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This paper presents a theoretical and experimental study of the long-standing fluid
mechanics problem involving the temporal resolution of a large localised initial
disturbance into a sequence of solitary waves. This problem is of fundamental
importance in a range of applications, including tsunami and internal ocean wave
modelling. This study is performed in the context of the viscous fluid conduit system
– the driven, cylindrical, free interface between two miscible Stokes fluids with high
viscosity contrast. Owing to buoyancy-induced nonlinear self-steepening balanced by
stress-induced interfacial dispersion, the disturbance evolves into a slowly modulated
wavetrain and further into a sequence of solitary waves. An extension of Whitham
modulation theory, termed the solitary wave resolution method, is used to resolve the
fission of an initial disturbance into solitary waves. The developed theory predicts
the relationship between the initial disturbance’s profile, the number of emergent
solitary waves and their amplitude distribution, quantifying an extension of the
well-known soliton resolution conjecture from integrable systems to non-integrable
systems that often provide a more accurate modelling of physical systems. The
theoretical predictions for the fluid conduit system are confirmed both numerically
and experimentally. The number of observed solitary waves is consistently within
one to two waves of the prediction, and the amplitude distribution shows remarkable
agreement. Universal properties of solitary wave fission in other fluid dynamics
problems are identified.

Key words: solitary waves

1. Introduction

A fundamental problem in fluid dynamics is the long-time resolution of a large
localised disturbance. In inviscid fluids, a prominent feature of this resolution is the

† Email address for correspondence: hoefer@colorado.edu
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883 A10-2 M. D. Maiden and others

emergence of a solitary wavetrain. This process is generally referred to as soliton
fission and has been observed in a variety of fluid contexts. For example, while intense
earthquakes can lead to the vertical displacement of the ocean surface by several
metres, its horizontal extent can reach 10–100 km (Geist et al. 2007), which, under
appropriate shallowness conditions, can evolve into a large number of surface solitary
waves (Matsuyama et al. 2007; Arcas & Segur 2012). Another important example is
the generation of large-amplitude internal ocean solitary waves with two identified
soliton fission mechanisms: (1) an initial broad displacement of internal temperature
and salinity (Osborne & Burch 1980), and (2) the propagation of a large internal
solitary wave onto a shelf (Farmer & Armi 1999; Vlasenko et al. 2014). In both
scenarios, the result is the same – the generation of a large number of rank-ordered
solitary waves. In fact, the well-known soliton fission law by Djordjevic & Redekopp
(1978) for scenario 2 was obtained by modelling it with an initial broad disturbance to
the constant-coefficient Korteweg–de Vries (KdV) equation, a weakly nonlinear long-
wave model. More generally, the disintegration of a broad disturbance into solitary
waves is the inevitable result of boundary or topography interaction with an undular
bore or dispersive shock wave (DSW) that results from a sharp gradient due to a
variety of reasons (El & Hoefer 2016).

Despite the prevalence of soliton fission in fluid dynamics, its theoretical description
has primarily been limited to completely integrable partial differential equations
(PDEs) such as the KdV equation. First attempts to understand this problem began
with the celebrated Zabusky–Kruskal numerical experiment of an initial cosine
profile for KdV (Zabusky & Kruskal 1965). Asymptotics of KdV conservation laws
(Karpman 1967; Johnson 1973) and the inverse scattering transform (Segur 1973;
Deng, Biondini & Trillo 2016) yield a prediction for the number of solitons based
on eigenvalue counting and an estimate for the amplitudes of fissioned solitons from
an initial profile.

Because of its ubiquity, we seek a deeper understanding of soliton fission that
results from a broad initial condition, hereafter referred to as the box problem due to
the initial profile’s wide shape. A new method based on Whitham averaging theory
(Whitham 1974) that does not require integrability was first proposed and applied
to the Serre/Su–Gardner/Green–Naghdi equations for fully nonlinear shallow-water
waves in El, Grimshaw & Smyth (2008) and, partially, to the defocusing nonlinear
Schrödinger equation with saturable nonlinearity in El et al. (2007). The method
draws upon principles first developed to describe DSWs that result from step initial
data (El 2005). The long-time evolution into a solitary wavetrain is one component
of the soliton resolution conjecture, which proposes that localised initial conditions
to nonlinear dispersive wave equations generically evolve into a soliton wavetrain
and small-amplitude dispersive radiation, originally formulated within the context
of integrable PDEs such as the KdV equation (Segur 1973; Schuur 1986; Deift,
Venakides & Zhou 1994). Because the method presented here is not reliant on
integrability of the underlying PDE and yields concrete predictions for the number
of solitary waves and their amplitude distribution that result from broad initial
disturbances, we refer to this approach as the solitary wave resolution method. An
important feature of the solitary wave resolution method is that it bypasses an analysis
of the full Whitham modulation equations – which are generally difficult to analyse
– in favour of the exact zero-amplitude and zero-wavenumber reductions of the full
Whitham equations that admit a general structure and form that is amenable to further
analysis.

We note that the solitary wave resolution method does not resolve the second
component of the soliton resolution conjecture – the small-amplitude dispersive
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Solitary wave fission in a viscous fluid conduit 883 A10-3

radiation. For sufficiently broad boxes, this component of the conjecture is negligible,
as is well known for the KdV equation (see e.g. Karpman 1974; Whitham 1974). We
quantify the contributions of the radiation and solitary wave components numerically
for a specific initial disturbance in the conduit equation.

Our basic hypothesis in this work is that a large initial disturbance in certain
non-integrable equations (e.g. the conduit equation described below) results most
prominently in the fission of solitary waves, which enables us to apply Whitham
averaging theory (Whitham 1974). This hypothesis is motivated by rigorous
semiclassical analysis of the KdV equation (Lax & Levermore 1979) and is confirmed
by numerical simulations for the conduit equation. Moreover, this hypothesis has been
successfully applied to the non-integrable Serre equations (El et al. 2008).

The solitary wave fission problem has been studied experimentally, primarily in
water wave tanks modelled by the KdV equation (Hammack & Segur 1974, 1978).
More recent water wave experiments physically recreated the Zabusky–Kruskal
numerical experiment, observing recurrence as well as soliton fission (Trillo et al.
2016). These experiments exhibit excellent agreement with Wentzel–Kramers–Brillouin
(WKB) theory applied to the inverse scattering transform (Deng et al. 2016). The
WKB approach has also been applied to the defocusing nonlinear Schrödinger
equation, yielding the number and amplitudes of emergent solitons (Deng et al.
2017). However, none of these quantitative methods are applicable to non-integrable
equations.

This paper presents solitary wave fission experiments and modulation theory for the
interfacial dynamics between two high-viscosity miscible fluids, one rising buoyantly
within another. Original experiments demonstrated that solitary waves preserve their
shape and form despite long-distance propagation and interaction with other solitary
waves (Olson & Christensen 1986; Scott, Stevenson & Whitehead 1986). In fact,
in both of these experimental papers, solitary waves were generated by the fission
of a large initial disturbance. We apply modulation theory for solitary wave fission
introduced in El et al. (2008) to the box problem for a PDE model of this fluid
context known as the conduit equation (Lowman & Hoefer 2013a)

at + (a2)z − (a2(a−1at)z)z = 0. (1.1)

In the derivation of the conduit equation, no restriction is placed on the magnitude
of the non-dimensional circular cross-sectional area a(z, t), where z and t are the
scaled height and time, respectively, assumed to be much larger than the conduit
diameter and a characteristic advective time scale. This equation is also applicable
to an asymptotic long-wave model of magma flows rising through the Earth’s mantle
(Barcilon & Richter 1986; Whitehead & Helfrich 1988; Helfrich & Whitehead 1990)
and to a comparatively simple laboratory experiment (Olson & Christensen 1986;
Scott et al. 1986; Whitehead & Helfrich 1988; Helfrich & Whitehead 1990; Lowman
& Hoefer 2013a; Maiden et al. 2016, 2018; Anderson, Maiden & Hoefer 2019).
Equation (1.1) fails the so-called Painlevé test for integrability (Harris & Clarkson
2006) and has at least two conservation laws (Harris 1996), and therefore is an
excellent candidate to test the more broadly applicable solitary wave resolution
method for the initial value problem consisting of (1.1) and

a(z, 0)= 1+ a0(z), lim
|z|→∞

a0(z)= 0, (1.2a,b)

where a0(z) is a broad localised disturbance with exactly one critical point at the
maximum

am =max
z∈R

a0(z). (1.3)
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FIGURE 1. An example box initial condition (inset) and its long-time numerical evolution
according to the conduit equation (1.1). The number in the inset denotes the predicted
number of solitary waves from that initial condition based on the solitary wave resolution
method, and the black circles with vertical bars denote the ranges from a quantiled
distribution of the predicted solitary wave amplitudes, both derived later in this paper.

