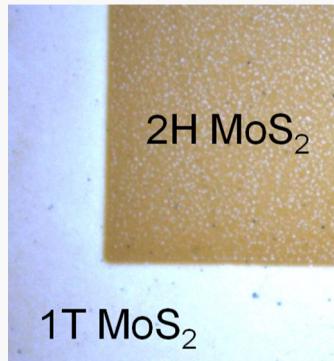


Modulating the Electronic Properties of Au–MoS₂ Interfaces Using Functionalized Self-Assembled Monolayers

Jenny K. Hedlund and Amy V. Walker*

Cite This: *Langmuir* 2020, 36, 682–688

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Molybdenum disulfide (MoS₂) is a transition-metal dichalcogenide with many applications including in electronic devices and sensors. A critical issue in the development of these devices is the high resistance between the metal contact and the molybdenum disulfide layer. In this study, we employ Raman spectroscopy and X-ray photoelectron spectroscopy to investigate the modification of Au–MoS₂ contact properties using functionalized alkanethiolate self-assembled monolayers (SAMs). We demonstrate that both 2H and 1T MoS₂ strongly interact with the underlying Au substrate. The electronic properties of the interface are mediated by the dipole moment of the alkanethiolate SAM, which have a –CH₃, –CO₂C₆F₅, –OH, or –COOH terminal group. Finally, we demonstrate the site-selective deposition of 2H and 1T MoS₂ on micropatterned SAMs to form conducting–semiconducting patterned MoS₂ films.

INTRODUCTION

Molybdenum disulfide (MoS₂), a transition-metal dichalcogenide (TMD), has many applications including in energy storage, catalysis,¹ sensing,² and electronic devices.^{3–6} These applications rely on the ability to tune the electronic properties of MoS₂. The thermodynamically stable form of MoS₂, 2H MoS₂, is a semiconductor. It has a unique transition from a direct band gap of ~1.8 eV for monolayer MoS₂⁷ to an indirect band gap of ~1.2 eV for bulk MoS₂.⁸ Additionally, metastable 1T MoS₂ can be synthesized, which is a semimetal.⁹

Although MoS₂ has many applications, a critical issue in the development of MoS₂ electronic devices and sensors is to lower the contact resistance between the metal electrodes and the MoS₂ layer.^{3,4} For example, the performance of MoS₂ field effect transistors (FETs) strongly depends on the metal employed for the source and drain contacts.³ Density functional theory (DFT) calculations show that the reason for this dependence is the significant valence and conduction band realignment of MoS₂ caused by the interface dipole formation between the metal electrode and the MoS₂ layer.^{10–12} These studies also indicate that if the lattice parameter is altered, the magnitude of the MoS₂ band gap changes as well as switching from direct to indirect.^{11,12} Further, after applying a tensile strain of ~5% the band gap is reduced by ~1 eV.¹¹

In MoS₂ FETs, the most common electrode material is gold because the device characteristics are generally reasonable even though there is large energy offset between the gold electrode and MoS₂.^{3,4,10} However, the contact resistance is very dependent on the deposition conditions of the gold contact, leading to large differences in device performance.⁴ Experi-

mental studies of gold layer and nanoparticle deposition on MoS₂ layers show that there are strong interactions between semiconducting 2H MoS₂ and the deposited gold.^{7,13–15} In the Raman spectra, the A_{1g} and E_{2g}¹ modes are red- and blue-shifted, respectively, indicating that the strain in the layer is between 1 and 3%, depending on the deposition.^{13,14} Further, X-ray photoelectron spectra show that there is downward band bending at the MoS₂ surface, indicating that there is charge transfer between the gold and MoS₂ layers.⁷ Mertens et al.¹⁵ also demonstrated that the excitons in the MoS₂ monolayers couple with their mirror image in the Au substrate, indicating that the optical properties of MoS₂ are also strongly affected.

An alternative strategy is to use contact engineering to change the electronic properties of the MoS₂ and gold substrate. Here, we investigate using functionalized self-assembled monolayers (SAMs) to modify Au–MoS₂ contact properties. We employ chemical bath deposition (CBD) to deposit MoS₂ on SAMs at room temperature. It is noted that, although not performed here, the polycrystalline MoS₂ films can be laser annealed to form crystalline films for devices.¹⁶ Functionalized SAMs modulate the work function of metal electrodes,^{17–21} and have been demonstrated to improve the performance of organic devices such as thin-film transistors,^{18,19} light-emitting diodes,²⁰ photodetectors,²⁰ and solar cells.^{20,21} Using Raman spectroscopy and X-ray photoelectron

Received: June 26, 2019

Revised: December 23, 2019

Published: January 7, 2020

spectroscopy (XPS), we demonstrate that both 2H and 1T MoS₂ strongly interact with the underlying Au substrate and alter the electronic properties of the MoS₂ layer. The interaction is mediated by the dipole moments of the alkanethiolate SAM, which have a $-\text{CH}_3$, $-\text{CO}_2\text{C}_6\text{F}_5$, $-\text{OH}$, or $-\text{COOH}$ terminal group. We also note that the surface energy of the functionalized SAM also determined whether 1T or 2H MoS₂ is deposited.²² Semiconducting 2H MoS₂ films are deposited on $-\text{CH}_3$ - and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs, while 1T MoS₂ films are deposited on $-\text{OH}$ - and $-\text{COOH}$ -terminated SAMs. The formation of patterned multifunctional SAMs are relatively facile.^{23,24} We, therefore, demonstrate the site-selective deposition of 2H and 1T MoS₂ on micro-patterned SAMs to form conducting–semiconducting patterned MoS₂ films.

