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Abstract

Efficient speech perception requires listeners to maintain an exquisite tension between stability of the language architecture and

flexibility to accommodate variation in the input, such as that associated with individual talker differences in speech production.

Achieving this tension can be guided by top-down learning mechanisms, wherein lexical information constrains interpretation of

speech input, and by bottom-up learning mechanisms, in which distributional information in the speech signal is used to optimize

the mapping to speech sound categories. An open question for theories of perceptual learning concerns the nature of the

representations that are built for individual talkers: do these representations reflect long-term, global exposure to a talker or

rather only short-term, local exposure? Recent research suggests that when lexical knowledge is used to resolve a talker’s

ambiguous productions, listeners disregard previous experience with a talker and instead rely on only recent experience, a finding

that is contrary to predictions of Bayesian belief-updating accounts of perceptual adaptation. Here we use a distributional learning

paradigm in which lexical information is not explicitly required to resolve ambiguous input to provide an additional test of global

versus local exposure accounts. Listeners completed two blocks of phonetic categorization for stimuli that differed in voice-

onset-time, a probabilistic cue to the voicing contrast in English stop consonants. In each block, two distributions were presented,

one specifying /g/ and one specifying /k/. Across the two blocks, variance of the distributions was manipulated to be either narrow

or wide. The critical manipulation was order of the two blocks; half of the listeners were first exposed to the narrow distributions

followed by the wide distributions, with the order reversed for the other half of the listeners. The results showed that for earlier

trials, the identification slope was steeper for the narrow-wide group compared to the wide-narrow group, but this difference was

attenuated for later trials. The between-group convergence was driven by an asymmetry in learning between the two orders such

that only those in the narrow-wide group showed slope movement during exposure, a pattern that was mirrored by computational

simulations in which the distributional statistics of the present talker were integrated with prior experience with English. This

pattern of results suggests that listeners did not disregard all prior experience with the talker, and instead used cumulative

exposure to guide phonetic decisions, which raises the possibility that accommodating a talker’s phonetic signature entails

maintaining representations that reflect global experience.
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Introduction

Variability in speech acoustics is highly structured, including

variability associated with individual talkers’ idiolects. For a

given acoustic-phonetic property specifying a given speech

sound contrast, talkers systematically differ with respect to

the mode and variance of their distributions, and the degree

to which their distributions are separated in acoustic-phonetic

space (e.g., Hillenbrand et al., 1995; Newman et al., 2001;

Theodore et al., 2009). There is a rich evidence base indicating

that listeners use structured phonetic variation to optimize the

mapping to linguistic representations on a talker-contingent
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basis (e.g., Nygaard & Pisoni, 1998; Theodore & Miller,

2010; Theodore et al., 2015), even when a talker’s input is

potentially ambiguous (e.g., Norris et al., 2003). Theories of

perceptual learning posit that listeners track phonetic cues

with respect to a higher-order structure, such as a particular

talker, to derive a structure-specific probabilistic mapping that

optimizes phonetic categorization (e.g., Kleinschmidt &

Jaeger, 2015; McMurray et al., 2009). On this view, adapta-

tion reflects the process of modifying the mapping to speech

sounds in line with statistical distributions in the input.

Support for this theory comes from Clayards et al. (2008),

who examined stop consonant identification between listeners

who were exposed to either narrow or wide variances of

voice-onset-time (VOT) distributions. Consistent with predic-

tions generated by the ideal observer computational frame-

work, the slope of the identification function was steeper

(i.e., more categorical) for listeners who heard narrow com-

pared to wide distributions, indicating greater uncertainty for

more variable input (Clayards et al., 2008).

What has yet to be confirmed in the literature on statistical-

based accounts of talker adaptation (and the literature on prob-

abilistic inference in speech more generally) is the time course

of experience that is used to guide processing. Does online

comprehension of a talker’s speech rely on recent experience,

or rather does it reflect global experience? There is some ev-

idence suggesting that adaptation to a talker’s idiosyncratic

input reflects cumulative experience. Kraljic et al. (2008) ex-

posed listeners to a talker who produced a fricative with both

canonical and acoustically ambiguous forms. The ambiguous

form was embedded in an informative lexical context, and

order in which listeners heard the two forms was manipulated.

Hearing the ambiguous form first promoted perceptual learn-

ing to incorporate the ambiguity into the fricative category.

