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Individual Differences in Distributional

Learning for Speech: What’s Ideal

for Ideal Observers?

Rachel M. Theodore,a,b Nicholas R. Monto,a,b and Stephen Grahama,b

Purpose: Speech perception is facilitated by listeners’ ability
to dynamically modify the mapping to speech sounds given
systematic variation in speech input. For example, the degree
to which listeners show categorical perception of speech
input changes as a function of distributional variability in the
input, with perception becoming less categorical as the input,
becomes more variable. Here, we test the hypothesis that
higher level receptive language ability is linked to the ability
to adapt to low-level distributional cues in speech input.
Method: Listeners (n = 58) completed a distributional
learning task consisting of 2 blocks of phonetic categorization
for words beginning with /g/ and /k/. In 1 block, the
distributions of voice onset time values specifying /g/ and
/k/ had narrow variances (i.e., minimal variability). In the
other block, the distributions of voice onset times specifying
/g/ and /k/ had wider variances (i.e., increased variability).

In addition, all listeners completed an assessment battery
for receptive language, nonverbal intelligence, and reading
fluency.
Results: As predicted by an ideal observer computational
framework, the participants in aggregate showed identification
responses that were more categorical for consistent compared
to inconsistent input, indicative of distributional learning.
However, the magnitude of learning across participants
showed wide individual variability, which was predicted by
receptive language ability but not by nonverbal intelligence
or by reading fluency.
Conclusion: The results suggest that individual differences
in distributional learning for speech are linked, at least in
part, to receptive language ability, reflecting a decreased
ability among those with weaker receptive language to
capitalize on consistent input distributions.

T
here is no one-to-one relationship between speech
acoustics and a given speech sound; instead, differ-

ent acoustic forms may be produced for the same

speech sound, and the same acoustic form may be produced

for different speech sounds. Variation arises in the speech

signal due to a host of factors, including dialect (Byrd, 1992),

speaking rate (Miller & Baer, 1983; Theodore, Miller, &

DeSteno, 2009), speaking register (Picheny, Durlach, &

Braida, 1986), and even individual differences in pronuncia-

tion across talkers (Hillenbrand, Getty, Clark, & Wheeler,
1995; Newman, Clouse, & Burnham, 2001; Theodore et al.,

2009). Given this variability, listeners must solve the lack of

invariance problem in order to map the acoustic signal to

representations for individual speech sounds. As a conse-
quence, speech perception can be viewed as a process in

which listeners make inferences regarding talkers’ intended

speech sounds from a signal that is implicitly uncertain

(Kleinschmidt & Jaeger, 2015; Toscano & McMurray, 2010).

Despite the lack of invariance in the acoustic speech

signal, some variability in speech acoustics is highly struc-

tured. Consider just one acoustic–phonetic property of

speech, voice onset time (VOT). VOT is a temporal property

of stop consonants that reflects the time between the release
of the occlusion necessary for stop consonant production

and the subsequent onset of vocal fold vibration (Lisker &

Abramson, 1964). On any given day, listeners will hear a

wide range of VOTs produced for stops consonants. However,

the input is structured such that the VOTs produced for

voiced stops will be shorter than those produced for voice-

less stops (e.g., Lisker & Abramson, 1964), VOTs produced

for labial stops will be shorter than those produced for velar

stops (e.g., Cho & Ladefoged, 1999), and VOTs produced
at a fast speaking rate will be shorter than those produced

for a slow speaking rate (e.g., Volaitis & Miller, 1992). Fur-

thermore, individual talkers also show stable differences in
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their characteristic VOT productions such that some talkers

have shorter VOTs than other talkers, even when controlling

for other contextual influences (Chodroff & Wilson, 2017;

Theodore et al., 2009).

There is now a large evidence base demonstrating

that listeners use structured phonetic variation to facilitate

the mapping to speech sounds. Indeed, the ability to track
structured phonetic variation in the speech input supports

acquisition of the linguistic sound structure during develop-

ment (Maye, Werker, & Gerken, 2002). For example, sensi-

tivity to distributional input could allow the infant in a

Spanish-speaking environment to learn that voiced stops are

cued by negative VOTs (i.e., “prevoicing”) and voiceless

stops are cued by VOTs near 0 ms and also allow the infant

in an English-speaking environment to learn that VOTs

near 0 ms are associated with voiced stops and long-lag
VOTs are used to cue voiceless stops. Sensitivity to distribu-

tional variation in the input does not cease after the infant

has acquired the phonetic inventory of a language (Clayards,

Tanenhaus, Aslin, & Jacobs, 2008; Theodore & Monto,

2019). Instead, functional plasticity is observed across the life

span such that listeners dynamically modify the mapping

to speech sounds in line with statistical distributions of

acoustic–phonetic cues in the input (e.g., Colby, Clayards,

& Baum, 2018; Norris, McQueen, & Cutler, 2003; Theodore
& Monto, 2019).

As an illustration, Figure 1A shows two sets of VOT

input distributions that cue the voicing contrast for /g/ and

/k/. The two sets of distributions differ in terms of the modal

VOTs produced for /g/ and /k/, which are relatively shorter

for one set (i.e., short VOT input) compared to the other set

(i.e., long VOT input). The voicing contrast is clearly cued

in both sets of distributions given the minimal overlap between

VOTs specifying the /g/ and /k/ categories. However, the
specific VOT that optimally marks the voicing contrast dif-

fers between the two sets of distributions. If listeners were to

apply the same perceptual boundary to both sets of input

distributions, then this would result in less accurate recovery

of the intended speech sounds. Instead, optimal phonetic

identification for these sets of distributions would entail an

adjustment to the perceptual boundary in line with the dis-

tributional input. The “ideal” response can be predicted

within an ideal observer computational framework according
to Bayes’ theorem shown in Equation 1, simplified to reflect

the assumption that the prior probabilities are equal. As

shown in the bottom panel of Figure 1A, the predicted cate-

gorization response functions for the two sets of input dis-

tributions according to this equation differ in terms of the

predicted category boundary that distinguishes /g/ and /k/; it

is located at a shorter VOT for the short VOT compared to

the long VOT input distributions.