Note that a = am + 1 at the maximum, i.e. am measures the amplitude of the
disturbance exceeding the unit background area ratio a = 1. We will quantify the
profile’s broadness more precisely later on, but for a0(z) in the shape of a box, then
a sufficiently wide box will do. Formally, a0 ∈ C∞(R) as well, but the relaxation
of this assumption still aligns with the theoretical results. We shall assume that the
support of a0(z) is [−w,0], where w>0 is the box width. The solitary wave resolution
method utilises the characteristics of the Whitham modulation equations to estimate
the number of solitary waves and the solitary wave amplitude distribution resulting
from a large-scale initial condition. An example initial condition and its numerically
evolved state according to the conduit equation (1.1) are shown in figure 1. The
theoretically predicted solitary wave number (12, derived in § 4) is correct and the
predicted amplitudes fall well within the ranges determined from the quantisation of
the continuous amplitude distribution (derived in § 5).

The conduit equation (1.1) can be approximated by the KdV equation

uτ + uux + uxxx = 0 (1.4)

in the small-amplitude, long-wavelength regime with the scaling (Whitehead &
Helfrich 1986)

τ = δ3/2t, x= δ1/22−1/3(z− 2t), u= 22/3δ(a− 1), 0< δ� 1, (1.5a−c)

where δ is a characteristic disturbance amplitude deviation from unit background.
The formulae for the expected number of solitons N and the amplitude (A) density
function f (A) for the initial profile u(x, 0)= u0(x) to the KdV equation (1.4) are (El
et al. 2008)

N =
1

π
√

6

∫
∞

−∞

√
u0(x) dx,

f (A)=
1

4π
√

6

∫ x2

x1

dx
√

u0(x)−A/2
, 0 6A6 2um.

 (1.6)

Here, x1 and x2 are the intersections of the initial condition u0 with the value A/2. The
initial data are assumed to be on a zero background with maximum um =max u0(x).
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Solitary wave fission in a viscous fluid conduit 883 A10-5

For initial data consisting of a box of width w and height um, equation (1.6) becomes

for u0(x)=

{
um −w< x< 0,
0 else,

N =
w
√

um

π
√

6
,

F(A)=
1
N

∫ A

0
f (A′) dA′ = 1−

√
1−

A
2um

, 0 6A6 2um,

 (1.7)

where F(A) is the cumulative distribution function (c.d.f.) of the soliton amplitudes
normalised by the total number of solitons. The number of solitons agrees with that
obtained by inverse scattering transform-related approaches (Karpman 1967; Ablowitz,
Baldwin & Hoefer 2009) in its asymptotic regime of validity N ∼ w

√
um� 1. This

modulation theory approach to solitary wave fission can be applied to any dispersive
nonlinear wave equation that admits a Whitham modulation description (Whitham
1974; El & Hoefer 2016). We identify certain universal properties of solitary wave
fission, including the independence of the normalised c.d.f. on box width (e.g. F(A)
is independent of w). We also predict the linear dependence on box width w of the
solitary wave fission number N .

This paper continues with § 2 where we present viscous fluid conduit fission
experiments. Then § 3 includes relevant background information on the conduit
equation (1.1). In §§ 4 and 5, we develop the solitary wave resolution method to
estimate the number of solitary waves and their amplitude distribution. In light of the
developed modulation theory, we return to the experiments in § 6. We wrap up with
concluding remarks in § 7.

2. Observation of solitary wave fission

We motivate our analysis by first presenting viscous fluid conduit experiments of
solitary wave fission.

2.1. Experimental set-up
The experimental set-up is nearly identical to that used by Anderson et al. (2019) and
consists of a square acrylic column with dimensions 4 cm × 4 cm × 200 cm, filled
with glycerine, as shown in figure 2(a). The interior fluid (identified by the superscript
(i)) consists of a certain ratio of glycerine, water and black food colouring, which is
injected through a nozzle installed at the column’s base. The ratio is chosen so that
the interior fluid has both lower density, ρ(i) < ρ(e), and significantly lower viscosity,
µ(i)� µ(e), than the exterior fluid (denoted by the superscript (e)). Miscibility of the
two fluids implies that surface tension effects are negligible. The nominal parameter
values used in the experiments presented here are those in table 1.

A high-precision computer-controlled piston pump is used to inject the interior fluid
with a predetermined temporal flow profile. Buoyancy and steady injection at a fixed
volumetric flow rate (Q0 in table 1) leads to a vertically uniform fluid conduit, which
is referred to as the background conduit, and is verified to be well approximated by
the pipe (Poiseuille) flow relation (see e.g. the supplementary material in Maiden et al.
(2016))

2R0 =

(
27µ(i)Q0

πg(ρ(e) − ρ(i))

)1/4

, (2.1)
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Acrylic column
Glycerine

Wave
camera

Box
camera

Interior
fluid

Pump
Nozzle

Rulers

LED
backlight

t = 0 s

t = 45 s

t = 89 s

t = 133 s

t = 177 st = 177 s

t = 227 s

5 mm 10 cm

67891011121314

(a)

(b)

FIGURE 2. (a) Schematic of the experimental apparatus. (b) Box (not entirely shown)
with nominal width 25 cm and total height (conduit diameter) 3.2 mm at t= 0 develops
into a rank-ordered solitary wavetrain with 12–13 visible solitary waves at t = 177 s.
The lead solitary wave (diameter 4.6 mm) propagates on the background conduit with
diameter 2.0 mm. At a later time (t= 227 s) the smallest nine solitary waves – verified
by zoomed-in images from the wave camera – are labelled by their amplitude ranking.
The 90◦ clockwise-rotated images exhibit an 8 : 1 aspect ratio. Slight discolouration near
the image centre is due to an external scratch. Measured experimental parameters are:
µ(i) = 4.95 × 10−2 Pa s, µ(e) = 1.0 Pa s, ρ(i) = 1.205 g cm−3, ρ(e) = 1.262 g cm−3 and
Q0 = 0.25 cm3 min−1. The Poiseuille flow relations (2.1) and (2.2) yield 2R0 = 2.0 mm
and U0 = 1.35 mm s−1.

µ(i) 3.66× 10−2 Pa s
µ(e) 1.296 Pa s
ρ(i) 1.198 g cm−3

ρ(e) 1.260 g cm−3

ε 0.0283
Q0 0.50 cm3 min−1

2R0 2.1 mm
U0 2.3 mm s−1

TABLE 1. Densities ρ, viscosities µ, viscosity ratio ε, background flow rate Q0, associated
background conduit diameter 2R0 and mean flow rate U0 according to equations (2.1) and
(2.2), respectively, for the reported experiments (except figure 2b).

where 2R0 is the conduit diameter and g is the acceleration due to gravity. The mean
vertical advective velocity within the conduit according to pipe flow is

U0 =
gR2

0(ρ
(e)
− ρ(i))

8µ(i)
. (2.2)

Data acquisition is performed using high-resolution digital cameras equipped with
macro lenses, one to capture the initial box profile and one near the top of the
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Solitary wave fission in a viscous fluid conduit 883 A10-7

apparatus (the far field) to capture the solitary wavetrain. A ruler is positioned
beside the column within camera view for calibration purposes in order to quantify
the observed box width. All amplitudes (solitary wave and box) are reported
as cross-sectional areas that are normalised to the observed mean background
cross-sectional area. This facilitates future comparison with theoretical results for
the non-dimensional conduit equation (1.1).

2.2. Methods
We use the characteristic control method described in Anderson et al. (2019) to
generate a volumetric flow rate profile that results in a box-like structure in the lower
part of the column with a pre-specified width w and non-dimensional cross-sectional
area am + 1. Figure 2(a) displays a schematic of the experiment and figure 2(b)
depicts the experimental time development of a box-like profile. The lower ‘box
camera’ takes several images before, during and after the predicted box development
time. After the leading edge of the box forms, the pump rate is quickly reduced to
the background rate Q0, and the box evolves into oscillations that rise up the conduit.
Once the leading oscillation reaches the upper ‘wave camera’ imaging window, images
are taken at 0.2 Hz for several minutes, to ensure that all waves originating from
the box have had sufficient time to propagate through the viewing window. For the
experiment reported only in figure 2(b), an additional camera (not shown in figure 2a)
is employed to image a 1.25 m section of the column. The large aspect ratio of the
full columnar dynamics implies the relatively low image resolution of 43 pixel cm−1.
These dynamics will be directly compared with the evolution predicted by the conduit
equation in § 6.

The approximately white background and the opaque black conduit yield sufficient
contrast for edge detection by identifying the two midpoints between the maximum
and minimum of the spline interpolated horizontal image intensity. The edge data
are then processed with a low-pass filter to reduce pixellation noise and the effects
of impurities in the exterior fluid. The number of pixels between the two edges is
identified as the conduit diameter, which is squared and normalised by the squared
observed background conduit diameter to obtain the dimensionless cross-sectional
area a. Our imaging set-up at both the ‘box camera’ and ‘wave camera’ in
figure 2(a) admit resolutions of 300 pixel cm−1 and between 132 and 228 pixel cm−1,
respectively (generally higher resolution for smaller boxes).