EXPERIMENTAL SECTION

Materials. Hexadecanethiol (99+%), 16-mercaptopohexadecanoic acid (90+%), 16-hydroxy-1-hexadecanethiol (99+%), and ammonium molybdate (99.98%) were purchased from Sigma-Aldrich (St. Louis, MO). Hydrazine hydrate (98+%), pentafluorophenol (PFP) (99%), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) (98+%), and thioacetamide (99% ACS grade) were obtained from Alfa Aesar, Inc. (Ward Hill, MA). Finally, 14.8 M ammonium hydroxide was acquired from Ward's Science+ (Rochester, NY). All reactants were used as received without any further purification.

Preparation of SAMs. The preparation of $-\text{OH}$ -, $-\text{COOH}$ -, and $-\text{CH}_3$ -terminated alkanethiolate SAMs on Au used in this study is described in refs 25 and 26. Gold substrates were prepared by sequentially thermally depositing $\sim 200\text{ \AA}$ Cr followed by $\sim 1000\text{ \AA}$ Au on Si wafers ($\langle 111 \rangle$ orientation; Addison Engineering Inc., San Jose, CA). A well-ordered SAM is prepared by immersing a gold substrate into a 1 mM ethanolic solution of alkanethiol (with the $-\text{OH}$, $-\text{COOH}$, or $-\text{CH}_3$ terminal group) in ethanol for 24 h at ambient temperature.

Perfluorinated SAMs ($-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs) on Au were prepared using the method described in ref 27. A $-\text{COOH}$ -terminated SAM was immersed into 0.1 M EDC and 0.2 M PFP isopropanolic solution for 5 h. The substrate was then thoroughly rinsed with deionized water and ethanol, and dried using nitrogen gas.

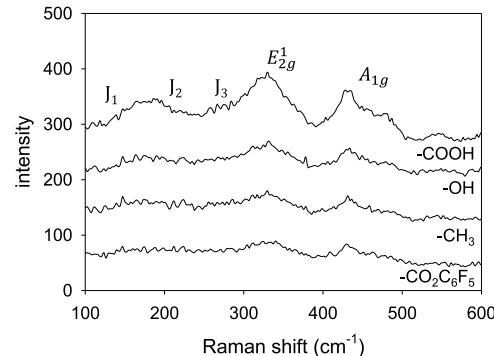
To ensure that the functionalized SAMs were free from chemical contamination, the samples were characterized using single-wavelength ellipsometry, time-of-flight secondary ion mass spectrometry, and XPS.

UV Photopatterning of SAMs. The $-\text{OH}$ - and $-\text{COOH}$ -terminated SAMs were photopatterned using the procedures described by Zhou and Walker.²³ Briefly, a mask (copper TEM grid; Electron Microscopy Inc., Hatfield PA) was positioned on top of a $-\text{OH}$ - or $-\text{COOH}$ -terminated SAM. The construct was then placed ~ 50 mm from a 500 W Hg arc lamp with a narrow band-pass UV filter (280 to 400 nm) and a dichroic mirror (Thermal Oriel—Spectra Physics Inc., Stratford CT). The sample was then exposed to UV light for 2 h. The photopatterned SAM was then rinsed with ethanol and immersed in a 1 mM ethanolic solution of the $-\text{CH}_3$ -terminated SAM for 24 h at room temperature. In the areas exposed to UV light, the photooxidized SAM was displaced by the $-\text{CH}_3$ -terminated SAM, creating a multifunctional patterned $-\text{COOH}/-\text{CH}_3$ or $-\text{OH}/-\text{CH}_3$ SAM. The samples were then washed with ethanol, dried with N₂ gas, and used immediately.

CBD of MoS₂. CBD of MoS₂ was carried out using the method described by Hedlund and Walker.²² Briefly, to 10 mL of aqueous solution containing 5% ammonium molybdate, 15 mL of 14.8 M ammonium hydroxide and then 10 mL of 80% hydrazine hydrate were added while continuously stirring. To form the MoS₂ deposition bath, 15 mL of 1 M thioacetamide was then added. Depositions were performed for 24 h at room temperature, $21 \pm 2^\circ\text{C}$. After deposition, the samples were rinsed with deionized water and dried with nitrogen gas prior to XPS or Raman spectroscopic analyses.

Raman Spectroscopy and Mapping. Raman spectra were obtained using a Thermo Scientific DXR Raman microscope (Thermo Scientific, Madison WI) equipped with a 50 \times objective lens and 25 μm slit aperture. The laser wavelength was 532 nm. Raman spectra were collected with laser powers of 1.0 mW. To generate Raman maps, spectra were collected at 10 μm intervals in the defined image area using 0.3 mW laser power. Images were obtained on a “heat scale” from these spectra at selected frequencies.

In order to reduce interference from fluorescence, “fluorescence correction” was used and the samples photobleached for 30 s prior to data collection.


Optical images of the samples were also obtained using the integrated microscope.

The spectra and images shown are representative of the data collected using multiple samples (at least three samples per experimental condition).