p kjVOTð Þ ¼
p VOTjkð Þ

p VOTjkð Þ þ p VOTjgð Þ
(1)

The acoustic–phonetic input can also vary in terms

of the consistency in which a cue is used to mark a phonetic

contrast. This situation is illustrated in Figure 1B. The two

sets of input distributions are identical with respect to the

modal VOTs produced for /g/ and /k/ but differ in terms of

the variance of the /g/ and /k/ distributions, such that the

distributions show either minimal variability (narrow VOT

input) or relatively more variability (wide VOT input)
around the modal VOTs. Functionally, this type of input

variability could schematize a typical speaker (narrow VOT

input) versus a speaker with a motor speech disorder (wide

VOT input), or variability as a function of speaking style,

such as when a speaker uses a clear speech register (narrow

VOT input) and then changes to a more casual speech regis-

ter (wide VOT input). The predicted categorization response

Figure 1. Panel A shows input distributions that differ in terms of
modal voice onset time (VOT) values for the /g/ and /k/ categories,
which are relatively shorter (top panel) or longer (middle panel),
and the predicted categorization functions for each set of input
distributions (bottom panel) according to Equation 1. Panel B shows
input distributions that differ in terms of the variance of the VOT
values for the /g/ and /k/ categories, which are relatively narrower
(top panel) or wider (middle panel), and the predicted categorization
functions for each set of input distributions (bottom panel) according
to Equation 1. The input distributions presented in the current study
are those shown in Panel B.
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functions for the narrow and wide input distributions are

shown in the bottom panel of Figure 1B. In contrast to

those derived for the input distributions shown in Figure

1A, the predicted response functions differ with respect to

the slope of the identification function. The ideal observer

framework used here predicts that responses will be more

categorical for the consistent compared to the inconsistent
input, and thus, the predicted response function shows a

steeper identification slope for the narrow versus wide input

distributions.1

Previous research has shown that listeners’ behavioral

responses in distributional learning tasks follow the predic-

tions of ideal observer models (e.g., Clayards et al., 2008;

Kleinschmidt & Jaeger, 2016; Nixon & Best, 2018; Nixon,

van Rij, Mok, Baayen, & Chen, 2016). For example,

Clayards et al. (2008) presented one group of listeners with
VOTs that formed narrow distributions specifying /b/ and

/p/ and a different group of listeners with VOTs that formed

wider distributions specifying the same speech sounds. The

results showed that the slope of the identification function

was steeper for those who heard the narrow compared to

the wide input. Sensitivity to variability of the distributional

input has also been observed in a within-subject design,

demonstrating dynamic adaptation to changes in the distri-

butional input (Theodore & Monto, 2019). When listeners
are first presented with narrow input distributions and then

presented with wide input distributions, the slope of the

identification function moves from steeper to shallower even

in the course of a single experimental session (Theodore &

Monto, 2019). The observed dynamic adaptation followed

the predicted response patterns generated by computational

simulations with the Bayesian belief-updating model of

speech adaptation (Kleinschmidt & Jaeger, 2015), and it

suggests that online identification reflects a cumulative
integration of statistical experience with the talker’s input

distributions (Theodore & Monto, 2019).

As with most behavioral measures of human perfor-

mance, the patterns that are observed at the group level for

distributional learning for speech often exhibit wide individual

variability among participants. In contrast to traditional

approaches where individual variability in the sample is

considered noise with respect to characterizing group-level

patterns, there is a growing body of literature that specifically

seeks to identify and explain factors that drive individual

variability in learning. Distributional learning or statistical

learning is a broad term used to describe a change in behavior

as a function of exposure to statistical regularities in the

input. For language processing, this term has been used to
describe the mechanisms by which listeners modify the map-

ping to speech sounds (Clayards et al., 2008; Theodore &

Monto, 2019), learn to extract novel words given short-term

adjacencies between syllables (e.g., Saffran, Johnson, Aslin,

& Newport, 1999), and learn to extract higher levels of the

grammar given long-term adjacencies among words (e.g.,

Hall, Owen Van Horne, McGregor, & Farmer, 2017). Out-

side language processing, statistical learning has referred to

improved performance given statistical regularities in motor
tasks (Lum, Conti-Ramsden, Morgan, & Ullman, 2014)

and increased memory span for visual patterns that contain

a redundant statistical structure (Conway, Bauernschmidt,

Huang, & Pisoni, 2010). As outlined by Siegelman, Bogaerts,

Christiansen, and Frost (2017), there are challenges to the

view that statistical learning is a unified theoretical construct

and that all statistical learning tasks are interchangeable.

However, and of interest to the current work, there are

findings showing stable relationships between language pro-
cessing and statistical learning. For example, individual

differences in statistical learning of adjacent and nonadjacent

dependencies predict online comprehension of sentences

(Misyak & Christiansen, 2012; Misyak, Christiansen, &

Tomblin, 2010). Differences in statistical learning ability

have been examined between individuals with developmental

language disorder (DLD) and peers with typical language

abilities. As reviewed by Hall et al. (2017), the most robust

evidence of a link between statistical learning and language
processing concerns the finding that individuals with DLD

show reduced learning in serial reaction time tasks. In these

tasks, the learning effect manifests as a facilitated motor

response for button presses that are predicted by a sequen-

tial statistical pattern (e.g., Lum et al., 2014). Hall et al.

examined whether adults with DLD would show deficits in

using statistical regularities for a different task, which was

to learn grammatical categories in an artificial language.

