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ABSTRACT
We give new characterizations of the sample complexity of an-

swering linear queries (statistical queries) in the local and central

models of differential privacy: (1) In the non-interactive local model,

we give the first approximate characterization of the sample com-

plexity. Informally our bounds are tight to within polylogarithmic

factors in the number of queries and desired accuracy. Our charac-

terization extends to agnostic learning in the local model. (2) In the

central model, we give a characterization of the sample complexity

in the high-accuracy regime that is analogous to that of Nikolov,

Talwar, and Zhang (STOC 2013), but is both quantitatively tighter

and has a dramatically simpler proof.

Our lower bounds apply equally to the empirical and population

estimation problems. In both cases, our characterizations show that

a particular factorization mechanism is approximately optimal, and

the optimal sample complexity is bounded from above and below

by well studied factorization norms of a matrix associated with the

queries.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms.
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1 INTRODUCTION
Differential privacy [DMNS06] is a rigorous mathematical frame-

work for protecting individual privacy that is well suited to sta-

tistical data analysis. In addition to a rich academic literature, dif-

ferential privacy is now being deployed on a large scale by Apple
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[App17], Google [EPK14, BEM
+
17, WZL

+
19], Uber [JNS18], and

the US Census Bureau [DLS
+
17].

To compute statistics of the data with differential privacy—or

any notion of privacy—we have to inject noise into the computation

of these statistics [DN03]. The amount of noise is highly dependent

on the particular statistic, and thus a central problem in differential

privacy is to determine how much error is necessary to compute a

given statistic.

In this work we consider the class of linear queries (also called
statistical queries [Kea93]). The simplest example of a linear query

is “What fraction of individuals in the data have property 𝑃?” Work-

loads of linear queries capture a variety of statistical tasks: comput-

ing histograms and PDFs, answering range queries and computing

CDFs, estimating the mean, computing correlations and higher-

order marginals, and estimating the risk of a classifier.

The power of differentially private algorithms for answering a

worst-case workload of linear queries is well understood [BUV14],

and known bounds are essentially tight as a function of the dataset

size, the data domain, and the size of the workload. However, many

workloads, such as those corresponding to computing PDFs or CDFs,

have additional structure that makes it possible to answer them

with less error than these worst-case workloads. Thus, a central

question is

Can we characterize the amount of error required
to estimate a given workload of linear queries
subject to differential privacy in terms of natu-
ral properties of the workload, and can we achieve
this error via computationally efficient algorithms?

In the central model, there has been dramatic progress on this

question [HT10, BDKT12, NTZ16, Nik15, BBNS19], giving approx-

imate characterizations for every workload of linear queries. We

extend this line of work in two ways:

(1) We give the first approximate characterization for non-
interactive local differential privacy [DMNS06, KLN

+
08]. This

result is also much sharper than analogous results for the

central model of differential privacy.

(2) We give a new approximate characterization for the central
model of differential privacy in the high-accuracy regime

(equivalently, in the large-dataset regime). This characteri-

zation is analogous to a result of [NTZ16], but it is quanti-

tatively tighter and its proof is dramatically simpler. For ℓ2

2

error, our characterization is tight up to a constant factor.

In particular, our results show that a natural and well studied

type of factorization mechanism is approximately optimal in these

settings. Factorization mechanisms capture a number of special-

purpose mechanisms from the theory literature [BCD
+
07, DNPR10,
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CSS11, TUV12, CTUW14], were involved in previous characteriza-

tions, and also roughly capture the matrix mechanisms [LHR+10,
MMHM18] from the databases literature, which have been devel-

oped into practical algorithms for US Census Data.
1

Our characterization in the local model extends to agnostic PAC

learning, and shows that the optimal learner for any family of

queries is to use the optimal factorization mechanism to estimate

the error of every concept. Our characterization is sharper than

the previous characterization of [KLN
+
08], which loses polynomial

factors in the SQ dimension [BFJ
+
94].

1.1 Background: Linear Queries and
Factorization Mechanisms

We start by briefly introducing the relevant concepts and def-

initions necessary to state our results. See Section 2 for a more

thorough treatment of the necessary background.

Linear Queries. Suppose we are given a dataset 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈
X𝑛 , where each entry 𝑥𝑖 is the data of one individual and X is

some data universe. We will treat the size of the dataset 𝑛 as public

information. A linear query is specified by a bounded function 𝑞 :

X → R and (abusing notation) its answer is 𝑞(𝑋 ) = 1

𝑛

∑𝑛
𝑖=1

𝑞(𝑥𝑖 ).
A workload is a set of linear queries 𝑄 = {𝑞1, . . . , 𝑞𝑘 }, and we use
𝑄 (𝑋 ) = (𝑞1 (𝑋 ), . . . , 𝑞𝑘 (𝑋 )) to denote the answers.

Given a workload of queries, we can associate a workload matrix
𝑊 ∈ R𝑄×X

, defined by𝑊𝑞,𝑥 = 𝑞(𝑥). The convention of calling

the above queries “linear” stems from the fact that they can be

written as the product of the workload matrix with the histogram

vector of the dataset. As such, we will sometimes use 𝑄 and𝑊

interchangeably.

Error and Sample Complexity. Our goal is to design an (𝜀, 𝛿)-
differentially private mechanism M that takes a dataset 𝑋 and

accurately estimates 𝑄 (𝑋 ) for an appropriate measure of accuracy.

In this work we primarily consider accuracy in the ℓ∞ norm, and

define

err
ℓ∞ (M, 𝑄, 𝑛) = max

𝑋 ∈X𝑛
E
M
[∥M(𝑋 ) −𝑄 (𝑋 )∥∞],

err
ℓ∞
𝜀,𝛿

(𝑄,𝑛) = min

(𝜀, 𝛿)-DP M
err

ℓ∞ (M, 𝑄, 𝑛) .

Privacy becomes easier to achieve as the dataset size 𝑛 grows. We

are interested in the sample complexity, which is the smallest size

of dataset on which it is possible to achieve a specified error 𝛼 for

given privacy parameters 𝜀 and 𝛿 :

sc
ℓ∞
𝜀,𝛿

(𝑄, 𝛼) = min

{
𝑛 : err

ℓ∞
𝜀,𝛿

(𝑄,𝑛) ≤ 𝛼
}
.

The Approximate FactorizationMechanisms. One of the most

basic tools in the central-model of differential privacy is the Gauss-
ian mechanism (see e.g. [DR14]). This mechanism computes the

vector of answers to the queries 𝑄 (𝑋 ) and perturbs it with spheri-

cal Gaussian noise scaled to the ℓ2-sensitivity of the workload. In

1
In a nutshell, the matrix mechanism is a particular factorization mechanism designed

for the special case of ℓ2

2
error, and combined with various optimizations and post-

processing techniques to improve computational efficiency and utility. Usually the

matrix mechanism is presented in the special case of pure differential privacy.

particular, the sample complexity of this mechanism is

𝑂

(
∥𝑊 ∥1→2

√
log(1/𝛿) log𝑘

𝜀𝛼

)
.

where ∥𝑊 ∥1→2 denotes the largest ℓ2 norm of any column of𝑊 ,

which is the ℓ2-sensitivity.

One can try to improve this mechanism by replacing𝑊 with

a simpler workload of queries 𝐴, and then attempting to recon-

struct the answer to𝑊 by applying a linear transform 𝑅 such that

𝑊 = 𝑅𝐴. One can show that the overall mechanism has error

∥𝑅∥2→∞∥𝐴∥1→2, where ∥𝑅∥2→∞ denotes the maximum ℓ2 norm

of any row of 𝑅. This quantity can be dramatically smaller than

∥𝑊 ∥1→∞, for example if𝑊 contains many copies of the same query.

The factorization mechanism chooses the optimal factorization

𝑊 = 𝑅𝐴, giving error proportional to the factorization norm

𝛾2 (𝑊 ) = min{∥𝑅∥2→∞∥𝐴∥1→2 :𝑊 = 𝑅𝐴}.

The sample complexity of this mechanism is thus

sc
ℓ∞ (M𝛾2

, 𝑄, 𝛼) = 𝑂
(
𝛾2 (𝑊 )

√
log(1/𝛿) log |𝑄 |
𝜀𝛼

)
.

We note that that the factorization norm 𝛾2 (𝑊 ) and an optimal

factorization𝑊 = 𝑅𝐴 can be computed in time polynomial in the

size of𝑊 via semidefinite programming [LS09].

Finally, we can try to further improve the mechanism using an

approximate factorization mechanism that approximates the work-

load𝑊 with a simpler workload𝑊 that is entrywise close to𝑊 ,

and applying the factorization mechanism to𝑊 . The error of this

mechanism is proportional to the approximate factorization norm

𝛾2 (𝑊,𝛼) = min{𝛾2 (𝑊 ) : ∥𝑊 −𝑊 ∥1→∞ ≤ 𝛼/2},

where ∥𝑊 −𝑊 ∥1→∞ is the maximum absolute difference between

entries of𝑊 and𝑊 . The sample complexity of this mechanism is

thus

sc
ℓ∞ (M𝛾2,𝛼 , 𝑄, 𝛼) = 𝑂

(
𝛾2 (𝑊,𝛼/2)

√
log(1/𝛿) log |𝑄 |
𝜀𝛼

)
.

The Local Model. Although we have discussed the factorization

mechanism in the context of central differential privacy, these ideas

can all be adapted to (non-interactive) local differential privacy. In
this model, each user will apply a separate (𝜀, 𝛿)-differentially pri-

vate mechanism M1, . . . ,M𝑛 to their own data, and the output

can then be postprocessed using an arbitrary algorithm A, so the

mechanism can be expressed as

M(𝑋 ) = A(M1 (𝑋1), . . . ,M𝑛 (𝑋𝑛))

We define err
ℓ∞,loc
𝜀,𝛿

, and sc
ℓ∞,loc
𝜀,𝛿

analogously to the central model,

but with the minimum taken over mechanisms that are (𝜀, 𝛿)-DP
in the local model.

Since the queries are linear, we can simply have each user apply

the approximate factorization mechanism to their own data and av-

erage the results. One can show that randomizing each individual’s

data independently increases the variance of the noise by a factor of√
𝑛 compared to the central model version of the mechanism. One

can also achieve (𝜀, 0)-differential privacy by replacing Gaussian
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noise with a different subgaussian noise distribution. Putting it

together, the resulting sample complexity becomes

sc
ℓ∞ (Mloc

𝛾2,𝛼
, 𝑄, 𝛼) = 𝑂

(
𝛾2 (𝑊,𝛼/2)2

log |𝑄 |
𝜀2𝛼2

)
. (1)

1.2 Our Results
1.2.1 Linear Queries in the Local Model. Our main result in the

local model shows that the approximate factorization mechanism

described above is approximately optimal among all non-interactive

locally differentially private mechanisms.

Theorem 1 (Informal). Let 𝛼, 𝜀, 𝛿 > 0 be smaller than some
absolute constants and let 𝑄 be a workload of linear queries with
workload matrix𝑊 . Then, for some 𝛼 ′ = Ω(𝛼/log(1/𝛼)),

sc
ℓ∞,loc

𝜀,0
(𝑄, 𝛼 ′) = Ω

(
𝛾2 (𝑊,𝛼/2)2

𝜀2𝛼2

)
.

To interpret the theorem, it helps to start by imagining that

𝛾2 (𝑊,𝛼 ′/2) = 𝛾2 (𝑊,𝛼/2), in which case the theorem would show

that the sample complexity of answering queries up to error 𝛼 ′ is

Ω

(
𝛾2 (𝑊,𝛼 ′/2)2

𝜀2𝛼2

)
,

which differs from the sample complexity of the local approxi-

mate factorization mechanism, given in (1), by a factor of just

𝑂 (log(1/𝛼 ′)2
log |𝑄 |). The fact that we take 𝛼 ′ < 𝛼 means that

𝛾2 (𝑊,𝛼/2) can be much smaller than 𝛾2 (𝑊,𝛼 ′/2).2 Nevertheless,
for many natural families of queries and choices of 𝛼 , 𝛾2 (𝑊,𝛼/2)
will be relatively stable to small changes in 𝛼 , in which case our

lower bound will be tight up to this 𝑂 (log(1/𝛼)2
log |𝑄 |) factor. In

contrast, existing characterizations for the central model [HT10,

BDKT12, NTZ16, Nik15, BBNS19] lose a poly(1/𝛼) factor, or else
they lose a polylog|X| factor that is typically large.