X-ray Photoelectron Spectroscopy. Ex situ X-ray photoelectron spectra were acquired using a PHI VersaProbe II Scanning XPS Microprobe (Physical Electronics Inc., Chanhassen MN). High-resolution spectra were collected using a monochromatic Al $\text{K}\alpha$ X-ray source ($E_p = 1486.7\text{ eV}$), pass energy of 23.5 eV, energy step of 0.2 eV, and analysis angle of 45°. All photoelectron spectra were obtained using a charge compensation system which employs both electron and ion beams. The binding energies were calibrated to the Au $4f_{7/2}$ (84.0 eV) binding energies. Spectra were analyzed using CasaXPS 2.3.17 (RBD Instruments, Inc., Bend, OR). All spectra shown are representative of the data collected.

RESULTS AND DISCUSSION

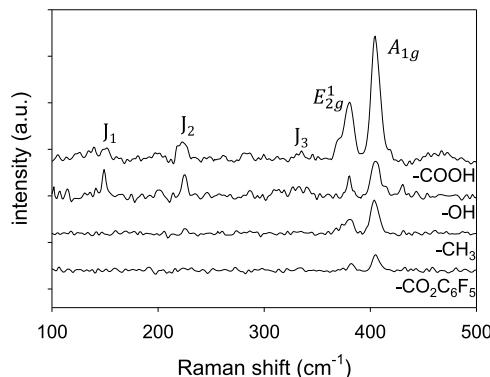
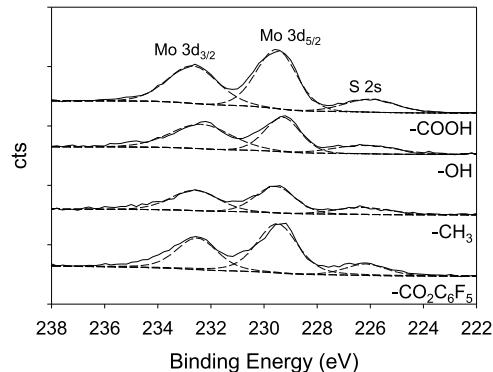

Effect of the Au Substrate on MoS₂ Deposition. After deposition on the functionalized SAMs, the Raman data show that the functionalized SAM substrate strongly affects the spectra of the deposited MoS₂ layer (Figure 1). For 1T and 2H

Figure 1. Raman spectra of MoS₂ films deposited on $-\text{COOH}$ -, $-\text{OH}$ -, $-\text{CH}_3$ -, and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs. Deposition time: 24 h.

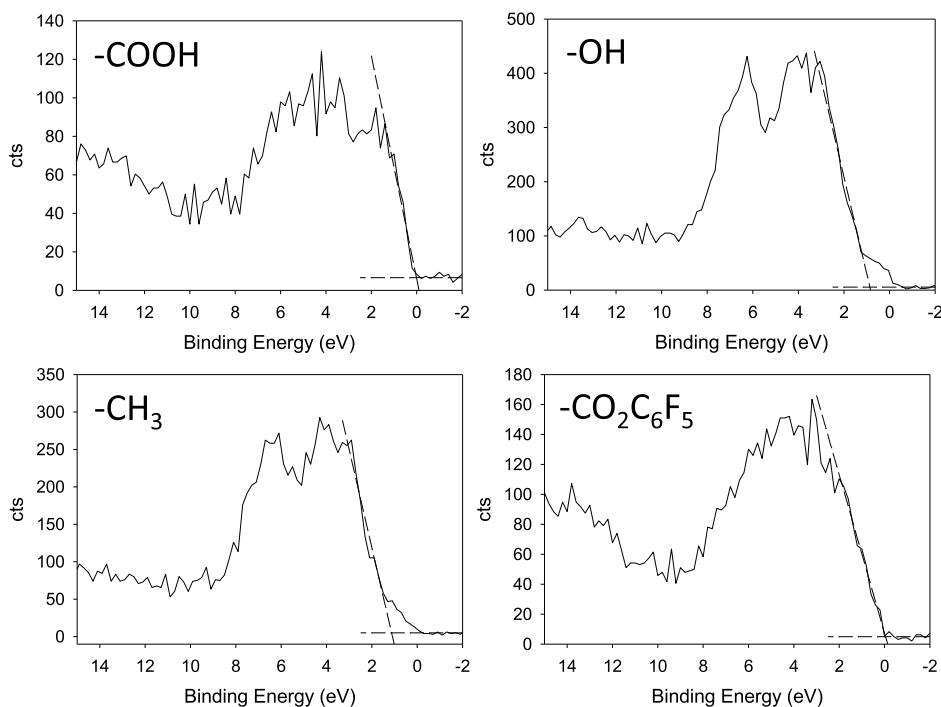
MoS₂, it is well known that there are two principal Raman-active modes, E_{2g}^1 ($\sim 383\text{ cm}^{-1}$) and the A_{1g} ($\sim 408\text{ cm}^{-1}$).^{28,29} For 1T MoS₂, there are three additional Raman-active modes, J_1 ($\sim 160\text{ cm}^{-1}$), J_2 (225 cm^{-1}), and J_3 ($\sim 335\text{ cm}^{-1}$).²⁹ In Figure 1, it can be clearly seen that on $-\text{CH}_3$ - and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs, there is also a very weak broad mode at $\sim 185\text{ cm}^{-1}$, which we attribute to the red-shifted (A_{1g} – $\text{LA}(\text{M})$) mode. For $-\text{COOH}$ - and $-\text{OH}$ -terminated SAMs in Figure 1, there is an additional broad peak at $\sim 170\text{ cm}^{-1}$, which suggests the presence of the J_1 and J_2 modes of 1T MoS₂. We also observe that the E_{2g}^1 mode has a larger FWHM ($\sim 30\text{ cm}^{-1}$) than the corresponding E_{2g}^1 mode on $-\text{CH}_3$ - and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs ($\sim 25\text{ cm}^{-1}$), which suggests that the E_{2g}^1 mode is convolved with the J_3 1T MoS₂ mode. As the deposited MoS₂ layer becomes thicker (longer deposition

time), the E_{2g}^1 and the A_{1g} modes become narrower and have peak positions at 382 and 405 cm^{-1} , respectively (Figure 2). On $-\text{COOH}$ - and $-\text{OH}$ -terminated SAMs the J_1 , J_2 , and J_3 become separate, narrower peaks confirming that 1T MoS_2 has deposited (Figure 2).