The specific statistical manipulation assessed was the ability
to form grammatical categories from distributions of words

presented in an artificial language; thus, this study measured

participants’ ability to use distributional information to

generate grammatical categories instead of tracking sequen-

tial statistical sequences. Strikingly, Hall et al. found no

evidence indicating reduced learning in those with DLD

compared to control participants, suggesting that the ability

to use distributional cues to learn a grammar is intact in

individuals with DLD (Hall et al., 2017).
Relatively less is known about factors that influence

individual differences in distributional learning for the earli-

est stages of language comprehension, including the stage in

which listeners map speech acoustics to consonants and

vowels. Colby et al. (2018) recently examined whether indi-

vidual differences in receptive vocabulary, working memory,

1In the current work, qualitative predictions for distributional learning

are informed by the “straight Bayes rule” model from Clayards et al.

(2008), which predicts that the slope of the identification function will

be steeper for the narrow input distributions compared to the wide

input distributions. Other ideal observer models that take into account

uncertainty about the current distributions exist, including the Bayesian

belief-updating model of Kleinschmidt and Jaeger (2015). The specific

quantitative (and qualitative) predictions generated by ideal observer

models may vary, depending on which changes they are open to and

how they deal with the changes in distributional input. In the study of

Theodore and Monto (2019), simulations were performed with the

Bayesian belief-updating model of Kleinschmidt and Jaeger, setting

the model to cumulatively update prior beliefs in response to the

narrow input followed by the wide input. These simulations lead to

the same qualitative predictions generated here, namely, that the

slope of the identification function will move from steeper to shallower

across the exposure period.
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and attention-switching control predicted perceptual learn-

ing among two age cohorts, younger adults and older

adults. All participants completed two perceptual learning

tasks. In one task, lexical information was available as a

learning signal for potentially ambiguous acoustic–phonetic

input. In the other task, lexical information was not avail-

able; instead, the putative learning signal was differences in
the input distributions of formant patterns specifying the /ɛ/

–/ɪ/ contrast. The input distributions were formed so that

formant patterns were typical of that expected for one cate-

gory (e.g., /ɛ/), but for the other category (e.g., /ɪ/), the for-

mant patterns reflected those ambiguous between /ɛ/ and /ɪ/.

Across both age cohorts, perceptual learning was predicted

by individual differences in receptive vocabulary, but not

by individual differences in working memory or attention-

switching control. Colby et al. suggest that this relationship
may be the consequence of a facilitative effect of lexical

knowledge on the ability to adapt to ambiguous input, regard-

less of whether the learning task specifically recruits lexical

knowledge, which is consistent with other findings showing

that speech recognition in noise is facilitated in those with

larger receptive vocabularies (Baese-Berk, Bent, Borrie, &

McKee, 2015).

The results of Colby et al. (2018) provide a key finding

for understanding individual differences in perceptual
learning, suggesting that there may be a specific relationship

between low-level adaptation to distributional speech cues

and receptive language ability, given that neither working

memory nor attention-switching control reliably influenced

the magnitude of perceptual learning. Here, we provide a

further test of this hypothesis. All listeners (n = 58) com-

pleted two blocks of phonetic categorization in which they

were presented with VOTs specifying word-initial /g/ and /k/.

In the first block, VOTs formed two distributions, each
with a narrow variance, and thus reflect a speaker who is

extremely consistent in his or her use of VOT as a cue to

the stop voicing contrast. In the second block, the VOTs

formed two distributions with a wider variance, and thus,

the speaker became less consistent in how VOT cued the

voicing contrast. This represents a different distributional

manipulation than was examined previously. In Colby et al.,

learning the input distributions required modifying the

perceptual boundary between /ɛ/ and /ɪ/. In the predictions
for the current work, generated by Equation 1, learning

was not specific to the VOT voicing boundary. Namely,

the ideal observer framework used here predicts that distri-

butional learning will manifest as a change in the slope of

the identification function relating VOT to voiceless responses.

Specifically, the slope of the identification function in the

narrow block will be steeper than the slope of the identifica-

tion function in the wide block, indicating that listeners

capitalized on the consistent input initially and then
modified the mapping when the input changed to be less

consistent.

In addition to the distributional learning task, all lis-

teners completed an assessment battery to measure receptive

language, nonverbal intelligence, and reading fluency. If

the ability to dynamically adjust the mapping to speech sounds

in line with structured phonetic variation reflects individual

differences in receptive language ability, then we predict

that the degree to which the identification slope changes

across the blocks will be graded such that those with the

highest receptive language scores show the largest change

compared to those with the lower receptive language

scores. Moreover, if individual differences in distribu-
tional learning for speech reflect a specific relationship

to receptive language ability, then nonverbal intelligence

and reading fluency will not predict individual differences

in learning.

Method

Participants

The participants were 58 adults (15 men, 43 women)

between 18 and 30 years of age (M = 20.9 years, SD =
2.6 years) who were recruited from the University of Con-

necticut community. To recruit individuals with a wide

range of language abilities, separate recruitment materials

targeted individuals with no history of language disorder

and individuals specifically with a history of language dis-

order. All participants were monolingual speakers of

American English and passed a pure-tone hearing screen

administered at 25 dB for octave frequencies between 500

and 4000 Hz on the day of testing.
All participants completed a distributional learning

task (described below) in addition to assessments of receptive

language, nonverbal intelligence, and reading fluency. Thirty

of the participants completed the distributional learning

task as part of the Narrow-Wide order group reported in the

study of Theodore and Monto (2019); the other 28 partici-

pants did not participate in that study. For all participants,

receptive language was measured using the receptive lan-

guage battery developed by Fidler, Plante, and Vance (2011).
This battery consists of a 15-word spelling test and a modi-

fied version of the Token Test (Morice & McNicol, 1985).

The raw scores on these two tasks are used to derive a

weighted composite measure of receptive language accord-

ing to Equation 2.

Composite ¼ 6:5727þ −0:2184 ∗ Spelling Scoreð Þ
þ −0:1298 ∗Token Test Scoreð Þ (2)

The weighted composite measure is a continuous

score that varies between −2.4145 (ceiling performance on

the spelling and modified token tests) and 6.5727 (floor

performance on the spelling and modified token tests). Note

that lower scores on the continuous composite measure are

associated with stronger receptive language ability and

higher scores on the continuous composite measure are

associated with weaker receptive language ability. A dis-
criminant analysis of the continuous composite measure

(i.e., positive composite scores indicate DLD; negative

composite scores indicate typical performance) shows 80%

sensitivity and 87% specificity for the identification of

childhood DLD. We selected this measure given its growing
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use in the research domain for identifying DLD in adulthood

(e.g., Earle, Landi, & Myers, 2018; Hall et al., 2017).

