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Abstract
Whitham modulation theory describes the zero dispersion limit of nonlinear
disperesive partial differential equations (PDEs) by a system of conservation
laws for the parameters of modulated periodic traveling waves (TWs). In this
work, admissible, discontinuous, weak solutions of the Whitham modulation
equations—termedWhitham shocks—are identified with zero dispersion limits
of TW solutions to higher order dispersive PDEs. The far-field behavior of the
TW solutions satisfies the Rankine–Hugoniot jump conditions for theWhitham
modulation equations. Generally, the numerically computed traveling waves
represent heteroclinic connections between two periodic orbits of an ordinary
differential equation. The focus here is on the fifth order Korteweg–de Vries
equation where three admissible one-parameter families of Whitham shocks
are identified as solution components to the generalized Riemann problem for
the Whitham modulation equations. Admissible KdV5–Whitham shocks are
generally undercompressive, i.e., all characteristic families pass through the
shock. The heteroclinic TWs that limit to admissibleWhitham shocks are found
to be ubiquitous in numerical simulations of smoothed step initial conditions
for other higher order dispersive equations including the Kawahara equation
(with third and fifth order dispersion) and a nonlocal model of weakly nonlin-
ear gravity-capillary waves with full dispersion. Whitham shocks are linked to
recent studies of nonlinear higher order dispersive waves in optics and ultra-
cold atomic gases. The approach presented here provides a novel method for
constructing new TW solutions to dispersive nonlinear wave equations and a
framework to identify physically relevant, admissible shock solutions of the
Whitham modulation equations.
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1. Introduction

Nonlinear dispersive wave equations are host to numerous solutions ranging from steady
periodic traveling waves (TWs) and solitary waves to unsteady dispersive shock waves
(DSWs). The canonical model equation that includes third order (long wave) dispersion is
the Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0. (1)

In their seminal paper, Gurevich and Pitaevskii (GP) [1] construct the KdV DSW by solv-
ing a Riemann problem consisting of step initial conditions for the KdV–Whitham mod-
ulation equations. The KdV–Whitham modulation equations are a first order, quasi-linear
system of three conservation laws for the slow evolution of a KdV nonlinear periodic
TW’s parameters [2]. Despite the apparent contradiction of applying the Whitham modu-
lation equations—obtained by averaging conservation laws of the KdV equation under the
assumption of longwavelength modulations—to discontinuous initial data, the GP DSWmod-
ulation solution is not a discontinuous shock but rather consists of a self-similar, centered
rarefaction wave solution (a 2-wave [3]) between two constant levels. In a series of papers,
Lax, Levermore [4–7] and Venakides [8, 9] utilized the inverse scattering transform to prove
that the KdV–Whitham system (and their multiphase generalizations [10]) describe the zero
dispersion limit of the KdV equation. The limit was shown to be weak in the L2 sense and thus
provides a rigorous justification for Whitham’s averaging approach.

Because the KdV–Whitham equations are strictly hyperbolic [11], a generic class of initial
data will necessarily lead to singularity formation and multivalued solution regions. Singu-
larity formation in the KdV–Whitham equations is regularized by adding an additional phase
to the multiphase modulation solution. The simplest case is breaking of the dispersionless
Hopf equation (the zero-phase KdV–Whitham equation) for the mean flow that is regularized
by the addition of an oscillatory region that emanates from a point of gradient catastrophe
in the x–t plane and is described by the one-phase KdV–Whitham equations for modulated
periodic waves [12–14]. The boundaries of this modulated, one-phase region matches contin-
uously to the zero-phase solution, which generalizes the GP step problem to smooth initial
conditions. Singularity formation in the one-phase Whitham equations similarly leads to x–t
regions that are described by the two-phase Whitham equations [10] that match continuously
to the solution of the one-phaseWhitham equations [15]. Generally, compressive waves in the
KdV–Whitham equations that lead to gradient catastrophe are regularized in terms of global,
continuous expansion waves of a higher order system of multiphase modulation equations.
This is also the case for other integrable systems such as the defocusing nonlinear Schrödinger
equation [16]. One can regularize singularity formation in theWhitham equations by an appro-
priate choice of degenerate initial conditions for sufficiently large phase modulations that yield
global, continuous solutions [17–19].

Despite our understanding of singularity formation in theWhitham equations for integrable
systems, there remains an outstanding question regarding discontinuous shock solutions. Do
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discontinuous, weak solutions of the Whitham equations have any meaning vis-a-vis the gov-
erning partial differential equation (PDE) and the physical system that it models? One standard
approach in the conservation law community is to identify discontinuous shock solutions of
hyperbolic systems as admissible if they are the pointwise limit of TW solutions to the dissi-
patively or dissipative-dispersively perturbed conservation law as dictated by the microscopic
physics of the problem [20, 21]. The TW profiles are heteroclinic, equilibrium-to-equilibrium
solutions of a stationary ordinary differential equation (ODE). This approach leads to both
admissible compressive Lax shocks [22, 23] and admissible nonclassical undercompressive
shocks [24]. But the Whitham modulation equations are the zero dispersion limit of a con-
servative PDE so that there is no justification for introducing dissipative perturbations to the
Whitham equations.

Instead, we expand the collection of TWs and prove that if TW solutions of a conservative
PDE consist of heteroclinic connections between an equilibrium or a periodic orbit and another
periodic orbit exist, their far-field behavior satisfies theRankine–Hugoniot relations for discon-
tinuous, shock solutions of theWhithammodulation equations.This enables us to define admis-
sible shock solutions of the Whitham modulation equations—Whitham shocks—as (weak)
zero dispersion limits of oscillatory, heteroclinic TW solutions. The solution of the govern-
ing PDE corresponding to a Whitham shock consists of two disparate oscillatory waves that
are connected by a transition region occurring over the length scale of a single oscillation, the
dispersive coherence length [3].

A phase plane analysis shows that the KdV equation (1) does not admit heteroclinic TW
solutions [25]. Consequently, the Whitham shocks studied here are not admissible solutions
of the KdV–Whitham equations. Instead, we consider a different class of nonlinear dispersive
equations.

While KdV is a universal model of DSWs in convex media [3], modifications to it are
required when higher order, e.g., short wavelength, or large amplitude, effects occur. The KdV
equation is then modified to include higher order dispersive and/or nonlinear terms that more
accurately model the underlying physics [23]. This manuscript focuses on the implications of
higher order and nonlocal dispersive effects on both steady, TW solutions as well as unsteady
DSWs. A canonical model incorporating higher order dispersion and weak nonlinearity is the
fifth order Korteweg–de Vries equation (KdV5)

ut + uux + uxxxxx = 0. (2)

The zero dispersion limit of the KdV5 equation (2) which will be of use throughout this
manuscript is made explicit via the hydrodynamic variable transformationX = εx, T = εt, and
U(X, T; ε) = u(X/ε, T/ε). Substitution of these variables into (2) yields

UT + UUX + ε4UXXXXX = 0, (3)

so that the singular zero dispersion limit is achieved by passing ε→ 0.
In a typical multi-scale asymptotic expansion for weakly nonlinear, long waves, the disper-

sion relation expansion for small wavenumber involves successively smaller terms. In this sce-
nario, cubic dispersion typically dominates, which is the reason the KdV equation is said to be
universal.However,when successive terms are comparable, e.g., third and fifth order dispersion
near an inflection point [26], then higher order dispersion is operable. The KdV5 equation (2)
is an example in which fifth order dispersion dominates over all others, but other well known
examples also exist. A long wave, nonlinear model that incorporates the competition between
third and fifth order dispersion is the Kawahara equation [27]

ut + uux + αuxxx + uxxxxx = 0, (4)
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where α ∈ R is a parameter. Higher order dispersive effects can also occur when full, or
nonlocal dispersion is included. A class of models in this vein is

ut + uux +K ∗ ux = 0, K(x) =
1
2π

∫ ∞

−∞

ω(k)
k

eikxdk, (5)

where ω(k) is the linear dispersion relation and

(K ∗ ux)(x, t) =
∫
R

K(x− y)uy(y, t) dy. (6)

This model was originally proposed byWhitham as a weakly nonlinear, fully dispersive model
of water waves [23, 28] and has since been called the Whitham equation, not to be mistaken
for the aforementioned Whitham modulation equations. Since then, this model has been used
in applications to understand the propagation of water waves with surface tension [29]. The
dispersion relation for gravity-capillary water waves is

ωww(k) =
√
k(1+Bk2) tanh k ∼ k +

3B− 1
6

k3 +
(19−15B(3B+2))

360
k5 + · · · , 0 < k � 1

so that the Fourier transform (5) and convolution (6) should be considered in the distribu-
tional sense [30, 31]. For Bond number B (the ratio of surface tension to gravity forces) near
1/3, higher order dispersion is important. Generally, whenever linear dispersion exhibits an
inflection point for nonzero wavenumber k, higher order dispersive effects take precedence
[26].

Dispersive systems with higher order dispersion occur in a variety of applications, for
example, gravity-capillarywater waves [32–34] and flexural ice sheets [35–37], nonlinear opti-
cal systems [38–41], and Bose–Einstein condensates [42] all exhibit a change in dispersion
curvature for sufficiently short waves. Nonlinear PDEs with higher order or nonlocal disper-
sion admit solutions wholly different from their lower order dispersive counterparts. Examples
include multi-mode periodic waves (TWs in which two wavenumbers are resonant) [43–45],
solitary waves consisting of multiple pulses [46], solitary waves with decaying oscillatory tails
[27, 47], and solitary waves accompanied by co-propagating small, but finite, amplitude oscil-
lations spatially extending to infinity [48–50]. This rich zoology of TWs can be attributed to
additional degrees of freedom inherent in the higher order ODE that results from a TW ansatz.
In this manuscript,we identify new heteroclinic and homoclinicTW solutions to further expand
this zoology.We discuss the construction and numerical computation of these TW solutions in
section 5 of this manuscript.