However, learning was not observed given initial exposure

to the canonical form, suggesting that listeners aggregated

experience with the talker’s productions, heavily weighting

initial experience (see also Kraljic & Samuel, 2005).

Additional evidence in support of cumulative experience with

input distributions guiding speech perception comes from

studies showing that a complete re-weighting of an atypical

cue relationship is resistant to long-term training, suggesting

that while listeners are sensitive to distributional shifts in cue

relationships, acceptance of the new relationship reflects long-

term exposure (e.g., Idemaru & Holt, 2011).

The Bayesian belief-updating model of speech adaptation

(Kleinschmidt & Jaeger, 2015) posits that tension between

flexibility and stability in the language architecture is achieved

though cumulative tracking of a talker’s input, where percep-

tual categories are modified to the degree that the input pro-

vides evidence that distributional beliefs formed through long-

term experience with a language are not optimal for that talker.

This claim was tested using the lexically guided perceptual

learning paradigm (Saltzman & Myers, 2018). Two groups

of listeners heard a talker produce distributions of /s/ and / /

across two blocks. In one block, listeners heard clear /s/ and

acoustically ambiguous / / tokens; in the other block, listeners

heard clear / / and ambiguous /s/ tokens. Ambiguous tokens

were embedded in informative lexical contexts, block order

was manipulated between the two groups, and all listeners

completed a phonetic categorization task for a shine-sign con-

tinuum following each block. In each block, listeners who

heard modified /s/ showed more sign responses than those

who heard modified / /, and the learning effect was equivalent

between blocks. These results were interpreted as evidence

that listeners had used only the most recent statistical experi-

ence to guide phonetic decisions, suggesting that talker adap-

tation cannot be characterized by cumulative tracking of sta-

tistical input, contrary to the predictions of the Bayesian

belief-updating model of speech adaptation.

Here we provide an additional test of local versus global

tracking accounts using the distributional learning para-

digm of Clayards et al. (2008). This paradigm was selected

because lexical information is not required to resolve am-

biguity in the input and predictions for local versus global

statistical tracking can be quantitatively derived. Listeners

completed two blocks of phonetic identification where a

single probabilistic cue to the stop voicing contrast, VOT,

was manipulated. Each block contained two VOT distribu-

tions (Fig. 1a). Variance was manipulated across blocks to

be either narrow or wide, and block order was manipulated

between two groups. Thus, local statistics differed between

the groups in each block, and global statistical experience

was equivalent between groups at the end of the exposure

period. Predictions (Fig. 1b) were generated using a mod-

ified version of Bayes theorem (Clayards et al., 2008)

shown in equation (1). The prediction for the local statis-

tics hypothesis considered input within each block, where-

as the prediction for the global statistics hypothesis consid-

ered the combined input, which is conceptually identical to

Saltzman and Myers (2018).

p kjVOTð Þ ¼
p VOTjkð Þ

p VOTjkð Þ þ p VOTjgð Þ
ð1Þ

This framework predicts that the slope of the identification

function will differ between the two groups in block one.

Predictions for the local versus global hypotheses are dissoci-

ated in block two. If listeners disregard previous experience

with the talker (during block one) and instead use only local

experience with the talker (provided in block two) to guide

phonetic decisions, then the slope of the identification func-

tion will again differ between the two order groups. However,

if phonetic decisions reflect global experience, then the slope

of the identification functions will converge for the two groups

in block two.
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Experiment 1

Method

Participants The participants (n = 79) were monolingual

speakers of American English, 18–22 years of age; one addi-

tional participant was tested but excluded due to being bilin-

gual. All passed a pure tone hearing screen administered at 25

dB for octave frequencies between 500 and 8,000 Hz.

Participants were randomly assigned to either the narrow-

wide order condition (n = 39) or the wide-narrow order con-

dition (n = 40) and received either monetary compensation or

partial course credit. All participants provided informed con-

sent following procedures approved by the University of

Connecticut Institutional Review Board.

Stimuli Stimuli were a subset of those used in Theodore and

Miller (2010) and consisted of auditory tokens of goal, coal,

gain, and cane produced by a female speaker that varied in

word-initial VOT. Stimuli were drawn from two VOT contin-

ua, goal-coal and gain-cane. Each continuum was created

using a naturally produced token as the voiced-initial endpoint

(i.e., goal, gain). The LPC-based speech synthesizer in the

ASL software package (Kay Elemetrics) was used to succes-

sively increase word-initial VOT in 4- to 5-ms increments,

resulting in VOTs that perceptually ranged from /g/ to /k/.