Figure 2. Raman spectra of thicker MoS_2 films deposited on $-\text{COOH}$ -, $-\text{OH}$ -, $-\text{CH}_3$ -, and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs. Deposition was performed for 48 h.

We note that similar effects have been observed in Raman spectra after deposition of gold thin films or nanoparticles on 2H MoS_2 .^{13,14} However, the red- and blue-shifts of the out-of-plane A_{1g} and in-plane E_{2g}^1 modes, respectively, tend to be smaller (less than 15 cm^{-1}). The red and blue shifts of the A_{1g} and E_{2g}^1 modes can be attributed to the following effects.¹³ The A_{1g} mode is due to the symmetric vibration of S atoms along the *c*-axis (vertical axis) of MoS_2 . The interaction between the deposited gold and MoS_2 stiffens this vibration, leading to a blue shift of the phonon mode. The in-plane E_{2g}^1 mode is due to the lattice vibration of the Mo and S atoms in opposite directions. The deposited gold has a large dielectric constant which increases the screening of electron–electron interactions in the MoS_2 , which weakens the planar interionic interactions. This effect leads to a red shift of the E_{2g}^1 mode. In addition, a broadening of the E_{2g}^1 mode is observed, which is attributed to the inhomogeneous contact between the Au and MoS_2 layers. Gong and co-workers¹³ describe the Au– MoS_2 contact as one in which there are some areas in which Au and MoS_2 are in intimate contact, while there are some regions where the metal is at a large distance above the MoS_2 surface. These observations suggest that the interaction of the deposited MoS_2 with the underlying gold substrate, and not the SAM, is the dominant effect in the Raman spectra. The red shift in the E_{2g}^1 mode also indicates that there is a larger induced biaxial strain in the MoS_2 than for gold deposited on MoS_2 . Using the experimentally derived and theoretically supported “4.5 cm^{-1} /% rule,^{13,14} we estimate that the strain in the MoS_2 layer is ~11.8%, which is very large! Such strain is unlikely to be accommodated by the MoS_2 layer, indicating that there are areas in intimate contact with the underlying functionalized SAM substrate and areas in which the film is not in intimate contact, which is consistent with the broad modes observed in the Raman spectra (Figure 1).

On $-\text{OH}$ - and $-\text{COOH}$ -terminated SAMs, 1T MoS_2 is deposited and the J_1 , J_2 , and J_3 modes are also broadened but there are smaller apparent peak shifts than the E_{2g}^1 and A_{1g} modes (Figure 1). The J_1 , J_2 , and (A_{1g} – LA(M)) modes appear convolved together, whereas the J_3 mode is combined

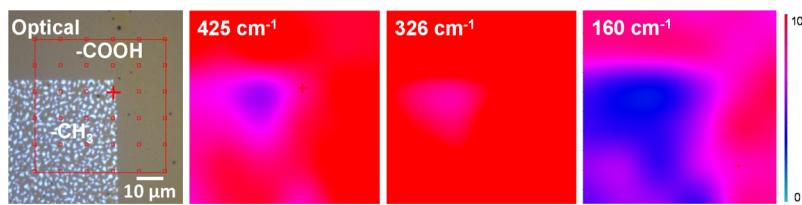

with the E_{2g}^1 mode (Figure 1). The J_1 mode involves two different types of vibrations:³⁰ an out-of-plane motion of the Mo atoms and will be red-shifted, and an in-plane shearing vibration of the Mo and S atoms and will be blue-shifted. Thus, the peak position is unlikely to significantly shift because of these opposite effects. Similarly, the J_2 and J_3 modes involve both in-plane and out-of-plane motions of MoS_2 ,³⁰ and so will not be significantly shifted in position. We also attribute the mode broadening to the inhomogeneous contact between the Au substrate and MoS_2 .¹³

X-ray photoelectron spectra studies of the deposited MoS_2 provide an estimate of the film thickness. Using the uniform layer model, after 24 h of deposition, the films are ~4.0 nm thick (~6 layers).²² Further, the XPS data are in agreement with the Raman spectra and confirm that the film interacts with the underlying gold substrate. Figure 3 displays the Mo 3d and

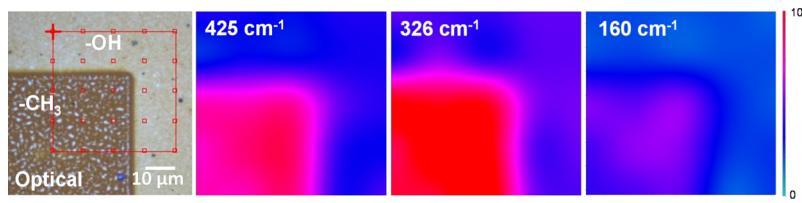
Figure 3. Mo 3d and S 2s photoelectron spectra of MoS_2 films deposited on $-\text{COOH}$ -, $-\text{OH}$ -, $-\text{CH}_3$ -, and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs. Deposition time: 24 h.