We use the lower camera to determine the box shape. Note that, near the point
of breaking, dispersion is no longer negligible; as a result, a pure box is difficult to
realise in the conduit system. We use the characteristic control method presented in
Anderson et al. (2019) to extract the time of box profile formation, and use the non-
dimensionalised version of that profile as the initial condition in further analyses of
the conduit equation. An example experimental box profile is shown in the t= 0 panel
of figure 2(b).

For the upper camera, a wave-tracking algorithm is utilised to follow all wave
peaks across the imaging window. Each candidate peak’s amplitude and position are
validated against the conduit equation’s solitary wave speed–amplitude relation (Olson
& Christensen 1986)

c(as)=
2a2

s log as − a2
s + 1

(as − 1)2
(2.3)

during the temporal window that the peak is in view. The elevation solitary wave
amplitude as > 1 is measured from zero area, hence must be larger than the
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background area a= 1. Since solitary waves exhibit the speed lower bound c(as) > 2;
any observed wave peak with a slower speed was discarded as small-amplitude
dispersive wave phenomena.

2.3. Results
A total of 30 experimental trials were executed according to the protocol described in
this section with the experimental parameter values identified in table 1. We generated
15 box geometries and carried out two trials per geometry with the nominal non-
dimensional box heights am ∈ {1, 2, 3} and nominal box widths {20, 25, 30, 35, 40} cm
– corresponding to non-dimensional widths w∈ {90, 112, 134, 156, 178} in the conduit
equation (1.1) (the non-dimensionalisation will be provided in § 3). The results are
shown in figure 3(a–d). Figure 3(a) depicts the observed number of solitary waves as
functions of box width and non-dimensional height am. Across all trials, between eight
and 20 solitary waves were generated, placing these fission experiments in the large
number of solitary waves regime, as expected for broad initial conditions. For fixed
box height, the data exhibit an approximately linear increase with width, as shown by
the linear fits for fixed am in figure 3(a). Figure 3(b–d) reports the normalised c.d.f.s
of solitary wave amplitudes. Each panel includes the normalised c.d.f.s for trials with
a common box height value am. The normalised c.d.f. F(A) depends parametrically
on box width w and box height am and is defined as

F(A)=
number of solitary waves with amplitudes as satisfying as 6 1+A

total number of solitary waves
. (2.4)

While the staircase c.d.f.s plotted in figure 3(b–d) have different shapes for different
box heights, the box width dependence of the normalised c.d.f.s for fixed box height
– i.e. for each fixed panel – shows little variation.

The rest of this paper is concerned with developing a modulation theory description
for solitary wave fission in the conduit equation box problem (equations (1.1) and
(1.2)). Our analysis results in explicit predictions for the number of solitary waves –
linearly dependent on box width – and the normalised amplitude c.d.f. – independent
of box width. Following our analysis, we will reconsider the experiments presented
here.

3. Conduit equation background
The conduit equation (1.1) describes the dynamics of the free interface between two

viscous fluids: a highly dense, highly viscous exterior fluid, and a less dense, less
viscous interior fluid. As the interior fluid is pumped steadily through the exterior fluid,
the interface resembles a deformable pipe whose walls are the two-fluid boundary. The
circular cross-sectional area A of this pipe can be modelled as a function of time
T and vertical distance Z by the dimensional conduit equation (Olson & Christensen
1986; Lowman & Hoefer 2013a)

AT +
g∆

8πµ(i)

(
A2
)

Z −
µ(e)

8πµ(i)

(
A2
(
A−1AT

)
Z

)
Z
= 0, (3.1)

when ε=µ(i)/µ(e), the interior to exterior dynamic viscosity ratio, is small, ∆=ρ(e)−
ρ(i) is the difference between exterior and interior fluid densities, and g is gravitational
acceleration. Equation (3.1) results from the interplay between interior fluid buoyancy
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FIGURE 3. (a) Observed number of solitary waves N as a function of nominal
dimensional box width and non-dimensional box height area ratio am. Linear fits for
fixed box height are included. (b–d) Observed normalised solitary wave c.d.f.s F(A), as
defined in (2.4). Panels (b), (c) and (d) correspond to a nominal box height am = 1,
am = 2 and am = 3, respectively. In each panel, the normalised c.d.f.s for the box widths
{20, 25, 30, 35, 40} cm are shown, with lighter line styles corresponding to wider boxes.

and continuity of both the fluid velocity and interfacial stress at the two-fluid boundary.
This nonlinear dispersive PDE is a long-wave, slowly varying asymptotic reduction
of the Navier–Stokes equations for two fluids. Restrictions include sufficiently small
Reynolds number and small interfacial steepness, but there is no restriction on the
conduit amplitude, hence the dispersive term is nonlinear (Lowman & Hoefer 2013a).
The non-dimensional form of (3.1) is (1.1), obtained via the scalings (cf. (2.1) and
(2.2))

a=
1

πR2
0
A, z=

√
8ε

R0
Z, t=

√
8εU0

R0
T. (3.2a−c)

This transformation rescales the background conduit area of radius R0 to unity. The
conduit equation has been shown to admit a variety of multiscale coherent wave
solutions (Maiden & Hoefer 2016).

Previous experimental comparisons to dynamics predicted by the conduit equation
include solitary waves (Olson & Christensen 1986), their interactions with each other
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(Helfrich & Whitehead 1990; Lowman, Hoefer & El 2014) and interactions with a
dynamically changing mean flow (Maiden et al. 2016, 2018). Solitary wave solutions
can be obtained from the ordinary differential equation (ODE) that results from the
travelling wave ansatz a(z, t)= f (z− ct), where the solitary wave speed cs is related
to its total amplitude as (measured from a = 0) on the background φ by the speed–
amplitude relation (Olson & Christensen 1986)

cs(as, φ)=
φ(2a2

s (log as − log φ )− a2
s + φ

2
)

(as − φ)2
. (3.3)

Dispersive shock waves have also been studied theoretically and experimentally in
the viscous fluid conduit system (Lowman & Hoefer 2013b; Maiden et al. 2016,
2018). Dispersive shock waves are the result of a sustained, large increase in
background conduit area from 1 to φ− > 1 and can be characterised by a modulated
periodic travelling wave solution of the conduit equation, i.e. a solution of the form

a(z, t)= φ(θ), θ = kz−ωt, φ(θ + 2π)= φ(θ). (3.4a−c)

Inserting this ansatz into equation (1.1) and integrating twice results in (Olson &
Christensen 1986)

(φ′)2 = g(φ)=−
2
k2
φ −

2
ωk
φ2 log φ +C0 +C1φ

2, (3.5)

where C0 and C1 are real constants of integration. The right-hand side of the equation
can have up to three roots, φ1 6 φ2 6 φ3, which parametrise the solution.

A physically relevant parametrisation of the periodic wave φ(θ) is given by three
constants: the wavenumber k, the wave amplitude A (defined as the difference
between the wave’s maximum and minimum) and the wave mean φ, which can be
written in terms of C0, C1 and k, or equivalently in terms of φj, j = 1, 2, 3. The
wave frequency is determined by the 2π periodicity of φ(θ) as ω= ω(k, φ,A). The
modulation theory description of a DSW is achieved by allowing the periodic wave’s
parameters to vary slowly relative to the wavelength 2π/k and period 2π/ω while
introducing the generalised wavenumber k = θx and frequency ω = −θt (Lowman
& Hoefer 2013b). Then a DSW can be viewed as connecting two distinguished
limits of these modulated wave parameters: the zero-amplitude limit as A → 0
and the zero-wavenumber limit k→ 0. When A→ 0, the DSW solution limits to
small-amplitude harmonic waves with the linear dispersion relation

ω0(k, φ)=
2kφ

1+ k2φ
. (3.6)

When k→ 0, the DSW solution limits to a solitary wave that satisfies the speed–
amplitude relation (3.3).

Allowing for slow modulations of φ, k and A in space and time results in
the conduit–Whitham equations. The conduit–Whitham equations consist of the
conservation of waves kt + ωx = 0, resulting from θtx = θxt, and the averaging of the
conduit equation’s two conservation laws (Barcilon & Richter 1986)

at + (a2
− a2(a−1at)z)z = 0,(

1
a
+

a2
z

a2

)
t

+

(atz

a
−

azat

a2
− 2 ln a

)
z
= 0

 (3.7)
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over the periodic wave family. Using the following notation for averaging over a wave
period,

F=
1

2π

∫ 2π

0
F(θ) dθ, (3.8)

the Whitham equations are (Maiden & Hoefer 2016)

φt +

(
φ2 − 2kωφ2

θ

)
z
= 0,(

1
φ
+ k2φ

2
θ

φ2

)
t

− 2
(
ln φ

)
z = 0,

kt +ωz = 0,


(3.9)

where ω = ω(k, φ, A) is the nonlinear wave frequency. That the averaging operator
(3.8) approximately commutes with partial differentiation is a result of scale separation
between the modulation – which is large and slow – and the periodic wave’s much
shorter and faster spatial wavelength and temporal period, respectively (Whitham 1965,
1974).