Twelve tokens from each continuum were selected for further

use; VOTs ranged from 11 ms to 119 ms in approximately 10-

ms increments.

Tokens were arranged into two sets, one for the narrow

block and one the wide block. Each set consisted of 236

tokens and contained equal numbers of each of the four

words. Figure 1 shows histograms of the two sets. For the

narrow set, mean VOT for the /g/ and /k/ distributions

was 40 ms and 92 ms, respectively; the standard deviation

for both distributions was 8 ms. Mean VOTs in the wide

set were the same, but the standard deviation for both

distributions was 13 ms.

Procedure Participants completed two blocks of phonetic cat-

egorization (472 trials in total), with block order determined

by their experimental assignment. Testing took place in a

sound-attenuated booth. Auditory stimuli were presented via

headphones (SonyMDR-7506) at a comfortable listening lev-

el that was held constant across participants. Stimulus presen-

tation and response collection were controlled using SuperLab

4.5 running on a Mac OS X system.

In each block, one randomization of the 236 tokens that

formed the /g/ and /k/ distributions was presented. On each

trial, participants identified each token as either gain, cane,

goal, or coal by pressing the appropriately labeled button on

a response box. Participants were instructed to make their

decision as quickly as possible without sacrificing accuracy

and to guess if they were unsure. The interstimulus interval

b

a

Fig. 1 Histograms of the input distributions and predicted identification

functions for the local versus global tracking hypotheses. Panel a shows

the input distributions for the narrow and wide blocks, and the

distributions formed by aggregating distributions across the two blocks.

Panel b shows the categorization functions predicted by equation (1) for

each order group in block one (left), for the local statistics in block two

(middle), and for the global statistics in block two (right). The local

statistics predictions were formed based on the input presented in each

block; the global statistics predictions were formed considering the

distributional information that was presented across the two blocks

combined
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was 2,000 ms, timed from the participant's response.

Participants were given a brief break between the two blocks.

Prior to the start of the first block, participants completed 12

practice trials consisting of three repetitions of gain, cane,

goal, and coalwith VOTsmatching the mean of the respective

/g/ and /k/ distributions. The entire procedure lasted approxi-

mately 30 min.

Results

The raw data and analysis script can be retrieved at https://osf.

io/38h47. Three participants were removed from the analysis,

one due to failure to respond to 97% of the trials in one block

and two because their identification responses did not show

the expected categorical relationship between voiceless

responses and VOT (due to responding gain and goal for

most of the trials). Trial-level identification responses (0 =

voiced, 1 = voiceless) were fit to a generalized linear mixed-

effects model (GLMM) with the binomial response family

using the glmer() function from the lme4 package in R. The

model specified VOT, order, block, and their interactions as

fixed effects; the random effects structure specified random

intercepts by subject and random slopes by subject for VOT

and block. VOT was centered around the mean; order and

block were contrast-coded (narrow-wide = -0.5, wide-

narrow = 0.5; block 1 = -0.5, block 2 = 0.5). The results of

the full model are shown in Table 1, which revealed an inter-

action between VOT, order, and block (ß = 0.554, SE = 0.154,

z = 3.581, p < 0.001).

The three-way interaction is visualized in Fig. 2a. The

slope of VOT as a predictor of voiceless responses in each

block for each order group was determined using simple

slopes analysis with the jtools package in R (Fig. 2b). In block

one, the narrow-wide group showed a steeper categorization

slope compared to the wide-narrow group, but this difference

was attenuated in block two. To determine whether the inter-

action reflected slope movement of only one group, two

follow-up models were constructed, one for each group, fol-

lowing the fixed and random-effects structure of the full mod-

el (removing order as a fixed effect). The interaction between

VOT and block was significant for the narrow-wide group (ß

= -0.375, SE = 0.124, z = -3.025, p = 0.002), with the direction

of the beta estimate indicating that the VOT slope decreased

from block one to block two. No interaction between VOT

and block was observed for the wide-narrow group (ß = 0.061,

SE = 0.111, z = 0.550, p = 0.582).