S 2s photoelectron spectra of the deposited MoS_2 film on the functionalized alkanethiolate SAMs on gold. Three peaks are observed at ~232.5, ~229.4, and ~226.3 eV, which are assigned to the Mo 3d_{3/2}, Mo 3d_{5/2}, and S 2s peaks of MoS_2 , and suggest that 2H MoS_2 has deposited on all SAM substrates.³¹ However, upon exfoliation³² for MoS_2 deposited on $-\text{COOH}$ - and $-\text{OH}$ -terminated SAMs, the Mo 3d and S 2s photoelectron peaks have lower binding energies by ~0.9 eV, clearly indicating that 1T MoS_2 has deposited and this assignment is confirmed by Raman spectra of the exfoliated MoS_2 films.²² The surprising binding energies of 1T MoS_2 on $-\text{OH}$ - and $-\text{COOH}$ -terminated SAMs can be caused by a number of reasons such as surface charging during data acquisition, changes in the film stoichiometry, and the interaction of the MoS_2 film with the SAM substrate. During data acquisition, photoelectrons are generated and so it is likely that the MoS_2 film will charge positively, leading to changes in binding energy. However, this is unlikely because charge compensation was employed, and no change in binding energy was observed for 2H MoS_2 films deposited on $-\text{CH}_3$ and $-\text{CO}_2\text{C}_6\text{F}_5$ SAMs, which were measured using the same experimental parameters. Further, the C 1s and O 1s energies do not change their binding energies; these are expected if there is surface charging. Additionally, the calculated S/Mo ratios are equal to 2.0 with experimental error, indicating that the deposited films are stoichiometric MoS_2 on all substrates studied (see Supporting Information Table S1). Rather, the binding energies of the Mo 3d, S 2s, and 2p states suggest that there is an interaction between the substrate and the deposited

Figure 4. Valence band photoelectron spectra of MoS₂ films deposited on -COOH-, -OH-, -CH₃-, and -CO₂C₆F₅-terminated SAMs. Deposition time: 24 h.


MoS₂ layer. We also note that the photoelectron peak intensities are $\gtrsim 4\times$ those observed on the exfoliated films for similar film thicknesses, which suggests that there is charge transfer between the substrate and the deposited film. Similar effects have been observed by Jiang et al.³³ for the Au clusters deposited on rutile TiO₂(110).

Taken together, the Raman scattering and XPS data suggest that the underlying gold substrate interacts with the deposited MoS₂ layer. DFT calculations show that there is significant valence and conduction band realignment of MoS₂ caused by the interface dipole formation between a metal electrode and the MoS₂ layer.^{10,11} Further, these studies reveal that these effects were dependent on the distance between the metal electrode and MoS₂ layer.¹⁰ However, we note that the offsets rapidly decrease with the metal–MoS₂ distance and for Au are close to zero by ~ 5 Å, which is much shorter than the SAM film thickness (~ 20 Å). Thus, the interaction between the Au substrate and deposited MoS₂ is likely due to charge transfer mediated by the net dipole moment of the SAMs. There are two contributions to the dipole moment of the alkanethiolate SAM: the bond dipole because of the Au–S interface and the dipole moments of the molecules within the SAM.^{19,34} The orientation and magnitude of this SAM dipole is therefore dependent on the chemical composition of the SAM, including its alkyl chain length and functional groups,^{19,34,35} and has been demonstrated to increase and decrease the work function of gold.^{21,34,36} Further, the surface dipole moments of functionalized SAMs have been employed to control the charge channel density of organic thin-film transistors¹⁸ as well as the properties of superhydrophobic surfaces.^{34,37}


To investigate the effect of the SAM substrate adsorbed on gold on the MoS₂ deposit, we obtained valence band (VB) XPS data. Figure 4 displays the VB spectra of the deposited MoS₂ film on the functionalized alkanethiolate SAMs on gold. On -COOH-terminated SAMs, there is photoelectron

intensity from the Mo 4d band (VB) at a binding energy of 0 eV, which is the Fermi level of the system, and indicates that the MoS₂ layer is metallic 1T MoS₂. We also note that after exfoliation from the -COOH-terminated SAM substrate, the valence band maximum (VBM) is also observed at 0 eV.²² On -OH-terminated SAMs, the VBM is 0.8 eV, which is the same as the exfoliated MoS₂ film (0.7 eV)²² (within experimental error) and is consistent with the deposition of semimetallic 1T MoS₂. Since the Raman modes are shifted and there is an increase in the Mo- and S- energies, we suggest that there is charge transfer between the substrate and deposited MoS₂ to level their Fermi energies. For semiconducting 2H MoS₂ films deposited on -CH₃- and -CO₂C₆F₅-terminated SAMs, the interaction of the underlying gold substrate with the film will lead to surface band bending. After MoS₂ deposition on the -CH₃-terminated SAMs and mechanical exfoliation, the VBM is at 1.3 eV, which is consistent with the band gap of multilayer MoS₂.²² For the MoS₂ film on the -CH₃-terminated SAM, the VBM is reduced by 0.3 to 1.0 eV, which we attribute to surface band bending because of charge transfer between the Au substrate and the deposited MoS₂. For the -CO₂C₆F₅-terminated SAMs, the reduction in the VBM is much larger; the VBM is reduced from 1.0 eV for the exfoliated MoS₂ film²² to 0.0 eV for the unexfoliated MoS₂ film (i.e., on the -CO₂C₆F₅-terminated SAM substrate), indicating that there is a larger transfer between the Au substrate and the MoS₂ film.^{34,35} Finally, we note that for MoS₂ films deposited on -OH- and -CH₃-terminated SAMs, there is also a small tail in front of the VB edge, which likely arises from gap-induced surface states.