We remark that a rigorous, necessary condition for the stability of conduit
periodic waves is the hyperbolicity of the conduit–Whitham equations (Johnson
& Perkins 2019). The conduit–Whitham equations are known to be hyperbolic in an
amplitude/wavenumber-dependent regime of phase space (Maiden & Hoefer 2016)
and we will operate within this regime.

If a certain self-similar simple wave solution to the conduit–Whitham equations
exists (a 2-wave; El & Hoefer 2016), we can obtain expressions for the leading-
(solitary wave) and trailing- (harmonic) edge speeds in terms of the DSW jump
parameter φ−, labelled s+ and s−, respectively (Lowman & Hoefer 2013b):

s+ =
√

1+ 8φ− − 1, s− = 3+ 3φ− − 3
√
φ−(8+ φ−). (3.10a,b)

The solitary wave amplitude a+ is implicitly determined by equating s+ with the
solitary wave speed–amplitude relation (3.3):

cs(a+, 1)=
√

1+ 8φ− − 1. (3.11)

The trailing-edge small-amplitude wavepacket is characterised by the wavenumber k−,
explicitly determined by equating the linear group velocity ∂kω0 to s−:

k2
−
=

1
4

(
1−

4
φ−
+

√
1
φ−
(8+ φ−)

)
. (3.12)

The group velocity of the harmonic edge is always less than the speed of the
solitary wave edge. Thus, a DSW in the conduit system is always led by a solitary
wave, with a trailing, continually expanding, oscillating wavetrain that can exhibit
backflow and instabilities for sufficiently large jumps φ− (Lowman & Hoefer 2013b;
Maiden & Hoefer 2016).

We now return to the initial value problem (1.2) for the conduit equation (1.1)
and our development of the solitary wave resolution method. Initially, the edges of
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the wide box (1.2) can be treated as two well-separated, step-like (Riemann) initial
value problems. As such, the rightmost edge will evolve similar to a DSW, and
the leftmost edge similar to a rarefaction wave (RW). However, finite box extent
necessarily implies the eventual interaction of the DSW and RW (El & Grimshaw
2002; Ablowitz et al. 2009). Ultimately, a finite solitary wavetrain emerges from this
interaction process. We now use a modification of conduit DSW theory (Lowman &
Hoefer 2013b) to determine the properties of this solitary wavetrain by applying the
solitary wave resolution method originally developed in El et al. (2008).

4. Number of solitary waves
In what follows, we make the assumption that the box initial value problem (1.2)

for equation (1.1) will result in a slowly modulated wavetrain that can be described
by the Whitham modulation equations (3.9). This assumption is the cornerstone of
the solitary wave resolution method (El et al. 2008) and will later be verified by
numerical simulations.

Allowed to evolve long enough, the individual wave crests resulting from
the box initial conditions will separate with minimal overlap, i.e. will result in
a non-interacting solitary wavetrain. To count these waves, note that they are
separated by exactly their wavelength, defined in terms of the wavenumber as 2π/k.
Consequently, k/2π is a wave crest density and we determine the total number of
waves N in a wavetrain at time t by

N =
1

2π

∫
∞

−∞

k(z, t) dz. (4.1)

This integral is finite at t=0 because the initial disturbance a0(z) has compact support,
implying k→0 as |z|→∞ sufficiently fast. The conservation of waves equation in the
conduit–Whitham modulation equations (3.9) implies that N is independent of time.
Then the total number of fissioned solitary waves that emerge over a long time can be
determined by the wavenumber function k(z, 0) associated with the initial condition.
The challenge is to determine k(z, 0) when the waves are initially so densely packed
that there are no visible oscillations, i.e. the wave amplitude A= 0 and there is only
the non-zero mean φ(z, 0).

Whitham modulation theory can now be utilised to find a relationship between
the initial condition – the non-oscillatory data (1.2) equated to the initial mean
φ(z, 0) = 1 + a0(z) in modulation theory – and the wavenumber k. For this, we
note that the conduit–Whitham equations (3.9) are supplemented by conditions that
ensure continuity of the modulation solution at the trailing and leading edges of the
oscillatory wavetrain for all t. There exist only two ways for the modulation solution
to continuously match to the solution of the dispersionless conduit equation

βt + 2ββz = 0. (4.2)

Either k→ 0 or A→ 0. The case k→ 0 is the solitary wave limit and A→ 0 is the
small-amplitude harmonic wave limit. These limits are important for the modulation
solution of a DSW, with A → 0 at the leftmost, trailing edge and k → 0 at the
rightmost, leading edge. Because early- to intermediate-time evolution leads to the
generation of a DSW, we identify these edges as z−(t) and z+(t), respectively, and
require

z= z−(t): A= 0, φ = β−(t),
z= z+(t): k= 0, φ = β+(t)= 1,

}
(4.3)
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where the wave mean φ matches to the solution β(z, t) of the dispersionless conduit
equation (4.2) subject to the initial condition β(z, 0) = 1 + a0(z) (cf. (1.2)). Then,
β±(t)= β(z±(t), t). Consequently, equation (4.2) is valid outside the oscillatory region
influenced by the disturbance, i.e. for z ∈ (−∞, z−(t)) ∪ (z+(t),∞). We note that the
dispersionless conduit equation (4.2) (buoyancy-driven flow with negligible curvature-
induced interfacial stress) has been experimentally shown to be a good approximation
to the physical conduit system when there are no oscillations, i.e. when the interface
is slowly varying (Anderson et al. 2019). The edges z±(t) in the boundary matching
problem (3.9) and (4.3) with β− 6= const. can be determined by a recent extension of
the DSW fitting method developed by Kamchatnov (2019). This determination will
not be necessary in our construction in which we seek the long-time solitary wave
resolution.

When A→ 0, the vanishing oscillations do not contribute to the averaging (3.8), so
F(φ)=F(φ), for any differential or algebraic operator F (El & Hoefer 2016). Thus all
θ derivatives of φ average to zero. In this case, the first and second conduit–Whitham
equations (3.9) limit to the dispersionless conduit equation (4.2) but the conservation
of waves modulation equation remains and the wave frequency is the linear dispersion
relation (3.6), so that the modulation system reduces to

A= 0:
φt + 2φ φz = 0,

}
(4.4)

kt +
(
ω0(k, φ)

)
z = 0. (4.5)

Since the disturbance is initially non-oscillatory, we have φ(z, 0) = 1 + a0(z), z ∈ R
(cf. (1.2)). However, because there are no initial oscillations, the initial wavenumber is
not well defined. We must appeal to properties of the disturbance’s evolution in order
to uniquely define k(z, 0). We do so by identifying a simple wave relationship k =
k−(φ) between the wavenumber and mean so that k(z, 0)= k−(φ(z, 0)). The rationale
for the use of the simple wave relation is detailed in El et al. (2008) and is based on
the fact that the DSW trailing edge is a characteristic. Equations (4.4) and (4.5) have
two characteristic families:

dz
dt
= 2φ and

dz
dt
=ω0,k. (4.6a,b)

The first family corresponds to the decoupled evolution of the mean flow equation
(4.4) and coincides with the slowly varying evolution of the disturbance, e.g. the initial
RW. The second family coincides with the vanishingly small-amplitude oscillations
emerging from the edge of the evolving disturbance with an envelope that moves with
the group velocity. It is the second characteristic family that captures the evolution
of the emergent solitary wavetrain. In order to obtain the relationship between k and
φ along the second characteristic family, we make the simple wave ansatz k= k−(φ)
along z−(t), where dz/dt=ω0,k, which, when combined with the modulation equations
(4.4), results in the ODE

dk−
dφ
=

ω0,φ

2φ −ω0,k−

. (4.7)

Substituting the linear dispersion relation (3.6) into this equation and integrating yields
an expression for k− in terms of the wave mean φ and an integration constant λ:

k−(φ; λ)2 =
1
2

(
λ−

2
φ
+

√
λ

φ
(4+ φλ)

)
. (4.8)
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Matching to equation (4.2) at the disturbance’s initial termini z∈ {−w, 0} via the first
of equations (4.3), k−(φ=1;λ)=0. Then λ=1/2. This choice of integration parameter
results in the same expression for k− as found at the DSW’s harmonic edge from
DSW fitting theory; see (3.12). It will be useful in the next section to use the fact
that the simple wave curve k= k−(φ; 1/2) corresponds to the level curve λ= 1/2 of
the surface