The increased variety of solutions to higher order dispersive PDEs is not limited to steady
solutions. The unsteady dynamics that result from dispersively regularized gradient catas-
trophe, most simply embodied by the smooth, step-like initial data with transition width w

u(x, 0) =
Δ

2

[
1− tanh

( x
w

)]
(7)

for, e.g., equations (2) and (4), are notably different from lower order dispersive systems such
as KdV (1). Previous numerical and asymptotic studies have jointly identified the following
distinct, unsteady regimes for Riemann problems of higher order or nonlocal PDEs:

(a) DSW implosion: above a critical jump height, the DSW’s harmonic wave edge becomes
modulationally unstable and a multiphase structure emerges [51, 52].
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Figure 1. Numerical simulation of the smoothed Riemann problem (7) withΔ = 1 for
the KdV5 equation (2). (a) Solution at t = 1000 (solid) for a TDSW and the initial step
(dashed). (b) A zoom in of the trailing edge that resembles an equilibrium heteroclinic
to a periodic orbit TW solution to the KdV5 equation [54].

(b) Radiating DSW (RDSW): a perturbed convex DSW with exponentially small radiation
emitted from the solitary wave edge. This results from a linear resonance between the
solitary wave and shorter linear waves [26, 41].

(c) TravelingDSW (TDSW): a rapid transition from an equilibrium level to a comovingnearly
periodic wavetrain slowly transitions to a constant level via a partial DSW from the inter-
mediate periodic wavetrain to a background constant [26, 53, 54]. See figure 1 for an
example TDSW solution of the KdV5 equation.

(d) Crossover DSW: can be thought of as a combination of the RDSW and TDSW, where the
linear resonance begins to grow to a finite amplitude wavetrain and the wave dynamics
are more complex [26, 41].

The original motivation for this manuscript was to fully describe the TDSW solution in
figure 1 in terms of modulation theory. As we show in section 6, the TDSW can be described
in terms of a shock-rarefaction solution to the KdV5–Whitham and the Kawahara–Whitham
modulation equations. However, during our research, a broader theme emerged and revealed
a host of novel heteroclinic and homoclinic TW solutions as well as a Whitham modulation
theory framework in which to interpret them.

A recent preprint considers the so-called generalized Riemann problem for the Whitham
modulation equations of the Serre–Greene–Naghdi (SGN) equations that model fully non-
linear shallow water waves [55]. In particular, the numerical evolution of initial conditions
consisting of one periodic wave that rapidly transitions to an equilibrium was shown as evi-
dence that discontinuous, weak solutions of the SGN–Whitham equations can be realized.
Emerging from this class of initial data were structures that resemble TW solutions of the
governing PDE although genuine equilibrium heteroclinic to periodic TW solutions are ruled
out by the second order ODE they satisfy. The dispersion relation for the SGN equations is
ω(k) = k/

√
k2/3+ 1, which does not exhibit an inflection point. Consequently, the numerical

results obtained in [55] and their interpretation as shock solutions of the Whitham equations
suggest that Whitham shocks exist in nonlocal, strongly nonlinear regimes in addition to the
weakly nonlinear cases studied here.

This paper is organized as follows. In section 2, we discuss TW solutions of the KdV5
equation. Homoclinic TW solutions are used to derive the KdV5–Whitham modulation
equations in section 3. We also study the properties of the Whitham modulation equations
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and identify a class of 2-wave curves that we later use to solve the KdV5 equation (2) with
step-like data (7). In section 4, we study shock solutions of the modulation equations. Here,
we also prove that heteroclinic TWs consisting of disparate, co-propagating periodic waves
necessarily satisfy the Rankine–Hugoniot jump conditions for theWhitham equations.We use
this result to define admissible Whitham shocks as the zero dispersion limit of KdV5 hetero-
clinic TW solutions. In section 5, we use the Whitham shock locus to compute a rich variety
of heteroclinic and homoclinic TW solutions. We discuss extensions and applications of the
newly developed theory to the smoothed Riemann problem (7) for the KdV5 equation (2), the
Kawahara equation (4), and the Whitham equation (5) in section 6. In section 7, we conclude
the manuscript and postulate new and related problems to the present work.

2. KdV5 periodic traveling wave solutions

TWs are sought in the form

u(x, t) = f (ξ), ξ = x− ct

where c is the phase velocity. The profile function f satisfies the ODE

−c f ′ + f f ′ + f (5) = 0. (8)

Integration yields the fourth order profile ODE

f ′′′′ +
1
2
f 2 − c f − A/2 = 0, (9)

where A ∈ R is a constant of integration. This ODE can be integrated again to yield the energy-
type integral

f ′′′ f ′ − 1
2

(
f ′′
)2

+
1
6
f 3 − c

2
f 2 − A

2
f + B = 0, (10)

whereB ∈ R is another constant of integration.We rewrite the ODE (9) as the first order system

Φ′ = LΦ+ R(Φ), L =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
c 0 0 0

⎞
⎟⎟⎠ , R(Φ) =

⎛
⎜⎜⎜⎝

0
0
0

1
2
(A− Φ2

1)

⎞
⎟⎟⎟⎠ , (11)

where Φn = dn−1f/dξn−1, n = 1, 2, 3, 4, are the components of the vector Φ.

2.1. Linearization

The fixed points U(ξ) = U0 of the ODE (11) are

U(±)
0 =

(
U(±)

0 0 0 0
)T
, U(±)

0 = c±
√
c2 + A, (12)

so that c2 > −A for real equilibria. Linearization about these fixed points results in the matrices

L+
∂R
∂U

(U(±)
0 ) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

c− U(±)
0 0 0 0

⎞
⎟⎟⎠ , (13)
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whose eigenvalues λ(±)
j come in quartets with corresponding right eigenvectors r(±)

j

λ(±)
1 = −μ(±), r(±)

1 =
(
1,−μ(±),μ(±),−

(
μ(±)
)3)T

,

λ(±)
2 = −iμ(±), r(±)

2 =
(
1,−iμ(±),−μ(±), i

(
μ(±)
)3)T

,

λ(±)
3 = iμ(±), r(±)

3 =
(
1,μ(±),−μ(±),−i

(
μ(±)
)3)T

,

λ(±)
4 = μ(±), r(±)

4 =
(
1,μ(±),μ(±),

(
μ(±)
)3)T

,

(14)

where μ(±) = (c− U(±)
0 )1/4. We observe that the fixed point U(−)

0 has
U(−)

0 = c−
√
c2 + A < c so that the complex conjugate eigenvalues λ(−)

2,3 = ∓i(c2 + A)1/8 lie

on the imaginary axis whereas λ(−)
1,4 = ∓(c2 + A)1/8 are opposite and lie on the real axis. The

eigenvalues λ(+)
j are π/4 rotations of λ(−)

j in the complex plane for j = 1, 2, 3, 4.

This linear analysis suggests the existence of small amplitude periodic orbits near U(−)
0 ,

with one-dimensional stable and unstable manifolds in the directions r(−)
1 and r(−)

4 , respec-
tively. These manifolds are what enable the periodic-heteroclinic-to-periodic TWs numeri-
cally computed in this paper. The existence of periodic orbits for (11) was demonstrated in
[56] and related results establishing the existence and stability of wavetrains in the related
Kawahara equation (4) are established in [57]. This motivates our investigation of heteroclinic
connections between differing periodic orbits.

First, we consider 2π-periodic TW solutions to (2) in the form

f (ξ) = ϕ(θ; u, a, k), ϕ(θ + 2π; u, a, k) = ϕ(θ; u, a, k), (15)

where θ = kξ is the phase variable and ϕ possesses three independent parameters identified in
figure 2 and defined as

Wavenumber: k,

Wavemean: u =
1
2π

∫ 2π

0
ϕ(θ)dθ,

Wave amplitude: a = max
θ∈[0,π]

ϕ(θ)− min
θ∈[0,π]

ϕ(θ),

and wave frequency ω = ck, c = c(u, a, k).

2.2. Scaling and Galilean symmetries

KdV5 (2) admits the Galilean

u(x, t)→ u(x− u0t, t)+ u0, (16)

and scaling

u→ bu, x→ b−1/4x, t→ b−5/4t, (17)
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Figure 2. Nonlinear periodic TW solution to (2) with mean u, amplitude a and
wavenumber k.

symmetries. Therefore, the three-parameter family of periodic TWs can be generated from the

one-parameter family of zero mean unit amplitude periodic TWs
{
(ϕ̃(θ; k̃), c̃(k̃))

}
k̃�0

by

ϕ(θ; u, a, k) = u+ aϕ̃(a1/4θ − a1/4kut; a−1/4k),

c(u, a, k) = ac̃(a−1/4k)+ u,
(18)

for any a > 0, k > 0, u ∈ R. Note that ϕ̃(θ; k̃) = ϕ(θ; 0, 1, k̃) and c̃(k̃) = c(0, 1, k̃).

2.3. Approximate and numerical computations of periodic waves

We now obtain approximate periodic solutions to (8) via a weakly nonlinear Stokes frequency
shift calculation [23] and through numerical computations. The periodic solutions will be used
to obtain the Whitham modulation system.

We seek an approximate form for the periodic wave ϕ(θ) and its phase speed c as series
expansions in the small, finite amplitude parameter a

ϕ = u+ aϕ1 + a2ϕ2 + · · · , c = c0 + a2c2 + · · · .

