Research Article

Individual Differences in Distributional
Learning for Speech: What’s Ideal
for Ideal Observers?

Rachel M. Theodore,® Nicholas R. Monto,>? and Stephen Graham®®

Purpose: Speech perception is facilitated by listeners’ ability
to dynamically modify the mapping to speech sounds given
systematic variation in speech input. For example, the degree
to which listeners show categorical perception of speech
input changes as a function of distributional variability in the
input, with perception becoming less categorical as the input,
becomes more variable. Here, we test the hypothesis that
higher level receptive language ability is linked to the ability
to adapt to low-level distributional cues in speech input.
Method: Listeners (n = 58) completed a distributional
learning task consisting of 2 blocks of phonetic categorization
for words beginning with /g/ and /k/. In 1 block, the
distributions of voice onset time values specifying /g/ and
/k/ had narrow variances (i.e., minimal variability). In the
other block, the distributions of voice onset times specifying
/g/ and /k/ had wider variances (i.e., increased variability).

In addition, all listeners completed an assessment battery
for receptive language, nonverbal intelligence, and reading
fluency.

Results: As predicted by an ideal observer computational
framework, the participants in aggregate showed identification
responses that were more categorical for consistent compared
to inconsistent input, indicative of distributional learning.
However, the magnitude of learning across participants
showed wide individual variability, which was predicted by
receptive language ability but not by nonverbal intelligence
or by reading fluency.

Conclusion: The results suggest that individual differences
in distributional learning for speech are linked, at least in
part, to receptive language ability, reflecting a decreased
ability among those with weaker receptive language to
capitalize on consistent input distributions.

g I \ here is no one-to-one relationship between speech
acoustics and a given speech sound; instead, differ-
ent acoustic forms may be produced for the same

speech sound, and the same acoustic form may be produced

for different speech sounds. Variation arises in the speech

signal due to a host of factors, including dialect (Byrd, 1992),

speaking rate (Miller & Baer, 1983; Theodore, Miller, &

DeSteno, 2009), speaking register (Picheny, Durlach, &

Braida, 1986), and even individual differences in pronuncia-

tion across talkers (Hillenbrand, Getty, Clark, & Wheeler,

1995; Newman, Clouse, & Burnham, 2001; Theodore et al.,

2009). Given this variability, listeners must solve the lack of

invariance problem in order to map the acoustic signal to
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representations for individual speech sounds. As a conse-
quence, speech perception can be viewed as a process in
which listeners make inferences regarding talkers’ intended
speech sounds from a signal that is implicitly uncertain
(Kleinschmidt & Jaeger, 2015; Toscano & McMurray, 2010).
Despite the lack of invariance in the acoustic speech
signal, some variability in speech acoustics is highly struc-
tured. Consider just one acoustic—phonetic property of
speech, voice onset time (VOT). VOT is a temporal property
of stop consonants that reflects the time between the release
of the occlusion necessary for stop consonant production
and the subsequent onset of vocal fold vibration (Lisker &
Abramson, 1964). On any given day, listeners will hear a
wide range of VOTs produced for stops consonants. However,
the input is structured such that the VOTs produced for
voiced stops will be shorter than those produced for voice-
less stops (e.g., Lisker & Abramson, 1964), VOTs produced
for labial stops will be shorter than those produced for velar
stops (e.g., Cho & Ladefoged, 1999), and VOTs produced
at a fast speaking rate will be shorter than those produced
for a slow speaking rate (e.g., Volaitis & Miller, 1992). Fur-
thermore, individual talkers also show stable differences in

Disclosure: The authors have declared that no competing interests existed at the time
of publication.

Journal of Speech, Language, and Hearing Research ¢ Vol. 63 ¢ 1-13 e January 2020 « Copyright © 2019 American Speech-Language-Hearing Association 1



their characteristic VOT productions such that some talkers
have shorter VOTs than other talkers, even when controlling
for other contextual influences (Chodroff & Wilson, 2017
Theodore et al., 2009).

There is now a large evidence base demonstrating
that listeners use structured phonetic variation to facilitate
the mapping to speech sounds. Indeed, the ability to track
structured phonetic variation in the speech input supports
acquisition of the linguistic sound structure during develop-
ment (Maye, Werker, & Gerken, 2002). For example, sensi-
tivity to distributional input could allow the infant in a
Spanish-speaking environment to learn that voiced stops are
cued by negative VOTs (i.e., “prevoicing”) and voiceless
stops are cued by VOTs near 0 ms and also allow the infant
in an English-speaking environment to learn that VOTs
near 0 ms are associated with voiced stops and long-lag
VOTs are used to cue voiceless stops. Sensitivity to distribu-
tional variation in the input does not cease after the infant
has acquired the phonetic inventory of a language (Clayards,
Tanenhaus, Aslin, & Jacobs, 2008; Theodore & Monto,
2019). Instead, functional plasticity is observed across the life
span such that listeners dynamically modify the mapping
to speech sounds in line with statistical distributions of
acoustic—phonetic cues in the input (e.g., Colby, Clayards,
& Baum, 2018; Norris, McQueen, & Cutler, 2003; Theodore
& Monto, 2019).

As an illustration, Figure 1A shows two sets of VOT
input distributions that cue the voicing contrast for /g/ and
/k/. The two sets of distributions differ in terms of the modal
VOTs produced for /g/ and /k/, which are relatively shorter
for one set (i.e., short VOT input) compared to the other set
(i.e., long VOT input). The voicing contrast is clearly cued
in both sets of distributions given the minimal overlap between
VOTs specifying the /g/ and /k/ categories. However, the
specific VOT that optimally marks the voicing contrast dif-
fers between the two sets of distributions. If listeners were to
apply the same perceptual boundary to both sets of input
distributions, then this would result in less accurate recovery
of the intended speech sounds. Instead, optimal phonetic
identification for these sets of distributions would entail an
adjustment to the perceptual boundary in line with the dis-
tributional input. The “ideal” response can be predicted
within an ideal observer computational framework according
to Bayes’ theorem shown in Equation 1, simplified to reflect
the assumption that the prior probabilities are equal. As
shown in the bottom panel of Figure 1A, the predicted cate-
gorization response functions for the two sets of input dis-
tributions according to this equation differ in terms of the
predicted category boundary that distinguishes /g/ and /k/; it
is located at a shorter VOT for the short VOT compared to
the long VOT input distributions.

