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ABSTRACT

We give new characterizations of the sample complexity of an-
swering linear queries (statistical queries) in the local and central
models of differential privacy: (1) In the non-interactive local model,
we give the first approximate characterization of the sample com-
plexity. Informally our bounds are tight to within polylogarithmic
factors in the number of queries and desired accuracy. Our charac-
terization extends to agnostic learning in the local model. (2) In the
central model, we give a characterization of the sample complexity
in the high-accuracy regime that is analogous to that of Nikolov,
Talwar, and Zhang (STOC 2013), but is both quantitatively tighter
and has a dramatically simpler proof.

Our lower bounds apply equally to the empirical and population
estimation problems. In both cases, our characterizations show that
a particular factorization mechanism is approximately optimal, and
the optimal sample complexity is bounded from above and below
by well studied factorization norms of a matrix associated with the
queries.
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1 INTRODUCTION

Differential privacy [DMNS06] is a rigorous mathematical frame-
work for protecting individual privacy that is well suited to sta-
tistical data analysis. In addition to a rich academic literature, dif-
ferential privacy is now being deployed on a large scale by Apple
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[App17], Google [EPK14, BEM*17, WZL"19], Uber [JNS18], and
the US Census Bureau [DLS*17].

To compute statistics of the data with differential privacy—or
any notion of privacy—we have to inject noise into the computation
of these statistics [DN03]. The amount of noise is highly dependent
on the particular statistic, and thus a central problem in differential
privacy is to determine how much error is necessary to compute a
given statistic.

In this work we consider the class of linear queries (also called
statistical queries [Kea93]). The simplest example of a linear query
is “What fraction of individuals in the data have property P?” Work-
loads of linear queries capture a variety of statistical tasks: comput-
ing histograms and PDFs, answering range queries and computing
CDFs, estimating the mean, computing correlations and higher-
order marginals, and estimating the risk of a classifier.

The power of differentially private algorithms for answering a
worst-case workload of linear queries is well understood [BUV14],
and known bounds are essentially tight as a function of the dataset
size, the data domain, and the size of the workload. However, many
workloads, such as those corresponding to computing PDFs or CDFs,
have additional structure that makes it possible to answer them
with less error than these worst-case workloads. Thus, a central
question is

Can we characterize the amount of error required
to estimate a given workload of linear queries
subject to differential privacy in terms of natu-
ral properties of the workload, and can we achieve
this error via computationally efficient algorithms?

In the central model, there has been dramatic progress on this
question [HT10, BDKT12, NTZ16, Nik15, BBNS19], giving approx-
imate characterizations for every workload of linear queries. We
extend this line of work in two ways:

(1) We give the first approximate characterization for non-
interactive local differential privacy [DMNS06, KLN"08]. This
result is also much sharper than analogous results for the
central model of differential privacy.

(2) We give a new approximate characterization for the central
model of differential privacy in the high-accuracy regime
(equivalently, in the large-dataset regime). This characteri-
zation is analogous to a result of [NTZ16], but it is quanti-
tatively tighter and its proof is dramatically simpler. For [22
error, our characterization is tight up to a constant factor.

In particular, our results show that a natural and well studied
type of factorization mechanism is approximately optimal in these
settings. Factorization mechanisms capture a number of special-
purpose mechanisms from the theory literature [BCD*07, DNPR10,
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CSS11, TUV12, CTUW14], were involved in previous characteriza-
tions, and also roughly capture the matrix mechanisms [LHR* 10,
MMHM18] from the databases literature, which have been devel-
oped into practical algorithms for US Census Data.!

Our characterization in the local model extends to agnostic PAC
learning, and shows that the optimal learner for any family of
queries is to use the optimal factorization mechanism to estimate
the error of every concept. Our characterization is sharper than
the previous characterization of [KLN*08], which loses polynomial
factors in the SQ dimension [BFJ*94].

1.1 Background: Linear Queries and
Factorization Mechanisms

We start by briefly introducing the relevant concepts and def-
initions necessary to state our results. See Section 2 for a more
thorough treatment of the necessary background.

Linear Queries. Suppose we are given a dataset X = (x1,...,xp) €
X", where each entry x; is the data of one individual and X is
some data universe. We will treat the size of the dataset n as public
information. A linear query is specified by a bounded function q :
X — R and (abusing notation) its answer is g¢(X) = % g q(x).
A workload is a set of linear queries Q = {q1, ..., qx}, and we use
Q(X) = (q1(X), ..., qx (X)) to denote the answers.

Given a workload of queries, we can associate a workload matrix
W e RO*X| defined by Wgx = q(x). The convention of calling
the above queries “linear” stems from the fact that they can be
written as the product of the workload matrix with the histogram
vector of the dataset. As such, we will sometimes use Q and W
interchangeably.

Error and Sample Complexity. Our goal is to design an (¢, §)-
differentially private mechanism M that takes a dataset X and
accurately estimates Q(X) for an appropriate measure of accuracy.
In this work we primarily consider accuracy in the £ norm, and

define
QX le],
err™ (M, Q, n).

> (M, Q,n) = max. % [IM(X) -

5(Q n) = (e 2
Privacy becomes easier to achieve as the dataset size n grows. We
are interested in the sample complexity, which is the smallest size
of dataset on which it is possible to achieve a specified error o for
given privacy parameters ¢ and &:

oo R . oo
scg’ﬁ(Q, Q) = mm{n : errg}a(Q, n) < a}.

The Approximate Factorization Mechanisms. One of the most
basic tools in the central-model of differential privacy is the Gauss-
ian mechanism (see e.g. [DR14]). This mechanism computes the
vector of answers to the queries Q(X) and perturbs it with spheri-
cal Gaussian noise scaled to the £;-sensitivity of the workload. In

!In a nutshell, the matrix mechanism is a particular factorization mechanism designed
for the special case of t’22 error, and combined with various optimizations and post-
processing techniques to improve computational efficiency and utility. Usually the
matrix mechanism is presented in the special case of pure differential privacy.
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particular, the sample complexity of this mechanism is

|W]l1—2+/log(1/8) log k

Ea

where ||W||;—2 denotes the largest £, norm of any column of W,
which is the #,-sensitivity.

One can try to improve this mechanism by replacing W with
a simpler workload of queries A, and then attempting to recon-
struct the answer to W by applying a linear transform R such that
W = RA. One can show that the overall mechanism has error
[IR|l2—0||All1—2, where ||R||2— denotes the maximum f£; norm
of any row of R. This quantity can be dramatically smaller than
[|W1|1— 0, for example if W contains many copies of the same query.

The factorization mechanism chooses the optimal factorization
W = RA, giving error proportional to the factorization norm

y2(W) = min{||R||z—col|Alli—2 : W = RA}.

The sample complexity of this mechanism is thus

y2(W)+/log(1/6) log Q| 4
Ea

sc(My,, Q.a) =0

We note that that the factorization norm y2(W) and an optimal
factorization W = RA can be computed in time polynomial in the
size of W via semidefinite programming [LS09].

Finally, we can try to further improve the mechanism using an
approximate factorization mechanism that approximates the work-
load W with a simpler workload W that is entrywise close to W,
and applying the factorization mechanism to W. The error of this
mechanism is proportional to the approximate factorization norm

)/Z(W’ 0{) =

where ||W = W||1—co is the maximum absolute difference between
entries of W and W. The sample complexity of this mechanism is

thus
y2(W, a/2)y/log(1/6) log |Q|
e

min{yz(W) : [|[W = Wllime < a/2},

sc™ (My,a, 0, @) =0

The Local Model. Although we have discussed the factorization
mechanism in the context of central differential privacy, these ideas
can all be adapted to (non-interactive) local differential privacy. In
this model, each user will apply a separate (¢, §)-differentially pri-
vate mechanism My, ..., My to their own data, and the output
can then be postprocessed using an arbitrary algorithm A, so the
mechanism can be expressed as

M(X) = AM1(X1), ...,

We define e]cr{)"“éloc and sc{)"%’loc

but with the minimum taken over mechanisms that are (¢, §)-DP
in the local model.