Inserting the asymptotic approximation and equating like powers of a, we obtain the periodic
wave and phase velocity up to O(a2)

ϕ(θ; u, a, k) = u+
a
2
cosθ − a2

240k4
cos 2θ + · · · , 0 < a � 1, k � a1/4,

(19)

c(u, a, k) = u+ k4 − a2

480k4
+ · · · , 0 < a � 1, k � a1/4. (20)

Here, the restriction on the wavenumber k � a1/4 is required so that the asymptotic series
remains well ordered. We remark that the asymptotic series can be rescaled to arbitrary a via
the symmetries (16), (17) so that the requirement a � 1 can be formally relaxed but we must
maintain the short wave requirement k � a1/4 in order to respect asymptotic ordering.

We now present computations of periodic solutions to the profile ODE (8) where we take
A = 0 via a Galilean shift. The solutions are computed via a projection onto a Fourier basis.
A solution to the nonlinear system for the periodic wave’s Fourier coefficients is carried out
with Matlab’s nonlinear solve routine fsolve. Details of this computation are contained in
appendix A.
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Figure 3. Numerically computed periodic TWs ϕ̃(θ, k̃) with zero mean and unit ampli-
tude. (a) Example periodic waves. (b) Comparison of numerically computed phase
velocity c̃ for the family of periodic waves (black solid curve) compared with the Stokes
approximation equation (20) (red dashed curve). Insets: example periodic waves for the
wavenumbers k̃ = 0.2 and k̃ = 1.

Examples of periodic TW solutions and their corresponding nonlinear dispersion curves
are given in figure 3. Small k̃ corresponds to a well separated, solitary wave train. One metric
for the validity of the Stokes approximation is the accuracy of the phase velocity (20), which
compares favorably to the numerically computed phase velocity for k̃ � 0.4.

3. KdV5–Whitham modulation equations

The Whitham modulation equations describe the zero dispersion limit of nonlinear wavetrains
[4]. Equivalently, these equations describe slowmodulations of periodic TWs. The modulation
equations are a system of first order, quasi-linear conservation laws for the parameters (u, a, k)
that we now derive. Equation (2) admits the two conservation laws

(u)t +

(
1
2
u2 + uxxxx

)
x

= 0, (21)

(
1
2
u2
)
t

+

(
1
3
u3 + uuxxxx − uxuxxx +

1
2
u2xx

)
x

= 0. (22)

The Whitham equations can be obtained by a period-average of the conservation laws, eval-
uated on the periodic TW manifold [2]. To see this, we introduce the rapid phase variable
θ = S(X, T)/ε satisfying

k = θx = SX , ω = −θt = −ST ,

where we recall X = εx and T = εt are the long space and slow time scales with 0 < ε � 1 as
in (3). We then seek an asymptotic solution in the form

u(x, t) = ϕ(θ; u, a, k)+ εu1(θ,X, T)+O(ε2), (23)

with a leading order periodic TWwhose parameters u, a, k depend on the slow variables X and
T and each of the un are 2π-periodic in θ. Consequently, the derivatives in (21), (22) transform
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according to

∂

∂x
= k

∂

∂θ
+ ε

∂

∂X
,

∂

∂t
= −ω

∂

∂θ
+ ε

∂

∂T
.

We now introduce averaging of the quantity F[u(x, t);X, T] according to

F =
1
2π

∫ 2π

0
F dθ. (24)

Then, substituting the asymptotic series (23) for u into F results in

∂F
∂t

= ε
∂F
∂T

+O(ε2),
∂F
∂x

= ε
∂F
∂X

+O(ε2),

owing to the fact that the period average of an exact θ derivative is zero for periodic functions.
Applying the averaging operator (24) to the conservation laws (21), (22) with the asymptotic
series (23) for u, we obtain

(u)T +

(
1
2
ϕ2 + k4ϕθθθθ

)
X

= 0, (25)

(
1
2
ϕ2

)
T

+

(
1
3
ϕ3 + k4ϕϕθθθθ − k4ϕθϕθθθ +

1
2
k4ϕ2

θθ

)
X

= 0, (26)

subject to O(ε) corrections that vanish in the zero dispersion limit. The modulation system is
closed by the phase compatibility condition SXT = STX, yielding the conservation of waves

kT + (ck)X = 0. (27)

Thus, we conclude that the KdV5–Whithammodulation equations (25)–(27) describe the zero
dispersion limit of the KdV5 equation (3). If initial data for equations (25)–(27) are invariant
to the hydrodynamic scaling transformation X→ bX, T→ bT—e.g., the step initial data con-
sidered later—then an equivalent alternative to the zero dispersion limit is the long time limit
of equations (25)–(27) with the unscaled independent variables x = X/ε, t = T/ε.

The conservation laws (25), (26) can be simplified via integration by parts

ϕθθθθ = 0, ϕϕθθθθ = ϕ2
θθ, ϕθϕθθθ = −ϕ2

θθ.

These identities, along with a return to the unscaled variables x, t, imply that the Whitham
equations in conservative form can be written compactly

ut +

(
1
2
ϕ2

)
x

= 0, (28)

(
1
2
ϕ2

)
t

+

(
1
3
ϕ3 +

5
2
k4ϕ2

θθ

)
x

= 0, (29)

kt + (ck)x = 0. (30)

This form will be convenient for our purposes because it eliminates the small dispersion
parameter ε from the problem.
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3.1. Properties of the Whitham equations

3.1.1. Weakly nonlinear regime. We approximate the averaging integrals in the Whitham
equations (28)–(30) with the Stokes wave (19) and its dispersion relation (20) yielding

ϕ2 = u2 +
a2

8
+ · · · , ϕ3 = u3 +

3
8
ua2 + · · · , (ϕθθ)2 =

a2

8
+ · · · , (31)

accurate to O(a2). Inserting these approximate integrals into the averaged conservation
laws (28)–(30), the weakly nonlinear KdV5–Whitham equations in conservative form are
approximately

ut +

(
1
2
u2 +

a2

16

)
x

= 0,

(
1
2
u2 +

a2

16

)
t

+

(
1
3
u3 +

1
8
ua2 +

5
16
k4a2
)
x

= 0,

kt +

[(
u+ k4 − a2

480k4

)
k

]
x

= 0.

(32)

The non-conservative, quasi-linear form is

⎡
⎣ua
k

⎤
⎦
t

+

⎡
⎢⎢⎣
u

a
8

0

a u+ 5k4 10ak3

k − a
240k3

u+ 5k4 +
a2

160k4

⎤
⎥⎥⎦
⎡
⎣ua
k

⎤
⎦
x

= 0. (33)

A standard perturbation calculation gives the approximate eigenvalues

λ1 = u+
a2

40k4
+O(a3), (34)

λ2 = u+ 5k4 −
√

5
24
a− 3a2

320k4
+O(a3), (35)

λ3 = u+ 5k4 +

√
5
24
a− 3a2

320k4
+O(a3), (36)

and eigenvectors

r1 =

⎛
⎜⎜⎜⎝
−5k3

0

1

⎞
⎟⎟⎟⎠− a

⎛
⎜⎜⎜⎝
0
1
k
0

⎞
⎟⎟⎟⎠+ a2

⎛
⎜⎜⎜⎝

7
480k5

0

0

⎞
⎟⎟⎟⎠+O(a3), (37)

r2 =

⎛
⎜⎜⎜⎝

0

−4
√
30k3

1

⎞
⎟⎟⎟⎠+ a

⎛
⎜⎜⎜⎜⎜⎝
−

√
3√
10k

33
20k

0

⎞
⎟⎟⎟⎟⎟⎠+ a2

⎛
⎜⎜⎜⎜⎜⎝

− 7
800k5√

3
10

213
3200k5

0

⎞
⎟⎟⎟⎟⎟⎠ ,+O(a3) (38)
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r3 =

⎛
⎜⎜⎜⎝

0

4
√
30k3

1

⎞
⎟⎟⎟⎠+ a

⎛
⎜⎜⎜⎜⎜⎝

√
3√
10k
33
20k

0

⎞
⎟⎟⎟⎟⎟⎠+ a2

⎛
⎜⎜⎜⎜⎜⎝

− 7
800k5

−
√

3
10

213
3200k5

0

⎞
⎟⎟⎟⎟⎟⎠+O(a3) (39)

of the flux Jacobian matrix in (33). The quasi-linear system (33) is genuinely nonlinear if
μj = ∇λj · vj = 0 for all j. If μj = 0 for some set of parameters u, a, and k then we say that
the quasilinear system is linearly degenerate on that set. By a direct calculation, we find that
the weakly nonlinear Whitham equations in the asymptotic regime 0 < a� 1, k � a1/4 are
strictly hyperbolic and genuinely nonlinear.