λ(k, φ)=
(1+ φk2)2

φ(2+ φk2)
, (4.9)

obtained by inverting the relationship in (4.8).
The simple wave relationship k= k−(φ; 1/2) in equation (4.8) provides the needed

translation between the initial condition for the mean φ(z, 0)= 1+ a0(z) and the initial
condition for the wavenumber k(z, 0)= k−(1+ a0(z); 1/2). Then the number of solitary
waves is obtained from (4.1) as

N =
1

2π

∫
∞

−∞

k(z, 0) dz=
1

2π

∫
∞

−∞

k−

(
1+ a0(z);

1
2

)
dz. (4.10)

For the case when a0(z) is a box of width w and height am above a background of 1,
equation (4.10) can be integrated exactly:

N =
w

4π

√√√√am − 3
1+ am

+

√
9+ am

1+ am
. (4.11)

The small-am expansion of equation (4.11) is

N =
w
√

am

π
√

6
+O

(
wa3/2

m

)
, am→ 0, (4.12)

which agrees to leading order with the small-amplitude KdV result in (1.7) when we
identify um = am. The large-am approximation, on the other hand, is independent of
box height to a good approximation:

N =
w
√

2
4π
+O

(
w
a2

m

)
, am→∞. (4.13)

To compute the number of solitary waves for more general initial profiles a0(z),
equation (4.10) can be integrated. Of course, the number of solitary waves should be
an integer whereas N continuously depends on the initial profile a0(z). The result is
asymptotic, i.e. equation (4.10) is asymptotic to the number of solitary waves due to
solitary wave fission if N � 1. Then, computing the ceiling or floor, or rounding N
to the nearest integer are all asymptotically equivalent. If we approximate the initial
disturbance by a box of width w and height am, equation (4.11) gives an explicit
determination of when modulation theory for solitary wave fission is valid, i.e. when
the initial disturbance is sufficiently wide.
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5. Distribution of solitary wave amplitudes
Next, we seek an estimate for the amplitudes of the fissioned solitary wavetrain.

Because the conduit solitary wave speed–amplitude relation (2.3) is monotonically
increasing with amplitude, sufficiently long evolution is expected to lead to the waves
separating into an amplitude-ordered train that are well isolated from one another. We
will treat them as a non-interacting solitary wavetrain, a concept that was recently
exploited in Maiden et al. (2018) to describe solitary wave interaction with a mean
flow. Here, we analyse both the A→ 0 (harmonic) and k→ 0 (solitary wave) limits
and identify a relationship between them. This enables a mapping of the initial profile
to the long-time solitary wave amplitude distribution.

5.1. Harmonic limit
In the harmonic limit, A→ 0 and equations (4.4) and (4.5) hold. To compute the
total number of solitary waves in the previous section, we identified the edges of the
initial disturbance’s support and set k= 0 at the edges. This calculation resulted in the
simple wave relationship determined by the level curve λ(k, φ)= 1/2 (cf. (4.9)). We
now extend this to the interior of the initial disturbance’s support and study other level
curves, λ(k, φ)= const., to identify the number of solitary waves contained within a
portion of the initial disturbance. By solving for λ when k= k−(1+ a0(z); λ)= 0, we
therefore consider the level curves λ(k, φ)= [2(1+ a0(z))]−1

∈ [1/(2(1+ am)), 1/2].
We can now extend the calculation of the total number of solitary waves N to the

number of solitary waves that emerge from the section of the initial profile of total
amplitude of at least φmin. We modify (4.10) for the total number of fissioned solitary
waves to integrate only over the initial profile section in which 1+ a0(z)> φmin (see
figure 4a) and consider the λ-level curve λ(k, φ)= 1/(2φmin), determined by the zero-
wavenumber condition k−(φmin; λ) = 0. Then the number of solitary waves for this
truncated portion of the initial profile is

G(φmin)=
1

2π

∫ z2(φmin)

z1(φmin)

k−

(
1+ a0(z);

1
2φmin

)
dz, for φmin ∈ [1, 1+ am],

z1 6 z2 such that 1+ a0(z1,2)= φmin.

 (5.1)

The justification for this calculation comes from the hyperbolicity of the modulation
system (3.9) in the requisite domain of dependent variables (Maiden & Hoefer 2016)
and the fact that asymptotically, as t→∞, the region of influence of the support
of the λ section of the initial profile is confined by the modulation characteristics
emanating from z2 and the maximum point zm: a0(zm)= am (see El et al. 2008).

The goal now is to relate φmin to the solitary wave amplitude A. We will use the
intermediate variable λ to relate the two. With a slight abuse of notation, we define
z1(λ) and z2(λ) as the z-values at which φ=1/(2λ) and G(λ) as the number of solitary
waves that emerge from the λ section of the initial profile of total amplitude at least
1/(2λ):

G(λ)=
1

2π

∫ z2(λ)

z1(λ)

k−(1+ a0(z); λ) dz, for λ ∈
[

1
2(1+ am)

,
1
2

]
,

z1 6 z2 such that 1+ a0(z1,2)= 1/(2λ).

 (5.2)

Since G(λ) is an increasing function of λ and its maximum is the total number of
solitary waves N =G(1/2) (cf. equation (4.10)), we define the normalised c.d.f. G(λ)
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FIGURE 4. (a) Sections of the initial profile from figure 1 for different values of λ. The
different λ sections are identified by colour and shading. (b) Contribution of each λ section
in terms of the produced solitary waves.
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FIGURE 5. Integral endpoints z1,2 as a function of the integration constant, λ, for the
profile in figure 4(a).

as

G(λ)=
G(λ)
N
∈ [0, 1], for λ ∈

[
1

2(1+ am)
,

1
2

]
. (5.3)

Reconsidering the smoothed box and its numerical evolution from figure 1 in this way,
profile sections for different values of λ are shown in figure 4(a) and the expected
solitary waves from each truncation are shown in figure 4(b). The integral endpoints
z1 and z2 for the initial condition shown in figure 4(a) are shown as a function of λ
in figure 5. The endpoints depend monotonically on λ.

5.2. Solitary wave limit
So far, we have been focused on the number of fissioned solitary waves emerging
from a λ section of the initial profile. We need to relate λ to the amplitudes of
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Solitary wave fission in a viscous fluid conduit 883 A10-17

the fissioned solitary waves. For this, we now perform an analysis of the solitary
wave limit k → 0 of the conduit–Whitham equations (3.9), which describe the
modulations of a non-interacting solitary wavetrain. By use of a clever change of
variables (El 2005; El & Hoefer 2016), this limit can be put in a form that is
analogous to the harmonic limit analysis of (4.4). In particular, we will determine a
relationship between the wave amplitude and mean, A=A(φ), that is valid along the
characteristic family associated with the propagation of non-interacting solitary waves.
This relationship will be a simple wave curve.

We now consider the conduit–Whitham equations (3.9) in the solitary wave limit
k → 0. Here, the wavelength 2π/k tends to infinity, so again the contribution of
oscillations is negligible and averaging commutes F(φ) = F(φ) (El & Hoefer 2016).
Then the modulation equations reduce to the dispersionless mean flow equation and
an equation for the solitary wave amplitude A (Maiden et al. 2018):

k= 0:
φt + 2φ φz = 0,

}
(5.4)

At + cs(φ +A, φ)Az + g(A, φ)φz = 0, (5.5)

where cs is the solitary wave speed–amplitude relation (3.3) and g is a coupling
function that we will not need to explicitly determine. We now introduce the
convenient change of modulation variables (φ,A, k)→ (φ, k̃, Λ) (El 2005)

k̃=π

(∫ φ2

φ1

dφ
√
−g(φ)

)−1

, Λ=
k

k̃
, (5.6a,b)

where φ1,2 are the two smaller roots of the right-hand side of the periodic wave ODE
(3.5).