Since the queries are linear, we can simply have each user apply
the approximate factorization mechanism to their own data and av-
erage the results. One can show that randomizing each individual’s
data independently increases the variance of the noise by a factor of
y/n compared to the central model version of the mechanism. One
can also achieve (¢, 0)-differential privacy by replacing Gaussian

Mn(Xn))

analogously to the central model,
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noise with a different subgaussian noise distribution. Putting it
together, the resulting sample complexity becomes

y2(W,/2)?log|Q|
e2¢2 ’

SC[m (MIOC

Ya2,00 Q,2)=0 (1)

1.2 Our Results

1.2.1 Linear Queries in the Local Model. Our main result in the
local model shows that the approximate factorization mechanism
described above is approximately optimal among all non-interactive
locally differentially private mechanisms.

TueoreM 1 (INFORMAL). Let a,&,8 > 0 be smaller than some
absolute constants and let Q be a workload of linear queries with
workload matrix W. Then, for some a’ = Q(a/log(1/a)),

£2¢2 '

el " (Q.a') = Q(

To interpret the theorem, it helps to start by imagining that
Y2(W,a’/2) = yo(W, a/2), in which case the theorem would show
that the sample complexity of answering queries up to error a’ is

Q(yz(W, a'[2) )

e2q?

which differs from the sample complexity of the local approxi-
mate factorization mechanism, given in (1), by a factor of just
O(log(1/a’)?1og|Ql). The fact that we take &’ < & means that
v2(W, @/2) can be much smaller than y2(W, ’/2).? Nevertheless,
for many natural families of queries and choices of a, y2 (W, a/2)
will be relatively stable to small changes in «, in which case our
lower bound will be tight up to this O(log(1/a)?log |Q|) factor. In
contrast, existing characterizations for the central model [HT10,
BDKT12, NTZ16, Nik15, BBNS19] lose a poly(1/«) factor, or else
they lose a polylog|X| factor that is typically large.

REMARK 2. Our proof of Theorem 1, in fact, shows that the lower
bound holds in the distributional setting where X is sampled i.i.d. from
an unknown distribution y, and the goal is to estimate the quantity

q(p) = x@ﬂ[q(x)] for every query g € Q up to error at most a.

REMARK 3. Theorem 1 crucially assumes that the error is bounded
in the fo metric. If we consider the less stringent [22 error metric
(appropriately scaled to reflect the error per query), then one can
achieve sample complexity O(log|X|/e*a*) for any workload of
queries [BBNS19], which can be exponentially smaller than the lower
bound we prove for t error. In many applications, such as releas-
ing the PDF, CDF, or marginals of the data, the {w error metric is
standard in the literature on these problems, and is more practical,
since, for natural datasets, the weaker t’zz guarantee can be achieved
by mechanisms that ignore the data.

Using Theorem 1, we obtain new lower bounds for three well stud-
ied families of queries:

(1) Threshold queries, which are also known as range queries,
and equivalent to computing the CDF of the data.

2For example, if every entry of W is at most & in absolute value, then y, (W, a) =0
whereas y, (W, @) can be arbitrarily large for @’ < «a, but this behavior typically
does not happen for “non-trivial” values of a.
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(2) Parity queries, which capture the covariance and higher-
order moments of the data.

(3) Marginal queries, also known as conjunctions, which capture
the marginal distribution on subsets of the attributes.

COROLLARY 4 (THRESHOLDs / CDFs). Let Q;df be the family of
statistical queries over the domain X = [T] that, forevery1 <t < T,
contains the statistical query q;(x) = I{x < t}. Then for everyT € N
and &, a smaller than an absolute constant,

scii‘b’loc(Q;df, a)=Q (log2 T).

We obtain this corollary by combining Theorem 1 with results
from [FSSS03]. Corollary 4 should be compared to the upper bound
of O(log® T) that can be obtained from the local analogue of the
binary tree mechanism [DNPR10, CSS11]. Ours is the first lower
bound to go beyond the easy Q(log T) lower bound for this problem,
which follows easily via a so-called packing argument.

COROLLARY 5 (PARITIES). Let Qsavrvity be the family of statistical

queries over the domain X = {£1}4 thar, for every S C [d], |S] < w,
contains the statistical query qs(x) = [1jes x;j. Then for every k <
d € N and ¢, « smaller than an absolute constant,

el 4P, @) = Q((d/w)™).

Corollary 5 says that adding independent Gaussian noise to
each query is optimal up to a O(wlog(d/w)) factor. Using similar
techniques, one can also obtain a direct proof that gives a tight
lower bound up to constant factors, even for the simpler problem
of finding the subset S of size at most w that maximizes gs(X).

COROLLARY 6 (MARGINALS). Let Q;"i}rg inal

cal queries over the domain X = {0, 1}4 that, foreveryS C [d],|S] <
w, contains the statistical query qs(x) = [1jes xj. Then for every
k < d € N and ¢, a smaller than an absolute constant,

be the family of statisti-

seles QUM ) = (dfw) 2V
Marginal queries have been extremely well studied in differen-
tial privacy [BCD*07, KRSU10, GHRU11, HRS12, TUV12, CTUW 14,
DNT15]. Corollary 6 shows that a natural local analogue of the al-
gorithm of [TUV12] is optimal for answering marginal queries up
to the hidden constant factor in the exponent.

1.2.2  Agnostic Learning in the Local Model. Theorem 1 extends to
characterizing agnostic PAC learning [KSS94] in the local model. In
agnostic PAC learning, the dataset consists of labeled examples X =
((x1,41), - -, (xn,yn)), where x; € X, and y; € {£1}, and each pair
(xi, y;) is sampled independently from an unknown distribution .
The goal is to find a concept ¢ : X — {+1} in a concept class C
that approximately maximizes By, )~ [c(x)y].

The correlation of each concept ¢ with the labels in the data is a
linear query, and one natural approach to agnostic PAC learning
is to estimate all these linear queries, and output the concept that
corresponds to the largest query value. Thus, we can apply the local
approximate factorization mechanism to the family of queries C
to obtain the same sample complexity upper bound in (1). Interest-
ingly, the proof of our lower bound in Theorem 1 shows that the
same lower bound also applies to this a priori easier problem of
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agnostic PAC learning, showing that the local approximate factor-
ization mechanism gives an approximately optimal way to learn
any concept class C.

Prior results of Kasisiviswanathan et al. [KLN*08] connecting
learning algorithms in the local model with the SQ model, together
with characterizations of sample complexity in the SQ model [BFJ*94,
Sz609], give upper and lower bounds on sample complexity of
learning in the local model in terms of SQ dimension. These re-
sults, however, are only tight up to polynomial factors in the SQ
dimension—which can be polynomial in |C|—whereas our results
are sharper. We remark that, technically, the results are not com-
parable, since the the characterization via the SQ model holds for
sequentially interactive, rather than non-interactive, mechanisms.

1.2.3  Linear Queries in the Central Model. Our second set of results
quantitatively strengthens—and simplifies the proof of—the central
model characterization of [NTZ16]. In contrast to the local model,
the sample complexity of answering many natural workloads of
linear queries exhibits two distinct regimes, depending on the de-
sired accuracy. For example, for a worst-case workload of linear
queries, the sample complexity is at most

. {logl/z |X| log |Q] |Q|1/2}
min

ea? ea

Thus, the sample complexity behaves very differently when « goes
below some critical value. Our results concern this high-accuracy
regime where « is quite small. In these results, we consider the (22
error (scaled to be directly comparable to the f, error), which is
1/2
2
Xz

errZ(M Q,n) = max E IM(X) -

o1/

with the related quantities defined analogously. Notice that we have
scaled the 522 error so that errs (M, Q,n) < errf~(M,Q,n). For {’22
error, the natural factorization norm that describes the error of the
factorization mechanisms is

ye(W) = { Sz IRIFIAlL, - W = Ral,

where ||R||F = />; Jj R2 is the Frobenius norm of R.

In this high—accuracy reglme, acombination of [NTZ16] and [NT15]
(see also the thesis [Nik14]) shows that, for every workload of linear
queries, there is some a* such that

YF( )

Va < a* Q(log_l |0]) - 5(Q a)

YF( )

<0(1)- -log(1/9).

Note that the upper and lower bound differ by a factor of O(log |Q|-
log(1/6)). The upper bound above is precisely what is given by
the factorization mechanism. Our next theorem closes the gap
between the upper and lower bounds in terms of |Q|, and thus gives
a characterization up to O(log(1/6)) for fzz.