The changes in the VBM maxima for MoS₂ deposited on the -OH-, -CH₃-, and -CO₂C₆F₅-terminated SAMs are likely because of three effects. First, the energy alignment of the functionalized SAM-gold electrode with the MoS₂ will be different for 1T and 2H MoS₂. Second, there is likely strain in

Figure 5. Optical and Raman spectroscopic images at 425, 326, and 160 cm^{-1} of MoS₂ films deposited on a patterned $-\text{COOH}/-\text{CH}_3$ -terminated SAM. Deposition time: 24 h. The Raman spectroscopic images are shown on a heat scale, and the area and points of analysis are shown in red on the optical image.

Figure 6. Optical and Raman spectroscopic images at 425, 326, and 160 cm^{-1} of MoS₂ films deposited on a patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM. Deposition time: 24 h. The Raman spectroscopic images are shown on a heat scale, and the area and points of analysis are shown in red on the optical image.

the MoS₂ layer, which is induced by the lattice mismatch between the SAM and MoS₂. Third, the dipole moment of the SAM affects the work function of the Au substrate, which in turn affects the MoS₂ band alignment. For the $-\text{CH}_3$ -terminated SAMs, the work function of the Au substrate increases, whereas for the perfluorinated SAM, the gold work function decreases. The large change in the VBM for MoS₂ on the $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs can be attributed to better energy alignment between the gold electrode and the deposited MoS₂ layer.

Site-Selective Deposition of MoS₂ Polytypes. These results indicate that by manipulating the surface chemistry, the MoS₂ CBD can be used to selectively deposit different MoS₂ polytypes and modulate the film conductivity in a spatially resolved way. Thus, MoS₂ CBD has the potential to create self-aligned device structures where both the MoS₂ polytype and band gap can be modulated. To demonstrate this process, we employ micropatterned functionalized SAMs to form two structures. First, a patterned $-\text{COOH}/-\text{CH}_3$ -terminated SAM substrate a 1T/2H MoS₂ deposit is synthesized with areas which are conductive and semiconducting, respectively. Second, using a patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM substrate, a 1T/2H MoS₂ patterned film is deposited with two different band gaps.

Figure 5 displays an optical image of the MoS₂ film deposited on a patterned $-\text{COOH}/-\text{CH}_3$ -terminated SAM and images of the Raman mode intensities at 425, 326, and 160 cm^{-1} . In the optical image, it can be seen that the MoS₂ film deposited on the $-\text{CH}_3$ -terminated SAM appears to be thicker and rougher than on the $-\text{COOH}$ -terminated SAM. The Raman spectra also indicate that there is some disorder present in the deposited MoS₂ film (see Supporting Information Figure S2). The mode intensities at 425 and 326 cm^{-1} , which are characteristic of the A_{1g} and E_{2g}¹ modes, are similar in the $-\text{CH}_3$ - and $-\text{COOH}$ -terminated SAM areas (Figure 5). In contrast, at 160 cm^{-1} , which is characteristic of the J₁ mode, the relative intensity is larger in the $-\text{COOH}$ -terminated SAM area, indicating that 1T MoS₂ has deposited. The peak is 76 \pm 5% of the A_{1g} mode intensity, which is larger than for the $-\text{CH}_3$ -terminated SAM (61 \pm 4%).

For MoS₂ deposited on a patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM, in the optical image, it can be clearly seen that the MoS₂ film deposited on the $-\text{CH}_3$ -terminated SAM appears to be thicker, similar to the patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM (Figure 6). The spectra of the MoS₂ layer from the $-\text{CH}_3$ -terminated SAM area are more intense, which is consistent with the difference in the film thicknesses on the $-\text{OH}$ - and $-\text{CH}_3$ -terminated SAMs (see Supporting Information Figure S2). In the Raman images, the mode intensities at 425 and 326 cm^{-1} , which are characteristic of the A_{1g} and E_{2g}¹ modes are therefore stronger in the $-\text{CH}_3$ -terminated SAM areas (Figure 6). In contrast, the images at 160 cm^{-1} show a uniform Raman intensity, which is consistent with the presence of J₁ mode, indicating that 1T MoS₂ has deposited on the $-\text{OH}$ -terminated SAM.

CONCLUSIONS

In summary, both 1T and 2H MoS₂ strongly interact with the underlying gold substrate, which is mediated by the dipole moment of the functionalized SAM. Using VB XPS, we show that for 1T MoS₂ deposited on $-\text{COOH}$ -terminated SAMs, the VBM remains at 0 eV, indicating that the layer is metallic and the Fermi levels of the gold and MoS₂ are aligned. For 1T MoS₂ deposited on $-\text{OH}$ -terminated SAMs, the VBM is reduced by 0.2 eV, indicating that there is charge transfer between the Au and MoS₂. For semiconducting 2H MoS₂ films deposited on $-\text{CH}_3$ and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs, the interaction of the underlying gold substrate with the film leads to surface band-bending. On $-\text{CH}_3$ -terminated SAM, the VBM is significantly reduced from 1.3 eV for the exfoliated MoS₂ film to 0.8 eV. For $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs, the reduction in the VBM is much larger from 1.0 eV for the exfoliated MoS₂ film to 0.0 eV. We attribute the larger reduction in the VBM to an increase in charge transfer between the Au substrate and the MoS₂ film mediated by the larger dipole of perfluorinated SAMs.