3.1.2. Strongly nonlinear regime. In the strongly nonlinear regime, we rewrite the modu-
lation equations (28)–(30) in non-conservative form in terms of the modulation variables
q = [u, a, k]T

qt +Aqx = 0 (40)

where

A =

⎡
⎢⎢⎢⎣

1 0 0

1
2
∂ϕ2

∂u
1
2
∂ϕ2

∂a
1
2
∂ϕ2

∂k
0 0 1

⎤
⎥⎥⎥⎦
−1

×

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
∂ϕ2

∂u
1
2
∂ϕ2

∂a
1
2
∂ϕ2

∂k

1
3
∂ϕ3

∂u
+

5
2
k4
∂ϕ2

θθ

∂u
1
3
∂ϕ3

∂a
+

5
2
k4
∂ϕ2

θθ

∂a
1
3
∂ϕ3

∂k
+

5
2
∂(k4ϕ2

θθ)
∂u

k
∂c
∂u

k
∂c
∂a

∂(ck)
∂u

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which is valid provided ∂ϕ2

∂a = 0 so that the matrix inverse exists. For all of the computations
performedhere,A is well-defined. The symmetries (16), (17) of solutions to theKdV5 equation
can be used to directly compute the integral dependence on the mean u and amplitude a. We
define the averaging integrals

In(u, a, k) =
1
2π

∫ 2π

0
ϕn(θ; u, a, k) dθ, J2(u, a, k) =

1
2π

∫ 2π

0
ϕ2
θθ(θ; u, a, k) dθ

These integrals can be written explicitly in terms of period averages over the one-parameter
family of periodic solution ϕ̃(θ; k̃) using (18)

I2(u, a, k) = u2 + a2Ĩ2(a−1/4k),

I3(u, a, k) = u3 + 3ua2Ĩ2(a−1/4k)+ a3Ĩ3(a−1/4k),

J2(u, a, k) = a2J̃2(a
−1/4k),

(41)

where

Ĩn(k̃) = In(0, 1, k̃), J̃2(k̃) = J2(0, 1, k̃),
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are averaging integrals of unit amplitude, zero mean periodic TWs that were computed
numerically in section 2.3.

We now investigate the hyperbolicity/ellipticity and genuine nonlinearity of the modulation
equations. These criteria depend solely upon the eigenvalues λj and eigenvectors rj of A that
satisfy

(
A− λ jI

)
r j = 0,

where I is the 3× 3 identity matrix. In general, we expect three eigenpairs {(λ j, r j)}3j=1 that
depend on the values (u, a, k). By the symmetries (16), (17), it is enough to determine their
dependence on k̃ only.

Weak hyperbolicity of the modulation equations is a necessary condition for the modula-
tional stability of periodic waves [23, 58]. Numerical computation of the characteristic veloc-
ities depicted in figure 4 illustrate hyperbolicity of the modulation equations for a range of k̃.
When 0.41 � k̃ � 0.65 and 0.25 � k̃ � 0.3, two complex conjugate characteristic velocities
with nonzero imaginary part emerge, so that corresponding periodic waves are modulationally
unstable. It is further shown in figure 4 that the weakly nonlinear calculations for the character-
istic velocities equations (34)–(36) are in excellent agreementwith fully nonlinear calculations
for k̃ � 0.7.

In a similar manner, we utilize the eigenvalues and eigenvectors to determine regions of
genuine nonlinearity for the modulation equations (28)–(30) by computing the quantity

μ j = ∇λ j · r j, j = 1, 2, 3. (42)

For waves of unit amplitude and zero mean, we find points of linear degeneracy where
μ1 ≈ μ2 ≈ 0, which are identified by the red points in the lower panel of figure 4(a). In
addition to points where characteristic velocities coalesce and consequently the system is
linearly degenerate [21] our numerical computations (see appendix A) suggest that both
the first and second characteristic fields are not genuinely nonlinear at these select points
k̃ ∈ {0.167, 0.185, 0.222, 0.370}.

In strictly hyperbolic regions, we compute wave curves that parameterize self-similar, sim-
ple wave solutions to the modulation equation (40). These wave curves will be applied to the
solution of Riemann problems in section 6. The jth wave curve is the integral curve in the
direction rj [21]. We introduce the self similar parameterization s = s(x, t) so that q = q(s)
and, along s = λj,

dq
ds

=
r j
μ j

. (43)

Illustrative 2-wave curves are displayed in figures 4(b) and (c) and correspond to the shaded
regions in figure 4(a) (lower panel) on the left and right respectively. In these figures, we project
the three dimensional curve (u(s), a(s), k(s)) onto both the u–a plane and the u–k plane. We
normalize the wave curves to emanate from the zero mean, unit amplitude state u = 0, a = 1.
For this visualization, we should note that u(s) is a monotonically decreasing function in s.
The existence of a 2-wave curve in the parameter regimes depicted in figures 4(b) and (c) is
requisite for the construction of the modulation solution of a TDSW in section 6.1.
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Figure 4. (a) Eigenvalues of A for u = 0, and a = 1 as a function of wavenumber k̃
shown in black curves. The eigenvalues from weakly nonlinear theory (34)–(36) are
identified by dashed red curves. Gray, banded regions denote the domain of the 2-wave
curves in (b) and (c). (b) Example 2-wave curve for 0 < k̃ � 0.15. (c) Example 2-wave
curve for 0.65 � k̃ < 1.

4. Whitham shocks: abstract setup

Now that we have obtained the Whitham modulation equations and described their struc-
ture, we consider shock solutions for the conservation laws (28)–(30) and their connections
to heteroclinic TW solutions of the KdV5 equation.

The modulation equations (28)–(30) are of the form

Pt +Qx = 0, (44)

where P,Q ∈ R
3 are the averaged density and fluxes of the modulation system that depend

on the modulation variables q(x, t). Traveling shock solutions take the form of a moving
discontinuity

q(x, t) =

{
q− x < Vt

q+ x > Vt
, (45)

where the velocity of the shock, V, satisfies the Rankine–Hugoniot relations

−V[[P]]+ [[Q]] = 0, (46)
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where P,Q ∈ R
3 are the averaged densities and fluxes in equations (28)–(30) and [[·]] repre-

sents the difference in the left, right values that depend on the periodic wave on the left and
right with variables q− and q+ respectively. This is summarized by the following

Definition 1 (Whitham shock). A discontinuity (45) moving with velocity V is called a
Whitham shock when it is a weak solution of the Whitham modulation equations in conser-
vative form (44). That is, the left q− and right q+ states satisfy the Rankine–Hugoniot jump
conditions (46).

Whitham shock solutions the KdV5 modulation equations (28)–(30) take the form of a
moving discontinuity

u(x, t) =

{
u− x < Vt

u+ x > Vt
a(x, t) =

{
a− x < Vt

a+ x > Vt
k(x, t) =

{
k− x < Vt

k+ x > Vt
.

(47)

where the shock velocity V satisfies the Rankine–Hugoniot jump conditions

−V(u− − u+)+
1
2

(
ϕ2
− − ϕ2

+

)
= 0, (48)

−V
2

(
ϕ2
− − ϕ2

+

)
+

1
3

(
ϕ3
− − ϕ3

+

)
+

5
2

(
k4−ϕ

2
−,θθ − k4+ϕ

2
+,θθ

)
= 0, (49)

−V(k− − k+)+
(
c−k− − c+k+

)
= 0. (50)

where ϕ± = ϕ(θ; u±, a±, k±) are the right (+)/left (−) periodic TWs whose parameters
compose the Whitham shock.

In order to determine the admissibility ofWhitham shocks, we consider smooth heteroclinic
TW solutions to the KdV5 equation (2) that uniformly asymptote to distinct periodic waves as
x→±∞

u(x, t)→
{
ϕ−(k−x− ω−t − θ−) ≡ ϕ(k−x− ω−t − θ−; u−, a−, k−) x→−∞
ϕ+(k+x− ω+t − θ+) ≡ ϕ(k+x− ω+t − θ+; u+, a+, k+) x→∞

,

(51)

with each far-field periodic wave (ϕ±) characterized by the parameters (u±, a±, k±) and phases
θ±. The boundary case where k±→ 0 reduces the respective far-field behavior to ϕ± → u±,
and therefore satisfies the far-field periodicity requirement.

Our main result states that KdV5 heteroclinic TW solutions exhibiting the far field behavior
(51) necessarily lie on the Whitham shock locus of states satisfying (48)–(50).

Theorem 1. Suppose f(ξ) with speed c (ξ = x− ct) satisfies (8), hence is a TW solution of
the differential equation (2) such that

inf
θ±∈[0,2π)

| f (ξ)− ϕ±(k±ξ − θ±)| → 0

uniformly as ξ →±∞, then the Rankine–Hugoniot relations (48)–(50) for the
KdV5–Whitham equations (28)–(30) are satisfied by the far-field periodic waves ϕ±
with parameters u±, a±, k±. The TW speed is the shock speed c = V and coincides with the
phase velocities c = c±.
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Proof. By assumption, there exists some TW profile f(ξ) that solves equation (8) with the
far-field behavior described by the boundary conditions (51). The factors θ± are appropriate
phase shifts so that the TW matches the far-field periodic orbits ϕ±. We define the averaging
operators L̄± acting on the integrable function F(ξ) as

L̄±[F] = lim
x̄→±∞

k±
2π

∫ x̄+2π/k±

x̄
F(ξ)dξ.

Since f→ ϕ± uniformly, we can compute for n = 1, 2, 3

L̄±[ f n] = lim
x̄→±∞

k±
2π

∫ x̄+2π/k±

x̄
f n(ξ)dξ,

=
1
2π

∫ x̄+2π

x̄
ϕn±(θ)dθ,

= ϕn±

and

L̄±[( f ′′)2] = lim
x̄→±∞

k±
2π

∫ x̄+2π/k±

x̄
( f ′′(ξ))2dξ

=
k4±
2π

∫ x̄+2π

x̄

(
ϕ′′
±(θ)
)2
dθ

= k4±(ϕ
′′
±)2.