THEOREM 7. Lete,d > 0 be smaller than some absolute constants
and let Q be a workload of linear queries with workload matrix W.
There exists some o > 0 such that for every a < a*,

2 w
sc*(Q,a) = Q(M)
&8 e
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In addition to being sharper, our proof of Theorem 7 is dramati-
cally simpler than the lower bounds in [NTZ16, NT15].

REMARK 8. By a trivial reduction, Theorem 1, in fact, gives lower
bounds for the distributional setting where X is sampled i.i.d. from
an unknown distribution yi, and the goal is to estimate the quantity
q(p) = x@”[q(x)] for every query q € Q up to error at most a.

Data-Independent Mechanisms. Along the way, we prove a sim-
ple result that this sample complexity bound holds for every choice
of a, provided we restrict attention to data-independent mechanisms.
These mechanisms can be written in the form M(X) = Q(X)+Z/n
for some fixed random variable Z that depends only on Q and not
on the data.

For such mechanisms we show that the sample complexity is
always Q(yp(W)/ea), regardless of a.

Data-independent mechanisms are interesting on their own,
since the fact that we add noise from a known distribution makes
them simpler to implement, and also means that we can give precise
confidence intervals on the error of the mechanism. One applica-
tion of our lower bound for data-independent mechanisms is an
Q(log T) lower bound on the sample complexity of any mechanism
for answering threshold queries over [T] in fzz error, which matches
the data-independent binary tree mechanism.

1.3 Techniques

Below we give a brief overview of the techniques used to prove
Theorems 1 and 7.

Lower bound in the local model. As mentioned above, Theo-
rem 1 is proved in the distributional setting, where the dataset X
consists of n i.i.d. samples from some distribution y, and the goal
is to estimate the expectation of each query g € Q on p. Our ap-
proach is to design two families of hard distributions {A1, ..., Ax}
and {p1, ..., g} with the following properties: first, any locally
differentially private mechanism requires many samples to distin-
guish these two families; second, the two families give very different
answers to the queries.

To show that the distributions are hard to distinguish, we prove
an upper bound on the KL-divergence between: (1) the transcript
of a private mechanism in the local model when run on n samples
from a random distribution in {11, ..., At }, and (2) the same, but
for a random distribution in {1, ..., g }. Intuitively, the bound
shows that the KL-divergence between transcripts is small when
no bounded test function can simultaneously distinguish between
Ay and pp, on average over a random choice of v € [k]. This bound
is a slight extension of a similar bound from [DJW18]. In particular,
the upper bound on the KL-divergence is in terms of the co — 2
operator norm of a matrix M derived from the two families of
distributions.

Thus, what remains is to find families distributions {73, ..., A}
and {1, ..., g}, for which the co — 2 operator norm of M is small,
but the expectations of the queries in Q are sufficiently different
on the two families. Recall that our goal is to prove a lower bound

3Technically, we require @ < |[W |1, but in nearly all applications of interest
Wllhse = 1.
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in terms of the approximate norm y2(W, ), where W is the work-
load matrix. Since y2 (W, a) is the value of a convex minimization
problem, it admits a dual characterization, showing that y, (W, @) is
equal to the value of a maximization problem over matrices U. We
take an optimal dual solution U, and use it to derive distributions
{A15. .-, A} and {y1,. .., g }. The objective function of the dual
problem guarantees that these distributions are such that the expec-
tation of any query g € Q on any 4, is small, yet the expectation of
the query g, on iy is large. Moreover, the dual objective, together
with classical arguments in functional analysis, also guarantees an
upper bound on the co — 2 norm of the appropriate matrix M,
giving us both ingredients for our lower bound.

Lower bound in the central model. The main ingredient of the
proof of Theorem 7 is a lower bound of Q(yr(W)/ea) on the sample
complexity of data-independent mechanisms. Recall that a mecha-
nism M is data-independent if M(X) = Q(X) + %Z for a random
variable Z € R9. Our key observation is that, if 3 is the covariance
matrix of Z, then the mechanism

O(log(1/3))
Q(X) + =2

that uses Gaussian noise in place of Z is also (¢, §)-differentially
private. Moreover, the 522 error of M is equal to Tr(Z)/|Q|1/2, so,
up to a factor of O(log(1/6)), the optimal data-independent mech-
anism with respect to t’zz-error can be assumed to use correlated
Gaussian noise. It is easy to see that the class of all such mecha-
nism is equivalent to the class of all factorization mechanisms, and,
hence, the optimal achievable [22 -error is O(yp(W)/en).

To give a lower bound for arbitrary mechanisms in the high-
accuracy regime, we use a clever transformation from [BDKT12]
that turns a data-dependent mechanisms that is accurate for large
datasets into a data-independent mechanism.

-N(0,%)

2 PRELIMINARIES

In this section we recount basic notation and definitions used
throughout the paper.

2.1 Norms
For a set S, the #1, £, and fo, norms on RS are given respectively
by
lall = D laol, llalle = |3 (@)% llallo = max|a].
veS veS ve

Given a probability distribution 7 on S, we consider the norms

Il Iz, () and || - Iz, () on RS, given by
> 7(0)(a0)2.
veS

We also take advantage of a number of matrix norms. For norms

-1l and || - | on RS and RS’ respectively, we consider the matrix
) Sx8’

lallL,(ry = D, 7(@)laol  lallL,(r) =

0veS

operator norm of M € R given by
| Mx]|¢

max .
xerS\{o} lIxlly

Ml ¢ =

For the special case of ||M||g,—¢,, we will simply write ||M|[s—.
Of particular importance are ||M||;—c which corresponds to the
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largest entries of M, ||M||1—2, which corresponds to the maximum
£-norm of a column of M, and ||M||2— c0, Which corresponds to the
maximum f;-norm of a row of M.

The inner product of two matrices M and N in RS*S" is defined
by M e N =Tr(M'N) = 3,,c8.0eS MuoNu,o. The Frobenius norm
of M € RS*S is given by ||[M||p = VM e M.

Lastly, the factorization norms yr and y central to this work are
given for M € RS*S by

e (M) = min{ gz [IRIF I Al : RA = M},
a(M) = min{|Rllzoesl|Alliz : RA = M},

2.2 Differential Privacy

Let X denote the data universe. A generic element from X will be
denoted by x. We consider datasets of the form X = (x1,...,x,) €
X", each of which is identified with its histogram h € Z;VO where,
for every x € X, hy = |{i: xj = x}|, so that ||h||; = n. To refer
to a dataset, we use X and h interchangeably. A pair of datasets
X = (x1,...,%i,...,xp) and X’ = (xl,.l.,xlf,..l,xn) are called
adjacent if X’ is obtained from X by replacing an element x; of X
with a new universe element x;.

For parameters 6 > 0, an (¢, §)-differentially private mecha-
nism [DMNSO06] (or (&, §) — DP for short) is a randomized function
M : X® — Q which, for all adjacent datasets X and X’, for all
outcomes S C Q, satisfies

£ ’
E’Vr[[M(X) eS| <e I/;rl[M(X ) € S]+6.
A mechanism which is (¢, 0)-differentially private will be referred
to as being simply e-differentially private (or ¢-DP for short).

Of special interest are (¢, §)-differentially private mechanisms
M; : X — Q which take a singleton dataset X = {x} as input.
These are referred to as local randomizers. A sequence of (¢, §)-
differentially private local randomizers My, ..., My together with
a post-processing function A : Q" — Q specify a (non-interactive)
locally (¢, 6)-differentially private mechanism M : X" — Q [EGS03,
DMNS06, KLN*08]. In short, we say that such mechanisms are
(&,0)-LDP, or ¢-LDP when § = 0. When the local mechanism M is
applied to a dataset X, we refer to

TM(X) = (Ml(xl), .- an(xn))

as the transcript of the mechanism. Then the output of the mecha-
nism is given by M(X) = A(Tp(X)).