Remark 2. Our proof of Theorem 1, in fact, shows that the lower
bound holds in the distributional setting where𝑋 is sampled i.i.d. from
an unknown distribution 𝜇, and the goal is to estimate the quantity
𝑞(𝜇) = E

𝑥∼𝜇
[𝑞(𝑥)] for every query 𝑞 ∈ 𝑄 up to error at most 𝛼 .

Remark 3. Theorem 1 crucially assumes that the error is bounded
in the ℓ∞ metric. If we consider the less stringent ℓ2

2
error metric

(appropriately scaled to reflect the error per query), then one can
achieve sample complexity 𝑂 (log |X|/𝜀2𝛼4) for any workload of
queries [BBNS19], which can be exponentially smaller than the lower
bound we prove for ℓ∞ error. In many applications, such as releas-
ing the PDF, CDF, or marginals of the data, the ℓ∞ error metric is
standard in the literature on these problems, and is more practical,
since, for natural datasets, the weaker ℓ2

2
guarantee can be achieved

by mechanisms that ignore the data.

Using Theorem 1, we obtain new lower bounds for three well stud-

ied families of queries:

(1) Threshold queries, which are also known as range queries,

and equivalent to computing the CDF of the data.

2
For example, if every entry of𝑊 is at most 𝛼 in absolute value, then 𝛾2 (𝑊,𝛼) = 0

whereas 𝛾2 (𝑊,𝛼′) can be arbitrarily large for 𝛼′ < 𝛼 , but this behavior typically

does not happen for “non-trivial” values of 𝛼 .

(2) Parity queries, which capture the covariance and higher-

order moments of the data.

(3) Marginal queries, also known as conjunctions, which capture

the marginal distribution on subsets of the attributes.

Corollary 4 (Thresholds / CDFs). Let 𝑄cdf
𝑇

be the family of
statistical queries over the domain X = [𝑇 ] that, for every 1 ≤ 𝑡 ≤ 𝑇 ,
contains the statistical query 𝑞𝑡 (𝑥) = I{𝑥 ≤ 𝑡}. Then for every𝑇 ∈ N
and 𝜀, 𝛼 smaller than an absolute constant,

sc
ℓ∞,loc
𝜀,0

(𝑄cdf
𝑇
, 𝛼) = Ω

(
log

2𝑇

)
.

We obtain this corollary by combining Theorem 1 with results

from [FSSS03]. Corollary 4 should be compared to the upper bound

of 𝑂 (log
3𝑇 ) that can be obtained from the local analogue of the

binary tree mechanism [DNPR10, CSS11]. Ours is the first lower

bound to go beyond the easy Ω(log𝑇 ) lower bound for this problem,

which follows easily via a so-called packing argument.

Corollary 5 (Parities). Let 𝑄parity
𝑑,𝑤

be the family of statistical

queries over the domain X = {±1}𝑑 that, for every 𝑆 ⊆ [𝑑], |𝑆 | ≤ 𝑤 ,
contains the statistical query 𝑞𝑆 (𝑥) =

∏
𝑗 ∈𝑆 𝑥 𝑗 . Then for every 𝑘 ≤

𝑑 ∈ N and 𝜀, 𝛼 smaller than an absolute constant,

sc
ℓ∞,loc
𝜀,0

(𝑄parity
𝑑,𝑤

, 𝛼) = Ω((𝑑/𝑤)𝑤) .

Corollary 5 says that adding independent Gaussian noise to

each query is optimal up to a 𝑂 (𝑤 log(𝑑/𝑤)) factor. Using similar

techniques, one can also obtain a direct proof that gives a tight

lower bound up to constant factors, even for the simpler problem

of finding the subset 𝑆 of size at most𝑤 that maximizes 𝑞𝑆 (𝑋 ).

Corollary 6 (Marginals). Let𝑄marginal
𝑑,𝑤

be the family of statisti-

cal queries over the domain X = {0, 1}𝑑 that, for every 𝑆 ⊆ [𝑑], |𝑆 | ≤
𝑤 , contains the statistical query 𝑞𝑆 (𝑥) =

∏
𝑗 ∈𝑆 𝑥 𝑗 . Then for every

𝑘 ≤ 𝑑 ∈ N and 𝜀, 𝛼 smaller than an absolute constant,

sc
ℓ∞,loc
𝜀,0

(𝑄marginal
𝑑,𝑤

, 𝛼) = (𝑑/𝑤)Ω (
√
𝑤) .

Marginal queries have been extremely well studied in differen-

tial privacy [BCD
+
07, KRSU10, GHRU11, HRS12, TUV12, CTUW14,

DNT15]. Corollary 6 shows that a natural local analogue of the al-

gorithm of [TUV12] is optimal for answering marginal queries up

to the hidden constant factor in the exponent.

1.2.2 Agnostic Learning in the Local Model. Theorem 1 extends to

characterizing agnostic PAC learning [KSS94] in the local model. In

agnostic PAC learning, the dataset consists of labeled examples𝑋 =

((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)), where 𝑥𝑖 ∈ X, and 𝑦𝑖 ∈ {±1}, and each pair

(𝑥𝑖 , 𝑦𝑖 ) is sampled independently from an unknown distribution 𝜇.

The goal is to find a concept 𝑐 : X → {±1} in a concept class C
that approximately maximizes E(𝑥,𝑦)∼𝜇 [𝑐 (𝑥)𝑦].

The correlation of each concept 𝑐 with the labels in the data is a

linear query, and one natural approach to agnostic PAC learning

is to estimate all these linear queries, and output the concept that

corresponds to the largest query value. Thus, we can apply the local

approximate factorization mechanism to the family of queries C
to obtain the same sample complexity upper bound in (1). Interest-

ingly, the proof of our lower bound in Theorem 1 shows that the

same lower bound also applies to this a priori easier problem of
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agnostic PAC learning, showing that the local approximate factor-

ization mechanism gives an approximately optimal way to learn

any concept class C.
Prior results of Kasisiviswanathan et al. [KLN

+
08] connecting

learning algorithms in the local model with the SQ model, together

with characterizations of sample complexity in the SQmodel [BFJ
+
94,

Szö09], give upper and lower bounds on sample complexity of

learning in the local model in terms of SQ dimension. These re-

sults, however, are only tight up to polynomial factors in the SQ

dimension—which can be polynomial in |C|—whereas our results
are sharper. We remark that, technically, the results are not com-

parable, since the the characterization via the SQ model holds for

sequentially interactive, rather than non-interactive, mechanisms.

1.2.3 LinearQueries in the Central Model. Our second set of results
quantitatively strengthens—and simplifies the proof of—the central

model characterization of [NTZ16]. In contrast to the local model,

the sample complexity of answering many natural workloads of

linear queries exhibits two distinct regimes, depending on the de-

sired accuracy. For example, for a worst-case workload of linear

queries, the sample complexity is at most

min

{
log

1/2 |X| log |𝑄 |
𝜀𝛼2

,
|𝑄 |1/2

𝜀𝛼

}
.

Thus, the sample complexity behaves very differently when 𝛼 goes

below some critical value. Our results concern this high-accuracy
regime where 𝛼 is quite small. In these results, we consider the ℓ2

2

error (scaled to be directly comparable to the ℓ∞ error), which is

err
ℓ2

2 (M, 𝑄, 𝑛) = max

𝑋 ∈X𝑛
E
M

[
1

|𝑄 | ∥M(𝑋 ) −𝑄 (𝑋 )∥2

2

]
1/2

with the related quantities defined analogously. Notice that we have

scaled the ℓ2

2
error so that err

ℓ2

2 (M, 𝑄, 𝑛) ≤ err
ℓ∞ (M, 𝑄, 𝑛). For ℓ2

2

error, the natural factorization norm that describes the error of the

factorization mechanisms is

𝛾𝐹 (𝑊 ) =
{

1

|𝑄 |1/2
∥𝑅∥𝐹 ∥𝐴∥1→2 :𝑊 = 𝑅𝐴

}
,

where ∥𝑅∥𝐹 =

√∑
𝑖, 𝑗 𝑅

2

𝑖, 𝑗
is the Frobenius norm of 𝑅.

In this high-accuracy regime, a combination of [NTZ16] and [NT15]

(see also the thesis [Nik14]) shows that, for every workload of linear

queries, there is some 𝛼∗ such that

∀𝛼 ≤ 𝛼∗ Ω(log
−1 |𝑄 |) · 𝛾𝐹 (𝑊 )

𝜀𝛼
≤ sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼)

≤ 𝑂 (1) · 𝛾𝐹 (𝑊 )
𝜀𝛼

· log(1/𝛿) .

Note that the upper and lower bound differ by a factor of𝑂 (log |𝑄 | ·
log(1/𝛿)). The upper bound above is precisely what is given by

the factorization mechanism. Our next theorem closes the gap

between the upper and lower bounds in terms of |𝑄 |, and thus gives
a characterization up to 𝑂 (log(1/𝛿)) for ℓ2

2
.

Theorem 7. Let 𝜀, 𝛿 > 0 be smaller than some absolute constants
and let 𝑄 be a workload of linear queries with workload matrix𝑊 .
There exists some 𝛼∗ > 0 such that for every 𝛼 ≤ 𝛼∗,

sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼) = Ω

(
𝛾𝐹 (𝑊 )
𝜀𝛼

)
.

In addition to being sharper, our proof of Theorem 7 is dramati-

cally simpler than the lower bounds in [NTZ16, NT15].

Remark 8. By a trivial reduction, Theorem 1, in fact, gives lower
bounds for the distributional setting where 𝑋 is sampled i.i.d. from
an unknown distribution 𝜇, and the goal is to estimate the quantity
𝑞(𝜇) = E

𝑥∼𝜇
[𝑞(𝑥)] for every query 𝑞 ∈ 𝑄 up to error at most 𝛼 .

Data-IndependentMechanisms.Along the way, we prove a sim-

ple result that this sample complexity bound holds for every choice

of 𝛼 , provided we restrict attention to data-independent mechanisms.
These mechanisms can be written in the formM(𝑋 ) = 𝑄 (𝑋 ) +𝑍/𝑛
for some fixed random variable 𝑍 that depends only on 𝑄 and not

on the data.

For such mechanisms we show that the sample complexity is

always Ω(𝛾𝐹 (𝑊 )/𝜀𝛼), regardless of 𝛼 .3
Data-independent mechanisms are interesting on their own,

since the fact that we add noise from a known distribution makes

them simpler to implement, and also means that we can give precise

confidence intervals on the error of the mechanism. One applica-

tion of our lower bound for data-independent mechanisms is an

Ω(log𝑇 ) lower bound on the sample complexity of any mechanism

for answering threshold queries over [𝑇 ] in ℓ2

2
error, which matches

the data-independent binary tree mechanism.

1.3 Techniques
Below we give a brief overview of the techniques used to prove

Theorems 1 and 7.

Lower bound in the local model. As mentioned above, Theo-

rem 1 is proved in the distributional setting, where the dataset 𝑋

consists of 𝑛 i.i.d. samples from some distribution 𝜇, and the goal

is to estimate the expectation of each query 𝑞 ∈ 𝑄 on 𝜇. Our ap-

proach is to design two families of hard distributions {𝜆1, . . . , 𝜆𝑘 }
and {𝜇1, . . . , 𝜇𝑘 } with the following properties: first, any locally

differentially private mechanism requires many samples to distin-

guish these two families; second, the two families give very different

answers to the queries.

To show that the distributions are hard to distinguish, we prove

an upper bound on the KL-divergence between: (1) the transcript

of a private mechanism in the local model when run on 𝑛 samples

from a random distribution in {𝜆1, . . . , 𝜆𝑘 }, and (2) the same, but

for a random distribution in {𝜇1, . . . , 𝜇𝑘 }. Intuitively, the bound

shows that the KL-divergence between transcripts is small when

no bounded test function can simultaneously distinguish between

𝜆𝑣 and 𝜇𝑣 on average over a random choice of 𝑣 ∈ [𝑘]. This bound
is a slight extension of a similar bound from [DJW18]. In particular,

the upper bound on the KL-divergence is in terms of the ∞ → 2

operator norm of a matrix 𝑀 derived from the two families of

distributions.

