boosted IPGBBS detection 

(Figure 6e) is used to define templates for the eight moving airplanes. Their locations in each tracking 

sample frame are retrieved by using the developed P-SIFT keypoint matching algorithm. The values of 

δtemp and δros were set at 20 and 40, respectively;  the scale variable η for Gaussian smoothing was set at 

2; factor k was set at 
√ 

 as suggested in [43]; and the number of candidates M was set at 5. 

To save space, Figure 7 only shows the tracking result in the last tracking sample frame by using 

our P-SIFT keypoint matching algorithm. The figure contains nine rows because the moving Airplane 
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7 is detected as two parts. Masks of detected airplanes are presented in Figure 7a. Figure 7b shows 

P-SIFT keypoints (blue circles) of these airplanes extracted from their templates. Figure 7c shows 

all SIFT keypoints (green circles) obtained from the ROS in the last tracking sample frame. The five 

candidate SIFT keypoints (magenta circles) chosen based on the scale variable are shown in Figure 7d. 

If a ROS has fewer than five SIFT keypoints, all keypoints are selected as candidates.  By calculating the 

feature vector similarity between each candidate in Figure 7d and the P-SIFT keypoint in Figure 7b, the 

most matched SIFT keypoint in each ROS is determined (Figure 7e). These matched SIFT keypoints 
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part of moving Airplane 7 (7-1 in Figure 7), its P-SIFT keypoint has a very small-scale variable. A 

candidate set of five keypoints is insufficient to include its P-SIFT. This problem may be easily solved 

by selecting more candidates. However, for both parts of moving Airplane 7, the feature vectors of 

their P-SIFT keypoints from the templates are significantly affected by the surrounding zebra 

crossing. As a result, the candidate SIFT keypoints on the zebra crossing are mistakenly matched, 
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smaller part of moving Airplane 7 (7-1 in Figure 7), its P-SIFT keypoint has a very small-scale variable. 

A candidate set of five keypoints is insufficient to include its P-SIFT. This problem may be easily solved 

by selecting more candidates. However, for both parts of moving Airplane 7, the feature vectors of 

their P-SIFT keypoints from the templates are significantly affected by the surrounding zebra crossing. 

As a result, the candidate SIFT keypoints on the zebra crossing are mistakenly matched, rather than 

the correct ones on the airplane. 

The trajectory for each moving  airplane is depicted by sequentially connecting their tracked 

locations in each sampled tracking frame. For better visualization, these trajectories are drawn on the 

true-color frame of F0 (Figure 8a) with their zoomed-in views in Figure 8b. For moving Airplane 1–6 

and 8, their trajectories (shown by red lines) agree well with the observation of the original video. The 

movement of moving Airplane 7 is presented by two trajectories (green and blue lines), but neither of 
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decreases to 2.5 m/s. A possible reason for obtaining this incorrect dynamic speed is that the detected 
airplane may shift for a few pixels at the 19th second. 

P-SIFT keypoint on this airplane may shift for a few pixels at the 19th second. 
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Airplane 7 are represented by green and blue lines. 
Airplane 7 are represented by green and blue lines. 
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 17 s 19 s 21 s 23 s 25 s  
1 3.63 3.53 3.49 3.27 2.76 3.34 33.37 

2 4.25 4.61 4.95 5.37 5.41 4.92 49.17 

3 3.16 3.44 3.6 3.64 4.01 3.57 35.70 

4 1 7.05 2.51 1.81 1.17 2.71 27.06 

5 2.41 2.49 2.47 2.45 2.56 2.48 24.78 

6 2.03 3.04 2.51 2.61 2.77 2.59 25.92 

8 7.21 7.4 7.06 7.16 6.81 7.13 71.26 

 

 
 

Table 3. Movement properties of Airplane 1–6 and 8. 
 
 

Airplane ID 
Dynamic Speed (m/s)  

Average Speed (m/s) Total Distance (m) 

 
 
 
 
 
 
 

 
Frame rate: 10 fps; pixel resolution: 1 m. 

 
5. Discussion 

 
5.1. Computational Efficiency 

 

The algorithms for moving airplane detection and tracking were written  in Python and 

implemented on a PC with a 3.41 GHz CPU and 16G memory running  Windows 10. Since IPGBBS 

was implemented with  matrix operations, the number of moving airplanes in each frame has little 

impact on computational efficiency. Our experiment found that the developed IPGBBS algorithm is 

able to process more than 58 frames per second. In the tracking stage, the average time for tracking 

an airplane in a new frame is about 5 ms. If moving airplanes were tracked once per second, our 

tracking algorithm could achieve real-time tracking for up to 200 airplanes altogether. Furthermore, 

the tracking efficiency can be further boosted by implementing in a parallel processing system. 

 
5.2. Data Availability 

 

Currently, the bottleneck of satellite videography research is data availability, and many practical 

values of the satellite videography  are yet to be explored.  Due to the limited  data availability, we 

are not able to test our method in more challenging conditions such as heavy cloud and dust cover. 

Encouragingly,  Chang Guang Satellite Technology Co., Ltd., the vendor of Jilin-1 satellite videos, 

has recently released its mid- to long-term plan.  Specifically, the midterm  plan aims to establish a 

constellation of sixty satellites by 2030 with  a revisit capability of 30 min.  The long-term plan is to 

have 138 satellites in orbit to achieve a 10-min revisit capability for any location on Earth after 2030. 

Therefore, the developed method possesses great potentials in the foreseeable future. 

 
6. Conclusions 

 

This paper describes an innovative method to detect and track moving airplanes in a satellite 

video. For moving airplane detection, we designed an IPGBBS algorithm to deal with the foreground 

aperture problem posed by the typically slow-moving airplanes. Furthermore,  a morphological closing 

operation and an area filter were used to boost the detection accuracy. For moving airplane tracking, 

we developed a P-SIFT keypoint matching algorithm to deal with tracking uncertainties caused by 

intensity variation and airplane rotation.  Our method was tested on a satellite video to detect and 

track eight moving airplanes of different sizes and dynamic statuses. The IPGBBS algorithm achieved 

the best detection accuracy compared with state-of-the-art algorithms.  Specifically, all targets were 

successfully detected with the minimum number of FPs. The P-SIFT keypoint matching algorithm 

successfully tracked seven out of eight airplanes.  Additionally, the movement trajectories of the 

airplanes and their dynamic properties were estimated. Future work will concentrate on further testing 

and improving the robustness of the detection and tracking algorithms against cloudy and dusty 

conditions as well as the camouflage effect. 
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