Nonverbal intelligence was assessed using the standard score

obtained from administration of the Test of Nonverbal

Intelligence–Fourth Edition (TONI; Brown, Sherbenou, &

Johnsen, 2010). Reading fluency was assessed using the

Test of Word Reading Efficiency–Second Edition (TOWRE;
Torgesen, Wagner, & Rashotte, 2012) in terms of the

TOWRE Index Score, a standard score derived from perfor-

mance on the Sight Word Efficiency and Phonological

Decoding subtests of the TOWRE, which assess reading

fluency for real words and nonwords, respectively.2 For

both the TONI and the TOWRE, standard scores reflect

a population mean of 100 (SD = 15).

The receptive language, nonverbal intelligence, and

reading fluency scores of the current sample are shown in
Figure 2, along with the relationships among the three

measures. The color mapping in Figure 2 reflects receptive

language scores in ascending order. Recall that, for the

receptive language composite, positive scores are associated

with weaker receptive language abilities; thus, the color map

ranges from the strongest receptive language score (red) to

the weakest receptive language score (blue). The sample

shows wide individual variability for all three measures. Eight

individuals met criterion for DLD (i.e., a positive receptive
language composite score). All individuals scored at or above

1 SD of the population mean (≥ 85) on the TONI, and all

but two individuals scored at or above 1 SD of the popula-

tion mean (≥ 85) on the TOWRE.

Moderate relationships were observed between receptive

language and nonverbal intelligence (r = −.32, p = .014)

and between receptive language and reading fluency (r = −.35,

p = .006). Though the direction of the correlation is negative,

these relationships represent positive associations between
receptive language and both nonverbal intelligence and

reading fluency given that lower scores on the composite

measure are associated with stronger receptive language.

No relationship was observed between nonverbal intelligence

and reading fluency (r = −.03, p = .824).

Stimuli

The stimuli consisted of auditory tokens of goal, coal,

gain, and cane that varied in word-initial VOT. The stimuli

(also used in the study of Theodore & Monto, 2019) were

drawn from two VOT continua, a goal–coal continuum and

a gain–cane continuum. The continua were created using a

naturally produced token as the voiced-initial end point fol-

lowing the procedure outlined in the study of Allen and

Miller (2004), to which the reader is referred for compre-

hensive details on stimulus creation. In brief, productions

of gain and goal with equivalent word durations (568 and

569 ms, respectively) were obtained from a native female

speaker of American English to serve as the voiced end
points. For each voiced end point, the linear predictive

coding-based speech synthesizer in the ASL software pack-

age (Kay Elemetrics) was used to successively increase

word-initial VOT in 4- to 5-ms increments by systematically

changing parameters of the linear predictive coding analysis

and synthesizing new tokens using the modified parameters.

This procedure resulted in VOTs that perceptually ranged

from /g/ to /k/ across each continuum. Representative spectro-

grams can be viewed in Figure 3.
Twelve tokens were selected from each continuum

for further use consisting of VOTs that ranged from 11 to

119 ms in approximately 10-ms increments. The selected

tokens were arranged into two sets, one for the narrow

block and one for the wide block, to form input distributions

that were more consistent to less consistent, respectively.

As shown in Table 1, the two sets differed with respect to

the frequency in which each VOT was presented. The

mean VOT for the /g/ and /k/ distributions (40 and 92 ms,
respectively) was identical between the narrow and wide

stimulus sets. The critical difference between the two

stimulus sets was the standard deviation of the /g/ and /k/

distributions, which was 8 ms in the narrow set and 13 ms

in the wide set. Figure 1B shows the probability density

functions for the /g/ and /k/ distributions in each stimulus

set.

Procedure

All testing took place in a sound-attenuated booth.

Participants were seated at a table that contained a com-

puter monitor and a response box. Auditory stimuli were

presented via headphones (Sony MDR-7506) at a comfort-

able listening level that was held constant across partici-

pants. Stimulus presentation and response collection were

controlled using SuperLab 4.5 running on a Mac OS X

system.

Participants completed two blocks of phonetic catego-
rization (472 trials in total), one for the narrow stimulus

set and one for the wide stimulus set. All participants com-

pleted the narrow block followed by the wide block. In

each block, the 236 tokens that formed the /g/ and /k/ dis-

tributions were presented in randomized order. On each

trial, participants were asked to identify each token as either

goal, coal, gain, or cane by pressing an appropriately labeled

button on the response box. Participants were instructed to

make their decision as quickly as possible without sacrificing
accuracy and to guess if they were unsure. The interstimulus

interval was 2000 ms, timed from the participant’s response.

Prior to the start of the first block, participants completed

12 practice trials consisting of three repetitions of gain,

cane, goal, and coal with VOTs matching the modes of the

2Six of the 58 participants were beyond the oldest age (24;11 [years;

months]) provided for the standard score conversion of the TOWRE

performance. As a consequence, the raw score to standard score

conversion for these participants was made using the oldest age

provided for the conversion, which is sensible given that the oldest

age bracket represents a maturational end state for reading fluency.

However, all analyses conducted with the TOWRE standard score

were also conducted using the TOWRE raw score, with parallel

results observed in all cases. These analyses can be viewed at the

OSF repository associated with this article: https://osf.io/tsnx4/.

Theodore et al.: Individual Differences in Distributional Learning 5



/g/ and /k/ distributions. Participants were given a brief

break between the two blocks, and the entire procedure

lasted approximately 30 min.