This change of variables is based on the idea of a conjugate conduit equation, where
ã(z̃, t̃)= a(iz̃, it̃) is substituted into the conduit equation (1.1) so that it becomes

ãt̃ + (ã2)z̃ + (ã2(ã−1ãt̃)z̃)z̃ = 0. (5.7)

The parameter k̃ is the wavenumber of the conjugate travelling wave that satisfies the
ODE

(φ̃θ̃)=−g(φ̃), φ̃(θ̃ + 2π)= φ̃(θ̃ ), θ̃ = k̃z̃− ω̃t̃, (5.8a,b)

with the conjugate linear dispersion relation

ω̃0(k̃, φ)=
2k̃φ

1− k̃2φ
. (5.9)

We require that periodic solutions φ(θ) and φ̃(θ̃ ) to equations (3.5) and (5.8),
respectively, have identical phase velocities cp=ω/k= ω̃/k̃, thus ω=Λω̃. The benefit
of this formulation is that the solitary wave limit of the conduit equation periodic
wave is the harmonic limit of the conjugate conduit equation periodic wave, and
can be leveraged as such. It allows for a formulation of the solitary wave limit that
is symmetric to the harmonic limit. By substituting k = Λk̃ and ω = Λω̃ into the
equation for conservation of waves kt +ωz = 0, we obtain

k̃Λt + ω̃Λz +Λ(k̃t + ω̃z)= 0. (5.10)
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883 A10-18 M. D. Maiden and others

In the solitary wave limit, k→ 0 and therefore Λ→ 0, but this limit is a singular
one in that |kx|, |kt| →∞ for a DSW and therefore |Λt|, |Λx| → ∞ (El 2005). We
therefore consider equation (5.10) when |Λ| � |Λt|, |Λx| to obtain the leading-order
equation

Λt +
ω̃0

k̃
Λz = 0. (5.11)

This equation admits the characteristics

dz
dt
=
ω̃0(k̃, φ)

k̃
= cp. (5.12)

The specific characteristic in which Λ=0 corresponds to k=0 and is the solitary wave
edge of the wavetrain. Along Λ= 0, the characteristic speed cp is equal to the solitary
wave speed–amplitude relation cs (3.3). This relation cp = ω̃(k̃, φ)/k̃ = cs(φ + A, φ)
determines the change of variables (φ,A)→ (φ, k̃) when Λ= 0 for a non-interacting
solitary wavetrain

k̃2
=

1
φ
−

2
cs(φ +A, φ)

. (5.13)

One can see using (3.3) that A→0 implies k̃→0 and vice versa so k̃ is an amplitude-
type variable (El 2005; Lowman & Hoefer 2013a).

The next-order equation when |Λ| � |Λt|, |Λx| is

k̃t + (ω̃0)z = 0, on
dz
dt
=
ω̃0(k̃, φ)

k̃
. (5.14)

Similar to k− for harmonic waves, the simple wave assumption k̃ = k̃+(φ) results in
the ODE

dk̃+
dφ
=

ω̃0,φ

2φ − ω̃0,k̃

, (5.15)

whose integration results in

k̃+(φ, λ̃)2 =
1
2

−λ̃+ 2
φ
−

√
λ̃

φ
(4+ λ̃φ)

 , (5.16)

where λ̃ is the integration constant.

5.3. Combined solitary wave and harmonic limits
Combining the simple wave results for both the harmonic wave limit A→ 0 and the
solitary wave limit k→ 0, we have the following characteristic integrals:

IH =

{
A= 0, k2

−
=

1
2

(
λ−

2
φ
+

√
λ

φ
(4+ φλ)

)}
, on

dz
dt
=ω0,k(k, φ), (5.17)

IS =

k= 0, k̃2
+
=

1
2

−λ̃+ 2
φ
−

√
λ̃

φ
(4+ λ̃φ)

 , on
dz
dt
=
ω̃0(k̃, φ)

k̃
. (5.18)
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Solitary wave fission in a viscous fluid conduit 883 A10-19

Compatibility between the harmonic and the solitary wave regimes within a single
structure – the DSW – implies a relation between the integration constants λ and λ̃.
Indeed, if φ is such that k−(φ; λ)= 0 in IH then, simultaneously, k̃+(φ; λ̃)= 0 in IS
(see El et al. (2008) for details). By eliminating φ, we obtain

λ̃= λ. (5.19)

We remark that this same result – equivalence of the integral curve parameters λ= λ̃
for the harmonic and solitary wave reductions – was obtained for both the KdV and
Serre equations in El et al. (2008).

Over a long time, the solitary waves are travelling on a unit background, so
inserting φ = 1 and λ̃= λ into equation (5.16) relates λ to k̃:

λ=
(k̃2
− 1)2

k̃2 − 2
. (5.20)

Then (5.13) and (5.20) together identify the desired relationship between λ and A, the
solitary wave amplitude measured from unit background φ = 1:

λ(A)=
4

cs(1+A, 1)2 + 2cs(1+A, 1)
. (5.21)

Since λ∈ [1/(2(1+ am)), 1/2], A is limited to the values [0,Amax], where λ(0)= 1/2
and Amax is defined such that

λ(Amax)=
1

2(1+ am)
, (5.22)

thus λ is a decreasing function of A. Using (5.21), we obtain the implicit expression
for Amax as

cs(1+Amax, 1)=
√

9+ 8am − 1. (5.23)

This equation for the total amplitude 1+Amax is the same expression that one obtains
for the DSW’s leading-edge solitary wave amplitude a+ in (3.11) that results from
an initial jump of height am. This concurs with our interpretation of the initial box
evolution as the generation of a DSW on the right and an RW on the left. Moreover,
being entirely determined by the box height, the lead solitary wave’s amplitude is
predicted to be independent of box width.

Then G(λ) from (5.2) can be written in terms of A as

F(A)=G(λ(A))=
1

2π

∫ z2(λ(A))

z1(λ(A))
k−(1+ a0(z); λ(A)) dz, A ∈ [0,Amax]. (5.24)

Because λ(A) is a decreasing function of A and G(λ) is an increasing function of λ,
the normalised c.d.f. of the fissioned solitary wave amplitude distribution is

F(A)= 1−
F(A)
N
= 1− G(λ(A)), A ∈ [0,Amax]. (5.25)

Since this distribution is continuous and we have a fixed number of solitary waves, we
will use the quantiled discretisation of this distribution for comparison with experiment
and numerics.
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FIGURE 6. (a) Numerical simulations of boxes of different widths and the ensuing
solitary waves. Note the evolutions here are at different times and shifted to align
so as to better illustrate the similarities and differences in the amplitude distributions.
Integers reported above the solitary wavetrains are the number of observed solitary
waves to be compared with the prediction (4.10) reported inside the corresponding box
initial condition. (b) Observed amplitude distributions (solid) from the same simulations.
Predicted amplitude distribution (dashed) from (5.25). Predicted amplitude distribution
(dash-dotted) (5.29) for a box.

We now attempt to explain what is seen in figure 6(b), namely that initial conditions
of differing widths but otherwise the same height have approximately the same
normalised c.d.f. To do so, we approximate the initial condition with a box of width
w and height am. Thus the normalised c.d.f. in λ is

G(λ)=

∫ 0

−w
k−(1+ am; λ) dz

N
, λ ∈

[
1

2(1+ am)
,

1
2

]
. (5.26a,b)

Since there is no variation in z, the numerator can be trivially integrated:

G(λ)=
w

2π

√√√√1
2

(
λ−

2
1+ am

+

√
λ

1+ am
(4+ (1+ am)λ)

)/
N ,

λ ∈

[
1

2(1+ am)
,

1
2

]
.

 (5.27)
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Solitary wave fission in a viscous fluid conduit 883 A10-21

Then, inserting N from equation (4.11) leads to no w dependence in the normalised
c.d.f.

G(λ)=

√
2λam + 2λ− 4+ 2

√
λ(1+ am)(4+ (1+ am)λ)

am − 3+
√
(9+ am)(1+ am)

, λ ∈

[
1

2(1+ am)
,

1
2

]
.

(5.28a,b)

This approximation is valid as long as the edges of the disturbance transition over a
small z relative to w.

Then the normalised c.d.f. of the amplitude distribution is obtained from (5.28)
by substituting the functional relationship λ(A) from (5.21) and noting the reflection
(5.25):

F(A)= 1−

√
2λ(A)am + 2λ(A)− 4+ 2

√
λ(A)(1+ am)(4+ (1+ am)λ(A))

am − 3+
√
(9+ am)(1+ am)

,

A ∈ [0,Amax].


(5.29)

An asymptotic expansion of F in (5.29) for small A and am yields

F(A)∼ 1−

√
1−

A
2am

, A ∈ [0, 2am], 0< am� 1, (5.30)

which agrees with the weakly nonlinear KdV result (1.7).