2.3 Linear Queries

A linear query is specified by a bounded function g : X — R.
Abusing notation slightly, its answer on a dataset X is given by
q(X) = % 2 1 q(x;). We also extend this notation to distributions:
if p is a distribution on X, then we write gq(p) for x@ﬂ[q(x)]. A

workload is a set of linear queries Q = {q1,...,qx}, and Q(X) =
(q1(X), ..., qx(X)) is used to denote their answers. The answers
on a distribution g on X are denoted by Q(p) = (g1 (), - - -, qr(1)).
We will often represent Q by its workload matrix W € R9*X with
entries wg x = g(x). In this notation, the answers to the queries are
given by %Wh. We will often use Q and W interchangeably.
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2.4 Error and Sample Complexity

The fe and [22 -error of a mechanism M, which takes a dataset
of size n, on the query workload Q are given by

oo _ _
err'>(M,Q,n) = XIIéE(IYXn E[“M(X) QX ],

EM Q. = max B [LIM) - 000R]
e (M.Q.m) = max B | rimex) - Q0ol] .

We can then define the sample complexity of a mechanism M for a
given 4w error o by

s¢ (M, Q,@) = min{n : err™ (M, Q,n) < a}.

2
The sample complexity with respect to 822 error sci2 5(Q, @) is defined
analogously. ,
Having defined error and sample complexity for a fixed mech-
anism, we can define the optimal error and sample complexity

by

foo : £

err n) = min err (M, Q, n),
es( Q) M is (e, 5)-DP (M.Q.n)
foo . {7

sc L) = min sc¢ (M, O, n).
e3(Q@) Mis (e, 5)-DP M.Q.m)

The analogous quantities errf{s(Q, n) and scg2 5(Q, a) for {’Zz—error
are defined similarly. The optimal error and sample complexity for
the local model are denoted erri";loc(Q, n) and sci‘:"élOC(Q, a), and
are defined in the same way but with the minimum taken over

(¢, 6)-LDP mechanisms.

2.5 Factorization Mechanisms
The Gaussian mechanism [DN03, DN04, DMNS06] is defined as

0, (0'5,5”W”1—>2 )2 ] I),
n

where o, s = O(+/log(1/6)/¢) depends only on the privacy param-

eters. Given a factorization W = RA, we consider the mechanism

MR,A(h) =R MGauss(Ws h)

1
MGauss(W, h) = ;Wh+Z, Z~N

Z~N

1
-Wh+2Z,
n

2
0, (U£,5||A||1—>2) 'RRT),
n

and, utilizing Gaussian tail bounds, one can show that the error is

IR0 [|All1—2+/10g (1/6) logIQI)

&n

errf (Mga,Q.n) = O(

We define the factorization mechanism My, to be the mechanism
that chooses R, A to minimize this expression, and its error is pro-
portional to the factorization norm

y2(W) = min{||R|z—col|Alli—2 : W = RA}.

The sample complexity of this mechanism is thus

y2(W)4/log(1/8) log [Q] )
[04

scle (Mn, Q,a)=0

This mechanism is implicit in [NTZ16], and is stated in this form
in [Nik14].

430

Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman

Analogously, we can show that

|Q|-1/2||R||F||A||H2\/log<1/6>)

&n

err’? (Mg 4, Q. n) = o(

Optimizing this error bound over the choice of R and A gives error
proportional to the factorization norm

yr(W) = min{|Q| "2 |[R|[Fl|Alli-z : W = RA},
and the mechanism My, that runs Mg 4 with the R and A achiev-
ing yr(W) has sample complexity

yr(W)y/log(1/9) )
24

o2 -0
se,/5(Q.a) =

This factorization mechanism is equivalent to the Gaussian noise
matrix mechanism in [LHR*10].

3 NON-INTERACTIVE LOCAL DP: LINEAR
QUERIES

In this section we give details about our results for answering
linear queries in the local model. We first present the local ap-
proximate factorization mechanism. Then we give an information
theoretic lemma that bounds the KL-divergence between the tran-
scripts of mechanisms in the local model on inputs drawn from
mixtures of product distributions. We then use a dual formulation
of the approximate y; norm to construct distributions to use with
the information theoretic lemma in order to prove the lower bound
in Theorem 1.

3.1 Approximate Factorization

Here we give details of the approximate factorization mechanism,
which was sketched in the introduction. Recall that the approximate
y2 norm is defined by

y2(W, @) = min{y2(W) : [W = Wlhoe < @/2},

where y3(W) = min{||R|l2—e|lAll12 : W = RA}. Matrices W, R,
and A achieving the minimum to any degree of accuracy can be
computed in polynomial time via semidefinite programming, as
shown in [LS09]. Our main positive result shows that the sample
complexity of the corresponding approximate factorization mecha-
nism is bounded above by the approximate y; norm. As sketched
in the introduction, this can be achieved via a local version of the
Gaussian noise mechanism, which can then be transformed into a
purely private mechanism using the results of [BNS18]. This gives,
however, a slightly suboptimal bound, and, instead, we use the local
randomizer from [BBNS19], which is a variant of a local randomizer
from [DJW18]. The relevant properties of this local randomizer are
captured by the next lemma. We recall that a random variable Z
over R is o-subgaussian if B exp(Z2/0?) < 2, and a random vari-
able Z over RY is o-subgaussian if 87 Z is o-subgaussian for every
vector @ such that ||0]|s = 1.

LEMMA 9 ([BBNS19]). There exists an e-DP mechanism M which
takes as input a single datapoint x € RY such that [lx]l2 < 1, and
outputs a random Yy := M(x) € RY such that

(1) Yy can be sampled in time polynomial in d on input x,
(2) E[Yx] =x,
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(3) Yy — x is o-subgaussian with o = O(e71).

Based on this local randomizer, and the approximate factoriza-
tions, we prove the following upper bound in Appendix A.

THEOREM 10 (APPROXIMATE FACTORIZATION MECHANISM). There
exists an e-LDP mechanism M)l,‘;fa such that, for any k statistical
queries Q with workload matrix W, we have

Y2 (W, a/2)? log k
£202

scle (Mloc

Yo, Qa)=0

>

and the mechanism runs in time polynomial in n, k, and | X|.

3.2 Bounding KL-Divergence

Our lower bound will rely on the construction, based on a work-
load Q, of families {A1, ..., Ax} and {p1, . .., pig } of distributions on
X. Together with these, we consider a distribution 7 over [k]. For
any v € [k], let A} be the product distribution induced by sam-
pling n times independently from A,, and let A be the mixture
lej:l 7(v)A}. Define p} and p analogously. Note that A7} and pt
are not product distributions, but mixtures of such distributions.
For a mechanism M in the local model, and a probability distribu-
tion v on X", we use T (v) to denote the distribution on random
transcripts 7p((X) when X is sampled from v. Similarly, if v is a
distribution on X, we use the notation M;(v) for the distribution
of M;(x), when x is sampled from v.

We approach the task of showing that Ay, ..., Ag and p1, ..., g
are “hard” distributions on which to evaluate Q in two steps. On
the one hand, we wish to argue that being able to estimate Q on
the distributions A1, ..., Ax and py, .. ., g enables us to distinguish
between AL and p. On the other hand, we show a lower bound on
the number of samples required for a locally private mechanism to
distinguish between A2 and pt. The second of these objectives will
be met by way of the following bound on KL-divergence. Similar
bounds were proved in [DJW18, DR18] when only one of the two
distributions is a mixture of products, and our proof is similar to
the proof of Theorem 2 in [DR18]. Our proof is in Appendix B.

LeEmMA 11. Let ¢ € (0, 1], and let M be an e-DP mechanism in
the local model. Then, for families {11, ..., A} and {1, ..., ux} of
distributions on X, together with a distribution & over [k],

Drr(Tm (A1 Ta (1))
2
[fx]) ]

In matrix notation, define the matrix M € RIKIxX by myx =
(Ap(x) — po(x)). Then

Dir(TM A Tm (i) < O(ne®) - IMIF ;. -

Being able to distinguish between T((A%}) and Tp( () with
constant probability implies, by Pinsker’s inequality, that

DL(TM (A I Tam () 2 Q(1).
Together with Lemma 11, this would imply

E

X~Hv

max E

< O(né?) -
FERX:| fllw<1 Ve

(E[fx]—

x~lv

1
=ol— .
(52 : ”M“{io—iz(n))

431

STOC 20, June 22-26, 2020, Chicago, IL, USA

Hence, our goal will be to define our distributions so that that
|| M ||on L) is small while still meeting the requirement that
estimating the queries Q allows us to distinguish between A}} and
Hig-

It is worth noting that Lemma 11 is not known to hold when
the protocol is allowed to be sequentially interactive. Indeed, this
is the bottleneck to generalizing our lower bound to the case of
sequentially interactive local privacy. See the proof of Lemma 11
for further discussion.