P(VOTIK)
P(VOTIK) + p(VOT]g)

p(k[VOT) = ()

The acoustic—phonetic input can also vary in terms
of the consistency in which a cue is used to mark a phonetic

Figure 1. Panel A shows input distributions that differ in terms of
modal voice onset time (VOT) values for the /g/ and /k/ categories,
which are relatively shorter (top panel) or longer (middle panel),
and the predicted categorization functions for each set of input
distributions (bottom panel) according to Equation 1. Panel B shows
input distributions that differ in terms of the variance of the VOT
values for the /g/ and /k/ categories, which are relatively narrower
(top panel) or wider (middle panel), and the predicted categorization
functions for each set of input distributions (bottom panel) according
to Equation 1. The input distributions presented in the current study
are those shown in Panel B.
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contrast. This situation is illustrated in Figure 1B. The two
sets of input distributions are identical with respect to the
modal VOTs produced for /g/ and /k/ but differ in terms of
the variance of the /g/ and /k/ distributions, such that the
distributions show either minimal variability (narrow VOT
input) or relatively more variability (wide VOT input)
around the modal VOTs. Functionally, this type of input
variability could schematize a typical speaker (narrow VOT
input) versus a speaker with a motor speech disorder (wide
VOT input), or variability as a function of speaking style,
such as when a speaker uses a clear speech register (narrow
VOT input) and then changes to a more casual speech regis-
ter (wide VOT input). The predicted categorization response
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functions for the narrow and wide input distributions are
shown in the bottom panel of Figure 1B. In contrast to
those derived for the input distributions shown in Figure
1A, the predicted response functions differ with respect to
the slope of the identification function. The ideal observer
framework used here predicts that responses will be more
categorical for the consistent compared to the inconsistent
input, and thus, the predicted response function shows a
steeper identification slope for the narrow versus wide input
distributions.!

Previous research has shown that listeners’ behavioral
responses in distributional learning tasks follow the predic-
tions of ideal observer models (e.g., Clayards et al., 2008;
Kleinschmidt & Jaeger, 2016; Nixon & Best, 2018; Nixon,
van Rij, Mok, Baayen, & Chen, 2016). For example,
Clayards et al. (2008) presented one group of listeners with
VOTs that formed narrow distributions specifying /b/ and
/p/ and a different group of listeners with VOTs that formed
wider distributions specifying the same speech sounds. The
results showed that the slope of the identification function
was steeper for those who heard the narrow compared to
the wide input. Sensitivity to variability of the distributional
input has also been observed in a within-subject design,
demonstrating dynamic adaptation to changes in the distri-
butional input (Theodore & Monto, 2019). When listeners
are first presented with narrow input distributions and then
presented with wide input distributions, the slope of the
identification function moves from steeper to shallower even
in the course of a single experimental session (Theodore &
Monto, 2019). The observed dynamic adaptation followed
the predicted response patterns generated by computational
simulations with the Bayesian belief-updating model of
speech adaptation (Kleinschmidt & Jaeger, 2015), and it
suggests that online identification reflects a cumulative
integration of statistical experience with the talker’s input
distributions (Theodore & Monto, 2019).

As with most behavioral measures of human perfor-
mance, the patterns that are observed at the group level for
distributional learning for speech often exhibit wide individual
variability among participants. In contrast to traditional
approaches where individual variability in the sample is

"In the current work, qualitative predictions for distributional learning
are informed by the “straight Bayes rule” model from Clayards et al.
(2008), which predicts that the slope of the identification function will
be steeper for the narrow input distributions compared to the wide
input distributions. Other ideal observer models that take into account
uncertainty about the current distributions exist, including the Bayesian
belief-updating model of Kleinschmidt and Jaeger (2015). The specific
quantitative (and qualitative) predictions generated by ideal observer
models may vary, depending on which changes they are open to and
how they deal with the changes in distributional input. In the study of
Theodore and Monto (2019), simulations were performed with the
Bayesian belief-updating model of Kleinschmidt and Jaeger, setting
the model to cumulatively update prior beliefs in response to the
narrow input followed by the wide input. These simulations lead to
the same qualitative predictions generated here, namely, that the
slope of the identification function will move from steeper to shallower
across the exposure period.

considered noise with respect to characterizing group-level
patterns, there is a growing body of literature that specifically
seeks to identify and explain factors that drive individual
variability in learning. Distributional learning or statistical
learning is a broad term used to describe a change in behavior
as a function of exposure to statistical regularities in the
input. For language processing, this term has been used to
describe the mechanisms by which listeners modify the map-
ping to speech sounds (Clayards et al., 2008; Theodore &
Monto, 2019), learn to extract novel words given short-term
adjacencies between syllables (e.g., Saffran, Johnson, Aslin,
& Newport, 1999), and learn to extract higher levels of the
grammar given long-term adjacencies among words (e.g.,
Hall, Owen Van Horne, McGregor, & Farmer, 2017). Out-
side language processing, statistical learning has referred to
improved performance given statistical regularities in motor
tasks (Lum, Conti-Ramsden, Morgan, & Ullman, 2014)
and increased memory span for visual patterns that contain
a redundant statistical structure (Conway, Bauernschmidt,
Huang, & Pisoni, 2010). As outlined by Siegelman, Bogaerts,
Christiansen, and Frost (2017), there are challenges to the
view that statistical learning is a unified theoretical construct
and that all statistical learning tasks are interchangeable.
However, and of interest to the current work, there are
findings showing stable relationships between language pro-
cessing and statistical learning. For example, individual
differences in statistical learning of adjacent and nonadjacent
dependencies predict online comprehension of sentences
(Misyak & Christiansen, 2012; Misyak, Christiansen, &
Tomblin, 2010). Differences in statistical learning ability
have been examined between individuals with developmental
language disorder (DLD) and peers with typical language
abilities. As reviewed by Hall et al. (2017), the most robust
evidence of a link between statistical learning and language
processing concerns the finding that individuals with DLD
show reduced learning in serial reaction time tasks. In these
tasks, the learning effect manifests as a facilitated motor
response for button presses that are predicted by a sequen-
tial statistical pattern (e.g., Lum et al., 2014). Hall et al.
examined whether adults with DLD would show deficits in
using statistical regularities for a different task, which was
to learn grammatical categories in an artificial language.
The specific statistical manipulation assessed was the ability
to form grammatical categories from distributions of words
presented in an artificial language; thus, this study measured
participants’ ability to use distributional information to
generate grammatical categories instead of tracking sequen-
tial statistical sequences. Strikingly, Hall et al. found no
evidence indicating reduced learning in those with DLD
compared to control participants, suggesting that the ability
to use distributional cues to learn a grammar is intact in
individuals with DLD (Hall et al., 2017).