Thus, what remains is to find families distributions {𝜆1, . . . , 𝜆𝑘 }
and {𝜇1, . . . , 𝜇𝑘 }, for which the∞ → 2 operator norm of𝑀 is small,

but the expectations of the queries in 𝑄 are sufficiently different

on the two families. Recall that our goal is to prove a lower bound

3
Technically, we require 𝛼 ≤ ∥𝑊 ∥1→∞ , but in nearly all applications of interest

∥𝑊 ∥1→∞ = 1.
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in terms of the approximate norm 𝛾2 (𝑊,𝛼), where𝑊 is the work-

load matrix. Since 𝛾2 (𝑊,𝛼) is the value of a convex minimization

problem, it admits a dual characterization, showing that 𝛾2 (𝑊,𝛼) is
equal to the value of a maximization problem over matrices𝑈 . We

take an optimal dual solution 𝑈 , and use it to derive distributions

{𝜆1, . . . , 𝜆𝑘 } and {𝜇1, . . . , 𝜇𝑘 }. The objective function of the dual

problem guarantees that these distributions are such that the expec-

tation of any query 𝑞 ∈ 𝑄 on any 𝜆𝑣 is small, yet the expectation of

the query 𝑞𝑣 on 𝜇𝑣 is large. Moreover, the dual objective, together

with classical arguments in functional analysis, also guarantees an

upper bound on the ∞ → 2 norm of the appropriate matrix 𝑀 ,

giving us both ingredients for our lower bound.

Lower bound in the central model. The main ingredient of the

proof of Theorem 7 is a lower bound of Ω(𝛾𝐹 (𝑊 )/𝜀𝛼) on the sample

complexity of data-independent mechanisms. Recall that a mecha-

nism M is data-independent ifM(𝑋 ) = 𝑄 (𝑋 ) + 1

𝑛𝑍 for a random

variable 𝑍 ∈ R𝑄 . Our key observation is that, if Σ is the covariance

matrix of 𝑍 , then the mechanism

𝑄 (𝑋 ) + 𝑂 (log(1/𝛿))
𝑛

· N (0, Σ)

that uses Gaussian noise in place of 𝑍 is also (𝜀, 𝛿)-differentially
private. Moreover, the ℓ2

2
error of M is equal to Tr(Σ)/|𝑄 |1/2

, so,

up to a factor of 𝑂 (log(1/𝛿)), the optimal data-independent mech-

anism with respect to ℓ2

2
-error can be assumed to use correlated

Gaussian noise. It is easy to see that the class of all such mecha-

nism is equivalent to the class of all factorization mechanisms, and,

hence, the optimal achievable ℓ2

2
-error is 𝑂 (𝛾𝐹 (𝑊 )/𝜀𝑛).

To give a lower bound for arbitrary mechanisms in the high-

accuracy regime, we use a clever transformation from [BDKT12]

that turns a data-dependent mechanisms that is accurate for large

datasets into a data-independent mechanism.

2 PRELIMINARIES
In this section we recount basic notation and definitions used

throughout the paper.

2.1 Norms
For a set S, the ℓ1, ℓ2 and ℓ∞ norms on RS are given respectively

by

∥𝑎∥1 =
∑
𝑣∈S

|𝑎𝑣 |, ∥𝑎∥2 =

√∑
𝑣∈S

(𝑎𝑣)2, ∥𝑎∥∞ = max

𝑣∈S
|𝑎𝑣 |.

Given a probability distribution 𝜋 on S, we consider the norms

∥ · ∥𝐿1 (𝜋 ) and ∥ · ∥𝐿2 (𝜋 ) on R
S
, given by

∥𝑎∥𝐿1 (𝜋 ) =
∑
𝑣∈S

𝜋 (𝑣) |𝑎𝑣 |, ∥𝑎∥𝐿2 (𝜋 ) =
√∑
𝑣∈S

𝜋 (𝑣) (𝑎𝑣)2 .

We also take advantage of a number of matrix norms. For norms

∥ · ∥𝜁 and ∥ · ∥𝜉 on RS and RS
′
respectively, we consider thematrix

operator norm of𝑀 ∈ RS×S′
given by

∥𝑀 ∥𝜁→𝜉 = max

𝑥 ∈RS\{0}

∥𝑀𝑥 ∥𝜉
∥𝑥 ∥𝜁

.

For the special case of ∥𝑀 ∥ℓ𝑠→ℓ𝑡 , we will simply write ∥𝑀 ∥𝑠→𝑡 .

Of particular importance are ∥𝑀 ∥1→∞ which corresponds to the

largest entries of𝑀 , ∥𝑀 ∥1→2, which corresponds to the maximum

ℓ2-norm of a column of𝑀 , and ∥𝑀 ∥2→∞, which corresponds to the

maximum ℓ2-norm of a row of𝑀 .

The inner product of two matrices𝑀 and 𝑁 in RS×S
′
is defined

by𝑀 • 𝑁 = Tr(𝑀⊤𝑁 ) = ∑
𝑢∈S,𝑣∈S′𝑚𝑢,𝑣𝑛𝑢,𝑣 . The Frobenius norm

of𝑀 ∈ RS×S′
is given by ∥𝑀 ∥𝐹 =

√
𝑀 •𝑀 .

Lastly, the factorization norms 𝛾𝐹 and 𝛾2 central to this work are

given for𝑀 ∈ RS×S′
by

𝛾𝐹 (𝑀) = min

{
1

|S |1/2
∥𝑅∥𝐹 ∥𝐴∥1→2 : 𝑅𝐴 = 𝑀

}
,

𝛾2 (𝑀) = min{∥𝑅∥2→∞∥𝐴∥1→2 : 𝑅𝐴 = 𝑀}.

2.2 Differential Privacy
LetX denote the data universe. A generic element fromX will be

denoted by 𝑥 . We consider datasets of the form 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈
X𝑛 , each of which is identified with its histogram ℎ ∈ ZX≥0

where,

for every 𝑥 ∈ X, ℎ𝑥 = |{𝑖 : 𝑥𝑖 = 𝑥}|, so that ∥ℎ∥1 = 𝑛. To refer

to a dataset, we use 𝑋 and ℎ interchangeably. A pair of datasets

𝑋 = (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑛) and 𝑋 ′ = (𝑥1, . . . , 𝑥
′
𝑖
, . . . , 𝑥𝑛) are called

adjacent if 𝑋 ′
is obtained from 𝑋 by replacing an element 𝑥𝑖 of 𝑋

with a new universe element 𝑥 ′
𝑖
.

For parameters 𝜀, 𝛿 > 0, an (𝜀, 𝛿)-differentially private mecha-
nism [DMNS06] (or (𝜀, 𝛿) − 𝐷𝑃 for short) is a randomized function

M : X𝑛 → Ω which, for all adjacent datasets 𝑋 and 𝑋 ′
, for all

outcomes 𝑆 ⊆ Ω, satisfies

Pr

M
[M(𝑋 ) ∈ 𝑆] ≤ 𝑒𝜀 Pr

M
[M(𝑋 ′) ∈ 𝑆] + 𝛿.

A mechanism which is (𝜀, 0)-differentially private will be referred

to as being simply 𝜀-differentially private (or 𝜀-DP for short).

Of special interest are (𝜀, 𝛿)-differentially private mechanisms

M𝑖 : X → Ω̄ which take a singleton dataset 𝑋 = {𝑥} as input.
These are referred to as local randomizers. A sequence of (𝜀, 𝛿)-
differentially private local randomizers M1, . . . ,M𝑛 together with

a post-processing function A : Ω̄𝑛 → Ω specify a (non-interactive)
locally (𝜀, 𝛿)-differentially private mechanismM : X𝑛 → Ω [EGS03,

DMNS06, KLN
+
08]. In short, we say that such mechanisms are

(𝜀, 𝛿)-LDP, or 𝜀-LDP when 𝛿 = 0. When the local mechanism M is

applied to a dataset 𝑋 , we refer to

TM (𝑋 ) = (M1 (𝑥1), . . . ,M𝑛 (𝑥𝑛))

as the transcript of the mechanism. Then the output of the mecha-

nism is given by M(𝑋 ) = A(TM (𝑋 )) .

2.3 Linear Queries
A linear query is specified by a bounded function 𝑞 : X → R.

Abusing notation slightly, its answer on a dataset 𝑋 is given by

𝑞(𝑋 ) = 1

𝑛

∑𝑛
𝑖=1

𝑞(𝑥𝑖 ). We also extend this notation to distributions:

if 𝜇 is a distribution on X, then we write 𝑞(𝜇) for E
𝑥∼𝜇

[𝑞(𝑥)]. A
workload is a set of linear queries 𝑄 = {𝑞1, . . . , 𝑞𝑘 }, and 𝑄 (𝑋 ) =

(𝑞1 (𝑋 ), . . . , 𝑞𝑘 (𝑋 )) is used to denote their answers. The answers

on a distribution 𝜇 on X are denoted by 𝑄 (𝜇) = (𝑞1 (𝜇), . . . , 𝑞𝑘 (𝜇)).
We will often represent 𝑄 by its workload matrix𝑊 ∈ R𝑄×X

with

entries𝑤𝑞,𝑥 = 𝑞(𝑥). In this notation, the answers to the queries are

given by
1

𝑛𝑊ℎ. We will often use 𝑄 and𝑊 interchangeably.
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2.4 Error and Sample Complexity
The ℓ∞ and ℓ2

2
-error of a mechanismM, which takes a dataset

of size 𝑛, on the query workload 𝑄 are given by

err
ℓ∞ (M, 𝑄, 𝑛) = max

𝑋 ∈X𝑛
E
M
[∥M(𝑋 ) −𝑄 (𝑋 )∥∞],

err
ℓ2

2 (M, 𝑄, 𝑛) = max

𝑋 ∈X𝑛
E
M

[
1

|𝑄 | ∥M(𝑋 ) −𝑄 (𝑋 )∥2

2

]
1/2

.

We can then define the sample complexity of a mechanism M for a

given ℓ∞ error 𝛼 by

sc
ℓ∞
𝜀,𝛿

(M, 𝑄, 𝛼) = min{𝑛 : err
ℓ∞ (M, 𝑄, 𝑛) ≤ 𝛼}.

The sample complexitywith respect to ℓ2

2
error sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼) is defined

analogously.

Having defined error and sample complexity for a fixed mech-

anism, we can define the optimal error and sample complexity

by

err
ℓ∞
𝜀,𝛿

(𝑄,𝑛) = min

M is (𝜀, 𝛿)-DP
err

ℓ∞ (M, 𝑄, 𝑛),

sc
ℓ∞
𝜀,𝛿

(𝑄, 𝛼) = min

M is (𝜀, 𝛿)-DP
sc
ℓ∞ (M, 𝑄, 𝑛) .

The analogous quantities err

ℓ2

2

𝜀,𝛿
(𝑄,𝑛) and sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼) for ℓ2

2
-error

are defined similarly. The optimal error and sample complexity for

the local model are denoted err
ℓ∞,loc
𝜀,𝛿

(𝑄,𝑛) and sc
ℓ∞,loc
𝜀,𝛿

(𝑄, 𝛼), and
are defined in the same way but with the minimum taken over

(𝜀, 𝛿)-LDP mechanisms.

2.5 Factorization Mechanisms
The Gaussian mechanism [DN03, DN04, DMNS06] is defined as

MGauss (𝑊,ℎ) = 1

𝑛
𝑊ℎ + 𝑍, 𝑍 ∼ N

(
0,

(
𝜎𝜀,𝛿 ∥𝑊 ∥1→2

𝑛

)
2

· 𝐼
)
,

where 𝜎𝜀,𝛿 = 𝑂 (
√

log(1/𝛿)/𝜀) depends only on the privacy param-

eters. Given a factorization𝑊 = 𝑅𝐴, we consider the mechanism

M𝑅,𝐴 (ℎ) = 𝑅 MGauss (𝑊,ℎ)

=
1

𝑛
𝑊ℎ + 𝑍, 𝑍 ∼ N

(
0,

(
𝜎𝜀,𝛿 ∥𝐴∥1→2

𝑛

)
2

· 𝑅𝑅⊤
)
,

and, utilizing Gaussian tail bounds, one can show that the error is

err
ℓ∞ (M𝑅,𝐴, 𝑄, 𝑛) = 𝑂

(
∥𝑅∥2→∞∥𝐴∥1→2

√
log(1/𝛿) log |𝑄 |

𝜀𝑛

)
.

We define the factorization mechanism M𝛾2
to be the mechanism

that chooses 𝑅,𝐴 to minimize this expression, and its error is pro-

portional to the factorization norm

𝛾2 (𝑊 ) = min{∥𝑅∥2→∞∥𝐴∥1→2 :𝑊 = 𝑅𝐴}.

The sample complexity of this mechanism is thus

sc
ℓ∞ (M𝛾2

, 𝑄, 𝛼) = 𝑂
(
𝛾2 (𝑊 )

√
log(1/𝛿) log |𝑄 |
𝛼

)
.

This mechanism is implicit in [NTZ16], and is stated in this form

in [Nik14].