3.3 Duality for y,(W, a) and the Dual Norm

Recall that our goal is to prove a lower bound on the sample
complexity of mechanisms in the local model in terms of the approx-
imate y; norm. We will do so via Lemma 11, and the distributions
{A1, .., A} and {p1, ..., p} will serve as a certificate of a lower
bound on the sample complexity. On the other hand, convex duality
can certify a lower bound on the approximate y2 norm. In the proof
of our lower bounds, we will show that these dual certificates for
which the approximate y2 norm is large can be turned into hard
families of distributions to use in Lemma 11.

The key duality statement follows. This dual formulation for
the y2(W, a) was also given in [LS09] for the special case when W
has entries in {~1,+1}.* For completeness, here we rederive it in
Appendix C by directly applying the hyperplane separator theorem.

LEmMA 12. For any k X T matrix W and a,
WeU—a|Ulh
¥, (U)

where y; is the dual norm to ys given by

r2(W,a) = max{ :Ue RkXT, U # 0},

y;(U) =max{U e V : V e RFT, (V) < 1}

k T
T
= max u; ia; bj
ai,..., akzz LJ ’b-"
hh_!le=1]=l
where ay, . ..,ag and by, ..., by range over vectors with unit £, norm
in RF+T

The expression

kK T
y3(U) =max > > u;ja] b),

i=1 j=1
with the max over unit vectors ay, . . . ag and by, . . ., by can be easily
formulated as a semidefinite program, and, in fact, is exactly the
semidefinite program that appears in Grothendieck’s inequality
(see, e.g., [KN12, Pis12]). It is straightforward to check (just take
all the a; and bj co-linear) that

y3(U) 2 max{y"Uz:y € (-1, 1}, z € {(~1, 1V} = |U[los1.
)
Moreover, Grothendieck showed that this inequality is always tight
up to a universal constant [Gro53], although this fact will not be
used here. Instead, we will need the following lemma, which can
be derived from SDP duality, and is also due to Grothendieck. For a
proof using the Hahn-Banach theorem, see [Pis12].

4Note that in [LS09], Linial and Shraibman use the notation Y (W) = inf {y, (W) :
1 < Wijwij < a Vi, j}. For sign matrices W this is equal to %2y (W, (a—1)/(a+
1)) in our notation.
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LemMA 13 ([Gro53]). For any k X T matrix U, y,(U) < t if and
only if there exist diagonal matrices P € RF* and O € R™*T, and
a matrix U € R*T sych that Tr(P?) = Tr(Q*) =1,U = PﬁQ, and
[1Tlla—z < t.

By (2), the y; (-) norm is an upper bound on the || - |lco—1 norm.
We use Lemma 13 to show a similar upper bound on the || - [|co—2,
which allows projecting out some of the rows of the matrix, but is
quantitatively stronger. The reason we are interested in the || - [|oo—2
norm is that this is the norm that appears in the statement of
Lemma 11.

LEMMA 14. For any matrixU € REXT there exists a set S C [k]
of size |S| > % such that \/§||H5U||oo_>z <y, (U), wherels is the

projection onto the subspace RS.

The next lemma slightly strengthens Lemma 14 to allow for
weights on the rows of the matrix. This is the key fact about the y;
norm that we need for our lower bounds.

LEmMMA 15. LetU and M be kXT matrices, and let 7t be a probability
distribution on [k] where, for any i € [k],j € [T], we have u;j =
n(i)m; j. Then there exists a probability distribution 7 on [k], with
support contained in the support of x, such that |Mll, _1,7) <

4y;(U).

Lemmas 14 and 15 are proved in Appendix C.

3.4 Symmetrization

For our lower bound, it will be convenient to narrow our atten-
tion to the following restricted class of ‘symmetric’ query work-
loads.

DEFINITION 16. Let Q be a workload of statistical queries with
workload matrix W € ROXX Suppose there exists a partition of X
into sets X* and X~, |X*| = |X~|, where each element x of X* is
identified with a distinct element of X~, denoted —x, such that, for
allqg € Q, forallx € X, q(—x) = —q(x). In other words, W can be
expressed as (W, W), where W+ € RO*X" and W~ e RO*X™ gre
the restrictions of W to Q X X* and Q X X~ respectively, with each
entry w;]x of W* and the corresponding entry Wq,—x Of W satisfying
Wax —w;!_x. Also write QF to denote the collection of queries with
workload matrix W* so that the queries q* : X* — R of Q% are
obtained by restricting queries q : X — R of Q to the input space X*;
define Q™ analogously. Then Q, and also W, are called symmetric.

The following result will allow us to translate our lower bound
for the symmetric query workloads into a lower bound for general
query workloads. Its proof is given in Appendix D.

LEmMMA 17. Let a,€ > 0. Let Q be a symmetric workload of sta-
tistical queries and take Q% as given by Definition 16. Suppose there
exists a non-interactive locally e-LDP mechanism M* which takes
n samples as input and achieves err™ (M*, Q% n) < a. Then there
exists a local 3¢-LDP mechanism M which takes n’ = max{n, 62—112}

samples as input and achieves err’ (M, Q,n’) < 4a.

Lemma 18 allows us to relate y2(W) and y2(W*) and their wit-
nesses. Its proof is also given in Appendix D.
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LeEmMA 18. Letar > 0 and let W € R*X be a symmetric workload
matrix with X* and W* as given by Definition 16. Then it holds that
Y2(W) = y2(W*) and y2(W, a) = y2(W™, a). Moreover, if, for some
U+ c RQXX+

W*eU" —a||U™|y

2 (W*,a) = - ,
i ACR)
then
WeU—a|Ull;
2(W,a) = YT —
’ ¥, (U)

where U = 1(U*,U") is a matrix in ROXX such that the submatrix
U~ is indexed by X~ and has entries u = —u;!x forallx € X*
andq € Q.

q:—x

3.5 Lower Bound Based on Dual Solutions

In this section we put together the different tools we have already
set up - the KL-divergence lower bound, and the duality of the
approximate y; norm - in order to prove our main lower bound
result Theorem 1.

For this section, it is convenient to consider the enumeration
q1, - - -, qi of the queries of a symmetric workload Q with workload
matrix W € RIKIXX et U be the dual witness to the lower bound
on y3 (W, @), as given by Lemma 12, so that

WeU-—«al|Ul
¥5(U)

By Lemma 18, we may assume without loss of generality that U is
of the form (U*, U™) where each entry of U~ is the additive inverse
of the corresponding entry of U*. Furthermore, by dividing each
entry of U by ||U]|; if necessary, then we may assume without loss
of generality that ||U||; = 1. In this case,

WelU—-a

v, (U)

Let us make a first attempt at constructing our collection of “hard”
distributions Ay, ..., Ax and p, ..., g for Q. Since |U||; = 1, then

7(0) = Z |t | (4)

xeX

r2(W,a) = (3)

Y2 (W’ 0{) =

defines a valid probability distribution over [k]. For each v € [k],
we then define a pair of distributions A, and i, given by

Vx € X Ap(x) = Ao (=%) = g |/7(0) (5)
1 >
Ve Xt /Jy(x) _ {2|uv,x|/”(v) %fuv,x >0 ©)
0 ifupx <0
0 ifuyx =0
— - ’ 7
pol=) {z|uv,x|/n(o> fupe <0 )

Then, for all i,v € [k], the symmetry of A, implies g;(1,) = 0.
By contrast, it holds for all v € [k] that

9o(10) = ) qo(x)p1o(x)

xeX

D 9o(¥) (o) = po(=x))
xeX*

2WHeU  =WeU.
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Hence,

E g’f‘,f] qi(py)| = [qv(py)] =W e U.

E
V~m|i V~m

Since W o U = y; (U)y2(W, @) + & > & by Lemma 12, then

Ev.r[max gi(pv)] > a.
ie[k]

If we could guarantee that gy (py) was close to its expectation when
V ~ m, then estimating each of the queries g; of Q with error less
than @ would allow us to distinguish the distributions Ay, ..., A
from the distributions yy, . . ., pig.. The following result modifies our
distributions in a way that resolves this issue.