Relatively less is known about factors that influence
individual differences in distributional learning for the earli-
est stages of language comprehension, including the stage in
which listeners map speech acoustics to consonants and
vowels. Colby et al. (2018) recently examined whether indi-
vidual differences in receptive vocabulary, working memory,
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and attention-switching control predicted perceptual learn-
ing among two age cohorts, younger adults and older
adults. All participants completed two perceptual learning
tasks. In one task, lexical information was available as a
learning signal for potentially ambiguous acoustic—phonetic
input. In the other task, lexical information was not avail-
able; instead, the putative learning signal was differences in
the input distributions of formant patterns specifying the /e/
—h/ contrast. The input distributions were formed so that
formant patterns were typical of that expected for one cate-
gory (e.g., /¢/), but for the other category (e.g., /1/), the for-
mant patterns reflected those ambiguous between /e/ and /1/.
Across both age cohorts, perceptual learning was predicted
by individual differences in receptive vocabulary, but not
by individual differences in working memory or attention-
switching control. Colby et al. suggest that this relationship
may be the consequence of a facilitative effect of lexical
knowledge on the ability to adapt to ambiguous input, regard-
less of whether the learning task specifically recruits lexical
knowledge, which is consistent with other findings showing
that speech recognition in noise is facilitated in those with
larger receptive vocabularies (Baese-Berk, Bent, Borrie, &
McKee, 2015).

The results of Colby et al. (2018) provide a key finding
for understanding individual differences in perceptual
learning, suggesting that there may be a specific relationship
between low-level adaptation to distributional speech cues
and receptive language ability, given that neither working
memory nor attention-switching control reliably influenced
the magnitude of perceptual learning. Here, we provide a
further test of this hypothesis. All listeners (n = 58) com-
pleted two blocks of phonetic categorization in which they
were presented with VOTSs specifying word-initial /g/ and /k/.
In the first block, VOTSs formed two distributions, each
with a narrow variance, and thus reflect a speaker who is
extremely consistent in his or her use of VOT as a cue to
the stop voicing contrast. In the second block, the VOTs
formed two distributions with a wider variance, and thus,
the speaker became less consistent in how VOT cued the
voicing contrast. This represents a different distributional
manipulation than was examined previously. In Colby et al.,
learning the input distributions required modifying the
perceptual boundary between /e/ and /v/. In the predictions
for the current work, generated by Equation 1, learning
was not specific to the VOT voicing boundary. Namely,
the ideal observer framework used here predicts that distri-
butional learning will manifest as a change in the slope of
the identification function relating VOT to voiceless responses.
Specifically, the slope of the identification function in the
narrow block will be steeper than the slope of the identifica-
tion function in the wide block, indicating that listeners
capitalized on the consistent input initially and then
modified the mapping when the input changed to be less
consistent.

In addition to the distributional learning task, all lis-
teners completed an assessment battery to measure receptive
language, nonverbal intelligence, and reading fluency. If
the ability to dynamically adjust the mapping to speech sounds

in line with structured phonetic variation reflects individual
differences in receptive language ability, then we predict
that the degree to which the identification slope changes
across the blocks will be graded such that those with the
highest receptive language scores show the largest change
compared to those with the lower receptive language
scores. Moreover, if individual differences in distribu-
tional learning for speech reflect a specific relationship
to receptive language ability, then nonverbal intelligence
and reading fluency will not predict individual differences
in learning.

Method
Participants

The participants were 58 adults (15 men, 43 women)
between 18 and 30 years of age (M = 20.9 years, SD =
2.6 years) who were recruited from the University of Con-
necticut community. To recruit individuals with a wide
range of language abilities, separate recruitment materials
targeted individuals with no history of language disorder
and individuals specifically with a history of language dis-
order. All participants were monolingual speakers of
American English and passed a pure-tone hearing screen
administered at 25 dB for octave frequencies between 500
and 4000 Hz on the day of testing.

All participants completed a distributional learning
task (described below) in addition to assessments of receptive
language, nonverbal intelligence, and reading fluency. Thirty
of the participants completed the distributional learning
task as part of the Narrow-Wide order group reported in the
study of Theodore and Monto (2019); the other 28 partici-
pants did not participate in that study. For all participants,
receptive language was measured using the receptive lan-
guage battery developed by Fidler, Plante, and Vance (2011).
This battery consists of a 15-word spelling test and a modi-
fied version of the Token Test (Morice & McNicol, 1985).
The raw scores on these two tasks are used to derive a
weighted composite measure of receptive language accord-
ing to Equation 2.