Results

Two sets of analyses were performed. The primary

analyses were conducted to test the hypothesis that distribu-

tional learning for speech is linked to receptive language

ability. The second set of analyses was performed for the
28 participants who did not also participate in the Narrow-

Wide condition of Theodore and Monto (2019) in order

to assess replication of the previous finding. The raw data

and analysis scripts can be retrieved at https://osf.io/tsnx4/;

analysis scripts operate on the raw data to reproduce

all results presented here, in addition to generating all

figures.

Primary Analyses

Responses on the distributional learning task were

coded as either voiced (i.e., responses of gain and goal) or

voiceless (i.e., responses of cane and coal). Trials for which

no response was provided were excluded from further analysis

(185 of 27,376 trials, representing < 1% of the total trials).
To visualize performance, mean proportion of voiceless

responses was first calculated for each participant for each

VOT in each block and was then averaged across the

58 participants. As shown in Figure 4A, the participants

in the aggregate show the expected categorical relationship

Figure 2. Scatter plots illustrating the relationship between receptive language and nonverbal IQ (A), receptive language and reading fluency
(B), and nonverbal IQ and reading fluency (C). In each panel, the shaded region depicts the 95% confidence level interval for a linear regression
and marginal histograms show the distribution of scores for each variable. The color map is constant across panels to reflect receptive language
composite score. TONI = Test of Nonverbal Intelligence; TOWRE = Test of Word Reading Efficiency.

Figure 3. Spectrograms of the tokens corresponding to the mean voice onset times of the /g/ (gain, goal) and /k/ (cane, coal) input
distributions.
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between VOT and voiceless responses in each block. Further-

more, the slope of the function relating VOT to voiceless

responses appears to be steeper in the narrow compared to

the wide block, indicative of distributional learning across
the two input blocks.

To examine this pattern statistically and the degree

to which it may be influenced by receptive language, non-

verbal intelligence, and reading fluency, trial-level responses

(0 = voiced, 1 = voiceless) were fit to a generalized linear

mixed-effects model (GLMM) using the glmer() function

with the binomial response family as implemented in the

lme4 package in R (Bates et al., 2014). All test statistics
reflect those reported by the lme4 package. The fixed effects
included VOT, block, receptive language composite, TONI,
and TOWRE. The fixed effects also included the interaction
between VOT and block and all interactions between VOT,
block, and each of the three individual difference measures.
Here and throughout, VOT, receptive language composite,
TONI, and TOWRE were entered into the model as contin-
uous variables, each scaled and centered around the mean;
block was contrast coded (narrow = −1, wide = 1). The
random effects structure consisted of random intercepts by
participant and random slopes by participant for both VOT
and block.

Table 1. Number of tokens for each voice onset time (ms) in the
narrow and wide experimental blocks.

Block 11 21 32 40 51 60 69 83 92 100 110 119
Narrow 0 4 28 54 28 4 4 28 54 28 4 0
Wide 4 12 28 30 28 16 16 28 30 28 12 4

Figure 4. Panel A shows the mean proportion of voiceless responses as a function of voice onset time (VOT); error bars indicate standard
error of the mean. Panel B shows the effect of VOT on voiceless responses in each block for three levels of receptive language (corresponding
to the median of each receptive language composite tercile) as derived from the fixed effects of the model reported in Table 4. To promote
visualization, the abscissa spans the intermediate VOTs of the input distributions. Panel C shows the simple slope (beta estimate) for VOT in
each block for each composite tercile; error bars indicate the 95% confidence interval for the beta estimate. Higher beta estimates indicate
steeper identification slopes. Panel D shows the relationship between the distributional learning effect and receptive language composite score
across the 58 participants; the shaded region depicts the 95% confidence level interval for a linear regression. We note that the regression
line is provided for visualization purposes only. As described in the main text, negative learning effect values are associated with increased
learning (i.e., a larger change in slope between the narrow and wide blocks), and lower composite scores are indicative of stronger receptive
language.
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The results of the model are shown in Table 2. In the

model, the fixed effect of VOT reflects the slope of the

identification function. There was a main effect of VOT,

indicating that voiceless responses increased as did VOT

(β^ = 4.645, SE = 0.178, z = 26.157, p < .001). There was

also a main effect of block (β^ = −0.093, SE = 0.045, z =
−2.050, p = .040), indicating more /k/ responses in the narrow

compared to the wide block. As expected, there was an inter-

action between VOT and block (β^ = −0.299, SE = 0.052, z =
−5.721, p < .001), with the direction of the beta estimate
for the interaction indicating that the rate at which voiceless
responses increased given an increase in VOT (i.e., the identi-
fication slope) was higher for the narrow compared to the
wide block. This interaction confirms that participants in

the aggregate showed a steeper identification function for

the narrow compared to the wide input distributions, as pre-

dicted by the ideal observer computational framework.

Critically, the model also showed a significant interaction

between VOT, block, and receptive language composite

score (β^ = 0.179, SE = 0.054, z = 3.327, p = .001). No
other main effect or interaction was reliable (p ≥ .055 in
all cases).

The results of the omnibus model suggest that distri-
butional learning is influenced by receptive language, but not
reading fluency and nonverbal intelligence. To examine this
possibility more directly, four successively complex models
were compared using likelihood ratio tests. Model 1 included
the fixed effects of VOT, block, and their interaction.
Model 2 added the fixed effect of receptive language com-
posite, including all interactions with VOT and block. To the
structure of Model 2, Model 3 added the fixed effect of
reading fluency, including all interactions with VOT and
block. Model 4 is the omnibus model (see Table 2) and thus
included all three individual difference measures as fixed
effects, including all interactions with VOT and block for
each measure. The random effects structure was identical
across all four models, consisting of random intercepts by

participant and random slopes for VOT and block by
participant.

The results of the model comparisons are shown in

Table 3. Compared to the initial model (Model 1), there
was a significant change to goodness of fit when receptive

language was added as a fixed effect, χ2(4) = 17.92, p = .001.