Since f is a TW solution to (8) with two periodic wave limits, the phase speed of each must be
the same, i.e.,

c = c±. (52)

This condition immediately implies the jump condition (50) with V = c from the conservation
of waves. All TW solutions with speed c admit the first and second integrals (9) and (10). We
now apply the operator L̄± to the first integral

−cu± +
1
2
ϕ2
± =

A
2
, (53)

where we used L̄±[ f ′′′′] = 0 by virtue of periodicity. Equating the two relations in (53) to
eliminate A gives

−c(u− − u+)+
1
2

(
ϕ2
− − ϕ2

+

)
= 0, (54)

which is the first jump condition (48) when we identify V = c. Applying the operator L̄± to
the second integral (10) results in

k4±ϕ
′′′
±ϕ

′
± − k4±

2
(ϕ′′

±)2 +
1
6
ϕ3
± − c

2
ϕ2
± − A

2
u± + B = 0, (55)
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where we used L̄±[ f ′′′ f ′] = k4±ϕ
′′′
±ϕ

′
±. Integrating by parts and applying (54) simplifies

equation (55) to

c
2
ϕ2
± − 1

3
ϕ3
± − 5

2
k4±(ϕ

′′
±)2 = −B. (56)

The third and final Rankine–Hugoniot condition (49) with V = c is found by subtracting the
+ and − instances of equation (56) to eliminate B

− c
2

(
ϕ2
− − ϕ2

+

)
+

1
3

(
ϕ3
− − ϕ3

+

)
+

5
2

(
k4−(ϕ

′′
−)2 − k4+(ϕ

′′
+)2
)
= 0, (57)

thereby completing the proof. �

Theorem 1 motivates the following.

Definition 2 (admissibility). A KdV5 Whitham shock (recall definition 1) is admissible if
there exists a heteroclinic TW solution with speed c = V to the KdV5 equation (2) satisfying
the profile equation (8) and the boundary conditions (51) corresponding to the left (−)/right
(+) states of the Whitham shock (47) and V = c+ = c−.

In the following section, we provide extensive numerical computations of heteroclinic TW
solutions that support the existence of admissible Whitham shocks for the KdV5 equation.
Definitions 1 and 2 on Whitham shocks and their admissibility, as well as theorem 1, naturally
extend to other nonlinear wave equations that admit heteroclinic to periodic TW solutions.
In section 6, we provide numerical evidence that the Kawahara equation (4) and nonlocal
Whitham equation (5) also exhibit admissible Whitham shocks.

5. Whitham shocks

In this section, we study admissible KdV5Whitham shocks via increasing levels of complexity.
First, we consider the case of a shock solution (47) to the modulation equations where one far-
field state degenerates to zero wavenumber, i.e., a solitary wave and the corresponding far-field
behavior is constant. These results are then generalized to Whitham shocks corresponding to a
heteroclinic TW where two periodic waves satisfying the jump conditions co-propagate with
identical phase velocities. The section culminates with computations of two co-propagating
Whitham shocks where the corresponding TW solutions are homoclinic, localized oscillatory
patterns on an oscillatory or constant background.

5.1. Solitary wave to periodic

We consider the case where the left periodic wave degenerates to a solitary wave (k− → 0) and
the right periodic wave is of unit amplitude and zero mean (a+ = 1, u+ = 0). The associated
Whitham shock (47) is

(u, a, k) (x, t) =

{
(u−, a−, 0) x < Vt

(0, 1, k+) x � Vt
. (58)

In the solitary wave limit (k→ 0) of the modulation equations (28)–(30), the averaged
quantities are

ϕ2 = u2, ϕ3 = u3, (ϕ′′)2 = 0.
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Therefore, the jump conditions (48)–(50) with a solitary wave on the left are

−V (u−)+

(
1
2
u2− − 1

2
ϕ2
+

)
= 0, (59)

−V
2

(
u2− − ϕ2

+

)
+

(
1
3
u3− − 1

3
ϕ3
+ − 5

2
k4+ϕ

2
+,θθ

)
= 0, (60)

V − c+ = 0. (61)

Note that neither the solitary wave amplitude a− nor velocity c− appear in the jump conditions.
An illuminating calculation using the Stokes wave approximation (19) for ϕ+ leads to

explicit formulae. In this case, the jump conditions (59)–(61) are solved by

V = c+ =
u−
2

− 1
16u−

, k4+ =
4u3− + 3u−

15
− 1

80u−
(62)

where u2− is a root of the quartic polynomial

1024
(
u2−
)4 − 384

(
u2−
)3 − 720

(
u2−
)2

+ 168
(
u2−
)
− 9 = 0, (63)

which has three positive solutions u2− ∈ {0.08 777, 0.1337, 0.9455}. The positive square roots
are inserted into (62) to obtain the wavenumber k+, shock velocity V, and the right characteris-
tic velocities from equations (34)–(36) for three distinct shock loci, all summarized in table 1.
The left solitary wave amplitude a− can be recovered from the solitary wave speed-amplitude
relation by equating it to the shock velocity c(u−, a−, 0) = V . The left characteristic speeds for
the left solitary wave state are λ(−)

1 = u−, λ
(−)
2 = λ(−)

3 = V . The reason that two of the charac-
teristic velocities for the left state are the same is that two of the three modulation equations
coincide in the solitary wave limit k→ 0, which is a well-known property of the Whitham
equations [3]. The cases where u2− < 0 or u− < 0 in equation (63) can be dismissed because
these choices result in a complex value for u− or k+ in equation (62).

We test the accuracy of the approximate Whitham shock loci reported in table 1 by solving
the jump conditions (59)–(61) with the family of periodic TW solutions obtained numerically
in section 2.3. Results from the numerical computations are given in table 2. The Whitham
shock locus with the largest root of equation (63) is well-approximated to three digits (denoted
by�). The corresponding right characteristic velocities on this locus are accurate to one or two
digits. The two Whitham shock loci corresponding to the two smaller roots of equation (63)
are less accurately approximated. The reason for this is the Stokes approximation restriction
k+ � a1/4+ = 1 that requires a sufficiently large wavenumber k+. The Whitham shock locus
with the largest root u− also exhibits the largest wavenumber k+, hence is expected to be a
better approximation to the true Whitham shock locus, although good agreement is notable
given that k+ < 1. We remark that a numerical search did not yield any other Whitham shock
loci.

Two of the characteristic velocities for the locus denoted • are complex, thereforewe expect
this locus to correspond to unstable Whitham shocks. Implications of modulational instability
on the evolution of homoclinic TWs are demonstrated in section 5.3 via numerical simulation.

We now compute heteroclinic TW solutions whose zero dispersion limit correspond to
admissible Whitham shocks from each of the loci reported in table 2. See appendix A for
computational details. The obtained solutions are depicted in figure 5. All three TW solu-
tions are visually similar for x < 0, which corresponds to the left solitary wave (u−, a−, 0) of
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Table 1. Three distinct Whitham shock loci and right (+) characteristic
velocities for (58) when the right periodic wave ϕ+ is approximated by
a weakly nonlinear Stokes wave (19), (20).

u− V k+ λ(+)
1 λ(+)

2 λ(+)
3

0.2963 −0.0628 0.3936 −0.7271 0.1858 1.0416
0.3657 0.0119 0.4775 −0.3768 0.4809 0.5360
0.9724 0.4219 0.8082 0.0586 1.6775 2.5904

Table 2. Three distinct Whitham shock loci and right characteristic velocities using
numerically computed periodic TWs. Compare with the approximate loci in table 1.

u− V k+ λ(+)
1 λ(+)

2 λ(+)
3

� 0.2522 −0.1133 0.3173 −0.1462 −0.0780 0.4056
• 0.3479 −0.0071 0.4496 0.6071 −0.0237 − 0.1194i −0.0237+ 0.1194i
� 0.9726 0.4213 0.8080 0.0623 1.6472 2.5723

Figure 5. Computed TW solutions corresponding to the periodic wave and mean values
from the Whitham shock locus in table 2, matched by the symbols in the lower left
corner.

the Whitham shock (58). To investigate this further, we compare this portion of the hetero-
clinic TW solutions with solitary wave solutions that move with the shock velocity V on the
background u− (the solitary wave amplitude a− is obtained from c(u−, a−, 0) = V). Figure 6
consists of the heteroclinic TW solutions depicted in figure 5 overlaid with the left solitary
wave (dashed red) and the right periodic wave ϕ(θ; 0, 1, k+) (dashed blue) that form the corre-
sponding admissible Whitham shock. Both the left solitary waves and the right periodic waves
are visually indistinguishable from the heteroclinic TW in their respective regions of validity.
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Figure 6. Whitham shock structure via heteroclinic TW solutions (solid). The left soli-
tary wave (dashed red for x < 0) and right periodic wave (dashed blue for x > 0) from
the Whitham shock loci reported in table 2 are overlaid on the heteroclinic TW solution.
The symbols in the lower left corners coincide with those in figure 5 and table 2.

Figure 7. Characteristics of the KdV5–Whithammodulation equations for theWhitham
shock locus � in table 2. (a) Weakly compressive 1-wave characteristics Γ1, (b) weakly
expansive 2-wave characteristics Γ2, and (c) decelerating 3-wave characteristic family
Γ3. The shock is identified by the thick, red line.

This corroborates our formulation and interpretation of the zero dispersion limit of heteroclinic
TW solutions as admissibleWhitham shocks where the left wave is a solitary wave that rapidly
transitions to a co-propagating finite amplitude periodic wave.

Admissible Whitham shock solutions and characteristics

Γ j =

{
(x, t) | dx

dt
= λ j

}
, j = 1, 2, 3, (64)

corresponding to the loci � and � in table 2 are shown in figures 7 and 8, respectively.
Both Whitham shocks with real characteristic velocities are weakly compressive in the first
characteristic family Γ1 because λ(+)

1 < V = λ(−)
1 , while the second characteristic family is

weakly expansive λ(−)
2 = V < λ(+)

2 , and the third characteristic family passes through the
Whitham shock, decelerating V < λ(+)

3 < λ(−)
3 for � and accelerating V < λ(−)

3 < λ(+)
3 for �

[21]. Consequently, we refer to this class of Whitham shock solutions as weakly compressive
1-shocks.
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Figure 8. Characteristics of the KdV5–Whitham modulation equations for the solution
� in table 2. (a) Weakly compressive 1-wave characteristics Γ1, (b) weakly expansive 2-
wave characteristics Γ2, and (c) accelerating 3-wave characteristic family Γ3. The shock
is identified by the thick, red line.