Composite = 6.5727 + (—0.2184 * Spelling Score)
+ (—0.1298 * Token Test Score ) (2)

The weighted composite measure is a continuous
score that varies between —2.4145 (ceiling performance on
the spelling and modified token tests) and 6.5727 (floor
performance on the spelling and modified token tests). Note
that lower scores on the continuous composite measure are
associated with stronger receptive language ability and
higher scores on the continuous composite measure are
associated with weaker receptive language ability. A dis-
criminant analysis of the continuous composite measure
(i.e., positive composite scores indicate DLD; negative
composite scores indicate typical performance) shows 80%
sensitivity and 87% specificity for the identification of
childhood DLD. We selected this measure given its growing
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use in the research domain for identifying DLD in adulthood
(e.g., Earle, Landi, & Myers, 2018; Hall et al., 2017).
Nonverbal intelligence was assessed using the standard score
obtained from administration of the Test of Nonverbal
Intelligence—Fourth Edition (TONI; Brown, Sherbenou, &
Johnsen, 2010). Reading fluency was assessed using the
Test of Word Reading Efficiency-Second Edition (TOWRE;
Torgesen, Wagner, & Rashotte, 2012) in terms of the
TOWRE Index Score, a standard score derived from perfor-
mance on the Sight Word Efficiency and Phonological
Decoding subtests of the TOWRE, which assess reading
fluency for real words and nonwords, respectively.> For
both the TONI and the TOWRE, standard scores reflect
a population mean of 100 (SD = 15).

The receptive language, nonverbal intelligence, and
reading fluency scores of the current sample are shown in
Figure 2, along with the relationships among the three
measures. The color mapping in Figure 2 reflects receptive
language scores in ascending order. Recall that, for the
receptive language composite, positive scores are associated
with weaker receptive language abilities; thus, the color map
ranges from the strongest receptive language score (red) to
the weakest receptive language score (blue). The sample
shows wide individual variability for all three measures. Eight
individuals met criterion for DLD (i.e., a positive receptive
language composite score). All individuals scored at or above
1 SD of the population mean (> 85) on the TONI, and all
but two individuals scored at or above 1 SD of the popula-
tion mean (> 85) on the TOWRE.

Moderate relationships were observed between receptive
language and nonverbal intelligence (r = —.32, p = .014)
and between receptive language and reading fluency (r = —.35,
p =.006). Though the direction of the correlation is negative,
these relationships represent positive associations between
receptive language and both nonverbal intelligence and
reading fluency given that lower scores on the composite
measure are associated with stronger receptive language.
No relationship was observed between nonverbal intelligence
and reading fluency (r = —.03, p = .824).

Stimuli

The stimuli consisted of auditory tokens of goal, coal,
gain, and cane that varied in word-initial VOT. The stimuli
(also used in the study of Theodore & Monto, 2019) were
drawn from two VOT continua, a goal-coal continuum and
a gain—cane continuum. The continua were created using a

2Six of the 58 participants were beyond the oldest age (24;11 [years;
months]) provided for the standard score conversion of the TOWRE
performance. As a consequence, the raw score to standard score
conversion for these participants was made using the oldest age
provided for the conversion, which is sensible given that the oldest
age bracket represents a maturational end state for reading fluency.
However, all analyses conducted with the TOWRE standard score
were also conducted using the TOWRE raw score, with parallel
results observed in all cases. These analyses can be viewed at the
OSF repository associated with this article: https://osf.io/tsnx4/.

naturally produced token as the voiced-initial end point fol-
lowing the procedure outlined in the study of Allen and
Miller (2004), to which the reader is referred for compre-
hensive details on stimulus creation. In brief, productions
of gain and goal with equivalent word durations (568 and
569 ms, respectively) were obtained from a native female
speaker of American English to serve as the voiced end
points. For each voiced end point, the linear predictive
coding-based speech synthesizer in the ASL software pack-
age (Kay Elemetrics) was used to successively increase
word-initial VOT in 4- to 5-ms increments by systematically
changing parameters of the linear predictive coding analysis
and synthesizing new tokens using the modified parameters.
This procedure resulted in VOTs that perceptually ranged
from /g/ to /k/ across each continuum. Representative spectro-
grams can be viewed in Figure 3.

Twelve tokens were selected from each continuum
for further use consisting of VOTs that ranged from 11 to
119 ms in approximately 10-ms increments. The selected
tokens were arranged into two sets, one for the narrow
block and one for the wide block, to form input distributions
that were more consistent to less consistent, respectively.
As shown in Table 1, the two sets differed with respect to
the frequency in which each VOT was presented. The
mean VOT for the /g/ and /k/ distributions (40 and 92 ms,
respectively) was identical between the narrow and wide
stimulus sets. The critical difference between the two
stimulus sets was the standard deviation of the /g/ and /k/
distributions, which was 8 ms in the narrow set and 13 ms
in the wide set. Figure 1B shows the probability density
functions for the /g/ and /k/ distributions in each stimulus
set.

Procedure

All testing took place in a sound-attenuated booth.
Participants were seated at a table that contained a com-
puter monitor and a response box. Auditory stimuli were
presented via headphones (Sony MDR-7506) at a comfort-
able listening level that was held constant across partici-
pants. Stimulus presentation and response collection were
controlled using SuperLab 4.5 running on a Mac OS X
system.

Participants completed two blocks of phonetic catego-
rization (472 trials in total), one for the narrow stimulus
set and one for the wide stimulus set. All participants com-
pleted the narrow block followed by the wide block. In
each block, the 236 tokens that formed the /g/ and /k/ dis-
tributions were presented in randomized order. On each
trial, participants were asked to identify each token as either
goal, coal, gain, or cane by pressing an appropriately labeled
button on the response box. Participants were instructed to
make their decision as quickly as possible without sacrificing
accuracy and to guess if they were unsure. The interstimulus
interval was 2000 ms, timed from the participant’s response.
Prior to the start of the first block, participants completed
12 practice trials consisting of three repetitions of gain,
cane, goal, and coal with VOTs matching the modes of the

Theodore et al.: Individual Differences in Distributional Learning 5



Figure 2. Scatter plots illustrating the relationship between receptive language and nonverbal IQ (A), receptive language and reading fluency
(B), and nonverbal IQ and reading fluency (C). In each panel, the shaded region depicts the 95% confidence level interval for a linear regression
and marginal histograms show the distribution of scores for each variable. The color map is constant across panels to reflect receptive language
composite score. TONI = Test of Nonverbal Intelligence; TOWRE = Test of Word Reading Efficiency.
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/g/ and /k/ distributions. Participants were given a brief
break between the two blocks, and the entire procedure
lasted approximately 30 min.