However, there was no further change to the goodness of

fit by the successive inclusion of reading fluency, χ2(4) = 3.41,

p = .491, and nonverbal intelligence scores, χ2(4) = 0.46,

p = .977. Though there is a statistically significant change

in goodness of fit when receptive language is added to the

initial model, the inclusion of composite score leads to only

a slight increase in the R2 for the fixed effects (R2 = .802
and .794, respectively), indicative of a small effect size.

Table 4 shows the results of the best-fitting model,

which included the fixed effects of VOT, block, and receptive

language composite. As observed for the omnibus model
(see Table 2), this model confirmed the presence of the
three-way interaction between VOT, block, and composite

score (β^ = 0.159, SE = 0.046, z = 3.468, p = .001), indicat-
ing that the degree to which the slope of the identification
function changed across blocks was influenced by receptive
language composite score. The model is visualized in Fig-
ure 4B in terms of the fixed effects of VOT, block, and
composite score, with the latter shown by the composite
scores corresponding to the median of each composite
tercile. Inspection of this plot shows that the degree to which
the identification slope changes between the narrow and
wide blocks is largest for those with lower composite scores
(reflecting stronger receptive language) and smallest for those
with higher composite scores (reflecting weaker receptive
language).

To further illustrate this interaction, a simple slope
analysis was performed using the interactions package in
R (Long, 2019) in order to extract the VOT beta estimate
(i.e., the identification slope) in each block for three levels
of the receptive language composite score, representing the

Table 2. Results of the generalized linear mixed-effects model for voiceless responses that included voice onset
time (VOT), block, receptive language composite score, Test of Nonverbal Intelligence (TONI), and Test of Word
Reading Efficiency (TOWRE) as fixed effects.

Fixed effect β̂ SE 95% CI z p

(Intercept) −0.427 0.099 [−0.62, −0.23] −4.324 < .001
VOT 4.645 0.178 [4.30, 4.99] 26.157 < .001
Block −0.093 0.045 [−0.18, −0.00] −2.050 .040
Composite −0.214 0.112 [−0.43, 0.00] −1.919 .055
TOWRE −0.117 0.107 [−0.33, 0.09] −1.095 .274
TONI 0.025 0.105 [−0.18, 0.23] 0.239 .811
VOT × Block −0.299 0.052 [−0.40, −0.20] −5.721 < .001
VOT × Composite −0.377 0.198 [−0.77, 0.01] −1.904 .057
Block × Composite 0.017 0.049 [−0.08, 0.11] 0.346 .729
VOT × TOWRE 0.068 0.191 [−0.44, 0.31] 0.355 .722
Block × TOWRE −0.039 0.048 [−0.13, 0.06] −0.813 .416
VOT × TONI 0.116 0.188 [−0.25, 0.48] 0.616 .538
Block × TONI −0.006 0.047 [−0.10, 0.09] −0.128 .898
VOT × Block × Composite 0.179 0.054 [0.07, 0.28] 3.327 .001
VOT × Block × TOWRE 0.066 0.054 [−0.04, 0.17] 1.206 .228
VOT × Block × TONI −0.016 0.050 [−0.11, 0.08] −0.318 .751
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median composite score for the lower, middle, and upper
terciles; this is shown in Figure 4C. The three-way inter-
action can be observed by comparing the degree to which
the identification slope (i.e., the VOT beta estimate) differs
between the narrow and wide blocks as a function of recep-
tive language score; lower composite scores (indicative of
stronger receptive language) show the largest distributional
learning effect, and higher language scores (indicative of
weaker receptive language) show a minimal distributional
learning effect.

In addition to showing that the distributional learning
effect was larger for those with stronger compared to weaker

receptive language ability, inspection of Figure 4C suggests

that this interaction was driven by a stronger association

between receptive language and identification slope in the

narrow block compared to the wide block. To test this

possibility, additional GLMMs were constructed in order

to examine the effect of receptive language composite score

in each block. In both models, the fixed and random effects

structure followed that outlined previously except for re-
moving the fixed effect of block. For the narrow block,

there was a main effect of VOT (β^ = 4.728, SE = 0.180,
z = 26.261, p < .001), a main effect of receptive language

composite (β^ = −0.235, SE = 0.105, z = −2.233, p = .026),

and an interaction between these two factors (β^ = −0.534,
SE = 0.167, z = −3.191, p = .001), indicating steeper identi-
fication slopes for stronger compared to weaker composite
scores. For the wide block, there was a main effect of VOT

(β^ = 4.422, SE = 0.174, z = 25.471, p < .001), but no effect

of composite (β^ = −0.135, SE = 0.103, z = −1.311, p = .190)

nor an interaction between VOT and composite score (β^ =

−0.218, SE = 0.166, z = −1.314, p = .189). These results

indicate that the locus of the interaction between VOT,

block, and receptive language composite in the full model

reflects a more limited ability among those with weaker

receptive language scores to capitalize on the consistent input

distributions.

A final analysis was performed to visualize the distri-
butional learning effect at the level of individual participants.

To quantify the learning effect for each participant, we

constructed a GLMM on trial-level responses with VOT,

block, and their interaction as fixed effects; random intercepts

by participant; and random slopes by participant for the

interaction between VOT and block. With this structure,

the coefficients of the random slopes for the VOT × Block

interaction can serve as a measure of the distributional

learning effect for each participant. In terms of interpreting

the coefficients, negative values indicate that the VOT
slope decreased from the narrow to wide block, and values

of 0 indicate no change in the VOT slope between the

two blocks. Figure 4D shows the distributional learning

effect and receptive language composite score for each

participant.

Replication Analyses

Recall that 30 of the 58 participants completed the

distributional learning task as part of the Narrow-Wide

Table 3. Results of the likelihood ratio tests for model comparisons.