Analogously, we can show that

err
ℓ2

2 (M𝑅,𝐴, 𝑄, 𝑛) = 𝑂
(
|𝑄 |−1/2∥𝑅∥𝐹 ∥𝐴∥1→2

√
log(1/𝛿)

𝜀𝑛

)
.

Optimizing this error bound over the choice of 𝑅 and 𝐴 gives error

proportional to the factorization norm

𝛾𝐹 (𝑊 ) = min{|𝑄 |−1/2∥𝑅∥𝐹 ∥𝐴∥1→2 :𝑊 = 𝑅𝐴},
and the mechanism M𝛾𝐹 that runs M𝑅,𝐴 with the 𝑅 and 𝐴 achiev-

ing 𝛾𝐹 (𝑊 ) has sample complexity

sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼) = 𝑂

(
𝛾𝐹 (𝑊 )

√
log(1/𝛿)
𝛼

)
.

This factorization mechanism is equivalent to the Gaussian noise

matrix mechanism in [LHR
+
10].

3 NON-INTERACTIVE LOCAL DP: LINEAR
QUERIES

In this section we give details about our results for answering

linear queries in the local model. We first present the local ap-

proximate factorization mechanism. Then we give an information

theoretic lemma that bounds the KL-divergence between the tran-

scripts of mechanisms in the local model on inputs drawn from

mixtures of product distributions. We then use a dual formulation

of the approximate 𝛾2 norm to construct distributions to use with

the information theoretic lemma in order to prove the lower bound

in Theorem 1.

3.1 Approximate Factorization
Here we give details of the approximate factorizationmechanism,

which was sketched in the introduction. Recall that the approximate

𝛾2 norm is defined by

𝛾2 (𝑊,𝛼) = min{𝛾2 (𝑊 ) : ∥𝑊 −𝑊 ∥1→∞ ≤ 𝛼/2},

where 𝛾2 (𝑊 ) = min{∥𝑅∥2→∞∥𝐴∥1→2 : 𝑊 = 𝑅𝐴}. Matrices𝑊 , 𝑅,

and 𝐴 achieving the minimum to any degree of accuracy can be

computed in polynomial time via semidefinite programming, as

shown in [LS09]. Our main positive result shows that the sample

complexity of the corresponding approximate factorization mecha-

nism is bounded above by the approximate 𝛾2 norm. As sketched

in the introduction, this can be achieved via a local version of the

Gaussian noise mechanism, which can then be transformed into a

purely private mechanism using the results of [BNS18]. This gives,

however, a slightly suboptimal bound, and, instead, we use the local

randomizer from [BBNS19], which is a variant of a local randomizer

from [DJW18]. The relevant properties of this local randomizer are

captured by the next lemma. We recall that a random variable 𝑍

over R is 𝜎-subgaussian if E exp(𝑍 2/𝜎2) ≤ 2, and a random vari-

able 𝑍 over R𝑑 is 𝜎-subgaussian if 𝜃⊤𝑍 is 𝜎-subgaussian for every

vector 𝜃 such that ∥𝜃 ∥2 = 1.

Lemma 9 ([BBNS19]). There exists an 𝜀-DP mechanism M which
takes as input a single datapoint 𝑥 ∈ R𝑑 such that ∥𝑥 ∥2 ≤ 1, and
outputs a random 𝑌𝑥 := M(𝑥) ∈ R𝑑 such that

(1) 𝑌𝑥 can be sampled in time polynomial in 𝑑 on input 𝑥 ,
(2) E[𝑌𝑥 ] = 𝑥 ,
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(3) 𝑌𝑥 − 𝑥 is 𝜎-subgaussian with 𝜎 = 𝑂 (𝜀−1).

Based on this local randomizer, and the approximate factoriza-

tions, we prove the following upper bound in Appendix A.

Theorem 10 (Approximate Factorization Mechanism). There
exists an 𝜀-LDP mechanism Mloc

𝛾2,𝛼
such that, for any 𝑘 statistical

queries 𝑄 with workload matrix𝑊 , we have

sc
ℓ∞ (Mloc

𝛾2,𝛼
, 𝑄, 𝛼) = 𝑂

(
𝛾2 (𝑊,𝛼/2)2

log𝑘

𝜀2𝛼2

)
,

and the mechanism runs in time polynomial in 𝑛, 𝑘 , and |X|.

3.2 Bounding KL-Divergence
Our lower bound will rely on the construction, based on a work-

load 𝑄 , of families {𝜆1, . . . , 𝜆𝑘 } and {𝜇1, . . . , 𝜇𝑘 } of distributions on
X. Together with these, we consider a distribution 𝜋 over [𝑘]. For
any 𝑣 ∈ [𝑘], let 𝜆𝑛𝑣 be the product distribution induced by sam-

pling 𝑛 times independently from 𝜆𝑣 , and let 𝜆𝑛𝜋 be the mixture∑𝑘
𝑣=1

𝜋 (𝑣)𝜆𝑛𝑣 . Define 𝜇𝑛𝑣 and 𝜇𝑛𝜋 analogously. Note that 𝜆𝑛𝜋 and 𝜇𝑛𝜋
are not product distributions, but mixtures of such distributions.

For a mechanism M in the local model, and a probability distribu-

tion 𝜈 on X𝑛 , we use TM (𝜈) to denote the distribution on random

transcripts TM (𝑋 ) when 𝑋 is sampled from 𝜈 . Similarly, if 𝜈 is a

distribution on X, we use the notationM𝑖 (𝜈) for the distribution
ofM𝑖 (𝑥), when 𝑥 is sampled from 𝜈 .

We approach the task of showing that 𝜆1, . . . , 𝜆𝑘 and 𝜇1, . . . , 𝜇𝑘
are “hard” distributions on which to evaluate 𝑄 in two steps. On

the one hand, we wish to argue that being able to estimate 𝑄 on

the distributions 𝜆1, . . . , 𝜆𝑘 and 𝜇1, . . . , 𝜇𝑘 enables us to distinguish

between 𝜆𝑛𝜋 and 𝜇𝑛𝜋 . On the other hand, we show a lower bound on

the number of samples required for a locally private mechanism to

distinguish between 𝜆𝑛𝜋 and 𝜇𝑛𝜋 . The second of these objectives will

be met by way of the following bound on KL-divergence. Similar

bounds were proved in [DJW18, DR18] when only one of the two

distributions is a mixture of products, and our proof is similar to

the proof of Theorem 2 in [DR18]. Our proof is in Appendix B.

Lemma 11. Let 𝜀 ∈ (0, 1], and let M be an 𝜀-DP mechanism in
the local model. Then, for families {𝜆1, . . . , 𝜆𝑘 } and {𝜇1, . . . , 𝜇𝑘 } of
distributions on X, together with a distribution 𝜋 over [𝑘],

DKL (TM (𝜆𝑛𝜋 )∥TM (𝜇𝑛𝜋 ))

≤ 𝑂 (𝑛𝜀2) · max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋

[(
E

𝑥∼𝜆𝑉
[𝑓𝑥 ] − E

𝑥∼𝜇𝑉
[𝑓𝑥 ]

)
2

]
.

In matrix notation, define the matrix 𝑀 ∈ R[𝐾 ]×X by 𝑚𝑣,𝑥 =

(𝜆𝑣 (𝑥) − 𝜇𝑣 (𝑥)). Then

DKL (TM (𝜆𝑛𝜋 )∥TM (𝜇𝑛𝜋 )) ≤ 𝑂 (𝑛𝜀2) · ∥𝑀 ∥2

ℓ∞→𝐿2 (𝜋 ) .

Being able to distinguish between TM (𝜆𝑛𝜋 ) and TM (𝜇𝑛𝜋 ) with
constant probability implies, by Pinsker’s inequality, that

DKL (TM (𝜆𝑛𝜋 )∥TM (𝜇𝑛𝜋 )) ≥ Ω(1) .

Together with Lemma 11, this would imply

𝑛 = Ω

(
1

𝜀2 · ∥𝑀 ∥2

ℓ∞→𝐿2 (𝜋 )

)
.

Hence, our goal will be to define our distributions so that that

∥𝑀 ∥2

ℓ∞→𝐿2 (𝜋 ) is small while still meeting the requirement that

estimating the queries 𝑄 allows us to distinguish between 𝜆𝑛𝜋 and

𝜇𝑛𝜋 .

It is worth noting that Lemma 11 is not known to hold when

the protocol is allowed to be sequentially interactive. Indeed, this

is the bottleneck to generalizing our lower bound to the case of

sequentially interactive local privacy. See the proof of Lemma 11

for further discussion.

3.3 Duality for 𝛾2(𝑊,𝛼) and the Dual Norm
Recall that our goal is to prove a lower bound on the sample

complexity of mechanisms in the local model in terms of the approx-

imate 𝛾2 norm. We will do so via Lemma 11, and the distributions

{𝜆1, . . . , 𝜆𝑘 } and {𝜇1, . . . , 𝜇𝑘 } will serve as a certificate of a lower
bound on the sample complexity. On the other hand, convex duality

can certify a lower bound on the approximate 𝛾2 norm. In the proof

of our lower bounds, we will show that these dual certificates for

which the approximate 𝛾2 norm is large can be turned into hard

families of distributions to use in Lemma 11.

The key duality statement follows. This dual formulation for

the 𝛾2 (𝑊,𝛼) was also given in [LS09] for the special case when𝑊

has entries in {−1, +1}.4 For completeness, here we rederive it in

Appendix C by directly applying the hyperplane separator theorem.

Lemma 12. For any 𝑘 ×𝑇 matrix𝑊 and 𝛼 ,

𝛾2 (𝑊,𝛼) = max

{
𝑊 •𝑈 − 𝛼 ∥𝑈 ∥1

𝛾∗
2
(𝑈 ) : 𝑈 ∈ R𝑘×𝑇 , 𝑈 ≠ 0

}
,

where 𝛾∗
2
is the dual norm to 𝛾2 given by

𝛾∗
2
(𝑈 ) = max{𝑈 •𝑉 : 𝑉 ∈ R𝑘×𝑇 , 𝛾2 (𝑉 ) ≤ 1}

= max
𝑎1,...,𝑎𝑘
𝑏1,...,𝑏𝑇

𝑘∑
𝑖=1

𝑇∑
𝑗=1

𝑢𝑖, 𝑗𝑎
⊤
𝑖 𝑏 𝑗 ,

where 𝑎1, . . . , 𝑎𝑘 and 𝑏1, . . . , 𝑏𝑇 range over vectors with unit ℓ2 norm
in R𝑘+𝑇 .

The expression

𝛾∗
2
(𝑈 ) = max

𝑘∑
𝑖=1

𝑇∑
𝑗=1

𝑢𝑖, 𝑗𝑎
⊤
𝑖 𝑏 𝑗 ,

with the max over unit vectors 𝑎1, . . . 𝑎𝑘 and 𝑏1, . . . , 𝑏𝑇 can be easily

formulated as a semidefinite program, and, in fact, is exactly the

semidefinite program that appears in Grothendieck’s inequality

(see, e.g., [KN12, Pis12]). It is straightforward to check (just take

all the 𝑎𝑖 and 𝑏 𝑗 co-linear) that

𝛾∗
2
(𝑈 ) ≥ max{𝑦⊤𝑈𝑧 : 𝑦 ∈ {−1, 1}𝑚, 𝑧 ∈ {−1, 1}𝑁 } = ∥𝑈 ∥∞→1 .

(2)

Moreover, Grothendieck showed that this inequality is always tight

up to a universal constant [Gro53], although this fact will not be

used here. Instead, we will need the following lemma, which can

be derived from SDP duality, and is also due to Grothendieck. For a

proof using the Hahn-Banach theorem, see [Pis12].

4
Note that in [LS09], Linial and Shraibman use the notation 𝛾𝛼

2
(𝑊 ) = inf {𝛾2 (𝑊 ) :

1 ≤ 𝑤𝑖 𝑗𝑤𝑖 𝑗 ≤ 𝛼 ∀𝑖, 𝑗 }. For sign matrices𝑊 this is equal to
𝛼+1

2
𝛾2 (𝑊, (𝛼 −1)/(𝛼 +

1)) in our notation.
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Lemma 13 ([Gro53]). For any 𝑘 ×𝑇 matrix𝑈 , 𝛾∗
2
(𝑈 ) ≤ 𝑡 if and

only if there exist diagonal matrices 𝑃 ∈ R𝑘×𝑘 and 𝑄 ∈ R𝑇×𝑇 , and
a matrix 𝑈 ∈ R𝑘×𝑇 such that Tr(𝑃2) = Tr(𝑄2) = 1,𝑈 = 𝑃𝑈𝑄 , and
∥𝑈 ∥2→2 ≤ 𝑡 .