A parallel analysis was performed using trial number

(centered around the mean) as the measure of time (instead

of block) to examine whether the same pattern would be

observed on a finer-grained scale (Table 2). There was a

significant interaction between VOT, order, and trial num-

ber (ß = 0.279, SE = 0.078, z = 3.565, p < 0.001). A simple

slopes analysis was performed to extract the beta coeffi-

cient (and corresponding standard error) for the fixed effect

of VOT for each order group at three trials: trial 200 (the

previous 200 trials are statistically distinct between the two

orders), trial 325 (cumulative statistics begin to merge be-

tween the two orders), and trial 450 (the previous 200 trials

are distinct given local statistics, but near equivalent given

cumulative statistics). The three-way interaction (Fig. 2c)

emerges because the VOT slope is steeper for those in the

narrow-wide order compared to the wide-narrow order at

earlier but not later trials. As for the by-block analysis,

follow-up models showed an interaction between VOT

and trial number for the narrow-wide group (ß = -0.227,

SE = 0.062, z = -3.678, p < 0.001) but not the wide-narrow

group (ß = -0.002, SE = 0.055, z = -0.043, p = 0.966). Full

statistics for all follow-up models are provided in the

Supplementary Material.

Experiment 2

The results of Experiment 1 are consistent with predic-

tions for the global statistics hypothesis in terms of the

between-group difference over time. However, the

between-group pattern reflected by-trial movement of on-

ly the narrow-wide group, contrary to the predictions

shown in Fig. 1, suggesting that the implementation of

Bayes’ rule is not sufficient to characterize performance.

The framework outlined in Kleinschmidt and Jaeger

(2015) provides an alternative. Their model predicts that

exposure in block one will be weighted with respect to

overall experience with English VOT distributions, and

that exposure in block two will be weighted with respect

to exposure in the first block. We performed computation-

al simulations to test whether the Bayesian belief-

updating model of speech adaptation would predict the

asymmetry in learning as a function of block order.

Table 1 Results of the generalized linear mixed-effects model for

Experiment 1, with time measured by the fixed effect of Block. The

model contained 35,797 observations totaled across 76 participants. All

test statistics represent those reported by the glmer() function

Fixed effects ß SE z p

Intercept -0.556 0.094 -5.884 <0.001

VOT 4.446 0.160 27.800 <0.001

Block -0.125 0.075 -1.659 0.097

Order -0.076 0.188 -0.406 0.685

VOT * Block -0.164 0.083 -1.976 0.048

VOT * Order -0.390 0.314 -1.242 0.214

Block * Order -0.144 0.146 -0.985 0.325

VOT * Block * Order 0.554 0.155 3.581 <0.001
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Method

Simulations were implemented using the beliefupdatr

package in R (Kleinschmidt, 2017). Parameter specifica-

tion consists of prior distributions in terms of mean and

variance of two categories (/g/ and /k/), and a confidence

parameter that estimates number of direct observations of

the prior specification. The model input is trial-by-trial

observations of the perceptual parameter (VOT) and the

response category (/g/ or /k/). With this input, the learning

algorithm (explicated in Kleinschmidt & Jaeger, 2015) up-

dates the category-specific distributions on each trial by

integrating the observed VOT and response with the prior

distribution, weighted by confidence. The output is the

posterior distribution on each trial, reflecting the likelihood

of the prior distribution (formed by global experience with

English) given the observed evidence (from the specific

talker). The algorithm is iterative at each trial, and thus

simulates how beliefs in priors change across trials.

Our simulation procedure was as follows. First, we simu-

lated 80 lists specifying trial-level VOT presentation for 472

trials. Forty lists simulated trial-level VOT presentation for the

narrow-wide group; the first 236 trials were a unique random-

ization of VOTs presented during the narrow block, and the

second 236 trials were a unique randomization of VOTs pre-

sented during the wide block. Forty lists simulated trial-level

VOT presentation for the wide-narrow group, randomizing

trial-level VOTs in the reverse order. Response patterns for

a

c

b

Fig. 2 Panel a shows the predicted effect of voice-onset-time (VOT) on

voiceless responses in each block for the narrow-wide (NW) and wide-

narrow (WN) order groups in terms of the fixed-effects of the generalized

linear mixed-effects model (GLMM) described in the main text. To pro-

mote visualization, the abscissa range spans the four most intermediate

VOTs of the input distributions. Panel b shows the simple slope (beta

estimate) for VOT in each block for each order group; error bars indicate

the standard error of the beta estimate. Panel c shows the simple slope

(beta estimate) for VOT at trials 200, 325, and 450 for each order group;

error bars indicate the standard error of the beta estimate

Table 2 Results of the generalized linear mixed-effects model for

Experiment 1, with time measured by the fixed effect of Trial Number.