Results

Two sets of analyses were performed. The primary
analyses were conducted to test the hypothesis that distribu-
tional learning for speech is linked to receptive language
ability. The second set of analyses was performed for the
28 participants who did not also participate in the Narrow-
Wide condition of Theodore and Monto (2019) in order
to assess replication of the previous finding. The raw data
and analysis scripts can be retrieved at https://osf.io/tsnx4/;
analysis scripts operate on the raw data to reproduce

all results presented here, in addition to generating all
figures.

Primary Analyses

Responses on the distributional learning task were
coded as either voiced (i.e., responses of gain and goal) or
voiceless (i.e., responses of cane and coal). Trials for which
no response was provided were excluded from further analysis
(185 of 27,376 trials, representing < 1% of the total trials).
To visualize performance, mean proportion of voiceless
responses was first calculated for each participant for each
VOT in each block and was then averaged across the
58 participants. As shown in Figure 4A, the participants
in the aggregate show the expected categorical relationship

Figure 3. Spectrograms of the tokens corresponding to the mean voice onset times of the /g/ (gain, goal) and /k/ (cane, coal) input

distributions.
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Table 1. Number of tokens for each voice onset time (ms) in the
narrow and wide experimental blocks.

Block 11 21 32 40 51 60 69 83 92 100 110 119
Narrow 0 4 28 54 28 4 4 28 54 28 4 0
Wide 4 12 28 30 28 16 16 28 30 28 12 4

between VOT and voiceless responses in each block. Further-
more, the slope of the function relating VOT to voiceless
responses appears to be steeper in the narrow compared to
the wide block, indicative of distributional learning across
the two input blocks.

To examine this pattern statistically and the degree
to which it may be influenced by receptive language, non-
verbal intelligence, and reading fluency, trial-level responses

(0 = voiced, 1 = voiceless) were fit to a generalized linear
mixed-effects model (GLMM) using the glmer() function
with the binomial response family as implemented in the
Ime4 package in R (Bates et al., 2014). All test statistics
reflect those reported by the Ime4 package. The fixed effects
included VOT, block, receptive language composite, TONI,
and TOWRE. The fixed effects also included the interaction
between VOT and block and all interactions between VOT,
block, and each of the three individual difference measures.
Here and throughout, VOT, receptive language composite,
TONI, and TOWRE were entered into the model as contin-
uous variables, each scaled and centered around the mean;
block was contrast coded (narrow = —1, wide = 1). The
random effects structure consisted of random intercepts by
participant and random slopes by participant for both VOT
and block.

Figure 4. Panel A shows the mean proportion of voiceless responses as a function of voice onset time (VOT); error bars indicate standard
error of the mean. Panel B shows the effect of VOT on voiceless responses in each block for three levels of receptive language (corresponding
to the median of each receptive language composite tercile) as derived from the fixed effects of the model reported in Table 4. To promote
visualization, the abscissa spans the intermediate VOTs of the input distributions. Panel C shows the simple slope (beta estimate) for VOT in
each block for each composite tercile; error bars indicate the 95% confidence interval for the beta estimate. Higher beta estimates indicate
steeper identification slopes. Panel D shows the relationship between the distributional learning effect and receptive language composite score
across the 58 participants; the shaded region depicts the 95% confidence level interval for a linear regression. We note that the regression
line is provided for visualization purposes only. As described in the main text, negative learning effect values are associated with increased
learning (i.e., a larger change in slope between the narrow and wide blocks), and lower composite scores are indicative of stronger receptive

language.
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The results of the model are shown in Table 2. In the
model, the fixed effect of VOT reflects the slope of the
identification function. There was a main effect of VOT,
indicating that voiceless responses increased as did VOT
(B = 4.645, SE = 0.178, z = 26.157, p < .001). There was
also a main effect of block (p = —0.093, SE = 0.045, z =
—2.050, p = .040), indicating more /k/ responses in the narrow
compared to the wide block. As expected, there was an inter-
action between VOT and block (B =-0.299, SE=0.052,z =
—=5.721, p < .001), with the direction of the beta estimate
for the interaction indicating that the rate at which voiceless
responses increased given an increase in VOT (i.e., the identi-
fication slope) was higher for the narrow compared to the
wide block. This interaction confirms that participants in
the aggregate showed a steeper identification function for
the narrow compared to the wide input distributions, as pre-
dicted by the ideal observer computational framework.
Critically, the model also showed a significant interaction
between VOT, block, and receptive language composite
score (B =0.179, SE = 0.054, z = 3.327, p = .001). No
other main effect or interaction was reliable (p > .055 in
all cases).

The results of the omnibus model suggest that distri-
butional learning is influenced by receptive language, but not
reading fluency and nonverbal intelligence. To examine this
possibility more directly, four successively complex models
were compared using likelihood ratio tests. Model 1 included
the fixed effects of VOT, block, and their interaction.
Model 2 added the fixed effect of receptive language com-
posite, including all interactions with VOT and block. To the
structure of Model 2, Model 3 added the fixed effect of
reading fluency, including all interactions with VOT and
block. Model 4 is the omnibus model (see Table 2) and thus
included all three individual difference measures as fixed
effects, including all interactions with VOT and block for
each measure. The random effects structure was identical
across all four models, consisting of random intercepts by

participant and random slopes for VOT and block by
participant.