The degeneration of the periodic wave to a solitary wave on the left state in figure 5 allows
us to obtain three additional admissible Whitham shock loci by reflecting the initial data (58)
and the heteroclinic TW across x = 0. These solutions are weakly compressive in the sec-
ond characteristic family, Γ2, hence are called weakly compressive 2-shocks. The weak shock
structure permits the construction of admissible two-shock solutions, which will be discussed
in section 5.3.

5.2. Periodic to periodic

Let us continue our computation of the jump conditions equations (48)–(50) where we now
consider shock solutions of the modulation equations corresponding to one periodic wave con-
nected to another. We slightly modify the Riemann problem (58) from the previous section
where the left state is assumed to have zero wavenumber. In this section, we scale theWhitham
shock (47) so that the left state consists of an arbitrary periodicwave, and the right state consists
of a periodic wave with zero mean, unit amplitude and arbitrary wavenumber. This parameter
set results in the shock solution

(u, a, k)(x, t) =

{
(u−, a−, k−) x < Vt

(0, 1, k+) x � Vt
, (65)

where V = c±. The Rankine Hugoniot jump relations (48)–(50) are a nonlinear system of three
equations that relate the four remaining parameters: k+, u−, a−, and k−. We use u− as the
continuation parameter to obtain the one-parameter family of Whitham shock loci

k+ = k+(u−), a− = a−(u−), k− = k−(u−).

Attempts to solve the jump conditions (48)–(50) approximately by using the Stokes wave
approximation (19) yield no nontrivial asymptotically valid solutions, aside from the solitary
wave to periodic shocks discussed previously. As a result, we rely on numerical continuation
along the parameterized curves (k+, a−, k−)(u−) where we start from the three Whitham shock
loci calculated in section 5.1 so that k− = 0 and u−, k+, V are initialized from table 2 (a− sat-
isfies c(u−, a−, 0) = V). We numerically continue solutions to the jump conditions (48)–(50)
with Matlab’s fsolve function for decreasing values of u−. Continuation is terminated when
the value k+(u−) < 10−3 is reached, indicating that the oscillatory wavetrain in the left far-
field is nearly a solitary wave. Figures 9(a), (c) and (e) present the three Whitham shock loci.
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Figure 9. Continuation curves of admissible periodic to periodic Whitham shock solu-
tions (65) and corresponding heteroclinic TW solutions. (a), (c) and (e) Shock loci for
the periodic wave parameters k−(u+), a+(u+), k+(u+). (b), (d) and (f) Example hete-
roclinic solutions corresponding to the shock curves (a), (c), and (e) respectively. Gray,
shaded areas in (a), (c) and (e) correspond to complex characteristic velocities and mod-
ulational instability. The zoomed-in inset in (e) demonstrates that the amplitude is not
constant across the solution curve.

We also compute heteroclinic TW solutions for select u−, seeded with left/right states from
Whitham shock loci, and plot them in figures 9(b), (d) and (f). Consequently, we find that all
three periodic to periodic Whitham shock loci are admissible.

Dynamic stability of admissible Whitham shocks is determined by the hyperbolicity of
the Whitham modulation equations (recall figure 4). Whitham shocks with real character-
istic velocities are identified by the white background in figure 9(a), (c) and (e) while the
gray background denotes complex characteristic velocities Imλ1 = 0 and Imλ2 = 0 and there-
fore a modulationally unstable heteroclinic TW. The dynamic evolution of TWs with complex
characteristic velocities are investigated via direct numerical simulations in section 5.3.

In figure 10, we plot the numerically computed characteristic curves Γj, j = 1, 2, 3 and the
shock trajectory for the periodic to periodic Whitham shock in figure 9(a) where u− = 0.6
(the corresponding heteroclinic TW is shown in figure 9(b)). We observe that all characteristic
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Figure 10. (a)–(c) Characteristic families of the undercompressive Whitham shock
in figure 9(b) with u+ = 0.6 where λ(±)

1 < V < λ(±)
2 < λ(±)

3 . The shock trajectory is
depicted with the thick red curve.

Figure 11. Numerically computed normalizedWhitham shock velocity (V − u)/a (blue,
dashed) and normalized, purely real characteristic velocities (λ1 − u)/a < (λ2 − u)/a
(black dots). The inset is a zoomed in view of the phase velocity and characteristics
velocities for small a−1/4k.

families pass through the shock and satisfy

λ(±)
1 < V < λ(±)

2 < λ(±)
3 . (66)

Shocks that are not compressive in any characteristic family violate the Lax entropy conditions.
In the conservation law community, non-Lax shocks can be identified as admissible when they
are the limit of vanishing dissipative-dispersive heteroclinic TWs [20, 24]. In such cases, they
are referred to as undercompressive. Here, we find that the vanishing dispersion limit of het-
eroclinic periodic to periodic TWs generally converge to undercompressiveWhitham shocks.
To prove this, consider figure 11 where the scaled characteristic velocities (λ j − u)/a, j = 1, 2
and shock velocity (V − u)/a are plotted in the scaled coordinate k̃ = a−1/4k. Since λ3 > λ2,
we see that all admissible Whitham shocks with real characteristic velocities exhibit the under-
compressive relations (66) except for the very narrow band of waves 0.662 � ka−1/4 � 0.672.
Because this band is so narrow in parameter space, we do not investigate these solutions any
further. Undercompressive shocks were first described for general 2× 2 systems in [59] and
have since been observed, for example, in fluid dynamics [60].

5.3. Two shock solutions

In sections 5.1 and 5.2, we established the admissibility of KdV5–Whitham shocks by comput-
ing heteroclinic TW solutions to the KdV5 equation (2). Each locus of admissible Whitham

3290



Nonlinearity 33 (2020) 3268 P Sprenger and M A Hoefer

Figure 12. Double Whitham shock solution satisfying the jump conditions (48)–(50)
from the interior periodic wave (0, 1, ki) to the outer solitary wave (uo, ao, 0). The shocks
are identified by the solid black curves and the solution in physical space is shown in
gray.

shocks depicted in figures 9(a), (c) and (e) include, up to scaling and Galilean symmetries,
pairs of shocks with reflected + and − states. The implication of this observation is that it is
possible to arrange for co-propagating Whitham shocks that correspond to a localized peri-
odic wave connected to an equilibrium or a disparate periodic wave both to the left and to the
right. Can we compute homoclinic TWs consisting of two co-propagating Whitham shocks?
Furthermore, can this construction be extended to solutions tending to a periodic wave in the
far-field? We affirmatively answer these questions now.

We formulate the doubleWhitham shock problem as a locally periodic wave that terminates
after a finite number of oscillation periods and transitions to a different periodic wave, possibly
a solitary wave, in the far field. To this end, let us consider solutions of the form

(u, a, k)(x, t) =

⎧⎪⎨
⎪⎩
(0, 1, ki) |x− Vt| � nπ

ki

(uo, ao, ko) |x− Vt| � nπ
ki

, (67)

where the subscript i refers to the inner periodic wave with n oscillations and subscript o
denotes the outer periodic wave in the far field. Following the normalization in section 5.2,
we have normalized the inner periodic solution to have zero mean and unit amplitude.

Figure 12 depicts the structure of an example homoclinic TW solution in the physical plane
overlaid with co-propagating weak 1-shock and weak 2-shock solutions that satisfy the jump
conditions for zero wavenumber in the far field, i.e., ko = 0. In general, the far-field periodic
wave can be chosen from a continuous set of nonzero wavenumbers (cf figure 9 for the range
of possible values, equating ko = k−).

Utilizing the three Whitham shock loci in table 2, the scaling symmetries (16) and (17),
and double Whitham shock data (67), we compute homoclinic TW profiles and initialize the
KdV5 equation with these solutions plus small, band-limited noise (see appendix A for com-
putational details). The time evolution of the perturbed homoclinic TW solutions then allows
us to corroborate our hypothesis that TWs comprised of modulationally unstable portions will
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Figure 13. Evolution of perturbed homoclinic TW solutions whose parameters in
equation (67) with n = 25 lie on the Whitham shock loci in table 2. Initial data at t = 0
(bottom) is evolved to t = 2000 (top). (a) Double Whitham shocks � in table 2 with real
characteristics. (b) Double Whitham shocks • with complex characteristics. (c) Double
Whitham shocks � with real characteristics.

be unstable. Indeed, in figure 13, we depict the evolution of three distinct homoclinic solu-
tions with n = 25 oscillation periods. Note that our computational approach enables for the
construction of homoclinic solutions with any number of oscillation periods. The intermediate
periodic wave in figure 13(b) lies on the Whitham shock locus • in table 2, which exhibits
complex characteristic velocities. As expected, the homoclinic TW solution is unstable. The
instabilities generate small amplitude dispersive waves that propagate faster than the TW and
therefore permeate the constant portion of the solution. This behavior is depicted in the upper
panel of figure 13(b). In figures 13(a) and (c), the homoclinic oscillatory defect is comprised of
periodic waves on the Whitham shock loci� and� in table 2, respectively, where the modula-
tion equations are strictly hyperbolic. Perturbed homoclinic TWs are numerically stable over
a long integration time.

These homoclinic TWs are similar to solutions obtained in the investigation of reversible
Hamiltonian systems [46, 61], though we have presented an alternative approach by which
multi-pulse solutions with an arbitrary number of peaks can be computed from the Whitham
shock loci in table 2.