5.4. Summary of the solitary wave resolution method
The above derivation is readily generalised. Consider the initial value problem for a
general dispersive hydrodynamic equation,

ut + V(u)ux =D[u]x, x ∈R, t> 0,
u(x, 0)= u0(x), lim

|x|→∞
u0(x)= u∞,

}
(5.31)

with integro-differential operator D yielding the real-valued, linear dispersion relation
ω0(k, u) with negative dispersion ω0,kk < 0. Let equation (5.31) support solitary wave
solutions propagating on the background u and characterised by the speed–amplitude
relation cs(u + A, u), where A is the soliton amplitude measured from background.
Now we introduce k−(u; λ) as the solution of the ODE

dk−
du
=

[
ω0,u

V(u)−ω0,k

]
k=k−

, (5.32)

with λ a constant of integration. The number of solitary waves resulting from the
temporal evolution of u0(x) can then be calculated as

N =
1

2π

∫
∞

−∞

k− (u0(x); λ∞) dx, (5.33)
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where λ∞ is obtained from the boundary condition k−(u∞; λ∞)= 0. For u0(x) in the
form of a box of width w and height um,

N =
w

2π
k−(um; λ∞). (5.34)

For the solitary wave amplitudes, we have the generic formula in terms of the
relationship between the integration constant λ and the cutoff mean u:

G(λ)=
1

2πN

∫ x2(λ)

x1(λ)

k−(u0(x); λ) dx, λ ∈ [λm, λ∞],

x1(λ)6 x2(λ) such that u0(x1,2(λ))= u(λ),

 (5.35)

where λm is defined by k−(um; λm) = 0. Here, we are assuming that k−(u; λ), hence
G(λ), is an increasing function of λ. Then to obtain λ = λ(A), one first solves the
ODE

dk̃+
du
=

[
ω̃0,u

V(u)− ω̃0,k̃

]
k̃=k̃+

, (5.36)

where ω̃0(k̃, u)=−iω0(ik̃, u). The solution of (5.36) is k̃+(u; λ̃), where λ̃ is a constant
of integration. Setting k(u; λ) = k̃(u; λ̃) = 0 gives the relationship between λ and λ̃.
Substituting k̃ = k̃(u; λ̃(λ)) into ω̃/k̃ = cs(u +A, u) yields the desired λ = λ(A) and
F(A)= 1− G(λ(A)) for A ∈ [0,Amax] where Amax satisfies

λ(Amax)= λm. (5.37)

Here, we are assuming that λ is a decreasing function of A.
Two of the main results of this paper do not depend on the system under study so

long as the necessary prerequisites of the solitary wave resolution method are satisfied.
Equation (5.34) for a pure box initial condition is always linear in the box width. Also,
the maximum solitary wave amplitude Amax and the normalised amplitude c.d.f. for a
box, F(A), are independent of box width. These results can be used, for example, to
identify the initial box height that yields a desired lead solitary wave with amplitude
A∗ by solving λ∗ = λ(A∗) where k−(u∗; λ∗) = 0 for the box height u∗ and the box
width w∗= 2πN∗/k−(u∗; λ∞) that results in the desired number of solitary waves N∗.

5.5. Numerical methods
Direct numerical simulations of the conduit equation were undertaken following the
method described in Maiden & Hoefer (2016). Equation (1.1) is rewritten as two
coupled equations: the spatial discretisation utilises fourth-order finite differences
with periodic boundary conditions, and the temporal evolution is via a medium-order
Runge–Kutta method. Numerical results presented show how the long-time box
evolution is altered by width in figure 6 and by height in figure 7. We observe that
the number of solitary waves produced approximately changes linearly with the width
but does not change significantly with box height past a certain height. We observe
that the amplitude distributions change with box height but not with width.

We also numerically investigate our basic hypothesis that an initial, broad
disturbance for the conduit equation results primarily in the fission of solitary
waves. In order to quantify this, we consider one simulation that represents an
edge case in which a smoothed box with amplitude am = 0.88 and width w = 96
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FIGURE 7. (a) Numerical simulations of boxes of different heights and the ensuing
solitary waves. The solitary wavetrains are plotted at different times so as to better
illustrate the similarities and differences in the amplitude distributions. The expected
solitary wave counts (adjacent to the initial profile) and the observed number (adjacent
to the solitary wavetrain) do not change much past a certain initial condition amplitude,
as expected from (4.13). (b) Amplitude distributions (solid) from the same simulations.
Predicted amplitude distribution (dashed) from (5.25).

results in a relatively small number (nine) of solitary waves and agrees with the
predicted number from (4.10). The initial and final (at t= 350) profiles are shown in
figure 8. Solitary waves travel faster than the long-wave speed cs(as, 1) > 2, whereas
dispersive waves propagate with the group velocity that is slower and exhibits a
minimum −1/4 6 ∂kω0(k, 1) 6 2. We identify the dividing location in figure 8
between small-amplitude dispersive waves and the solitary wavetrain as the first z
value, z∗ = 1000 here, in which the solitary wavetrain departs from unity. Over the
entire domain [0, L] (L = 1500 here) and each of the two subintervals [0, z∗] and
[z∗,L], we compute integrals of the conserved densities a− 1 and 1− 1/a− a2

z/a
2 and

the non-negative density (a− 1)2 at the final time. The results are reported in table 2.
In all cases, the small-amplitude dispersive wave contributions are less than 1 % of
the total. Consequently, the solitary wavetrain dominates these integral quantities and
our basic hypothesis is confirmed.

6. Comparison of modulation theory with experiment
Theory predictions for the number of solitary waves in physical experiments are

reported in figure 9. We calculate the prediction N from a smoothed version of the
viscous fluid conduit’s observed profile at the time of wave breaking. Filled dots
and the vertical axis in figure 9(a) report the number of observed solitary waves for
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z

a

FIGURE 8. Initial (dashed) and final (solid) profiles for a numerical simulation of the
conduit equation box problem (am = 0.88, w = 96) that results in nine solitary waves.
The location z∗ = 1000 separates the solitary wavetrain to the right from small-amplitude
dispersive radiation.

I = [0, L] [0, z∗] [z∗, L]∫
I
(a− 1) dz 84.48 −0.34 84.82∫

I

(
1−

1
a
−

a2
z

a2

)
dz 46.36 −0.35 46.71∫

I
(a− 1)2 dz 81.39 0.01 81.38

TABLE 2. Integrals of conserved and non-conserved quantities for the solution depicted in
figure 8 at t= 350 over three spatial intervals corresponding to the whole domain [0, L],
the subinterval containing only small-amplitude dispersive waves [0, z∗], and the solitary
wavetrain subinterval [z∗, L] (here z∗ = 1000, L= 1500).

each trial. We observe excellent agreement between experiment and theory, with the
observed number of solitary waves being at most two away from the predicted value.
Consequently, there is a decrease in the relative percentage error as the total number
of solitary waves increases, as shown in figure 9(b).

Figure 10 details comparisons between asymptotic predictions and physical
observations of the solitary wave amplitude c.d.f.s. The prediction from KdV analysis
is included. For the amplitude distribution F(A), any relative minimum in the initial
profile results in unphysical predictions. Therefore, instead of using the true profile
generated from boundary control, we use an averaged version, similar to that used
in numerical experiments (see the inset of figure 1). We fit the box amplitude am

and width w by extracting these values from the experimental time, location and
mean height of breaking as determined by our previously introduced inflection point
criterion (Anderson et al. 2019). The box profile is approximated by

a0(z)=
am

2
tanh

( z
2.5

)
−

am

2
tanh

(
z−w
2.5

)
, (6.1)
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FIGURE 9. (a) Number of solitary waves from experiment (circles) versus the number
expected from (4.1). The dashed and dash-dotted lines represent one and two solitary
waves away from the expected 1 : 1 relationship. (b) Percentage relative error versus the
expected number of solitary waves.
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FIGURE 10. Cumulative distribution functions of amplitude distributions from selected
experiments (solid line), with the asymptotic prediction from the conduit (dashed line)
and KdV (dotted line) equations. Each step in the experimental c.d.f. corresponds to a
solitary wave. Box parameters: (a) width = 20 cm (w = 90), am = 2; and (b) width =
40 cm (w= 178), am = 4.

where the tanh non-dimensional width 2.5 was identified as a good fit across all
reported trials to both the leading-edge transition and the final amplitude distributions.
Although our analysis is explicit for sharp box profiles, we find that smoothing the
box does slightly influence the smaller-amplitude soliton distribution as depicted in
figure 11 (see dashed versus dash-dotted curves).

We also observe a change in conduit diameter of roughly 15 % from the bottom of
the apparatus to the location of solitary wave data taking. While this does not affect
N , it is observed to have a profound effect on F(A). To compensate for this, we use
the amplitude prediction from Maiden et al. (2018) for a solitary wave on a changing
background for the conduit equation. We measure error via the ∞-norm, as this relates
to the Kolmogorov–Smirnov test for comparing c.d.f.s in statistics. Across all trials,
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FIGURE 11. Normalised c.d.f.s for solitary wave amplitudes. Experiments (stairs) compare
favourably to the predictions from (5.25) for the smoothed box (dashed) and predictions
from (5.29) for a pure box (dash-dotted). Colour scale corresponds to initial conditions
where am = 2 and dimensional widths (light to dark) 25, 30, 35, 40 cm corresponding to
non-dimensional widths 112, 134, 156, 178.

the conduit prediction has roughly half the error as the prediction from the rescaled
KdV prediction.

We also compare our results to the explicit formula (5.28) for a box. We observe
in figure 11 that, as the initial condition’s width increases – corresponding to a larger
number of solitary waves, therefore improving the asymptotic approximation – the
observed distribution approaches the expected distribution that is independent of width.