By (2), the 𝛾∗
2
(·) norm is an upper bound on the ∥ · ∥∞→1 norm.

We use Lemma 13 to show a similar upper bound on the ∥ · ∥∞→2,

which allows projecting out some of the rows of the matrix, but is

quantitatively stronger. The reason we are interested in the ∥ · ∥∞→2

norm is that this is the norm that appears in the statement of

Lemma 11.

Lemma 14. For any matrix 𝑈 ∈ R𝑘×𝑇 , there exists a set 𝑆 ⊆ [𝑘]
of size |𝑆 | ≥ 𝑘

2
such that

√
𝑘
2
∥Π𝑆𝑈 ∥∞→2 ≤ 𝛾∗

2
(𝑈 ), where Π𝑆 is the

projection onto the subspace R𝑆 .

The next lemma slightly strengthens Lemma 14 to allow for

weights on the rows of the matrix. This is the key fact about the 𝛾∗
2

norm that we need for our lower bounds.

Lemma 15. Let𝑈 and𝑀 be𝑘×𝑇 matrices, and let𝜋 be a probability
distribution on [𝑘] where, for any 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ], we have 𝑢𝑖, 𝑗 =
𝜋 (𝑖)𝑚𝑖, 𝑗 . Then there exists a probability distribution 𝜋 on [𝑘], with
support contained in the support of 𝜋 , such that ∥𝑀 ∥ℓ∞→𝐿2 (𝜋 ) ≤
4𝛾∗

2
(𝑈 ) .

Lemmas 14 and 15 are proved in Appendix C.

3.4 Symmetrization
For our lower bound, it will be convenient to narrow our atten-

tion to the following restricted class of ‘symmetric’ query work-

loads.

Definition 16. Let 𝑄 be a workload of statistical queries with
workload matrix𝑊 ∈ R𝑄×X . Suppose there exists a partition of X
into sets X+ and X−, |X+ | = |X− |, where each element 𝑥 of X+ is
identified with a distinct element of X−, denoted −𝑥 , such that, for
all 𝑞 ∈ 𝑄 , for all 𝑥 ∈ X, 𝑞(−𝑥) = −𝑞(𝑥). In other words,𝑊 can be
expressed as (𝑊 +,𝑊 −), where𝑊 + ∈ R𝑄×X+

and𝑊 − ∈ R𝑄×X−
are

the restrictions of𝑊 to 𝑄 × X+ and 𝑄 × X− respectively, with each
entry𝑤+

𝑞,𝑥 of𝑊
+ and the corresponding entry𝑤−

𝑞,−𝑥 of𝑊
− satisfying

𝑤−
𝑞,𝑥 = −𝑤+

𝑞,−𝑥 . Also write𝑄
+ to denote the collection of queries with

workload matrix𝑊 + so that the queries 𝑞+ : X+ → R of 𝑄+ are
obtained by restricting queries 𝑞 : X → R of𝑄 to the input space X+;
define 𝑄− analogously. Then 𝑄 , and also𝑊 , are called symmetric.

The following result will allow us to translate our lower bound

for the symmetric query workloads into a lower bound for general

query workloads. Its proof is given in Appendix D.

Lemma 17. Let 𝛼, 𝜖 > 0. Let 𝑄 be a symmetric workload of sta-
tistical queries and take 𝑄+ as given by Definition 16. Suppose there
exists a non-interactive locally 𝜀-LDP mechanism M+ which takes
𝑛 samples as input and achieves err

ℓ∞ (M+, 𝑄+, 𝑛) ≤ 𝛼 . Then there
exists a local 3𝜀-LDP mechanism M which takes 𝑛′ = max{𝑛, 1

𝜀2𝛼2
}

samples as input and achieves err
ℓ∞ (M, 𝑄, 𝑛′) ≤ 4𝛼 .

Lemma 18 allows us to relate 𝛾2 (𝑊 ) and 𝛾2 (𝑊 +) and their wit-

nesses. Its proof is also given in Appendix D.

Lemma 18. Let 𝛼 > 0 and let𝑊 ∈ R𝑄×X be a symmetric workload
matrix with X+ and𝑊 + as given by Definition 16. Then it holds that
𝛾2 (𝑊 ) = 𝛾2 (𝑊 +) and 𝛾2 (𝑊,𝛼) = 𝛾2 (𝑊 +, 𝛼). Moreover, if, for some
𝑈 + ∈ R𝑄×X+

,

𝛾2 (𝑊 +, 𝛼) = 𝑊
+ •𝑈 + − 𝛼 ∥𝑈 +∥1

𝛾∗
2
(𝑈 +) ,

then

𝛾2 (𝑊,𝛼) = 𝑊 •𝑈 − 𝛼 ∥𝑈 ∥1

𝛾∗
2
(𝑈 ) ,

where𝑈 = 1

2
(𝑈 +,𝑈 −) is a matrix in R𝑄×X such that the submatrix

𝑈 − is indexed by X− and has entries 𝑢−𝑞,−𝑥 = −𝑢+𝑞,𝑥 for all 𝑥 ∈ X+

and 𝑞 ∈ 𝑄 .

3.5 Lower Bound Based on Dual Solutions
In this section we put together the different tools we have already

set up – the KL-divergence lower bound, and the duality of the

approximate 𝛾2 norm – in order to prove our main lower bound

result Theorem 1.

For this section, it is convenient to consider the enumeration

𝑞1, . . . , 𝑞𝑘 of the queries of a symmetric workload𝑄 with workload

matrix𝑊 ∈ R[𝑘 ]×X . Let𝑈 be the dual witness to the lower bound

on 𝛾2 (𝑊,𝛼), as given by Lemma 12, so that

𝛾2 (𝑊,𝛼) = 𝑊 •𝑈 − 𝛼 ∥𝑈 ∥1

𝛾∗
2
(𝑈 ) . (3)

By Lemma 18, we may assume without loss of generality that 𝑈 is

of the form (𝑈 +,𝑈 −) where each entry of𝑈 −
is the additive inverse

of the corresponding entry of𝑈 +
. Furthermore, by dividing each

entry of 𝑈 by ∥𝑈 ∥1 if necessary, then we may assume without loss

of generality that ∥𝑈 ∥1 = 1. In this case,

𝛾2 (𝑊,𝛼) = 𝑊 •𝑈 − 𝛼
𝛾∗

2
(𝑈 ) .

Let us make a first attempt at constructing our collection of “hard”

distributions 𝜆1, . . . , 𝜆𝑘 and 𝜇1, . . . , 𝜇𝑘 for 𝑄 . Since ∥𝑈 ∥1 = 1, then

𝜋 (𝑣) =
∑
𝑥 ∈X

|𝑢𝑣,𝑥 | (4)

defines a valid probability distribution over [𝑘]. For each 𝑣 ∈ [𝑘],
we then define a pair of distributions 𝜆𝑣 and 𝜇𝑣 given by

∀𝑥 ∈ X+
: 𝜆𝑣 (𝑥) = 𝜆𝑣 (−𝑥) = |𝑢𝑣,𝑥 |/𝜋 (𝑣) (5)

∀𝑥 ∈ X+
: 𝜇𝑣 (𝑥) =

{
2|𝑢𝑣,𝑥 |/𝜋 (𝑣) if 𝑢𝑣,𝑥 ≥ 0

0 if 𝑢𝑣,𝑥 < 0

(6)

𝜇𝑣 (−𝑥) =
{

0 if 𝑢𝑣,𝑥 ≥ 0

2|𝑢𝑣,𝑥 |/𝜋 (𝑣) if 𝑢𝑣,𝑥 < 0

(7)

Then, for all 𝑖, 𝑣 ∈ [𝑘], the symmetry of 𝜆𝑣 implies 𝑞𝑖 (𝜆𝑣) = 0.

By contrast, it holds for all 𝑣 ∈ [𝑘] that

𝑞𝑣 (𝜇𝑣) =
∑
𝑥 ∈X

𝑞𝑣 (𝑥)𝜇𝑣 (𝑥)

=
∑
𝑥 ∈X+

𝑞𝑣 (𝑥) (𝜇𝑣 (𝑥) − 𝜇𝑣 (−𝑥))

= 2𝑊 + •𝑈 + =𝑊 •𝑈 .
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Hence,

E
𝑉∼𝜋

[
max

𝑖∈[𝑘 ]
𝑞𝑖 (𝜇𝑉 )

]
≥ E
𝑉∼𝜋

[𝑞𝑉 (𝜇𝑉 )] =𝑊 •𝑈 .

Since𝑊 •𝑈 = 𝛾∗
2
(𝑈 )𝛾2 (𝑊,𝛼) + 𝛼 ≥ 𝛼 by Lemma 12, then

E𝑉∼𝜋 [max

𝑖∈[𝑘 ]
𝑞𝑖 (𝜇𝑉 )] ≥ 𝛼.

If we could guarantee that𝑞𝑉 (𝜇𝑉 ) was close to its expectation when
𝑉 ∼ 𝜋 , then estimating each of the queries 𝑞𝑖 of 𝑄 with error less

than 𝛼 would allow us to distinguish the distributions 𝜆1, . . . , 𝜆𝑘
from the distributions 𝜇1, . . . , 𝜇𝑘 . The following result modifies our

distributions in a way that resolves this issue.

Lemma 19. Let 𝑄 be a collection of symmetric queries with work-
load matrix𝑊 ∈ R[𝑘 ]×X . Let𝑈 ∈ R[𝑘 ]×X be the dual witness so that
(3) is satisfied. Then there exist probability distributions 𝜆1, . . . , 𝜆𝑘
and 𝜇̃1, . . . , 𝜇̃𝑘 over X, and a distribution 𝜋 over [𝑘] such that:

(1) 𝑞𝑖 (𝜆𝑣) = 0 for all 𝑖, 𝑣 ∈ [𝑘];
(2) for all 𝑣 in the support of 𝜋 , 𝑞𝑣 (𝜇̃𝑣) ≥ 𝑊 •𝑈−𝛼/4

𝑂 (log(1/𝛼)) ;

(3) the matrix 𝑈 ∈ R[𝑄 ]×X with entries 𝑢𝑣,𝑥 = 𝜋 (𝑣) (𝜆𝑣 (𝑥) −
𝜇̃𝑣 (𝑥)) satisfies 𝛾∗

2
(𝑈 ) ≤ 𝛾∗

2
(𝑈 ) .

The proof of Lemma 19 will take advantage of the following

exponential binning lemma. A proof is given in Appendix E.

Lemma 20. Suppose that 𝑎1, . . . , 𝑎𝑘 ∈ [0, 1] and that 𝜋 is a proba-
bility distribution over [𝑘]. Then for any 𝛽 ∈ (0, 1], there exists a set
𝑆 ⊆ [𝑘] such that 𝜋 (𝑆) · min𝑣∈𝑆 𝑎𝑣 ≥

∑𝑘
𝑣=1

𝜋 (𝑣)𝑎𝑣−𝛽
𝑂 (log(1/𝛽)) .

Proof of Lemma 19. Let 𝜆1, . . . , 𝜆𝑘 , 𝜇1, . . . , 𝜇𝑘 , and 𝜋 be as given

by equations (4) - (7). Since 𝑞𝑣 (𝜇𝑣) > 0 for all 𝑣 , we may apply

Lemma 20 with 𝑎𝑣 = 𝑞𝑣 (𝜇𝑣) and 𝛽 = 𝛼/4 to obtain a subset 𝑆 ⊆ [𝑘]
for which

𝜋 (𝑆) · min

𝑣∈𝑆
𝑞𝑣 (𝜇𝑣) ≥

E𝑉∼𝜋𝑞𝑣 (𝜇𝑣) − 𝛼/4

𝑂 (log(1/𝛼)) =
𝑊 •𝑈 − 𝛼/4

𝑂 (log(1/𝛼)) .

Now define 𝜋 as 𝜋 conditional on 𝑆 . In particular,

𝜋 (𝑣) =
{
𝜋 (𝑣)/𝜋 (𝑆), if 𝑣 ∈ 𝑆
0, otherwise.