We have also demonstrated the area-selective deposition of 2H and 1T MoS₂ on micropatterned SAMs. A patterned $-\text{COOH}/-\text{CH}_3$ -terminated SAM substrate, a patterned 1T, and 2H MoS₂ deposit are synthesized with areas which are

conductive and semiconducting, respectively. A patterned 1T and 2H MoS₂ film with two different band gaps is deposited using a patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM substrate. This work therefore presents a surface-templated method for the synthesis of MoS₂ layers with a controlled polytype and shows that the electronic properties can be modulated by choice of substrate.

■ ASSOCIATED CONTENT

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01964>.

Ratio of S to Mo determined by XPS for MoS₂ films deposited on $-\text{COOH}$ -, $-\text{OH}$ -, $-\text{CH}_3$ -, and $-\text{CO}_2\text{C}_6\text{F}_5$ -terminated SAMs; Raman spectra of MoS₂ films from $-\text{OH}$ - and $-\text{CH}_3$ -terminated SAM areas after deposition on a patterned $-\text{COOH}/-\text{CH}_3$ -terminated SAM; Raman spectra of MoS₂ films from $-\text{OH}$ - and $-\text{CH}_3$ -terminated SAM areas after deposition on a patterned $-\text{OH}/-\text{CH}_3$ -terminated SAM (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Amy V. Walker — *University of Texas at Dallas, Richardson, Texas*; orcid.org/0000-0003-2114-3644; Phone: +1 972 883 5780; Email: amy.walker@utdallas.edu; Fax: +1 972 883 5725

Other Author

Jenny K. Hedlund — *University of Texas at Dallas, Richardson, Texas*; orcid.org/0000-0001-8569-802X

Complete contact information is available at:

<https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01964>

Author Contributions

The manuscript was written through contributions of all authors.

Funding

National Science Foundation CHE 1708259.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the National Science Foundation (CHE 1708258) and Dr. K. J. Cho for many useful discussions.

■ ABBREVIATIONS

TMD, transition-metal dichalcogenide; FET, field effect transistor; DFT, density functional theory; XPS, X-ray photoelectron spectroscopy; SAM, self-assembled monolayer; PFP, pentafluorophenol; EDC, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide; TEM, transmission electron microscopy

■ REFERENCES

- (1) Li, M.; Wang, D.; Li, J.; Pan, Z.; Ma, H.; Jiang, Y.; Tian, Z. Facile hydrothermal synthesis of MoS₂ nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. *RSC Adv.* **2016**, *6*, 71534–71542.
- (2) Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS₂. *Nat. Nanotechnol.* **2013**, *8*, 497.
- (3) Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS₂ transistors. *Nat. Mater.* **2014**, *13*, 1128.
- (4) English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved Contacts to MoS₂ Transistors by Ultra-High Vacuum Metal Deposition. *Nano Lett.* **2016**, *16*, 3824–3830.
- (5) Radisljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS₂ transistors. *Nat. Nanotechnol.* **2011**, *6*, 147–150.
- (6) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* **2012**, *7*, 699.
- (7) Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C. Thickness-Dependent Binding Energy Shift in Few-Layer MoS₂ Grown by Chemical Vapor Deposition. *ACS Appl. Mater. Interfaces* **2016**, *8*, 22637–22646.
- (8) Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. *Coord. Chem. Rev.* **2002**, *224*, 87–109.
- (9) Wypych, F.; Schöllhorn, R. 1T-MoS₂, a new metallic modification of molybdenum disulfide. *J. Chem. Soc., Chem. Commun.* **1992**, 1386–1388.
- (10) Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS₂ Interfaces. *Nano Lett.* **2014**, *14*, 1714–1720.
- (11) Farmanbar, M.; Brocks, G. First-principles study of van der Waals interactions and lattice mismatch at MoS₂/metal interfaces. *Phys. Rev. B* **2016**, *93*, 085304.
- (12) Bruix, A.; Miwa, J. A.; Hauptmann, N.; Wegner, D.; Ulstrup, S.; Grønborg, S. S.; Sanders, C. E.; Dendzik, M.; Grubišić Čabo, A.; Bianchi, M.; Lauritsen, J. V.; Khajetoorians, A. A.; Hammer, B.; Hofmann, P. Single-layer MoS₂ on Au(111): Band gap renormalization and substrate interaction. *Phys. Rev. B* **2016**, *93*, 165422.
- (13) Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; Xu, X.; Chabal, Y. J. Metal Contacts on Physical Vapor Deposited Monolayer MoS₂. *ACS Nano* **2013**, *7*, 11350–11357.
- (14) Gołasa, K.; Grzeszczyk, M.; Binder, J.; Bożek, R.; Wysmołek, A.; Babiński, A. The disorder-induced Raman scattering in Au/MoS₂ heterostructures. *AIP Adv.* **2015**, *5*, 077120.
- (15) Mertens, J.; Shi, Y.; Molina-Sánchez, A.; Wirtz, L.; Yang, H. Y.; Baumberg, J. J. Excitons in a mirror: Formation of “optical bilayers” using MoS₂ monolayers on gold substrates. *Appl. Phys. Lett.* **2014**, *104*, 191105.
- (16) Kim, R. H.; Leem, J.; Muratore, C.; Nam, S.; Rao, R.; Jawaaid, A.; Durstock, M.; McConney, M.; Drummy, L.; Rai, R.; Voevodin, A.; Glavin, N. Photonic crystallization of two-dimensional MoS₂ for stretchable photodetectors. *Nanoscale* **2019**, *11*, 13260–13268.
- (17) Rissner, F.; Rangger, G. M.; Hofmann, O. T.; Track, A. M.; Heimel, G.; Zojer, E. Understanding the Electronic Structure of Metal/SAM/Organic-Semiconductor Heterojunctions. *ACS Nano* **2009**, *3*, 3513–3520.
- (18) Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Control of carrier density by self-assembled monolayers in organic field-effect transistors. *Nat. Mater.* **2004**, *3*, 317–322.
- (19) Liu, C.; Xu, Y.; Noh, Y.-Y. Contact engineering in organic field-effect transistors. *Mater. Today* **2015**, *18*, 79–96.
- (20) Ravi, S. K.; Sun, W.; Nandakumar, D. K.; Zhang, Y.; Tan, S. C. Optical manipulation of work function contrasts on metal thin films. *Sci. Adv.* **2018**, *4*, No. eaao6050.
- (21) Tseng, C.-T.; Cheng, Y.-H.; Lee, M.-C. M.; Han, C.-C.; Cheng, C.-H.; Tao, Y.-T. Study of anode work function modified by self-assembled monolayers on pentacene/fullerene organic solar cells. *Appl. Phys. Lett.* **2007**, *91*, 233510.
- (22) Hedlund, J. K.; Walker, A. V. Polytype control of MoS₂ using chemical bath deposition. *J. Chem. Phys.* **2019**, *150*, 174701.