Similarly, homoclinic TWs consisting of distinct inner and outer periodic waves can be
constructed from the Whitham shock loci shown in figure 9. Numerical computations of ini-
tially perturbed homoclinic TWs of this type along with their long time evolution are displayed
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Figure 14. Evolution of perturbed TWs corresponding to co-propagating Whitham
shocks shown at initial time t = 0 and final time t = 1500. Parameter values are selected
from those depicted in figure 9. (a) TW with parameters in figure 9(a) with uo = u− =
0.6. (b) TW with parameters in figure 9(a) with uo = u− = −0.3. (c) TW with param-
eters figure 9(c) with uo = u− = 0.15. (d) TW with parameters in figure 9(e) with
uo = u− = 0.1.

in figure 14 revealing numerically stable evolution for those solutions with all real character-
istic velocities—figures 14(a) and (d)—and numerically unstable evolution for those double
Whitham shocks that exhibit complex characteristic velocities—figures 14(b) and (c). Again,
the instabilities tend to escape the region consisting of the unstable periodic wave.

6. Extensions and applications in gravity-capillary shallow water waves

In this section, we discuss applications of the theory presented in this manuscript to model
equations for gravity-capillary shallow water waves. We construct the modulation solution for
the TDSW depicted in figure 1 for the KdV5 equation (2) and discuss how the same construc-
tion can be carried out for the Kawahara equation (4), where these structures were numerically
computed in [26]. This section concludes with numerical experiments simulating the Riemann
problem (7) for the Whitham equation (5) which describes weakly nonlinear, fully dispersive
gravity-capillary water waves.

6.1. Dam break problem for the modulation equations: traveling dispersive shock waves

Several recent works have considered step-like initial data for systems with higher order dis-
persion [26, 40, 41, 53, 54]. Among each of these studies, one key observation from numerical
simulations was made: the nonlinear structure arising from smoothed step initial data devel-
oped into a wave with two distinct regions, depicted in figure 1. We now identify the two
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distinct regions as follows. At the left, trailing edge of the TDSW, there is a heteroclinic
TW corresponding to an admissible Whitham shock solution of the modulation equations (cf
section 5.1). The heteroclinic TW terminates at a partial DSW described by a continuous, sim-
ple wave solution of the modulation equations (cf section 3.1.2) at the leading edge. Because
the modulated leading edge initiates from an oscillatory wavetrain, rather than a solitary wave,
it is termed a partial DSW. Similar partial DSWs have been observed in the initial boundary
value problem of nonlinear systems with lower order dispersion [62, 63]. We now explain this
Whitham shock-rarefaction modulation solution to the initial value problem

ut + uux + uxxxxx = 0 u(x, 0) =
1
2

[
1− tanh

( x
w

)]
, (68)

where we take the width of the step-like initial data to be w = 10.
Numerical simulations of (68) in figure 6(a) show two distinct regions in the solution. The

boundaries of these regions are defined by identifying the following velocities: the trailing
edge Whitham shock velocity, Vs, the intermediate velocity Vi joining the TW to the partial
DSW and V+ the leading, harmonic edge velocity where the partial DSW terminates when
the modulation amplitude vanishes a→ 0. If we denote the parameters of the periodic portion
of the heteroclinic wave by (ur, ar, kr) and the leading harmonic wave edge wavenumber by
k+, then Vi = λ2(ur, ar, kr) and V+ = λ2(0, 0, k+). The TDSW TW portion bears a striking
resemblance to the TW that is identified by the symbol � in figure 5. The Whitham shock
locus for this solution in table 2 is well approximated using a Stokes wave in table 1, scaled by
(16), (17) so that u− → 1 and u+ is a to-be-determined parameter. The intermediate periodic
wave properties are then given as a one parameter family

ar =
1
ζ
(1− ur),

k4r =

[
4ζ2 + 3

15
− 1

80ζ2

]
(1− ur),

Vs =

[
1
2
− 1

16ζ2

]
(1− ur)+ ur,

(69)

where ζ ≈ 0.9724 is the positive square root of the largest, positive real root of the quartic
polynomial (63), and ur is the mean to be determined by matching to a simple wave describing
the transition from the oscillatory wavetrain to the leading, constant level, u = 0 propagating
with velocity V+. The existence of a simple wave solution in the weakly nonlinear regime was
established previously in section 3.1. The computation of the simple wave can be achieved
by casting the KdV5–Whitham modulation equations into an approximate Riemann invariant
form (cf reference [54])

r1,t + λir1,x = 0,

with i = 1, 2, 3. The Riemann invariants ri, constant along their respective characteristics,
dx
dt = λi are, to their leading order correction in amplitude

r1 = u− a2

80k4
λ1 = u, (70)

r2 = u− 5

4
√
30
a+

5
4
k4 λ2 = u+ 5k4 −

√
5
24
a, (71)
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Figure 15. Numerical evolution of the initial value problem (68) with smoothed step
data (dashed red). Three distinct velocities are noted.

r3 = u+
5

4
√
30
a+

5
4
k4 λ3 = u+ 5k4 +

√
5
24
a. (72)

The modulated, leading periodic wave is approximated by a 2-wave curve of the modulation
system, so that r1 and r3 remain constant giving the relations

ur =
a2r
80k4r

, k4+ = ur +
5

4
√
30
ar +

5
4
k4r .

Then, inserting ur into equation (69) completely determines the intermediate periodic wave
parameters (ur, ar, kr) and the leading edge wavenumber (k+) explicitly in terms of the largest
root, ζ, of the polynomial equation (63). The expansion fan in the second characteristic that
describes the leading, modulated periodic wave on the interval Vi � x/t � V+ is

r2(x/t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ur −

5

4
√
30
ar +

5
4
k4r Vr < x/t

λ−1
2 (x/t) Vr � x/t � V+

5
4
k4+ V+ > x/t

.

We can determine the self-similar dynamics of the modulation variables by then inverting
equations (70)–(72) to give q = q(r1, r2(x, t), r3).

TheWhitham shock locus, 2-wave curve and the far-fieldmean values completely determine
the Whitham shock-rarefaction modulation solution

(u, a, k)(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, a−, 0) Vst < x

(ur, ar, kr) Vst � x < Vrt

q(r1, r2(x, t), r3) Vi t � x < V+t

(0, 0, k+) V+t � x

.

This shock-rarefaction solution can be viewed as the higher dispersion analog of the shock-
rarefaction solution for the shallow water dam break problem or the gas dynamics shock tube
problem.

In figure 16, we compare the Whitham shock-rarefaction solution of the modulation
equations with numerical simulations of smoothed step initial data. Numerically extracted
values of the modulation parameters exhibit excellent agreement with the Whitham shock-
rarefaction modulation solution. The figure the small oscillations in the modulation variables
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Figure 16. Extracted modulation parameters from numerical simulations of (68) (cir-
cles) with the shock-rarefaction solution of the Whitham modulation equations at
t = 1000 (solid curves).

that occur along the intermediate equilibrium state are due to higher order dispersive effects
that are not captured by leading order modulation theory.

6.2. Traveling waves in gravity-capillary water waves

In this section, we consider twomodels of gravity-capillarywater waves that incorporatehigher
order dispersive effects. We recall the linear dispersion relation for right-moving water waves
on a constant depth, normalized to 1, with surface tension is given in nodimensional form by

ω(k) =
√
k(1+ Bk2) tanh(k),∼ k +

1
6

(
B− 1

3

)
k3 +

1
360

(
19− 30B− 45B2

)
k5 +O(k7).

In this section, we are motivated by the physical problem in whichB is sufficiently close to 1/3,
so that B− 1/3 ∼ k2 when k � 1 so that third and fifth order dispersion are in competition.

6.2.1. Kawahara equation. A weakly nonlinear, long wave approximation for water waves
with Bond numberB sufficiently close to but less than 1/3 is the Kawahara equation (4), where
α = 1 [32]. Previous numerical simulations of the Riemann problem (7) for equation (4) show
that for sufficiently large values of the initial jumpΔ, the result is a TDSW [26]. Motivated by
these numerical experiments, we now construct travelingwave solutions of the underlyingPDE
by computing the Whitham shock loci of the modulation system using the weakly nonlinear
Stokes approximation.

The Kawahara Whitham modulation equations are obtained by averaging the first two
conservation laws

(u)t +

(
1
2
ϕ2

)
x

= 0,

(
1
2
ϕ2

)
t

+

(
1
3
ϕ3 − 3

2
k2ϕ2

θ +
5
2
k4ϕ2

θθ

)
x

= 0,

kt + (ck)x = 0,
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Figure 17. (a)–(c) TW parameter values, a+, k+ and V, respectively from computations
of the jump conditions (73) and (74) (solid, black curves) compared against numerical
computations of TWs from [26] (red circles).

where ϕ = ϕ(θ) is a periodic, TW solution to (4). Based on numerical computations in [26],
we expect that a heteroclinic TW solution exists and connects two disparate far-field waves in
which the leftmost state is a solitary wave with mean u−. The jump conditions are

−Vu− +

(
u2−
2

− 1
2
ϕ2
+

)
= 0, (73)

−V
(
u2− − ϕ2

+

)
+

(
u3−
3

− 1
3
ϕ3
+ +

3
2
k2+ϕ

2
+,θ −

5
2
k4+ϕ

2
+,θθ

)
= 0, (74)

−Vk+ + ω+ = 0. (75)

We use the leading, periodic solution in the form of a Stokes wave [26]

ϕ = u+ a cosθ +
a2

12k2(1− 5k2)
+ · · · , (76)

with approximate phase velocity

c = u− k2 + k4 +
a2

24k2(1− 5k2)
+ · · · . (77)

Inserting the Stokes expansion (76) into the jump conditions (73) and (74), we then solve the
algebraic system numerically for a fixed value of u− = Δ and the ensuing wave parameters are
then compared to numerical solutions of the Riemann problem (7). In figure 17, we compare the
periodic wave parameter values from the jump conditions using the Stokes approximation (76)
and those obtained from numerical computations of heteroclinic TWs using Matlab’s bvp5c.