The results of the model comparisons are shown in
Table 3. Compared to the initial model (Model 1), there
was a significant change to goodness of fit when receptive
language was added as a fixed effect, y*(4) = 17.92, p = .001.
However, there was no further change to the goodness of
fit by the successive inclusion of reading fluency, y*(4) = 3.41,
p = .491, and nonverbal intelligence scores, x*(4) = 0.46,

p = .977. Though there is a statistically significant change
in goodness of fit when receptive language is added to the
initial model, the inclusion of composite score leads to only
a slight increase in the R* for the fixed effects (R? = .802
and .794, respectively), indicative of a small effect size.

Table 4 shows the results of the best-fitting model,
which included the fixed effects of VOT, block, and receptive
language composite. As observed for the omnibus model
(see Table 2), this model confirmed the presence of the
three-way interaction between VOT, block, and composite
score (B = 0.159, SE = 0.046, z = 3.468, p = .001), indicat-
ing that the degree to which the slope of the identification
function changed across blocks was influenced by receptive
language composite score. The model is visualized in Fig-
ure 4B in terms of the fixed effects of VOT, block, and
composite score, with the latter shown by the composite
scores corresponding to the median of each composite
tercile. Inspection of this plot shows that the degree to which
the identification slope changes between the narrow and
wide blocks is largest for those with lower composite scores
(reflecting stronger receptive language) and smallest for those
with higher composite scores (reflecting weaker receptive
language).

To further illustrate this interaction, a simple slope
analysis was performed using the interactions package in
R (Long, 2019) in order to extract the VOT beta estimate
(i.e., the identification slope) in each block for three levels
of the receptive language composite score, representing the

Table 2. Results of the generalized linear mixed-effects model for voiceless responses that included voice onset
time (VOT), block, receptive language composite score, Test of Nonverbal Intelligence (TONI), and Test of Word

Reading Efficiency (TOWRE) as fixed effects.

Fixed effect B SE 95% CI z P

(Intercept) -0.427 0.099 [-0.62, —-0.23] -4.324 < .001
VOT 4.645 0.178 [4.30, 4.99] 26.157 < .001
Block -0.093 0.045 [-0.18, —0.00] -2.050 .040
Composite -0.214 0.112 [-0.43, 0.00] -1.919 .055
TOWRE -0.117 0.107 [-0.33, 0.09] -1.095 274
TONI 0.025 0.105 [-0.18, 0.23] 0.239 811
VOT x Block -0.299 0.052 [-0.40, -0.20] -5.721 < .001
VOT x Composite -0.377 0.198 [-0.77, 0.01] -1.904 .057
Block x Composite 0.017 0.049 [-0.08, 0.11] 0.346 729
VOT x TOWRE 0.068 0.191 [-0.44, 0.31] 0.355 722
Block x TOWRE -0.039 0.048 [-0.13, 0.06] -0.813 416
VOT x TONI 0.116 0.188 [-0.25, 0.48] 0.616 .538
Block x TONI -0.006 0.047 [-0.10, 0.09] -0.128 .898
VOT x Block x Composite 0.179 0.054 [0.07, 0.28] 3.327 .001
VOT x Block x TOWRE 0.066 0.054 [-0.04, 0.17] 1.206 .228
VOT x Block x TONI -0.016 0.050 [-0.11, 0.08] -0.318 751
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Table 3. Results of the likelihood ratio tests for model comparisons.

R? Likelihood ratio test
Model Fixed effects df Fixed Total logLik Deviance 22 df p
1 VOT x Block 10 794 .878 —-4655.6 9311.3 — — —
2 + VOT x Block x Composite 14 .802 .878 —4646.7 9293.4 17.92 4 .001
3 + VOT x Block x TOWRE 18 .803 .878 -4645.0 9289.9 3.41 4 491
4 + VOT x Block x TONI 22 .803 .879 -4644.7 9289.5 0.46 4 977

Note. As described in the main text, the initial model included voice onset time (VOT), block, and their interaction as fixed effects. Comparison
models successively added the fixed effects of receptive language (Composite), reading fluency (Test of Word Reading Efficiency [TOWRE]
Index), and nonverbal intelligence (Test of Nonverbal Intelligence [TONI]), including all interactions with VOT and block for each individual
difference measure. As described in the main text, the random effects structure was identical across models. The full results for the omnibus

model (Model 4) are shown in Table 2. The full results of Model 2 are shown in Table 4.

median composite score for the lower, middle, and upper
terciles; this is shown in Figure 4C. The three-way inter-
action can be observed by comparing the degree to which
the identification slope (i.e., the VOT beta estimate) differs
between the narrow and wide blocks as a function of recep-
tive language score; lower composite scores (indicative of
stronger receptive language) show the largest distributional
learning effect, and higher language scores (indicative of
weaker receptive language) show a minimal distributional
learning effect.

In addition to showing that the distributional learning
effect was larger for those with stronger compared to weaker
receptive language ability, inspection of Figure 4C suggests
that this interaction was driven by a stronger association
between receptive language and identification slope in the
narrow block compared to the wide block. To test this
possibility, additional GLMMs were constructed in order
to examine the effect of receptive language composite score
in each block. In both models, the fixed and random effects
structure followed that outlined previously except for re-
moving the fixed effect of block. For the narrow block,
there was a main effect of VOT (§ = 4.728, SE = 0.180,
z =26.261, p < .001), a main effect of receptive language
composite (p = —0.235, SE = 0.105, z = —2.233, p = .026),
and an interaction between these two factors (§ = —0.534,
SE =0.167, z = =3.191, p = .001), indicating steeper identi-
fication slopes for stronger compared to weaker composite
scores. For the wide block, there was a main effect of VOT
(B =4.422, SE = 0.174, z = 25471, p < .001), but no effect

of composite (p = —0.135, SE = 0.103, z = —1.311, p = .190)
nor an interaction between VOT and composite score (p =
—0.218, SE = 0.166, z = —1.314, p = .189). These results
indicate that the locus of the interaction between VOT,
block, and receptive language composite in the full model
reflects a more limited ability among those with weaker
receptive language scores to capitalize on the consistent input
distributions.