The model contained 35,797 observations totaled across 76 participants.

All test statistics represent those reported by the glmer() function

Fixed effects ß SE z p

Intercept -0.557 0.095 -5.875 <0.001

VOT 4.460 0.160 27.905 <0.001

Trial number -0.064 0.042 -1.526 0.127

Order -0.073 0.189 -0.387 0.699

VOT * Trial number -0.117 0.041 -2.826 0.005

VOT * Order -0.385 0.315 -1.222 0.222

Trial number * Order -0.042 0.082 -0.510 0.610

VOT * Trial number * Order 0.279 0.078 3.565 <0.001
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the 80 simulated listeners matched the intended category for

all VOTs except the four most intermediate. For the two most

intermediate VOTs (60 ms, 69 ms), a random 50% of the

responses were set to match the opposite category. For the

next two intermediate VOTs (51 ms, 83 ms), a random 25%

of the responses were set to match the opposite category. This

procedure added a degree of response noise to simulate the

imperfect categorization of midpoint stimuli observed in the

behavioral test.

Second, nine simulations were performed for these lists,

representing three prior specifications crossed with three con-

fidence specifications. For all prior specifications, the standard

deviation of priors was set to match that of a Btypical talker^

(SD = 8.3 for /g/ and 18.9 for /k/, Kleinschmidt & Jaeger,

2016). Across the three prior specifications (Fig. 3), means

for /g/ and /k/ were set to be consistent with those presented

in Experiment 1, shifted down ~10 ms, or shifted up ~10 ms

(further information on prior specification is available in the

Supplementary Material). For each specification, confidence

was set to 200, 400, and 800, values that represent relatively

less to relatively more confidence in the prior specification,

respectively, spanning the range of inferred confidence report-

ed previously (Kleinschmidt & Jaeger, 2016). Third, for each

simulation, predicted categorization slopes were calculated for

each simulated participant based on the inferred posterior dis-

tribution at trials 200, 325, and 450, by first calculating the

identification function for the inferred posterior distributions

at these trials and then taking the derivative of the identifica-

tion function at the category boundary.

Results

The analysis scripts, including code to execute the simula-

tions, can be retrieved at https://osf.io/38h47. Figure 3

shows the predicted slope in each order condition for the

nine simulations. Three patterns can be observed. First,

movement in the predicted slope across trials is attenuated as

confidence in the prior specification increases. Second, in all

simulations, the predicted slope differs between the two orders

at the early trial (200), with a steeper slope for the narrow-

wide compared to the wide-narrow order, but converges be-

tween the two orders at the late trial (450). Third, in all sim-

ulations, the magnitude of the change between the early and

late trials shows an asymmetry for the two orders; there is

greater change in slope across trials for the narrow-wide com-

pared to the wide-narrow order, a pattern that mirrors the be-

havioral results shown in Fig. 2.

Discussion

According to distributional learning accounts, listeners

generate probabilistic mappings to speech sounds that are

a

b

c

Fig. 3 Predicted categorization slopes from the computational

simulations in Experiment 2. The three panels show simulation results

for the three unique prior specifications (shown at left in each panel). The

means of the distributions were manipulated across the prior

specifications to be consistent with those presented in the behavioral

test (/g/ = 40 ms, /k/ = 92 ms), shifted down ~10 ms (/g/ = 30 ms, /k/ =

80 ms), or shifted up ~10 ms (/g/ = 50 ms, /k/ = 100 ms). At right in each

panel are the predicted slopes for the narrow-wide (NW) andwide-narrow

(WN) order groups at three trials (trial 200, trial 235, and trial 450) for

each of the three confidence parameters (200, 400, and 800). Error bars

indicate standard deviation of the predicted slope for the 40 simulated

listeners in each group
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optimized for talker-specific input distributions (e.g.,

Kleinschmidt & Jaeger, 2015). The time course of experi-

ence used to guide optimization is underspecified in these

accounts. In the current study, listeners who had initially

experienced consistent input showed steeper identification

functions compared to those who had initially received less

consistent input. However, this difference became attenu-

ated for later trials, when the cumulative statistical experi-

ence between groups was equivalent. The between-group

convergence was driven by an asymmetry in learning be-

tween the two orders. The predictions derived solely with

respect to the distributional statistics presented in the cur-

rent study (Fig. 1b) did not adequately characterize the

observed pattern of learning in Experiment 1. However,

simulations (Fig. 3) in which the distributional statistics

of the present talker were integrated with prior experience

with English yielded the same qualitative pattern that was

observed behaviorally.