Then, for all 𝑣 ∈ [𝑘], define 𝜆𝑣 = 𝜆𝑣 and 𝜇̃𝑣 = 𝜋 (𝑆)𝜇𝑣 + (1−𝜋 (𝑆))𝜆𝑣 .
This implies

∀𝑖, 𝑣 ∈ [𝑘] : 𝑞(𝜆𝑣) = 𝑞(𝜆𝑣) = 0,

∀𝑣 ∈ [𝑘] : 𝑞𝑣 (𝜇̃𝑣) = 𝜋 (𝑆)𝑞𝑣 (𝜇𝑣) ≥
𝑊 •𝑈 − 𝛼/4

𝑂 (log(1/𝛼)) ,

∀𝑣 ∈ [𝑘] : 𝜇̃𝑣 − 𝜆𝑣 = 𝜋 (𝑆) (𝜇𝑣 − 𝜆𝑣) .
By the last of these facts, together with the definition of 𝜋 , it follows

that the entries 𝑢𝑣,𝑥 = 𝜋 (𝑣) (𝜆𝑣 (𝑥) − 𝜇̃𝑣 (𝑥)) of the matrix𝑈 satisfy

𝑢𝑣,𝑥 =

{
𝑢𝑣,𝑥 , if 𝑣 ∈ 𝑆
0, otherwise.

In other words,𝑈 is obtained from𝑈 by replacing some of its rows

with the zero-vector. It is easy to see from the definition of 𝛾∗
2
that

this implies 𝛾∗
2
(𝑈 ) ≤ 𝛾∗

2
(𝑈 ). □

Consider now the matrix 𝑀 ∈ R[𝑘 ]×X with entries 𝑚𝑣,𝑥 =

𝜆𝑣 (𝑥) − 𝜇̃𝑣 (𝑥). Since𝑀 is obtained from the matrix𝑈 of Lemma 19

by scaling each row 𝑣 of𝑈 by
1

2𝜋 (𝑣) , it follows that

∥𝑀 ∥ℓ∞→𝐿1 (𝜋 ) =
1

2

∥𝑈 ∥∞→1 ≤ 𝛾∗
2
(𝑈 ) ≤ 𝛾∗

2
(𝑈 ) = 𝑊 •𝑈 − 𝛼

𝛾2 (𝑊,𝛼) .

This is not quite the quantity

∥𝑀 ∥2

ℓ∞→𝐿2 (𝜋 ) = max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋

[(
E
𝑥∼𝜆𝑉 [𝑓𝑥 ] − E𝑥∼𝜇̃𝑉 [𝑓𝑥 ]

)
2

]
which Lemma 11 would have us bound. For comparison, note

∥𝑀 ∥ℓ∞→𝐿1 (𝜋 ) = max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋

[����� E𝑥∼𝜆𝑉 [𝑓𝑥 ]] − E
𝑥∼𝜇̃𝑉

[𝑓𝑥 ]
�����
]
.

Since the trivial case of Holder’s inequality implies that the 𝐿1 (𝜋)-
norm is always bounded above by the 𝐿2 (𝜋)-norm, it holds that

∥𝑀 ∥ℓ∞→𝐿1 (𝜋 ) ≤ ∥𝑀 ∥ℓ∞→𝐿2 (𝜋 ) . However, this inequality goes in

the wrong direction for our requirements. This issue is remedied

by taking advantage of Lemma 15.

Lemma 21. Let 𝑄 be a collection of symmetric queries with work-
load matrix𝑊 ∈ R[𝑘 ]×X . Let𝑈 ∈ R[𝑘 ]×X be the dual witness so that
(3) is satisfied. Then there exist probability distributions 𝜆1, . . . , 𝜆𝑘
and 𝜇̃1, . . . , 𝜇̃𝑘 over X, and a distribution 𝜋 over [𝑘] such that:

(1) 𝜆1, . . . , 𝜆𝑘 , 𝜇̃1, . . . , 𝜇̃𝑘 and𝜋 satisfy criteria 1. and 2. of Lemma 19;
(2) the matrix𝑀 with entries𝑚𝑣,𝑥 = 𝜆𝑣 (𝑥) − 𝜇̃𝑣 (𝑥) satisfies

∥𝑀 ∥ℓ∞→𝐿2 (𝜋 ) ≤ 4𝛾∗
2
(𝑈 ) = 4(𝑊 •𝑈 − 𝛼)

𝛾2 (𝑊,𝛼)

Proof. Let 𝜆1, . . . , 𝜆𝑘 , 𝜇̃1, . . . , 𝜇̃𝑘 and 𝜋 be the distributions guar-

anteed to exist by Lemma 19, and let𝑈 ∈ R[𝑘 ]×X be the correspond-

ing matrix with entries 𝑢𝑣,𝑥 = 𝜋 (𝑣) (𝜆𝑣 (𝑥) − 𝜇̃𝑣 (𝑥)). The entries of
the matrix𝑀 satisfy 𝜋 (𝑣)𝑚𝑣,𝑥 = 𝑢𝑣,𝑥 , so we may apply Lemma 15

to obtain a distribution 𝜋 such that

∥𝑀 ∥ℓ∞→𝐿2 (𝜋 ) ≤ 4𝛾∗
2
(𝑈 ) ≤ 4𝛾∗

2
(𝑈 ) = 4(𝑊 •𝑈 − 𝛼)

𝛾2 (𝑊,𝛼) .

Lemma 15 further guarantees that the support of 𝜋 lies within the

support of 𝜋̃ , which together with the properties of the distributions

𝜆1, . . . , 𝜆𝑘 , 𝜇̃1, . . . , 𝜇̃𝑘 and 𝜋 gives the first condition of our lemma.

□

At last, we have all the components needed to prove our lower

bounds for symmetric workloads.

Theorem 22. Let 𝛼, 𝜀 ∈ (0, 1]. Let 𝑄 be a symmetric workload
of statistical queries with workload matrix𝑊 ∈ R[𝑘 ]×X . Then, for
some 𝛼 ′ = Ω(𝛼/log(1/𝛼)), if 𝛾2 (𝑊,𝛼)2

𝜀2𝛼2
≥ 𝐶 log 2𝑘

(𝛼′)2
for a large enough

constant 𝐶 , we have

sc
ℓ∞,loc

𝜀,0
(𝑄, 𝛼 ′) = Ω

(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
.

Proof. Let 𝛼 ′ = Ω(𝛼/log(1/𝛼)) be a value that will be de-

cided shortly, and 𝐶 ′
be a sufficiently large constant. If we run

a 𝜀-DP mechanism M on 𝑛 = max

{
sc
ℓ∞ (M, 𝑄, 𝛼 ′), 𝐶

′
log 2𝑘

(𝛼′)2

}
sam-

ples drawn i.i.d. from some distribution 𝜇 on X, then, by classical
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uniform convergence results, E
𝑋∼𝜇𝑛

[
∥𝑄 (𝑋 ) −𝑄 (𝜇)∥∞

]
≤ 𝛼 ′,where

𝑄 (𝜇) = (𝑞1 (𝜇), . . . , 𝑞𝑘 (𝜇)). Therefore, the mechanism will satisfy

E
𝑋∼𝜇𝑛

[
∥M(𝑋 ) −𝑄 (𝜇)∥∞

]
≤ 2𝛼 ′. (8)

We will show that for any 𝜀-LDP mechanismM such that (8) holds

for an arbitrary 𝜇, we must have

𝑛 = Ω

(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
. (9)

Therefore, we get thatmax

{
sc
ℓ∞ (M, 𝑄, 𝛼 ′), 𝐶

′
log 2𝑘

(𝛼′)2

}
= Ω

(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2
,

)
which implies the theorem by the assumption on

𝛾2 (𝑊,𝛼)2

𝜀2𝛼2
.

Let 𝜆1, . . . , 𝜆𝑘 , 𝜇̃1, . . . , 𝜇̃𝑘 and 𝜋 be the distributions, and 𝑀 ∈
R[𝑘 ]×X the matrix, guaranteed to exist by Lemma 21. The matrix

𝑀 has entries𝑚𝑣,𝑥 = 𝜆𝑣 (𝑥) − 𝜇̃𝑣 (𝑥) and satisfies

∥𝑀 ∥ℓ∞→𝐿2 (𝜋 ) ≤
4(𝑊 •𝑈 − 𝛼)
𝛾2 (𝑊,𝛼) .

Equivalently,

max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋


(
E

𝑥∼𝜆𝑉
[𝑓𝑥 ] − E

𝑥∼𝜇̃𝑉
[𝑓𝑥 ]

)
2 ≤

(
4(𝑊 •𝑈 − 𝛼)
𝛾2 (𝑊,𝛼)

)
2

.

By Lemma 11, this implies

DKL (TM (𝜆𝑛
𝜋
)∥TM (𝜇̃𝑛

𝜋
)) ≤ 𝑂 (𝑛𝜀2) ·

(
𝑊 •𝑈 − 𝛼
𝛾2 (𝑊,𝛼)

)
2

(10)

Lemma 21 guarantees further that 𝑞𝑖 (𝜆𝑣) = 0 for all 𝑖, 𝑣 ∈ [𝑘],
while 𝑞𝑣 (𝜇̃𝑣) ≥ 𝑊 •𝑈−𝛼/4

𝑂 (log(1/𝛼)) for all 𝑣 in the support of 𝜋 . Let 𝛼 ′ =
1

8
min𝑣∈[𝑘 ] 𝑞𝑣 (𝜇̃𝑣). Then a mechanism M satisfying (8) can distin-

guish between the distributions 𝜆𝑛
𝜋
and 𝜇̃𝑛

𝜋
with constant probability,

and, by Pinsker’s inequality, DKL (TM (𝜆𝑛
𝜋
)∥TM (𝜇̃𝑛

𝜋
)) is bounded

from below by some constant 𝐶 > 0. By (10), this implies that

𝑛 = Ω

(
𝛾2 (𝑊,𝛼)

𝜀 · (𝑊 •𝑈 − 𝛼)

)
2

samples are required to obtain accuracy 𝛼 ′/4 and privacy 𝜀.

Case 1:𝑊 •𝑈 ≤ 2𝛼 . Recall that𝑊 •𝑈 ≥ 𝛼 . Hence, if𝑊 •𝑈 ≤ 2𝛼 ,

then 𝑛 = Ω
(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
and furthermore

𝛼 ′ ≥ 𝑊 •𝑈 − 𝛼/4

𝑂 (log(1/𝛼)) = Ω

(
𝛼

log(1/𝛼)

)
Case 2:𝑊 •𝑈 > 2𝛼 . However, if𝑊 •𝑈 > 2𝛼 , then, for 𝛽 ∈ [0, 1],

we may instead consider the distributions 𝜇̂𝑣 = (1 − 𝛽) · 𝜆𝑣 + 𝛽 · 𝜇̃𝑣

and 𝜆𝑣 = 𝜆𝑣 , given for 𝑣 ∈ [𝑘]. We have

DKL (TM (𝜆𝑛
𝜋
)∥TM (𝜇̂𝑛

𝜋
))

≤ 𝑂 (𝜀2𝑛) · max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋


(
E

𝑥∼𝜆𝑉
[𝑓𝑥 ] − E

𝑥∼𝜇̂𝑉
[𝑓𝑥 ]

)
2

= 𝑂 (𝜀2𝑛) · 𝛽2
max

𝑓 ∈RX :∥𝑓 ∥∞≤1

E
𝑉∼𝜋


(
E

𝑥∼𝜆𝑉
[𝑓𝑥 ] − E

𝑥∼𝜇̃𝑉
[𝑓𝑥 ]

)
2

≤ 𝑂 (𝜀2𝑛) · 𝛽2 ·
(
𝑊 •𝑈 − 𝛼
𝛾2 (𝑊,𝛼)

)
2

.

Also, 𝑞𝑖 (𝜆𝑣) = 0 for all 𝑖, 𝑣 ∈ [𝑘], while

𝑞𝑣 (𝜇̂𝑣) = 𝛽 · 𝑞𝑣 (𝜇̃𝑣) ≥ 𝛽 ·
(
𝑊 •𝑈 − 𝛼/4

𝑂 (log(1/𝛼))

)
for all 𝑖 in the support of 𝜋 . In particular, if we set

𝛼 ′ =
1

8

min

𝑣
𝑞𝑣 (𝜇̂𝑣) ≥

𝛽 (𝑊 •𝑈 − 𝛼/4)
𝑂 (log(1/𝛼))

and (8) holds forM and this value of 𝛼 ′, thenM can distinguish be-

tween 𝜆𝑛
𝜋
and 𝜇̂𝑛

𝜋
. This implies DKL (TM (𝜆𝑛

𝜋
)∥TM (𝜇̂𝑛

𝜋
)) is bounded

below by a constant, from which we obtain that

𝑛 = Ω

(
𝛾2 (𝑊,𝛼)

𝜀𝛽 · (𝑊 •𝑈 )

)
2

samples are required for privacy 𝜀 and accuracy 𝛼 ′. Indeed, by
taking 𝛽 = 𝑈 •𝑊

𝛼 , we get that

𝑛 = Ω

((
𝛾2 (𝑊,𝛼)

𝜀𝛼

)
2

)
samples are required for privacy 𝜀 and accuracy 𝛼 ′ which satisfies

𝛼 ′ ≥ 𝛽 (𝑊 •𝑈−𝛼/4)
𝑂 (log(1/𝛼)) = Ω

(
𝛼

log(1/𝛼)

)
.