A final analysis was performed to visualize the distri-
butional learning effect at the level of individual participants.
To quantify the learning effect for each participant, we
constructed a GLMM on trial-level responses with VOT,
block, and their interaction as fixed effects; random intercepts
by participant; and random slopes by participant for the
interaction between VOT and block. With this structure,
the coefficients of the random slopes for the VOT x Block
interaction can serve as a measure of the distributional
learning effect for each participant. In terms of interpreting
the coefficients, negative values indicate that the VOT
slope decreased from the narrow to wide block, and values
of 0 indicate no change in the VOT slope between the
two blocks. Figure 4D shows the distributional learning
effect and receptive language composite score for each
participant.

Replication Analyses

Recall that 30 of the 58 participants completed the
distributional learning task as part of the Narrow-Wide

Table 4. Results of the generalized linear mixed-effects model for voiceless responses that included voice onset time (VOT), block, and

receptive language composite score as fixed effects.

Fixed effect B SE 95% CI z P

(Intercept) -0.428 0.100 [-0.62, —-0.23] -4.286 < .001
VOT 4.639 0177 [4.29, 4.99] 26.187 < .001
Block -0.091 0.045 [-0.18, 0.00] -2.015 .044
Composite -0.180 0.099 [-0.37, 0.01] -1.830 .067
VOT x Block -0.296 0.052 [-0.40, -0.19] -5.675 < .001
VOT x Composite -0.385 0.172 [-0.72, -0.05] -2.241 .025
Block x Composite 0.031 0.042 [-0.05, 0.11] 0.725 .468
VOT x Block x Composite 0.159 0.046 [0.07, 0.25] 3.468 .001
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condition reported in the study of Theodore and Monto
(2019), in addition to completing the assessment battery for
inclusion in the current study. Because of this, the distribu-
tional learning effects presented above cannot be considered
as a replication of the previous study given that approximately
half of the participants were included in both studies. In
order to assess replication of the distributional learning
effect reported in the study of Theodore and Monto, we
conducted an analysis with only the 28 participants unique
to the current sample. For this analysis, trial-level voice-
less responses were submitted to a GLMM with the fixed
effects of block (narrow = —1, wide = 1) and VOT (scaled/
centered around the mean). The model also included ran-
dom intercepts by participant and random slopes by partici-
pant for VOT and block. The results of this model showed
a main effect of VOT (B =4.279, SE=0.213, z = 20.064,
p < .001), no main effect of block (§ = —0.075, SE = 0.060,
z=-1.257, p = .209), and a significant interaction between
VOT and block (B = —0.293, SE = 0.065, z = —4.477, p <
.001). The significant interaction indicates that the slope of
the identification function relating VOT to voiceless responses
is steeper in the narrow compared to the wide block, repli-
cating the previous finding. A final model compared the
magnitude of the VOT x Block interaction between partici-
pants unique to the current study and those who partici-
pated in both studies by adding sample as a fixed effect
(unique = —1, both = 1) to the model described above. The
interaction between VOT, block, and sample was not reli-
able (B = 0.050, SE = 0.047, z = 1.063, p = .288).

Discussion

Listeners must accommodate wide variability in the
acoustic speech signal in order to map the speech signal to
the speech sound representations that support language
comprehension. One mechanism that supports this process
is distributional learning for speech, wherein adaptation
can be viewed as the process of dynamically modifying the
mapping to speech sounds to optimize phonetic categoriza-
tion for specific input distributions (Clayards et al., 2008;
Kleinschmidt & Jaeger, 2015; Theodore & Monto, 2019). As
predicted by ideal observer frameworks, listeners’ phonetic
identification responses reflect variability of the speech input,
with perception more categorical for consistent compared
to inconsistent input distributions (Clayards et al., 2008;
Nixon et al., 2016; Theodore & Monto, 2019). Recent
research suggests that the ability to dynamically modify the
acoustic—phonetic boundary between speech sound categories
as a consequence of exposure to structured phonetic vari-
ability may reflect individual differences in receptive language
ability (Colby et al., 2018). The goal of the current work was
to provide an additional test of this hypothesis. Specifically,
we examined whether the ability to modify the mapping to
speech sounds as a function of changes to the consistency of
an acoustic—phonetic cue would be linked to receptive lan-
guage ability and, if so, whether it would also be linked to
nonverbal intelligence and reading fluency. We predicted

that young adults who have weaker receptive language
abilities would demonstrate a reduced ability to modify
their mapping in response to variable acoustic information,
manifesting in no difference in the slopes of their identi-
fication functions for more versus less consistent input
distributions.

Robust distributional learning was observed in our
sample as a whole, with steeper identification slopes observed
for narrow compared to wide input distributions, providing
further evidence that distributional learning reflects rapid,
dynamic adaptation to cumulative input statistics. Moreover,
individual variation in receptive language ability influenced
the magnitude of distributional learning; individuals with
stronger receptive language abilities showed the largest
distributional learning effect, with weaker learning effects
observed among those with weaker receptive language
ability. The attenuated learning across test blocks for those
with weaker receptive language was driven by the failure to
capitalize on the consistent input distributions presented
in the narrow test block. Analysis of performance within
each test block showed that stronger receptive language was
associated with steeper identification slopes in the narrow
block, but no such relationship was observed in the wide
block. Thus, it appears that individuals with weaker recep-
tive language failed to take advantage of the consistency
provided in the narrow block, consistent with previous find-
ings demonstrating that individuals with deficits in language
processing abilities show poor adaptability to structured
variation when engaging in statistical learning of nonadjacent
dependencies (Misyak et al., 2010).