These results are consistent with the theory that talker-

specific phonetic adaptation reflects a process in which

talker-specific input is used to modify language-general

beliefs of cue distributions via a learning mechanism that

cumulatively updates to accommodate the observed evi-

dence. In this framework, the observed asymmetry in

learning can be explained as the consequence of integrat-

ing the input distributions with prior knowledge and by-

block exposure. VOTs in the wide distribution have a low-

er likelihood of occurrence compared to the narrow distri-

bution. When a listener encounters VOTs from the wide

distribution following the narrow distribution, there is

greater prediction error, leading to greater slope move-

ment. In the reverse order, listeners’ beliefs from initial

exposure (wide) are reaffirmed given secondary (narrow)

exposure, as VOTs in the narrow distributions are present

in the wide distributions, resulting in minimal prediction

error and thus minimal change in beliefs.

The current results are consistent with findings showing

cumulative influences of statistical experience on online

perception (e.g., Holt, 2005; Idemaru & Holt, 2011;

Kraljic & Samuel, 2005; Kraljic et al., 2008), and extend

them to show experience-driven changes in the consistency

in which a cue is used to guide categorization. We note that

the current work examined but one of many types of dis-

tributional statistics that listeners may track in order to

optimize the mapping to speech sounds, that being the

variability – and hence reliability – of an acoustic-

phonetic cue. Accommodating VOT variation in the cur-

rent study did not require adjustment of cue-weighting

(e.g., Idemaru & Holt, 2011), use lexical information as a

learning signal (e.g., Kraljic et al., 2008), or require chang-

ing the boundary between phonetic categories to optimally

accommodate the distributional manipulation (e.g.,

Saltzman & Myers, 2018). Additional investigations are

needed in order to examine whether the results reported

here generalize to other acoustic-phonetic properties and

to other types of distributional manipulations.

The current results do not converge with Saltzman and

Myers (2018), who found that perceptual learning for a

talker’s productions was guided by local, not cumulative,

statistical experience. Reconciling these findings is impor-

tant for incorporating the time course of exposure into dis-

tributional learning accounts. Here we consider three possi-

bilities. First, the disparate results may reflect the role of

lexical information in guiding interpretation of acoustic in-

put; distributional statistics of the input may be discarded

when lexical information constrains online phonetic cate-

gorization. Second, statistical sensitivity for spectral versus

temporal properties of speech may differ, to the extent that

spectral properties are more informative of talker identity

than temporal properties (Kleinschmidt, 2018). Third, the

apparent discrepancy may reflect how predictions for local

versus global accounts were derived. Recall that Kraljic

et al. (2008) showed evidence of perceptual learning for

listeners who were exposed to ambiguous and then clear

productions, but not for listeners exposed to clear followed

by ambiguous productions, suggesting that secondary ex-

posure was considered in the global exposure context. In

Saltzman and Myers, initial and secondary exposure were

to non-canonical, acoustically ambiguous forms. It is pos-

sible that the robust learning observed for the secondary

exposure occurred precisely because the initial exposure

did not contain canonical productions, which would have

blocked learning for the secondary exposure. This would

result in learning that reflects cumulative exposure, but is

not predicted solely by aggregated statistical experience.

Future research is needed to expand distributional learning

theories to account for factors that may block or reset the

cumulative integration of statistical experience, as when

initial experience deviates substantially from prior knowl-

edge or may be considered incidental to a speaker’s input

(e.g., Kraljic et al., 2008).

To conclude, listeners show an exquisite ability to

modify the mapping to speech sounds to accommodate

systematic variation in the speech stream. The current

results support a theoretical account in which talker-

specific adaptation reflects the cumulative integration of

experience with distributional statistics that are represent-

ed at both language-general and talker-specific levels.

Theoretical and computational accounts of speech pro-

cessing will be advanced by further specification of the

time course in which experience is aggregated to guide

perception, in addition to explicating the mechanisms by

which higher-order structures (e.g., lexical knowledge,

talker identity) may differentially influence sensitivity to

and retention of distributional input. Future work is aimed

at this goal.
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