LEmMA 19. Let Q be a collection of symmetric queries with work-
load matrixW € RIKIXX Let U e RIKIXX pe the dual witness so that
(3) is satisfied. Then there exist probability distributions A1, ..., A
and i1, . . ., pg. over X, and a distribution 7 over [k] such that:

(1) qi(Ay) = 0 foralli,v € [k];

(2) for allv in the support of T, qu(fiy) > WeU—a/i_ .

-~ O(log(1/a))”
(3) the matrix U € RIQIXX vith entries Uyx = 7(0)(Ay(x) —

Ho(x)) satisfies y;(ﬁ) <y (0).

The proof of Lemma 19 will take advantage of the following
exponential binning lemma. A proof is given in Appendix E.

LEMMA 20. Suppose that ay, ..., ar € [0, 1] and that 7 is a proba-
bility distribution over [k]. Then for any f € (0, 1], there exists a set
Se n(0)ay—p

S C [k] such that 7(S) - minyes ap > “O(og(1/B)

PrROOF OF LEMMA 19. Let Ay, ..., Ag, 1, . . ., g, and 7 be as given
by equations (4) - (7). Since ¢y(yy) > 0 for all v, we may apply
Lemma 20 with ay = qo(1tp) and = /4 to obtain a subset S C [k]
for which

Ev-rqo(po) —a/4 _WeU- al4
O(log(1/@)  O(log(1/a)"
Now define 7 as 7 conditional on S. In particular,

o) = {ﬂ(v)/ﬂ(S), ifoes

0, otherwise.

7(S) - min gy () >
veS

Then, for all v € [k], define Ao = Ay and Hy = (S o+ (1—7(S)) Ap.
This implies
q(Ao) = q(A) =0,
WeU-—a/4
O(log(1/a))’

Vo e k]t Jio— Ao = 7(S) (o — Ao).
By the last of these facts, together with the definition of 7, it follows
that the entries Uy x = 7(v) (Ap(x) — [y (x)) of the matrix U satisfy

_ JUouxs
0,

In other words, U is obtained from U by replacing some of its rows
with the zero-vector. It is easy to see from the definition of y; that

this implies v} (U) < y;(U). o

Vi,v € [k] :

Yo e [k] 1 qo(fio) = m(S)go(po) >

ifves

otherwise.

Uy,x
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Consider now the matrix M € RIFIXX with entries Myx =
Ao (x) — fy(x). Since M is obtained from the matrix U of Lemma 19
by scaling each row v of U by Tl(v) it follows that

WelU -«

~ 1 = T —
M 7 = =Ullos1 < y3(U) < y3(U) = :
” ”fw—)Ll (7‘[) 5 ” ” —1 YZ( ) YZ( ) YZ(Ws 0{)

This is not quite the quantity

(25, U - Ere (51|

M||? = max E
” H&)O—)Lz(ﬂ FERX:|f o<1 Vrr
which Lemma 11 would have us bound. For comparison, note

|

Since the trivial case of Holder’s inequality implies that the L; (7)-
norm is always bounded above by the Ly (7)-norm, it holds that

max E
FeRY: I fllo<1 Vo

E (A=

x~AV

E [fl

X~pv

IMllg,— L, () =

||M||[oo_’L1(7D < ||A7I||[m_)L2(,~[). However, this inequality goes in
the wrong direction for our requirements. This issue is remedied
by taking advantage of Lemma 15.

LEMMA 21. Let Q be a collection of symmetric queries with work-
load matrixW € RIFIXX 1etU € RIKIXX pe the dual witness so that
(3) is satisfied. Then there exist probability distributions A1, ..., A

and i1, . . ., px. over X, and a distribution 7 over k] such that:
(1) /Tl, el /Tk, 1, - - - B and 7 satisfy criteria 1. and 2. of Lemma 19;
(2) the matrix M with entries My = Ay(x) — [ip(x) satisfies
~ N 4(WeU—a)
M o <4piU)y= ——2 -2
Wl 1,0 < #30) = s

PrOOF. Let Il, .. ‘,Ik, 1, . - ., g and 7 be the distributions guar-
anteed to exist by Lemma 19, and let U € RIKIXX be the correspond-
ing matrix with entries Uy x = 7(0) (IU (x) — fp(x)). The entries of
the matrix M satisfy 7(0)Myx = Up,x, SO We may apply Lemma 15
to obtain a distribution 7 such that
4A(WeU —aq)

y2(W,a)

Lemma 15 further guarantees that the support of 7 lies within the
support of 77, which together with the properties of the distributions
Al,. . .,Ak,ﬁl,. ..

Ml 1,7 < 4v5(0) < 4y3(U) =

, B and 7 gives the first condition of our lemma.
m|

At last, we have all the components needed to prove our lower
bounds for symmetric workloads.

THEOREM 22. Let a,¢ € (0,1]. Let Q be a symmetric workload
of statistical queries with workload matrix W € RIKIXX Then, for
L (Wa)? _ Clog2k
some a’ = Q(a/log(1/)), if L~ > o
constant C, we have

for a large enough

o] y2(W, a)*
sc(Q,a)) = Q(W :
Proor. Let ' = Q(a/log(1/a)) be a value that will be de-
cided shortly, and C’ be a sufficiently large constant. If we run
C'log 2k
(a')?
ples drawn i.i.d. from some distribution y on X, then, by classical

a e-DP mechanism M onn = max{sc'{’00 (M,Q,a"), } sam-
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- Q)] < &, where
,qx (11)). Therefore, the mechanism will satisfy

uniform convergence results, XE [||Q (X)
~un

o) = (q1(p), - -

XI?#"[”M(X) -0l < 24", ®)

We will show that for any e-LDP mechanism M such that (8) holds
for an arbitrary y, we must have

_ Q(YZ(W,(X)Z)_ ©)

e202

2
Therefore, we get that max{scf‘” (M, Q,a’), C'log 2k } Q (M, )

( /)2 EZaZ
2
which implies the theorem by the assumption on M

Let /11, -
RIKIxX

,Ak, H1, ... i and 7 be the dlstrlbutlons, and M €
the matrix, guaranteed to exist by Lemma 21. The matrix
M has entries My x = Ay(x) — fip(x) and satisfies

Ml 1, 7)< %
Equivalently,

’ 4(WelU —a) 2
feR’gnHafxllmlV~7Z x~Ay B - xlEﬁv [ﬁC]) ) ( y2(W, @) )
By Lemma 11, this implies

DL (T ADITp () < O(ne?) - (M)z (10)
r2(W, )

Lemma 21 guarantees further that qi(Iz,) =0 forall i,v € [k],
. ~ WeU-a/4 . o~ _
while gy (fin) = O(log(i/a) for all v in the support of 7. Let a’ =
% minge (k] 9o (Ho). Then a mechanism M satisfying (8) can distin-
guish between the distributions I” and ;71 with constant probability,
and, by Pinsker’s inequality, DKL(T M (/1”)||7'M( )) is bounded

from below by some constant C > 0. By (10) this 1mphes that

- pW.a |\
Te-(WeU-0)

samples are required to obtain accuracy @’ /4 and privacy .
Case 1: W e U < 2a.Recall that WeU > . Hence,if WeU < 2a,

then n = Q(M) and furthermore

'S WelU-—-a/4
~ Olog(1/a))

[04
(log(l/a))

Case 2: W o U > 2a. However, if W e U > 2a, then, for § € [0, 1],
we may instead consider the distributions i, = (1 = ) - Ao + f - 1to
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and ;1\2, = /Tz,, given for v € [k]. We have
D (Tt (A 1 Tp (%))

< 0(én) - max

2
E [Al- E [fl
rerdifisivoz Ay iy

=0(e?n) - p? max
FeRY:|fllo<1 V~7f

2
( [fl- E [ﬁc])
X~AV

X~Hv
WoU—ay

r2(W,a)
Also, g; (1) = 0 for all i, v € [k], while

< O(¢®n) - B2 - (

G0 = - o) 2 f- (w)

O(log(1/a))
for all i in the support of 7. In particular, if we set
P(WeU —a/d)
O(log(1/a))
and (8) holds for M and this value of ', then M can distinguish be-

tween /1;‘[ and [ yA This implies Dxy,(Tp ()L")H‘TM( )) is bounded
below by a constant from which we obtam that

2
0o of 2W.9
ef- (Wel)
samples are required for privacy ¢ and accuracy «’. Indeed, by
taking f = U'W

1 ~
a' = —mz}nqu(,uz,) >

, we get that

0 (yZ(Ws a) )2)
ea
samples are required for privacy ¢ and accuracy a’ which satisfies
B(WeU-a/4) _ Q( a )
- log(1/a) |*

@ 2 5 log(1/a)
2
In both cases, n = Q (YZ(EZLD;?)) samples are required for privacy

¢ and accuracy a’, where a’ = Q(W) O

The symmetrization techniques of

THEOREM 23 (FORMAL VERSION OF THEOREM 1). Let a, ¢ € (0,1].