Model Fixed effects df

R2

logLik Deviance

Likelihood ratio test

Fixed Total c
2 df p

1 VOT × Block 10 .794 .878 −4655.6 9311.3 — — —

2 + VOT × Block × Composite 14 .802 .878 −4646.7 9293.4 17.92 4 .001
3 + VOT × Block × TOWRE 18 .803 .878 −4645.0 9289.9 3.41 4 .491
4 + VOT × Block × TONI 22 .803 .879 −4644.7 9289.5 0.46 4 .977

Note. As described in the main text, the initial model included voice onset time (VOT), block, and their interaction as fixed effects. Comparison
models successively added the fixed effects of receptive language (Composite), reading fluency (Test of Word Reading Efficiency [TOWRE]
Index), and nonverbal intelligence (Test of Nonverbal Intelligence [TONI]), including all interactions with VOT and block for each individual
difference measure. As described in the main text, the random effects structure was identical across models. The full results for the omnibus
model (Model 4) are shown in Table 2. The full results of Model 2 are shown in Table 4.

Table 4. Results of the generalized linear mixed-effects model for voiceless responses that included voice onset time (VOT), block, and
receptive language composite score as fixed effects.

Fixed effect β̂ SE 95% CI z p

(Intercept) −0.428 0.100 [−0.62, −0.23] −4.286 < .001
VOT 4.639 0.177 [4.29, 4.99] 26.187 < .001
Block −0.091 0.045 [−0.18, 0.00] −2.015 .044
Composite −0.180 0.099 [−0.37, 0.01] −1.830 .067
VOT × Block −0.296 0.052 [−0.40, −0.19] −5.675 < .001
VOT × Composite −0.385 0.172 [−0.72, −0.05] −2.241 .025
Block × Composite 0.031 0.042 [−0.05, 0.11] 0.725 .468
VOT × Block × Composite 0.159 0.046 [0.07, 0.25] 3.468 .001

Theodore et al.: Individual Differences in Distributional Learning 9



condition reported in the study of Theodore and Monto

(2019), in addition to completing the assessment battery for

inclusion in the current study. Because of this, the distribu-

tional learning effects presented above cannot be considered

as a replication of the previous study given that approximately

half of the participants were included in both studies. In

order to assess replication of the distributional learning
effect reported in the study of Theodore and Monto, we

conducted an analysis with only the 28 participants unique

to the current sample. For this analysis, trial-level voice-

less responses were submitted to a GLMM with the fixed

effects of block (narrow = −1, wide = 1) and VOT (scaled/

centered around the mean). The model also included ran-

dom intercepts by participant and random slopes by partici-

pant for VOT and block. The results of this model showed

a main effect of VOT (β^ = 4.279, SE = 0.213, z = 20.064,

p < .001), no main effect of block (β^ = −0.075, SE = 0.060,
z = −1.257, p = .209), and a significant interaction between

VOT and block (β^ = −0.293, SE = 0.065, z = −4.477, p <
.001). The significant interaction indicates that the slope of
the identification function relating VOT to voiceless responses
is steeper in the narrow compared to the wide block, repli-
cating the previous finding. A final model compared the
magnitude of the VOT × Block interaction between partici-
pants unique to the current study and those who partici-
pated in both studies by adding sample as a fixed effect
(unique = −1, both = 1) to the model described above. The
interaction between VOT, block, and sample was not reli-

able (β^ = 0.050, SE = 0.047, z = 1.063, p = .288).

Discussion

Listeners must accommodate wide variability in the

acoustic speech signal in order to map the speech signal to
the speech sound representations that support language

comprehension. One mechanism that supports this process

is distributional learning for speech, wherein adaptation

can be viewed as the process of dynamically modifying the

mapping to speech sounds to optimize phonetic categoriza-

tion for specific input distributions (Clayards et al., 2008;

Kleinschmidt & Jaeger, 2015; Theodore & Monto, 2019). As

predicted by ideal observer frameworks, listeners’ phonetic

identification responses reflect variability of the speech input,
with perception more categorical for consistent compared

to inconsistent input distributions (Clayards et al., 2008;

Nixon et al., 2016; Theodore & Monto, 2019). Recent

research suggests that the ability to dynamically modify the

acoustic–phonetic boundary between speech sound categories

as a consequence of exposure to structured phonetic vari-

ability may reflect individual differences in receptive language

ability (Colby et al., 2018). The goal of the current work was

to provide an additional test of this hypothesis. Specifically,
we examined whether the ability to modify the mapping to

speech sounds as a function of changes to the consistency of

an acoustic–phonetic cue would be linked to receptive lan-

guage ability and, if so, whether it would also be linked to

nonverbal intelligence and reading fluency. We predicted

that young adults who have weaker receptive language

abilities would demonstrate a reduced ability to modify

their mapping in response to variable acoustic information,

manifesting in no difference in the slopes of their identi-

fication functions for more versus less consistent input

distributions.

Robust distributional learning was observed in our
sample as a whole, with steeper identification slopes observed

for narrow compared to wide input distributions, providing

further evidence that distributional learning reflects rapid,

dynamic adaptation to cumulative input statistics. Moreover,

individual variation in receptive language ability influenced

the magnitude of distributional learning; individuals with

stronger receptive language abilities showed the largest

distributional learning effect, with weaker learning effects

observed among those with weaker receptive language
ability. The attenuated learning across test blocks for those

with weaker receptive language was driven by the failure to

capitalize on the consistent input distributions presented

in the narrow test block. Analysis of performance within

each test block showed that stronger receptive language was

associated with steeper identification slopes in the narrow

block, but no such relationship was observed in the wide

block. Thus, it appears that individuals with weaker recep-

tive language failed to take advantage of the consistency
provided in the narrow block, consistent with previous find-

ings demonstrating that individuals with deficits in language

processing abilities show poor adaptability to structured

variation when engaging in statistical learning of nonadjacent

dependencies (Misyak et al., 2010).

The results of the present investigation converge with

those of Colby et al. (2018), who found that perceptual

learning through both bottom-up and top-down learning

mechanisms was influenced by individual differences in
receptive language ability, as measured by receptive vocabu-

lary. The current work extends these findings in four ways.