Our final comparison between experiment and theory involves the spatio-temporal
dataset reported in figure 2(b). Utilising the nominal measured experimental parameter
values reported in the caption of that figure, we determine the length and time scalings
for the conduit equation in (3.2) to be R0/

√
8ε = 1.6 mm and R0/(U0

√
8ε)= 1.17 s,

respectively. These scalings and the measured parameters determine the initial non-
dimensional box width w= 156 and height am = 1.6. A numerical simulation of the
conduit equation with these smoothed box initial data (cf. equation (6.1)) and these
scalings is shown in figure 12(a). We report the non-dimensional diameter

√
a in the

figure (black curves) in order to directly compare the numerics with experiment. The
conduit equation simulation domain was taken to be larger (160 cm in figure 12a and
180 cm in figure 12b) than the view shown so that a portion of the initial box is
outside the displayed viewing window.

The experimental diameter profiles D(Z, T) reported in figure 12 have been
extracted from the images in figure 2(b) as per the description in § 2.2. Because
of the large aspect ratio inherent in these long-wave dynamics, low image resolution
in the transverse direction implies that 8 pixels 6 D 6 20 pixels. However, from the
box and wave cameras, we have much more accurate measurements of the conduit
diameter near the bottom and top of the apparatus for both the equilibrium conduit
diameter (2 mm) and the diameter of the box (3.2 mm). We use these measurements
to normalise the pixel data via the linear transformation D′(Z,T)=αD(Z,T)+β. The
coefficients α = 0.11 pixel−1 and β = 0.30 are chosen so that the mean equilibrium
conduit is D′ = 1 and the box diameter satisfies D′ = 3.2/2= 1.6. This normalisation
effectively registers the low-resolution data in figure 2 with the high-resolution
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FIGURE 12. Comparison of numerical (dark) and experimental (light) normalised conduit
diameter evolution: (a) measured experimental parameters; and (b) fitted experimental
parameters. In both panels, the experimental and simulation initial box height am= 1.6 is
determined from conduit measurements and the experimental initial box width of 25 cm
is obtained by the boundary control method (Anderson et al. 2019). The experimental
diameter is extracted from images in figure 2(b). (a) Measured nominal experimental
parameters in the caption of figure 2 are used to determine the length R0/

√
8ε = 1.6 mm

and time R0/(U0

√
8ε) = 1.17 s scales, and the non-dimensional box width w = 156 for

the numerical simulation. (b) Same as (a) except that the interior and exterior viscosities
are fitted, determining the length R0/

√
8ε= 1.8 mm and time R0/(U0

√
8ε)= 1.13 s scales,

and the non-dimensional box width w= 137 for the numerical simulation.

measurements from the other cameras. The profiles D′(Z, T) are reported in figure 12
with the lighter grey curves.

While the experiment gives rise to 14 solitary waves, the numerics produce 16. But
the lead solitary wave diameter is only 4.5 % larger than experiment. The numerical
evolutionary time scale is somewhat slower than the experimental one, which is
consistent with previous measurements of large-amplitude solitary waves that were
found to propagate faster than the conduit equation’s solitary wave speed–amplitude
relation (2.3) predicts (Olson & Christensen 1986; Maiden et al. 2016).

In figure 12(b), we utilise the same measured parameters as in figure 12(a), except
that we fit the interior µ(i)= 6.88× 10−2 Pa s and exterior µ(e)= 0.9 Pa s viscosities
by increasing the non-dimensional length scale by the factor 16/14 and reducing
the non-dimensional time scale by the factor 0.97. This particular increase in length
scale derives from the predicted linear scaling of the number of solitary waves by
the initial box width. Indeed, figure 12(b) exhibits precisely 14 solitary waves from
both numerics (non-dimensional initial box width w = 137) and experiment. The
increased length scale and slightly reduced time scale lead to significantly improved
solitary wavetrain evolution when compared with experiment. Remarkably, at the final
reported time t= 177 s, the numerical and experimental normalised diameter profiles
are almost indistinguishable for the 11 largest solitary waves in the solitary wavetrain.
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For the fit, the exterior viscosity is reduced by 10 %. The high-viscosity glycerine
utilised for the exterior fluid is extremely sensitive to even small amounts of interior
fluid mass diffusion from the conduit. A 10 % reduction from its nominal value is
certainly possible. The interior viscosity’s fitted value is approximately 39 % larger
than its measured value, which is a bit more than expected. However, we have not
accounted for uncertainty in the volumetric flow rate or fluid densities. Moreover, the
conduit equation is a long-wave approximation of the full two-fluid, free-boundary
dynamics that is valid in the small-viscosity-ratio ε = µ(i)/µ(e) regime (Lowman &
Hoefer 2013a). For these experiments, the measured value of this ratio is ε = 0.049
and the fitted value is ε = 0.076. Despite these reasonably small non-dimensional
values, a number of higher-order effects, e.g. inertia and the finite-sized boundary
(Lowman & Hoefer 2013a), could be influencing the dynamics on the long time scales
considered – the non-dimensional final time is approximately 150 in both figures 12(a)
and 12(b). For these reasons, we find the comparison between experiment and the
conduit equation reported in figure 12(b) to be credible, strong evidence for both
the conduit equation as an accurate model of viscous fluid conduit dynamics and the
efficacy of the solitary wave resolution method.

7. Conclusion

We have derived explicit formulae accurately predicting the asymptotic number
and amplitude distribution of solitary waves that emerge after a long time from a
localised, slowly varying initial disturbance for the conduit equation. Our analytical
approach to the solitary wave fission problem is based upon Whitham modulation
theory. The predictions have been quantitatively verified with experiments on the
interfacial dynamics of two high-contrast viscous fluids. While the solitary wave
resolution method utilised here was previously developed by El et al. (2008) for
the Serre–Green–Naghdi equations modelling large-amplitude shallow-water waves,
we have identified two new, universal predictions for box-shaped initial disturbances:
(i) the asymptotic number of solitary waves is linearly proportional to box width; and
(ii) the asymptotic normalised c.d.f. for the solitary wave amplitudes is independent
of box width. Here ‘universal’ means that these predictions apply to a broad class of
dispersive hydrodynamic equations (5.31), not just the conduit equation.

Our experiments are the first that validate the solitary wave resolution method and
we find that the physical evolution of viscous conduit profiles is well captured by
the approximation, particularly for large width disturbances. All observed solitary
wave counts are within one to two waves of their expected values and within 10 %
relative error for disturbances producing at least 12 waves. Amplitude distribution
predictions agree quantitatively with experiment and demonstrate the necessity of
going beyond the standard weakly nonlinear KdV model as it applies to the viscous
fluid conduit system. The conduit’s observed, full spatio-temporal evolution exhibits
remarkable fidelity to numerical simulations of the conduit equation when the two
fluids’ viscosities are appropriately fitted to effectively account for a variety of
uncertainties and higher-order effects in the experiment. When this work is considered
in conjunction with the large variety of previous experiments on viscous fluid conduits
involving solitary waves (Olson & Christensen 1986; Scott et al. 1986; Whitehead
& Helfrich 1988; Helfrich & Whitehead 1990; Lowman et al. 2014), wave breaking
(Anderson et al. 2019), rarefaction waves and dispersive shock waves (Maiden et al.
2016, 2018), the analytically tractable conduit equation and the effectiveness of
Whitham modulation theory further bolster the claim that the viscous fluid conduit
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system provides both an ideal laboratory environment and a mathematical modelling
framework in which to examine dispersive hydrodynamics and nonlinear dispersive
wave dynamics more generally (Lowman & Hoefer 2013a; Maiden & Hoefer 2016).

Largely due to the paucity of analytical tools for studying strongly nonlinear
wave dynamics, researchers have focused primarily on integrable models such
as the KdV and modified KdV equations to obtain physical predictions for the
soliton fission problem. A case in point is the field of internal ocean waves where
strongly nonlinear solitary waves are known to be prevalent yet can only be explained
with fully nonlinear models (Helfrich & Melville 2006). Because the solitary wave
resolution method is agnostic to integrable structure, a promising application direction
is the fully nonlinear Miyata–Choi–Camassa (MCC) equations for two stratified fluid
layers (Miyata 1985; Choi & Camassa 1999). The MCC equations have all the
necessary ingredients to apply the solitary wave resolution method (Esler & Pearce
2011).

These results quantify an extension of the soliton resolution conjecture from
integrable systems to non-integrable systems that, oftentimes, more closely model
physical systems. The conjecture states that localised initial conditions to nonlinear
dispersive wave equations generically evolve in long time towards a rank-ordered
train of solitary waves separated from small-amplitude dispersive waves (Segur
1973; Schuur 1986; Deift et al. 1994). Here, we have formally derived quantitative
measures of the solitary wave component, which typically dominates the long-time
outcome in problems with large-scale localised initial data. Predicting properties of the
accompanying small-amplitude dispersive waves is the next step towards quantifying
an extension of the full conjecture to non-integrable systems.

These promising results for solitary wave fission in the model conduit system
provide inspiration for future studies on this problem in other complex systems.
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