Let Q be a collection of queries with workload matrix W. Then, for

’_ a ro(W,a)? Clog 2k
some a’ = O s ). if - = 8
enough constant C, we have

for a large

&2 (a/)z

o] r2(W, )
scio “(Q.a') = Q(W .

3.6 Applications of the Lower Bounds

In this subsection we apply Theorem 23 to several workloads
of interest, and, using known bounds on the approximate y2 norm,
prove new lower bounds on the sample complexity of these work-
loads.

We start with the threshold queries Q%df. Identifying ¢; with
t, we see that the corresponding workload matrix W is a lower
triangular matrix, with entries equal to 1 on and below the main
diagonal. Let us consider a different matrix W’ = 2W — J, where J
is the all-ones T X T matrix. Forster et al. [FSSS03] showed a lower
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bound on the margin complexity of W’, which implies that for any
W such that Wy xywy{, > 1 holds for all £, x € [T], we have

y2(W) = Q(log T). (11)
Note that, if W satisfies ||[W — W/ |l1—c0 < %,
W = 2W, and (11) implies y2(W’,1/2) = Q(log T). Finally, homo-
geneity and the triangle inequality for y;, and y2(J) = 1 imply
that yo(W,1/2) > %yz(W’, 1/2) - % = Q(logT). Together with
Theorem 23, this gives Corollary 4.

then we can take

Next, we consider the parity queries O” dw P Note that the work-

load matrix W of these queries is a submatrix consisting of W)

rows of the 2¢ x 2¢ Hadamard matrix. Let s = 2¢ (fv) be the num-
ber of entries in W. To prove a lower bound on y2(W, @), we can
use Lemma 12 with U = W. The rows of a Hadamard matrix are
pairwise orthogonal and have ¢, norm 24/ 2 and, so, Lemma 13,
used with P and Q set to appropriately scaled copies of the identity
matrices of the respective dimensions, implies that y; (U) < Vs2d.
Moreover, W ¢ U = ||U||; = s, and, by Lemma 12, we have

s d 1/2
)/z(W,l/Z)ZZ(d/%=Q((W) )

This gives Corollary 5.
Finally, we treat marginal queries. Let us define these queries

slightly more generally than we did in the introduction, by allowing
margmal

for negation. We define Q to consist of the queries gs,, (X) =

,11 i MjesTlxiy = y]], with S ranging over subsets of [d] of
size at most w, and y ranging over {0, 1}¢. These queries can be

expressed in terms of the gs queries defined in the introduction by

doubling the dimension d.

To prove a lower bound for Qmargmal we use the pattern ma-
trix method of Sherstov [Shel1]. We will omit a full definition of
a pattern matrix here, and refer the reader to Sherstov’s paper.
Instead, we remark that, denoting by f the AND function on w

(Zd) x 24 submatrix of the

bits, a (d, w, f)-pattern matrix W’ is a
workload matrix W for Qmargmal Lets = 24129~ (Zd) be the number
of entries in W’. By Theorem 8.1. in [She11], we have that, for any

1
as<g,

5

1 ~ —~ , d deg1/3(f)/2
min{—||W||tr W =W 15w < a} = Q(—)
Vs W

\ivvhere Wl is the trace-norm, i.e., the sum of singular values of
W, and deg1/3(f) is the (1/3)-approximate degree of f, which is
known to be Q(+/w) [NS94]. Since ‘/Lg W]l is a lower bound on
y2(W) (see [LMSS07, Lemma 3.4]), this implies

( d )Q(\/W)

>

1~
W,1/6) 2 —||[W|lzr = Q
y2(W,1/6) \/5” ller
giving us Corollary 6.

4 NON-INTERACTIVE LOCAL DP:
PAC LEARNING

It turns out that we are able to translate our algorithm and
lower bound for answering linear queries in the local model into

STOC 20, June 22-26, 2020, Chicago, IL, USA

an algorithm and lower bound for probably approximately correct
learning in the local model.

A concept ¢ : X* — {-1,+1} from a concept class C identifies
each sample x of X* with a label c¢(x). The labelled pair (x, c(x)) =
(x, 1) may be identified with the sample x of X*, while the labelled
pair (x,c(x)) = (x,—1) may be identified with the sample —x of
X7.Letq: X — {-1,+1} be given by

(x) = c(x), ifx e X*
= —c(—x), ifxeX~

Then the loss of the concept ¢ ona dataset X = ((x1,y1), ..., (Xn, yn)),

denoted Ax(c), is
Az () = % Z(l =I[f(xi) = yil)
i=1

1 1< 1
=E—%Zf(xz)yz=5
i=1

where X is the dataset (x1 - y1,...,%n - yn). In this way, estimating
Ax(c) given the dataset X is equivalent to estimating g(X) given
the dataset X. More generally, if we consider the query workload
Q consisting of all such queries g obtained from some concept ¢
of C in this way, then estimating Q(X) is equivalent to estimating
Ax(C) = (Ax(c))cec- This idea allows us to adapt the algorithm
of Theorem 10 for estimating linear queries to an algorithm for

learning. The result is stated in terms of the concept matrix D €
RCXX *

3 25008 = 3 = 3400

of C with entries given by
dc,x =c(x)

and takes advantage of the fact that the workload matrix W of
the corresponding query workload Q is obtained by extending D
to C x X in the usual way with wgx = dcx and wg—x = —dcx
for g € Q and x € X* when c is the concept that corresponds to
q. In particular, the queries Q are symmetric, and, by Lemma 18,
y2(D, a) = y2(W, a).

In order to state our results for agnostic learning, we need to
define notation for population loss, in addition to the empirical loss
defined above. For a distribution y over X* x {1, +1}, we will use
Ay (c) to denote the loss of the concept ¢ on 1, given by

Au(c) = Pr [e(x) #y].
(x.y)~p

For a, f > 0 we will say that the mechanism M (a,f)-learns C with
n samples if, for all distributions y over X* x {—1,+1}, given as
input a dataset X = ((x1, Y1), ..., (xn,yn)) of n samples drawn IID
from p, M outputs a concept ¢ € C and an estimate A such that

Pr [Au(c) < min Ay(c’) + @ and [A — Ay(c)| < a] > 1- .
MX ceC

Typically, the learning problem does not require outputting an
estimate of the loss A (c), since it is usually easy to compute such
an estimate with few additional samples, once a concept ¢ has been
computed. In the local model, however, this would require an addi-
tional round of interactivity. Since we focus on the non-interactive
local model, it is natural to make this additional requirement on
the learning algorithm.

Since we wish to bound population loss, it is necessary to as-
sume that there are sufficiently many samples to guarantee uniform
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convergence. It suffices to assume, for some constant C, that the

Clog2|C|
)

number of samples is at least n > to guarantee

g

Pr[Vc € C, |Ax(c) —Au(c)| < a] 21— 5
X

when X consists of n IID samples drawn from .

THEOREM 24. Let a, ff € (0,1), and let ¢ > 0. There exists an ¢-
LDP mechanism M such that, for any concept class C of size |C| = k
with corresponding concept matrix D € ROXX™ ¢ suffices to have a

dataset X = ((x1,y1), ..., (xn,yn)) of
logk
Jo(%5))

{ (YZ(D,OC)ZIng
n=max{O| ————

ea?
samples to guarantee that M (a, p)-learns C.