In both cases, 𝑛 = Ω
(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
samples are required for privacy

𝜀 and accuracy 𝛼 ′, where 𝛼 ′ = Ω
(

𝛼
log(1/𝛼)

)
□

The symmetrization techniques of

Theorem 23 (Formal version of Theorem 1). Let 𝛼, 𝜀 ∈ (0, 1].
Let 𝑄 be a collection of queries with workload matrix𝑊 . Then, for

some 𝛼 ′ = Ω
(

𝛼
log(1/𝛼)

)
, if 𝛾2 (𝑊,𝛼)2

𝜀2𝛼2
≥ 𝐶 log 2𝑘

(𝛼′)2
+ 𝐶
𝜀2 (𝛼′)2

for a large
enough constant 𝐶 , we have

sc
ℓ∞,loc

𝜀,0
(𝑄, 𝛼 ′) = Ω

(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
.

3.6 Applications of the Lower Bounds
In this subsection we apply Theorem 23 to several workloads

of interest, and, using known bounds on the approximate 𝛾2 norm,

prove new lower bounds on the sample complexity of these work-

loads.

We start with the threshold queries 𝑄cdf

𝑇
. Identifying 𝑞𝑡 with

𝑡 , we see that the corresponding workload matrix𝑊 is a lower

triangular matrix, with entries equal to 1 on and below the main

diagonal. Let us consider a different matrix𝑊 ′ = 2𝑊 − 𝐽 , where 𝐽
is the all-ones 𝑇 ×𝑇 matrix. Forster et al. [FSSS03] showed a lower
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bound on the margin complexity of𝑊 ′
, which implies that for any

𝑊 such that𝑤𝑡,𝑥𝑤
′
𝑡,𝑥 ≥ 1 holds for all 𝑡, 𝑥 ∈ [𝑇 ], we have

𝛾2 (𝑊 ) = Ω(log𝑇 ) . (11)

Note that, if𝑊 satisfies ∥𝑊 −𝑊 ′∥1→∞ ≤ 1

2
, then we can take

𝑊 = 2𝑊 , and (11) implies 𝛾2 (𝑊 ′, 1/2) = Ω(log𝑇 ). Finally, homo-

geneity and the triangle inequality for 𝛾2, and 𝛾2 (𝐽 ) = 1 imply

that 𝛾2 (𝑊, 1/2) ≥ 1

2
𝛾2 (𝑊 ′, 1/2) − 1

2
= Ω(log𝑇 ) . Together with

Theorem 23, this gives Corollary 4.

Next, we consider the parity queries 𝑄
parity

𝑑,𝑤
. Note that the work-

load matrix𝑊 of these queries is a submatrix consisting of

(𝑑
𝑤

)
rows of the 2

𝑑 × 2
𝑑
Hadamard matrix. Let 𝑠 = 2

𝑑
(𝑑
𝑤

)
be the num-

ber of entries in𝑊 . To prove a lower bound on 𝛾2 (𝑊,𝛼), we can
use Lemma 12 with 𝑈 =𝑊 . The rows of a Hadamard matrix are

pairwise orthogonal and have ℓ2 norm 2
𝑑/2

, and, so, Lemma 13,

used with 𝑃 and𝑄 set to appropriately scaled copies of the identity

matrices of the respective dimensions, implies that 𝛾∗
2
(𝑈 ) ≤

√
𝑠2𝑑 .

Moreover,𝑊 •𝑈 = ∥𝑈 ∥1 = 𝑠 , and, by Lemma 12, we have

𝛾2 (𝑊, 1/2) ≥
√
𝑠

2
(𝑑/2)+1

= Ω

((
𝑑

𝑤

)
1/2

)
.

This gives Corollary 5.

Finally, we treat marginal queries. Let us define these queries

slightly more generally than we did in the introduction, by allowing

for negation.We define𝑄
marginal

𝑑,𝑤
to consist of the queries𝑞𝑆,𝑦 (𝑋 ) =

1

𝑛

∑𝑛
𝑖=1

∏
𝑗 ∈𝑆 I[𝑥𝑖, 𝑗 = 𝑦 𝑗 ], with 𝑆 ranging over subsets of [𝑑] of

size at most 𝑤 , and 𝑦 ranging over {0, 1}𝑑 . These queries can be

expressed in terms of the 𝑞𝑆 queries defined in the introduction by

doubling the dimension 𝑑 .

To prove a lower bound for 𝑄
marginal

𝑑,𝑤
, we use the pattern ma-

trix method of Sherstov [She11]. We will omit a full definition of

a pattern matrix here, and refer the reader to Sherstov’s paper.

Instead, we remark that, denoting by 𝑓 the AND function on 𝑤

bits, a (𝑑,𝑤, 𝑓 )-pattern matrix𝑊 ′
is a

(2𝑑)𝑤
𝑤𝑤 × 2

𝑑
submatrix of the

workload matrix𝑊 for 𝑄
marginal

𝑑,𝑤
. Let 𝑠 = 2

𝑑 (2𝑑)𝑤
𝑤𝑤 be the number

of entries in𝑊 ′
. By Theorem 8.1. in [She11], we have that, for any

𝛼 ≤ 1

6
,

min

{
1

√
𝑠
∥𝑊 ∥𝑡𝑟 : ∥𝑊 −𝑊 ′∥1→∞ ≤ 𝛼

}
= Ω

(
𝑑

𝑤

)
deg

1/3
(𝑓 )/2

,

where ∥𝑊 ∥𝑡𝑟 is the trace-norm, i.e., the sum of singular values of

𝑊 , and deg
1/3

(𝑓 ) is the (1/3)-approximate degree of 𝑓 , which is

known to be Ω(
√
𝑤) [NS94]. Since 1√

𝑠
∥𝑊 ∥𝑡𝑟 is a lower bound on

𝛾2 (𝑊 ) (see [LMSS07, Lemma 3.4]), this implies

𝛾2 (𝑊, 1/6) ≥ 1

√
𝑠
∥𝑊 ∥𝑡𝑟 = Ω

(
𝑑

𝑤

)Ω (
√
𝑤)
,

giving us Corollary 6.

4 NON-INTERACTIVE LOCAL DP:
PAC LEARNING

It turns out that we are able to translate our algorithm and

lower bound for answering linear queries in the local model into

an algorithm and lower bound for probably approximately correct
learning in the local model.

A concept 𝑐 : X+ → {−1, +1} from a concept class C identifies

each sample 𝑥 of X+
with a label 𝑐 (𝑥). The labelled pair (𝑥, 𝑐 (𝑥)) =

(𝑥, 1) may be identified with the sample 𝑥 of X+
, while the labelled

pair (𝑥, 𝑐 (𝑥)) = (𝑥,−1) may be identified with the sample −𝑥 of

X−
. Let 𝑞 : X → {−1, +1} be given by

𝑞(𝑥) =
{
𝑐 (𝑥), if 𝑥 ∈ X+

−𝑐 (−𝑥), if 𝑥 ∈ X−

Then the loss of the concept 𝑐 on a dataset𝑋 = ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)),
denoted Λ

𝑋
(𝑐), is

Λ
𝑋
(𝑐) = 1

𝑛

𝑛∑
𝑖=1

(1 − I[𝑓 (𝑥𝑖 ) = 𝑦𝑖 ])

=
1

2

− 1

2𝑛

𝑛∑
𝑖=1

𝑓 (𝑥𝑖 )𝑦𝑖 =
1

2

− 1

2𝑛

𝑛∑
𝑖=1

𝑞(𝑥𝑖 · 𝑦𝑖 ) =
1

2

− 1

2

𝑞(𝑋 )

where 𝑋 is the dataset (𝑥1 · 𝑦1, . . . , 𝑥𝑛 · 𝑦𝑛). In this way, estimating

Λ
𝑋
(𝑐) given the dataset 𝑋 is equivalent to estimating 𝑞(𝑋 ) given

the dataset 𝑋 . More generally, if we consider the query workload

𝑄 consisting of all such queries 𝑞 obtained from some concept 𝑐

of C in this way, then estimating 𝑄 (𝑋 ) is equivalent to estimating

Λ
𝑋
(C) = (Λ

𝑋
(𝑐))𝑐∈C . This idea allows us to adapt the algorithm

of Theorem 10 for estimating linear queries to an algorithm for

learning. The result is stated in terms of the concept matrix 𝐷 ∈
RC×X

+
of C with entries given by

𝑑𝑐,𝑥 = 𝑐 (𝑥)
and takes advantage of the fact that the workload matrix𝑊 of

the corresponding query workload 𝑄 is obtained by extending 𝐷

to C × X in the usual way with 𝑤𝑞,𝑥 = 𝑑𝑐,𝑥 and 𝑤𝑞,−𝑥 = −𝑑𝑐,𝑥
for 𝑞 ∈ 𝑄 and 𝑥 ∈ X+

when 𝑐 is the concept that corresponds to

𝑞. In particular, the queries 𝑄 are symmetric, and, by Lemma 18,

𝛾2 (𝐷, 𝛼) = 𝛾2 (𝑊,𝛼).
In order to state our results for agnostic learning, we need to

define notation for population loss, in addition to the empirical loss

defined above. For a distribution 𝜇 over X+ × {−1, +1}, we will use
Λ𝜇 (𝑐) to denote the loss of the concept 𝑐 on 𝜇, given by

Λ𝜇 (𝑐) = Pr

(𝑥,𝑦)∼𝜇
[𝑐 (𝑥) ≠ 𝑦] .

For 𝛼, 𝛽 > 0 we will say that the mechanismM (𝛼 ,𝛽)-learns C with

𝑛 samples if, for all distributions 𝜇 over X+ × {−1, +1}, given as

input a dataset 𝑋 = ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) of 𝑛 samples drawn IID

from 𝜇,M outputs a concept 𝑐 ∈ C and an estimate Λ such that

Pr

M,𝑋

[Λ𝜇 (𝑐) ≤ min

𝑐′∈C
Λ𝜇 (𝑐 ′) + 𝛼 and |Λ − Λ𝜇 (𝑐) | ≤ 𝛼] ≥ 1 − 𝛽.

Typically, the learning problem does not require outputting an

estimate of the loss Λ𝜇 (𝑐), since it is usually easy to compute such

an estimate with few additional samples, once a concept 𝑐 has been

computed. In the local model, however, this would require an addi-

tional round of interactivity. Since we focus on the non-interactive

local model, it is natural to make this additional requirement on

the learning algorithm.

Since we wish to bound population loss, it is necessary to as-

sume that there are sufficiently many samples to guarantee uniform
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convergence. It suffices to assume, for some constant 𝐶 , that the

number of samples is at least 𝑛 ≥ 𝐶 log 2 |C |
𝛼2

to guarantee

Pr

𝑋

[∀𝑐 ∈ C, |Λ
𝑋
(𝑐) − Λ𝜇 (𝑐) | ≤ 𝛼] ≥ 1 − 𝛽

2

when 𝑋 consists of 𝑛 IID samples drawn from 𝜇.

Theorem 24. Let 𝛼, 𝛽 ∈ (0, 1), and let 𝜀 > 0. There exists an 𝜀-
LDP mechanismM such that, for any concept class C of size |C| = 𝑘
with corresponding concept matrix 𝐷 ∈ RC×X+

, it suffices to have a
dataset 𝑋 = ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) of

𝑛 = max

{
𝑂

(
𝛾2 (𝐷, 𝛼)2

log𝑘

𝜀2𝛼2

)
,𝑂

(
log𝑘

𝛼2

)}
samples to guarantee thatM (𝛼, 𝛽)-learns C.

Applying the same ideas, we know that if we estimate the quan-

tity min𝑐∈C Λ
𝑋
(𝑐), then we can estimate max𝑞∈𝑄 𝑞(𝑋 ). Similarly,

estimating min𝑐∈C Λ𝜇 (𝑐) is equivalent to estimating max𝑞∈𝑄 𝑞(𝜇 ′)
where 𝜇 ′ is the distribution on X obtained from 𝜇 by associating

samples of the forms (𝑥, 1) and (𝑥,−1) with 𝑥 and −𝑥 , respectively.
Since the matrix𝑊 ∈ RC×X obtained from 𝐷 is symmetric, and

estimating max𝑞∈𝑄 𝑞(𝜇 ′) is precisely what is required for the lower
bound of Theorem 22, we the following lower bound for agnostic

learning.