First, receptive language ability in the current sample was

measured using the receptive language composite measure

of Fidler et al. (2011) instead of using the Peabody Picture

Vocabulary Test–III (Dunn & Dunn, 1997). Reliable relation-

ships between perceptual learning and receptive language

were observed with both measures of receptive language,

demonstrating generalization across the specific measures
used to assess receptive language as a construct. Second,

the current work examined distributional learning for a

temporal acoustic–phonetic cue instead of a spectral cue,

thus demonstrating that the relationship between receptive

language and distributional learning is not limited to a

specific acoustic–phonetic property. Third, the current work

assessed learning for input distributions that differed in the

consistency in which the acoustic–phonetic property was

used to cue the two phonetic categories. According to the
ideal observer model used here, optimal adaptation to

the input distributions required a change in the slope of the

identification function over time, as opposed to a shift in

the perceptual boundary between the two phonetic categories,

as examined previously. Thus, the current results demon-

strate that the relationship between receptive language and
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distributional learning generalizes to other statistical cues,

including those indicative of variability in speech input.

Fourth, Colby et al. (2018) found no evidence to

suggest that distributional learning was linked to individual

differences in attention-switching control, working memory,

or speech perception in noise, in contrast to the reliable

relationship that was observed between distributional
learning and receptive vocabulary. This finding suggests

that the relationship between distributional learning and

receptive language ability may not reflect general cognitive

ability but rather is more indicative of relationships within

the language architecture. In the current study, we provided

a further test of this hypothesis by examining the relation-

ship between distributional learning and two measures of

linguistic ability, receptive language and reading fluency, in

addition to nonverbal intelligence. As in Colby et al., we
observed no relationship between distributional learning

and general cognitive ability (i.e., nonverbal intelligence).

Moreover, we observed no relationship between distributional

learning and reading fluency. Given the robust relationship

that was observed between distributional learning and recep-

tive language, the results of the current study provide

further evidence of a specific relationship between distribu-

tional learning and receptive language ability.

We conclude by considering implications of the current
investigation for individuals with language impairment,

noting that only 14% of the current sample met criterion for

DLD and thus the current data are not sufficient to describe

patterns between those who meet criterion for DLD and

those who do not. Past research has shown that individuals

with DLD demonstrate impairments in statistical learning

(Lum et al., 2014) and categorical perception (e.g., Robertson,

Joanisse, Desroches, & Ng, 2009), the latter of which may

reflect specific characteristics of the stimuli and task (Coady,
Evans, Mainela-Arnold, & Kluender, 2007; Coady, Kluender,

& Evans, 2005). However, we know little about whether

individuals with DLD are able to modify their representation

of phonetic category structure in response to variability in

speech input. Poor adaptability could lead to impairments in

efficient processing and comprehension of speech sounds

and language (Misyak et al., 2010; Wanrooij, Escudero, &

Raijmakers, 2013). Though DLD is characterized by marked

deficits in acquiring aspects of language including the sound
structure, grammatical morphology, and syntactic rules that

govern word order (Bird & Bishop, 1992; Leonard, 2014;

van der Lely, 1996), the specific etiology of DLD is unknown.

The locus of language impairment has traditionally been

described as impairments in the representation of grammar

(e.g., van der Lely & Stollwerck, 1996). However, some

findings suggest that the grammatical language deficits

observed in this population may stem from earlier deficits

in the processing stream, including auditory processing
(Bishop & McArthur, 2004; McArthur & Bishop, 2004)

and speech perception abilities (Joanisse & Seidenberg,

2003), and may reflect deficits that are not language specific

(Montgomery, 1995; Spaulding, Plante, & Vance, 2008). In

particular, one hypothesis suggests that an inability to attend

to fine-grained differences in speech sounds may lead to

impairment in the acquisition of grammatical morphemes

that are less salient (e.g., the word-final /t/ signaling the

past tense morpheme in jumped; Joanisse & Seidenberg, 2003).

On this view, deficits in speech perception can lead to broad

deficits in language impairment, including impairments in

word learning and grammatical morphology (Joanisse &

Seidenberg, 1998, 2003; Ziegler, Pech-Georgel, George,
Alario, & Lorenzi, 2005). Children with DLD show deficits

in forming categories for nonspeech sounds, which is con-

sistent with the possibility that this population has difficul-

ties creating and organizing auditory information into

structured perceptual categories (Coady et al., 2007; Nit-

trouer, Shune, & Lowenstein, 2011).

Indeed, processing-based accounts of DLD have

been motivated in light of these findings. Two etiological

accounts of language impairment that do account for speech
perception ability are the statistical learning deficit hypothe-

sis (Hsu & Bishop, 2014) and the procedural deficit

hypothesis (Ullman & Pierpont, 2005). Hsu and Bishop (2014)

propose that language impairment manifests as a deficit in

statistical learning of grammatical forms and not a deficit in

learning grammatical rules. Similarly, Ullman and Pierpont

(2005) implicate deficits in the procedural memory system

as the etiology of DLD. The procedural memory system

establishes and facilitates activation of new sensorimotor plans,
such as coordination and motoric functioning, manipula-

tion of visual–spatial imagery, and performance on tasks of

working memory. Ullman and Pierpont suggest that deficits

in the procedural memory system can explain the linguistic

and—critically—nonlinguistic deficits in individuals with

DLD. Our results are consistent with both of these hypothe-

ses, as distributional learning is a task that may be mediated

by procedural memory and statistical learning abilities.

However, future research that examines distributional learning
of low-level acoustic–phonetic cues with larger samples sizes

of individuals with DLD is needed to test this possibility.

In conclusion, listeners show an exquisite ability to

modify the mapping to speech sounds to accommodate

statistical cues in speech input throughout the life span. The

results of the current investigation point toward a link

between adaptation to distributional variation in acoustic–

phonetic input and receptive language ability but found no

evidence of a similar association between distributional
learning and either nonverbal intelligence or reading fluency.

These results contribute to a theoretical framework that

can account for individual variation in spoken language

processing, which will help to inform the role of low-level

speech perception abilities as an etiological locus of lan-

guage impairment.
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