The results of the present investigation converge with
those of Colby et al. (2018), who found that perceptual
learning through both bottom-up and top-down learning
mechanisms was influenced by individual differences in
receptive language ability, as measured by receptive vocabu-
lary. The current work extends these findings in four ways.
First, receptive language ability in the current sample was
measured using the receptive language composite measure
of Fidler et al. (2011) instead of using the Peabody Picture
Vocabulary Test-IIT (Dunn & Dunn, 1997). Reliable relation-
ships between perceptual learning and receptive language
were observed with both measures of receptive language,
demonstrating generalization across the specific measures
used to assess receptive language as a construct. Second,
the current work examined distributional learning for a
temporal acoustic—phonetic cue instead of a spectral cue,
thus demonstrating that the relationship between receptive
language and distributional learning is not limited to a
specific acoustic—phonetic property. Third, the current work
assessed learning for input distributions that differed in the
consistency in which the acoustic-phonetic property was
used to cue the two phonetic categories. According to the
ideal observer model used here, optimal adaptation to
the input distributions required a change in the slope of the
identification function over time, as opposed to a shift in
the perceptual boundary between the two phonetic categories,
as examined previously. Thus, the current results demon-
strate that the relationship between receptive language and
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distributional learning generalizes to other statistical cues,
including those indicative of variability in speech input.

Fourth, Colby et al. (2018) found no evidence to
suggest that distributional learning was linked to individual
differences in attention-switching control, working memory,
or speech perception in noise, in contrast to the reliable
relationship that was observed between distributional
learning and receptive vocabulary. This finding suggests
that the relationship between distributional learning and
receptive language ability may not reflect general cognitive
ability but rather is more indicative of relationships within
the language architecture. In the current study, we provided
a further test of this hypothesis by examining the relation-
ship between distributional learning and two measures of
linguistic ability, receptive language and reading fluency, in
addition to nonverbal intelligence. As in Colby et al., we
observed no relationship between distributional learning
and general cognitive ability (i.e., nonverbal intelligence).
Moreover, we observed no relationship between distributional
learning and reading fluency. Given the robust relationship
that was observed between distributional learning and recep-
tive language, the results of the current study provide
further evidence of a specific relationship between distribu-
tional learning and receptive language ability.

We conclude by considering implications of the current
investigation for individuals with language impairment,
noting that only 14% of the current sample met criterion for
DLD and thus the current data are not sufficient to describe
patterns between those who meet criterion for DLD and
those who do not. Past research has shown that individuals
with DLD demonstrate impairments in statistical learning
(Lum et al., 2014) and categorical perception (e.g., Robertson,
Joanisse, Desroches, & Ng, 2009), the latter of which may
reflect specific characteristics of the stimuli and task (Coady,
Evans, Mainela-Arnold, & Kluender, 2007; Coady, Kluender,
& Evans, 2005). However, we know little about whether
individuals with DLD are able to modify their representation
of phonetic category structure in response to variability in
speech input. Poor adaptability could lead to impairments in
efficient processing and comprehension of speech sounds
and language (Misyak et al., 2010; Wanrooij, Escudero, &
Raijmakers, 2013). Though DLD is characterized by marked
deficits in acquiring aspects of language including the sound
structure, grammatical morphology, and syntactic rules that
govern word order (Bird & Bishop, 1992; Leonard, 2014;
van der Lely, 1996), the specific etiology of DLD is unknown.
The locus of language impairment has traditionally been
described as impairments in the representation of grammar
(e.g., van der Lely & Stollwerck, 1996). However, some
findings suggest that the grammatical language deficits
observed in this population may stem from earlier deficits
in the processing stream, including auditory processing
(Bishop & McArthur, 2004; McArthur & Bishop, 2004)
and speech perception abilities (Joanisse & Seidenberg,
2003), and may reflect deficits that are not language specific
(Montgomery, 1995; Spaulding, Plante, & Vance, 2008). In
particular, one hypothesis suggests that an inability to attend
to fine-grained differences in speech sounds may lead to

impairment in the acquisition of grammatical morphemes
that are less salient (e.g., the word-final /t/ signaling the
past tense morpheme in jumped, Joanisse & Seidenberg, 2003).
On this view, deficits in speech perception can lead to broad
deficits in language impairment, including impairments in
word learning and grammatical morphology (Joanisse &
Seidenberg, 1998, 2003; Ziegler, Pech-Georgel, George,
Alario, & Lorenzi, 2005). Children with DLD show deficits
in forming categories for nonspeech sounds, which is con-
sistent with the possibility that this population has difficul-
ties creating and organizing auditory information into
structured perceptual categories (Coady et al., 2007; Nit-
trouer, Shune, & Lowenstein, 2011).

Indeed, processing-based accounts of DLD have
been motivated in light of these findings. Two etiological
accounts of language impairment that do account for speech
perception ability are the statistical learning deficit hypothe-
sis (Hsu & Bishop, 2014) and the procedural deficit
hypothesis (Ullman & Pierpont, 2005). Hsu and Bishop (2014)
propose that language impairment manifests as a deficit in
statistical learning of grammatical forms and not a deficit in
learning grammatical rules. Similarly, Ullman and Pierpont
(2005) implicate deficits in the procedural memory system
as the etiology of DLD. The procedural memory system
establishes and facilitates activation of new sensorimotor plans,
such as coordination and motoric functioning, manipula-
tion of visual-spatial imagery, and performance on tasks of
working memory. Ullman and Pierpont suggest that deficits
in the procedural memory system can explain the linguistic
and—critically—nonlinguistic deficits in individuals with
DLD. Our results are consistent with both of these hypothe-
ses, as distributional learning is a task that may be mediated
by procedural memory and statistical learning abilities.
However, future research that examines distributional learning
of low-level acoustic—phonetic cues with larger samples sizes
of individuals with DLD is needed to test this possibility.

In conclusion, listeners show an exquisite ability to
modify the mapping to speech sounds to accommodate
statistical cues in speech input throughout the life span. The
results of the current investigation point toward a link
between adaptation to distributional variation in acoustic—
phonetic input and receptive language ability but found no
evidence of a similar association between distributional
learning and either nonverbal intelligence or reading fluency.
These results contribute to a theoretical framework that
can account for individual variation in spoken language
processing, which will help to inform the role of low-level
speech perception abilities as an etiological locus of lan-
guage impairment.
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