- (23) Zhou, C.; Walker, A. V. Dependence of Patterned Binary Alkanethiolate Self-Assembled Monolayers on "UV-Photopatterning" Conditions and Evolution with Time, Terminal Group, and Methylene Chain Length. *Langmuir* **2006**, *22*, 11420–11425.
- (24) Smith, R. K.; Lewis, P. A.; Weiss, P. S. Patterning Self-Assembled Monolayers. *Prog. Surf. Sci.* **2004**, *75*, 1–68.
- (25) Fisher, G. L.; Hooper, A. E.; Opila, R. L.; Allara, D. L.; Winograd, N. The Interaction of Vapor-Deposited Al Atoms with CO₂H Groups at the Surface of a Self-Assembled Alkanethiolate Monolayer on Gold. *J. Phys. Chem. B* **2000**, *104*, 3267–3273.
- (26) Fisher, G. L.; Walker, A. V.; Hooper, A. E.; Tighe, T. B.; Bahnck, K. B.; Skriba, H. T.; Reinard, M. D.; Haynie, B. C.; Opila, R. L.; Winograd, N.; Allara, D. L. Bond Insertion, Complexation and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH₃O-Terminated Organic Monolayers. *J. Am. Chem. Soc.* **2002**, *124*, 5528–5541.
- (27) Zhou, C.; Walker, A. V. Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography. *Langmuir* **2010**, *26*, 8441–8449.
- (28) Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman Spectroscopic Study of MoS₂ and MoO₃: Applications to Tribological Systems. *Tribol. Lett.* **2011**, *42*, 301–310.
- (29) Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1991**, *44*, 3955–3962.
- (30) Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C.-H.; Li, L.-J.; Chhowalla, M.; Lin, J.-F.; Singh, A. K.; Akinwande, D. Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. *Nano Lett.* **2015**, *15*, 346–353.
- (31) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS₂. *Nano Lett.* **2011**, *11*, 5111–5116.
- (32) Upon exfoliation these films were placed on Si wafers to facilitate XPS and Raman spectroscopic analyses.
- (33) Jiang, Z.; Zhang, W.; Jin, L.; Yang, X.; Xu, F.; Zhu, J.; Huang, W. Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO₂(110) Surface to Au Clusters. *J. Phys. Chem. C* **2007**, *111*, 12434–12439.
- (34) Lee, H. J.; Jamison, A. C.; Lee, T. R. Surface Dipoles: A Growing Body of Evidence Supports Their Impact and Importance. *Acc. Chem. Res.* **2015**, *48*, 3007–3015.
- (35) Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, R.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R. Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV-Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols. *J. Phys. Chem. B* **2003**, *107*, 11690–11699.
- (36) Lee, S.-H.; Lin, W.-C.; Chang, C.-J.; Huang, C.-C.; Liu, C.-P.; Kuo, C.-H.; Chang, H.-Y.; You, Y.-W.; Kao, W.-L.; Yen, G.-J.; Kuo, D.-Y.; Kuo, Y.-T.; Tsai, M.-H.; Shyue, J.-J. Effect of the chemical composition on the work function of gold substrates modified by binary self-assembled monolayers. *Phys. Chem. Chem. Phys.* **2011**, *13*, 4335–4339.
- (37) Lim, H. S.; Lee, W. H.; Lee, S. G.; Lee, D.; Jeon, S.; Cho, K. Effect of nanostructure on the surface dipole moment of photo-reversibly tunable superhydrophobic surfaces. *Chem. Commun.* **2010**, *46*, 4336–4338.