Since we are using the Stokes approximation for the leading periodic wave, we only expect
agreement with numerical simulations for sufficiently small wave amplitude. However, the
results depicted in figure 17 demonstrate that even for quite large values of a+, the Stokes
approximation remains very accurate. Notice further that the numerical computations of TWs,
whose parameters are depicted by the red dots, cease forΔ � 0.58. Here, numerical fixed point
computations of TWs do not converge, yet the Whitham shock locus continues well past this
point. We interpret these computations as evidence of inadmissible Whitham shocks for the
Kawahara equation. The mere existence of a Whitham shock is not a sufficient condition to
guarantee the existence of a TW solution.
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Figure 18. Solutions arising from step initial data (51) for the Whitham equation (78)
matching the phase velocity, c(k) for linear gravity-capillary water waves. The initial
step has an amplitude ofΔ = 0.25 at x = 0 and the simulations are shown on the same
axes at t = 2000 for various Bond numbers, B, specified in each subfigure.

6.2.2. Gravity-capillary Whitham equation. In 1967, Whitham proposed a method to capture
the full dispersive properties of a physical system by using a convolution kernel so that the lin-
ear dispersion relation of a weakly nonlinear model is prescribed [28]. The so-called Whitham
equation takes the form

ut + uux +K ∗ ux = 0, (78)

where K = F−1c(k), and c(k) is the phase velocity. For applications to right-moving gravity-

capillary water waves, we take c(k) =
√

(1+Bk2) tanh k
k .

Solutions similar to those appearing in theKdV5 equation (2) and theKawahara equation (4)
are expected to also persist for the Whitham equation when the Bond number B, is sufficiently
close to 1/3 and third and fifth order dispersion are in balance. We revisit our original motiva-
tion for investigating TW solutions to the KdV5 equation (2) by conducting direct numerical
simulations of the Riemann problem (7) for (78) withΔ = 0.25. The results of the simulations
at t = 2000 are shown in figure 18 for different values of the Bond number,B. The simulations
indicate that for B near 1/3 (e.g., 0.3 � B � 0.375), where third order dispersion is weak,
familiar TDSW-looking dynamics emerge (cf figure 1). The trailing edge resembles a nearly
uniformTW and the leading portion resembles a partial DSW terminating into the intermediate
nonlinear wavetrain. These numerical simulations suggest that the Whitham shocks described
in this manuscript are, in fact, quite general. With that being said, the numerical simulations
depicted in figure 18 for B = 0.4 and B = 0.425 no longer resemble TDSWs, instead they
look like classical, convex DSWs. In this regime, lower order dispersion dominates, prevent-
ing the higher order dispersive balance that appears to be needed for the existence of admissible
Whitham shocks. A future avenue of research will be to understand the transition from solu-
tions discussed throughout this manuscript to the classical convex, KdV-type DSW solutions
arising from step initial data.
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7. Conclusions

In this manuscript, we considered the fifth order KdV equation (2) and its novel TW solutions.
The heteroclinic TW solutions studied here consist of two periodic waves that co-propagate
and transition between one another on a length scale commensurate with the length scale of a
single wave period. Utilizing the framework of Whitham modulation theory that describes the
zero dispersion limit of nonlinear oscillatory wavetrains via the Whitham system of conserva-
tion laws, we establish that these heteroclinic TW solutions zero dispersion limit correspond
to discontinuous shock solutions of the Whitham modulation equations, i.e.,Whitham shocks.
Within this framework, we prove that a heteroclinic TW solution of the KdV5 equation (2)
connecting disparate periodic waves necessarily satisfies the Rankine–Hugoniot jump condi-
tions of the Whitham equations in conservative form. The jump conditions reveal admissible
Whitham shock loci—far-field periodic wave parameters that are then used as candidate TW
solutions of the governing PDE.

Numerical computations of the characteristic velocities in tandem with the novel TW pro-
files allow us to specify the characteristic structure of Whitham shocks. These computations
reveal that, but for a negligibly small portion of parameter space, admissible Whitham shocks
are undercompressive, i.e., each characteristic family passes through the shock and therefore
violates the Lax entropy condition. The characteristic velocities of the modulation equations
also reveal the stability of heteroclinic TW solutions. Since the hyperbolicity of the Whitham
modulation equations is a necessary condition for the stability of periodic solutions [58], the
stability of TW solutions considered in this manuscript are determined by the stability of the
periodic waves that constitute them, which can be readily checked by examining the Whitham
shock velocities.

A prominent contributing feature to the emergence of novel heteroclinic travelingwaves and
admissibleWhitham shocks found in this manuscript is the presence of higher order dispersive
effects. For example, in scalar problems exhibiting nonlocal dispersion, such as the Whitham
equation in section 6, we demonstrate numerical evidence of the ubiquity of Whitham shocks
in other systems. To further analytically study these heteroclinic TWs connecting two far-
field periodic waves, one promising route is to investigate integrable higher order nonlinear,
dispersive systems [64] so that heteroclinicTWsmay be understood in the context of the inverse
scattering transform. For instance, the mathematical structure underlying these TWs could be
elucidated though a detailed study of the Lax equation [65, 66]—an integrable equation with
higher order dispersive terms.

Of related importance is the extensive literature describing spontaneous, localized pattern
formation in dissipative systems, where the prototypical example is the Swift–Hohenberg
equation that leads to a fourth order ODE for stationary solutions that resemble the TW ODE
considered here [67–71]. Here, stationary solutions of the governing equation were com-
puted in which an equilibrium state spontaneously transitions to a localized periodic state
and back to equilibrium, the stationary, dissipative analog of the homoclinic TWs limiting
to double Whitham shocks computed here. The results have since been extended to consider
steady solutions in which a large, localized periodic pattern persists on a small amplitude
oscillatory background [73]. A promising avenue for further study is the consideration of
modulation dynamics in the Swift–Hohenburg equation. Of course, the ensuing dynamics and
stability of these solutions will differ from the dynamics studied here because the regulariz-
ing mechanisms in each case—dissipation or dispersion respectively—are wholly different.
From this point of view, TW solutions occurring in higher order dispersive systems could
serve as a bridge between conservative Hamiltonian systems and dissipative pattern forming
systems.
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Figure 19. Depiction of initial guess given to numerical method with an even reflection
across the origin, identified by the vertical, dashed line.

Appendix A

In this appendix, we outline numerical methods used throughout this manuscript.
First, we describe the method used to compute periodic TW solutions to (2). We seek a

one parameter family of solutions, ϕ̃ parameterized by an arbitrary wavenumber k̃ and fixed
amplitude ã = 1 and mean u˜= 0. For clarity in notation we will continue to denote functions,
variables, and parameters associated with the one parameter family with tildes ‘∼’. The one
parameter family of solutions is computed by numerically solving equation (8) on a peri-
odic domain with A = 0 without loss of generality and where c = c̃ is an eigenvalue of the
differential operator and used as a continuation variable.

On the interval ξ ∈ [−π, π) with periodic boundary conditions the periodic wave is
approximated by

UN(ξ) =
N−1∑
n=−N

an e
inkξ (79)

which yields a nonlinear system of algebraic equations for the Fourier coefficients an. The
nonlinear term is numerically computed in physical space while the linear terms are com-
puted directly via the fast Fourier transform. The resulting nonlinear system is then solved via
Matlab’s fsolve function. The number of Fourier modes, N, is chosen sufficiently large so that
Fourier modes decay to O(10−16). The nonlinear solution can then be rescaled using the sym-
metries (16), (17) so that the solution is of unit amplitude and zero mean. The solution library
following scaling to unit amplitude and zero mean consists of approximately 6000 periodic
waves non-uniformly spaced on the grid k̃ ∈ [0.002, 1.25].

We compute the KdV5–Whitham modulation equation (40) by numerically averaging the
periodic solutions of the KdV5 equation (2) over their periods. The averaged integrals, Ĩj and J̃2
in (41) are computed using the spectrally accurate trapezoidal rule. We use a finite difference
scheme on the unequally spaced grid in k̃ to compute the derivative ∂

∂k of Ĩj and J̃2 which are
then used to build the matrix A appearing in equation (40). The eigenvalues and eigenvectors
of A are determined directly using Matlab’s eig function. Next, we compute the quantities μj
in equation (42) on the grid k̃ using the aforementioned finite differencing scheme.

The numerical computation of heteroclinic TWs is implemented using the iterativeNewton-
conjugate gradientmethod [74, 75]. The numerical implementation relies upon periodic bound-
ary conditions and projection onto a Fourier basis. By considering the even reflection of the
Whitham shock at the peak of the right oscillatory wave ϕ+, the resulting extended struc-
ture then satisfies the periodic boundary condition requirement for the numerical method. An
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example of the initial guess for the iterative solver is shown in figure 19, where the intermedi-
ate periodic wave wavenumber is determined by the jump conditions. Outside the oscillatory
region in the initial guess, the solution abruptly transitions to the known far-field constant value.

Homoclinic TWs corresponding to double Whitham shock solutions of the modulation
equations are computed using the fifth order collocation method bvp5c in Matlab with peri-
odic boundary conditions imposed on the ODE (8). The solutions are used as initial contions
to KdV5 (2), which is numerically evolved with a pseudospectral spatial discretization via the
FFT and an integrating factor fourth order Runge–Kutta method [75] with time step in the
rangeΔt ∈ [10−4, 10−3].
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