Theorem 25. Let 𝛽 ∈ (0, 1) be a small enough constant, and let
𝜀 > 0. Let C be a concept class with concept matrix 𝐷 ∈ RC×X+

.

For some 𝛼 ′ = Ω
(

𝛼
log(1/𝛼)

)
, if 𝛾2 (𝑊,𝛼)

𝜀2𝛼2
≥ 𝐶 log 2𝑘

𝛼′ for a large enough
constant 𝐶 > 0, then any 𝜀-LDP mechanism M which (𝛼 ′, 𝛽)-learns
C requires

𝑛 = Ω

(
𝛾2 (𝑊,𝛼)2

𝜀2𝛼2

)
samples as input.

5 CHARACTERIZING CENTRAL DP FOR
LARGE DATASETS

The goal of this section is to show that the sample complexity of

releasing a given set of linear queries with workload matrix𝑊 is

sc
ℓ2

2 (𝑊,𝛼, 𝜀, 𝛿) = Θ

(
𝛾𝐹 (𝑊 )
𝛼𝜀

)
when 𝛼 is sufficiently small (smaller than some 𝛼∗ (𝑄, 𝜀)). Or, equiv-
alently, we show that err

ℓ2

2 (𝑊,𝑛, 𝜀, 𝛿) = Θ(𝛾𝐹 (𝑊 )
𝜀𝑛 ), when 𝑛 is suffi-

ciently large (larger than some 𝑛∗ (𝑄, 𝜀)).
The proof consists of two steps. First, we argue that error

err(𝑊,𝑛, 𝜀, 𝛿) = Θ(𝛾𝐹 (𝑊 )
𝜀𝑛

)

is necessary for every 𝑛 if we restrict attention only to mechanisms

that are data-independent. That is, mechanisms that perturb the out-

put with noise from a fixed distribution independent of the dataset.

Then, we apply a lemma of Bhaskara et al. [BDKT12] that says,

when 𝑛 is sufficiently large, any instance-dependent mechanism

can be replaced with an instance-independent mechanism with the

same error and similar privacy parameters.

5.1 Data-Independent Mechanisms
Let 𝑄 be a workload of linear queries over data universe X and

let𝑊 ∈ R𝑄×X
be the matrix form of this workload. An instance-

independent mechanism M can be written (as a function of the

histogram of the dataset) as,

M(ℎ) = 1

𝑛
(𝑊ℎ + 𝑍 )

where 𝑍 is a random variable over R𝑄 whose distribution does not

depend on ℎ. Without loss of generality, we assume E[𝑍 ] = 0. Let

Σ = E
[
𝑍𝑍𝑇

]
be the covariance matrix of 𝑍 . Then the ℓ2 error of

such a mechanism is

err
ℓ2

2 (M,𝑊 , 𝑛) = max

ℎ:∥ℎ ∥1=𝑛

√√√
E

[
∥M(ℎ) − 1

𝑛𝑊ℎ∥2

2

|𝑄 |

]

=

√√√
E

[
∥𝑍 ∥2

2

𝑛 |𝑄 |

]
=

√
Tr(Σ)
𝑛 |𝑄 |

In this section, we will show that, ifM is (𝜀, 𝛿)-differentially pri-

vate (for 𝜀, 𝛿 smaller than some absolute constants), then Tr(Σ) =
Ω( |𝑄 |𝛾𝐹 (𝑊 )2

𝜀2
), and thus err(M,𝑊 , 𝑛) = Ω(𝛾𝐹 (𝑊 )

𝜀𝑛 ).
We start with the following basic lemma about differential pri-

vacy, which says that the variance of any differentially private

algorithm for answering a single query𝑤 must be proportional to

the sensitivity of the query.

Lemma 26 ([KRSU10]). For any single-query workload𝑤 ∈ R |X | ,
and any data-independent mechanismM(ℎ) = 1

𝑛𝑤
⊤ℎ + 1

𝑛𝑧 that is
(𝜀, 𝛿)-differentially private for 𝜀, 𝛿 smaller than some absolute con-
stants, E

[
𝑧2

]
≥ 1

𝐶𝜀
∥𝑤 ∥∞ for some absolute constant 𝐶 > 0.

Next, we define the sensitivity polytope 𝐾 = 𝑊𝐵
|X |
1

, where

𝐵
|X |
1

= {ℎ ∈ R |X |
: ∥ℎ∥1 ≤ 1}. With this definition, we have

that for any pair of neighboring datasets 𝑋,𝑋 ′
with associated his-

tograms ℎ,ℎ′, we have𝑊 (ℎ − ℎ′) ∈ 𝐾 . The next lemma says that

the covariance matrix Σ defines an ellipsoid that contains at least a

constant multiple of the sensitivity polytope.

Lemma 27. Let𝑊 be a workload matrix such that the sensitivity
polytope 𝐾 is full dimensional. Let M be an (𝜀, 𝛿)-differentially pri-
vate data-independent mechanism for𝑊 that has covariance matrix
Σ, for 𝜀, 𝛿 smaller than some absolute constants. Then Σ is invertible,
and

max

𝑦∈𝐾
∥Σ−1/2𝑦∥2

2
= max

𝑦∈𝐾
𝑦⊤Σ−1𝑦 ≤ 𝐶2𝜀2

for some absolute constant 𝐶 > 0.

Proof. By post-processing, for any 𝑢 ∈ R |X |
,

𝑢⊤M(ℎ) = 1

𝑛
𝑢⊤𝑊ℎ + 1

𝑛
𝑢⊤𝑍

is an (𝜀, 𝛿)-DPmechanism for the single query𝑢⊤𝑊 . The sensitivity

polytope of the workload 𝑢⊤𝑊 is the line [−ℎ𝐾 (𝑢), ℎ𝐾 (𝑢)], where
ℎ𝐾 (𝑢) = max𝑦∈𝐾 𝑢⊤𝑦 is the support function. By Lemma 26, if M
is an (𝜀, 𝛿)-differentially private mechanism, then for some constant

𝐶 ,

∥Σ1/2𝑢∥2 =
√
𝑢⊤Σ𝑢 ≥ ℎ𝐾 (𝑢)

𝐶𝜀
. (12)
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If 𝐾 is full dimensional, then in particular we have ℎ𝐾 (𝑒𝑖 ) > 0 for

any standard basis vector 𝑒𝑖 , which implies that the matrix Σ is

positive definite and invertible.

By change of variables we can write 𝑣 = Σ1/2𝑢 and rewrite (12)

as

∥𝑣 ∥2 ≥ 1

𝐶𝜀
·ℎ𝐾 (Σ−1/2𝑣) = 1

𝐶𝜀
·max

𝑦∈𝐾
(Σ−1/2𝑣)⊤𝑦 =

1

𝐶𝜀
·max

𝑦∈𝐾
𝑣⊤Σ−1/2𝑦

Since the above holds for any unit vector 𝑣 ∈ S |X |−1
, we have

max

𝑦∈𝐾
∥Σ−1/2𝑦∥2 = max

𝑦∈𝐾
max

𝑣∈S|X|−1

𝑣⊤Σ−1/2𝑦

= max

𝑣∈S|X|−1

max

𝑦∈𝐾
𝑣⊤Σ−1/2𝑦 ≤ 𝐶𝜀

where the first equality is the equality-case of Cauchy-Schwarz. □

Recall that for a matrix𝑊 ∈ R𝑄×X
,

𝛾𝐹 (𝑊 ) = inf

{
1

|𝑄 |1/2
∥𝑅∥𝐹 ∥𝐴∥1→2 : 𝑅𝐴 =𝑊

}
.

We now prove our main result, which shows that the error of data-

independent private mechanisms must be proportional to 𝛾𝐹 (𝑊 ).

Theorem 28. Let 𝑊 be a workload matrix. Let M is a (𝜀, 𝛿)-
differentially private data-independent mechanism for𝑊 with covari-
ance matrix Σ, for 𝜀, 𝛿 smaller than some absolute constants. Then

err
ℓ2

2 (M,𝑊 , 𝑛) = Ω

(
𝛾𝐹 (𝑊 )
𝐶𝜀𝑛

)
.

Proof. Let𝑤1, . . . ,𝑤 |X | be the columns of the workload matrix

𝑊 . Let 𝐴 = Σ−1/2𝑊 with columns 𝑎1, . . . , 𝑎 |X | and let 𝑅 = Σ1/2
so

that 𝑅𝐴 =𝑊 . By Lemma 27, the matrix 𝐴 is well defined, and for

every 𝑖 , ∥𝑎𝑖 ∥ = ∥Σ−1/2𝑤𝑖 ∥2 ≤ 𝐶𝜀. Hence ∥𝐴∥1→2 ≤ 𝐶𝜀. We also

have

∥𝑅∥𝐹 = Tr(𝑅⊤𝑅)1/2 = Tr(Σ)1/2 = |𝑄 |1/2 · 𝑛 · err
ℓ2

2 (M,𝑊 , 𝑛) .
Combining the inequalities, we get

𝛾𝐹 (𝑊 ) ≤ 1

|𝑄 |1/2

∥𝑅∥𝐹 ∥𝐴∥1→2 ≤ 𝐶𝜀 · 𝑛 · err
ℓ2

2 (M,𝑊 , 𝑛).

The theorem follows from rearranging this inequality. □

5.2 From Data-Dependent to Data-Independent
Mechanisms

In this sectionwe describe a reduction of Bhaskara et al. [BDKT12]

showing, in the case of symmetric workloads, that any data-dependent

mechanism with small error for datasets of arbitrary size can be

converted into a data-independent mechanism with approximately

the same error.

Lemma 29 ([BDKT12]). Let𝑊 ∈ R𝑄×X be a symmetric workload
matrix. For every (𝜀, 𝛿)-differentially private mechanism M, there
exists a (2𝜀, 2𝑒𝜀𝛿)-differentially private data-independent mechanism
M ′ such that

err
ℓ2

2 (M ′,𝑊 , 𝑛) ≤ 1

𝑛
max

𝑚∈N
(𝑚 · err

ℓ2

2 (M,𝑊 ,𝑚))

As an immediate, corollary, lower bounds for data-independent

mechanisms imply lower bounds for arbitrary data-dependent

mechanisms for some dataset size 𝑛∗. Thus we obtain the following

theorem by combining Theorem 28 with Lemma 29.

Theorem 30. Let 𝑄 be linear queries with symmetric workload
matrix𝑊 ∈ R𝑄×X . Then for every 𝜀, 𝛿 smaller than some absolute
constants, there exists 𝑛∗ ∈ N such that

∀𝑛 ≤ 𝑛∗ err

ℓ2

2

𝜀,𝛿
(𝑄,𝑛) ≥ 𝛾𝐹 (𝑊 )

𝐶𝜀𝑛
.

By standard transformations (see e.g. [BUV14]), we can convert

this to the following sample complexity lower bound,

Corollary 31. Let 𝑄 be linear queries with symmetric workload
matrix𝑊 ∈ R𝑄×X . Then for every 𝜀, 𝛿 smaller than some absolute
constants, there exists 𝛼∗ > 0 such that

∀𝛼 ≤ 𝛼∗ sc

ℓ2

2

𝜀,𝛿
(𝑄, 𝛼) ≥ 𝛾𝐹 (𝑊 )

𝐶𝜀𝛼

We remark that our lower bounds may be extended to case

of non-symmetric workloads by using the same technique which

we used to obtain Lemma 17. An advantage of performing this

reduction in the central model is that we may take advantage of

the central model version of the Laplace mechanism, which will

use only 𝑛 = 𝑂

(
1

𝛼𝜀

)
rather than 𝑛 = 𝑂

(
1

𝛼2𝜀2

)
samples. In this way,

Theorem 28, Theorem 30, and Corollary 31 may be obtained under

the additional assumption that 𝛾𝐹 (𝑊 ) > 𝐷 for a sufficiently large

constant 𝐷 > 0.

We also note that Theorem 28, Theorem 30, and Corollary 31

may be extended to ℓ2

∞-error, defined by

err
ℓ2

∞ (M, 𝑄, 𝑛) = max

𝑋 ∈X𝑛
E
M

[
∥M(𝑋 ) −𝑄 (𝑋 )∥2

∞
]

1/2

,

with err
ℓ2

∞
𝜀,𝛿

(𝑄,𝑛), and sc
ℓ2

∞
𝜀,𝛿

(𝑄, 𝛼) defined analogously, and 𝛾𝐹 (𝑊 )
replaced by 𝛾2 (𝑊 ) in the lower bounds.
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