Applying the same ideas, we know that if we estimate the quan-
tity mingec A (c), then we can estimate maxgep q(X). Similarly,
estimating mingec Ay (c) is equivalent to estimating maxgep q(p’)
where p’ is the distribution on X obtained from y by associating
samples of the forms (x, 1) and (x, —1) with x and —x, respectively.
Since the matrix W € RCXX obtained from D is symmetric, and
estimating maxg e q(p’) is precisely what is required for the lower
bound of Theorem 22, we the following lower bound for agnostic
learning.

THEOREM 25. Let f§ € (0,1) be a small enough constant, and let
e > 0. Let C be a concept class with concept matrix D € ROXX™

’_ a oy (W,a) Clog 2k
For some a” = Q(log(l/a))’ if > =

T 2 for a large enough
constant C > 0, then any e-LDP mechanism M which (a’, §)-learns

C requires
n= Q(

5 CHARACTERIZING CENTRAL DP FOR
LARGE DATASETS

The goal of this section is to show that the sample complexity of
releasing a given set of linear queries with workload matrix W is

yr(W)
e

y2(W, a)?
e202

samples as input.

scf22 (W,a,¢6) = G)(

when « is sufficiently small (smaller than some a*(Q, ¢)). Or, equiv-
alently, we show that errts (W,n,¢6) = @(%X‘/)), when n is suffi-
ciently large (larger than some n*(Q, ¢)).

The proof consists of two steps. First, we argue that error

Yr(W)

&n

err(W,n, ¢,6) = O( )

is necessary for every n if we restrict attention only to mechanisms
that are data-independent. That is, mechanisms that perturb the out-
put with noise from a fixed distribution independent of the dataset.
Then, we apply a lemma of Bhaskara et al. [BDKT12] that says,
when n is sufficiently large, any instance-dependent mechanism
can be replaced with an instance-independent mechanism with the
same error and similar privacy parameters.
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5.1 Data-Independent Mechanisms

Let Q be a workload of linear queries over data universe X and
let W € R*X be the matrix form of this workload. An instance-
independent mechanism M can be written (as a function of the
histogram of the dataset) as,

M(h) = %(Wh +2)

where Z is a random variable over R whose distribution does not
depend on h. Without loss of generality, we assume E[Z] = 0. Let
> = E[ZZ T] be the covariance matrix of Z. Then the ¢ error of
such a mechanism is

M(h) - Lwh|?
errfzz (M’ W’ n) = max E M
ke ||l;=n O]

I1Z113 Tr(Z)

n|Q| n|Q|

In this section, we will show that, if M is (e, §)-differentially pri-
vate (for ¢, § smaller than some absolute constants), then Tr(X) =
Q(w), and thus err(M, W, n) = Q(%}y)).

We start with the following basic lemma about differential pri-
vacy, which says that the variance of any differentially private
algorithm for answering a single query w must be proportional to
the sensitivity of the query.

LEmMA 26 ([KRSU10]). For any single-query workload w € RIXI,
and any data-independent mechanism M(h) = %wTh + %z that is
(&, O)-differentially private for €, smaller than some absolute con-
stants, E[zz] > é”w”oo for some absolute constant C > 0.

Next, we define the sensitivity polytope K = WB{X , where

B|1X| = {h € RIXl ; ||n|l; < 1}. With this definition, we have
that for any pair of neighboring datasets X, X” with associated his-
tograms h, h’, we have W(h — h’) € K. The next lemma says that
the covariance matrix ¥ defines an ellipsoid that contains at least a
constant multiple of the sensitivity polytope.

LEMMA 27. Let W be a workload matrix such that the sensitivity
polytope K is full dimensional. Let M be an (¢, §)-differentially pri-
vate data-independent mechanism for W that has covariance matrix
3, for e, 8 smaller than some absolute constants. Then ¥ is invertible,
and
1/2

- 2 Ty-1 2.2
max |2 =maxy X < C%
max Il ylly maxy y

for some absolute constant C > 0.
ProoF. By post-processing, for any u € RIXI
1 1
WM = ~u"Wh+-u"Z
n n

is an (¢, §)-DP mechanism for the single query u™ W. The sensitivity
polytope of the workload u™ W is the line [—hg (u), hg (u)], where
hi (u) = maxyeg uTy is the support function. By Lemma 26, if M
is an (¢, §)-differentially private mechanism, then for some constant

>

1220l = VuTsu > hicw) (12)
C

£
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If K is full dimensional, then in particular we have hg (e;) > 0 for
any standard basis vector e;, which implies that the matrix ¥ is
positive definite and invertible.

By change of variables we can write v = $1/2y and rewrite (12)
as

1 1 1
> _—.h 2—1/2 - . 2—1/2 T, — . TE—1/2
lollz > —-hx ( 9= r;g%( 0) Y=z, max o y

glX|-1

Since the above holds for any unit vector v € , we have

V241, = max max o737 V%

max |2~
yekK Y€K yeSIXI-1

= max mavaZ_l/zy < Ce
vesiI-1 yek
where the first equality is the equality-case of Cauchy-Schwarz. 0O
Recall that for a matrix W € ROXX |
ye(W) = inf{ S IRIFIAllL e : RA = W),
We now prove our main result, which shows that the error of data-
independent private mechanisms must be proportional to yg(W).

THEOREM 28. Let W be a workload matrix. Let M is a (¢, 5)-
differentially private data-independent mechanism for W with covari-
ance matrix X, for €, 8 smaller than some absolute constants. Then
yr(W) )

err[éz (M,W,n)=Q (
Cen

Proor. Let wy,..., WX be the columns of the workload matrix
W.Let A = 3>~ Y2W with columns a, ..., ax| andlet R = 21/2 g0
that RA = W. By Lemma 27, the matrix A is well defined, and for
every i, ||ai|| = |I="1/2w;|ly < Ce. Hence ||All1—z < Ce. We also
have

IRllF = Te(RTR)Y? = Te(2)V/2 = |02 - n - err (M, W, ).

Combining the inequalities, we get

1 2
re(W) < o IRIlEIANL oz < Ce - enxf (M, W),

The theorem follows from rearranging this inequality. O

5.2 From Data-Dependent to Data-Independent
Mechanisms

In this section we describe a reduction of Bhaskara et al. [BDKT12]
showing, in the case of symmetric workloads, that any data-dependent
mechanism with small error for datasets of arbitrary size can be
converted into a data-independent mechanism with approximately
the same error.

LemMa 29 ([BDKT12]). Let W € ROXX be a symmetric workload
matrix. For every (¢, §)-differentially private mechanism M, there
exists a (2¢, 2e 8)-differentially private data-independent mechanism
M’ such that

1
err (M’,W,n) < = max(m - err’? (M, W,m))
n meN

As an immediate, corollary, lower bounds for data-independent
mechanisms imply lower bounds for arbitrary data-dependent
mechanisms for some dataset size n*. Thus we obtain the following
theorem by combining Theorem 28 with Lemma 29.
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THEOREM 30. Let Q be linear queries with symmetric workload
matrix W € R*X_ Then for every ¢, 8 smaller than some absolute
constants, there exists n* € N such that

2 w
Vn < n* errgé(Q, n) > YFC(gn )

By standard transformations (see e.g. [BUV14]), we can convert
this to the following sample complexity lower bound,

COROLLARY 31. Let Q be linear queries with symmetric workload
matrix W € R*X_ Then for every e, 8 smaller than some absolute
constants, there exists a* > 0 such that

e F(W)
Va < a* sc;(s(Q, a) = YCT

We remark that our lower bounds may be extended to case
of non-symmetric workloads by using the same technique which
we used to obtain Lemma 17. An advantage of performing this
reduction in the central model is that we may take advantage of
the central model version of the Laplace mechanism, which will

%) rather than n = O(#)

Theorem 28, Theorem 30, and Corollary 31 may be obtained under
the additional assumption that yr(W) > D for a sufficiently large
constant D > 0.

We also note that Theorem 28, Theorem 30, and Corollary 31
may be extended to £2 -error, defined by

use only n = O( samples. In this way,

e (M) = max B [IMOX) - 000 1]

2 2
with erri‘”{s(Q, n), and sci‘”{s(Q, a) defined analogously, and yr(W)
replaced by y2(W) in the lower bounds.
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